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ABSTRACT

A high performance automatic speech recognition (ASR) system is
an important constituent component of an automatic language as-
sessment system for free speaking language tests. The ASR system
is required to be capable of recognising non-native spontaneous En-
glish speech and to be deployable under real-time conditions. The
performance of ASR systems can often be significantly improved by
leveraging upon multiple systems that are complementary, such as an
ensemble. Ensemble methods, however, can be computationally ex-
pensive, often requiring multiple decoding runs, which makes them
impractical for deployment. In this paper, a lattice-free implementa-
tion of sequence-level teacher-student training is used to reduce this
computational cost, thereby allowing for real-time applications. This
method allows a single student model to emulate the performance of
an ensemble of teachers, but without the need for multiple decoding
runs. Adaptations of the student model to speakers from different
first languages (L1s) and grades are also explored.

Index Terms— Automatic speech recognition, automatic spo-
ken language assessment, lattice-free MMI, sequence teacher-
student training, adaptation

1. INTRODUCTION

There is a high demand around the world for the learning of En-
glish as a second language. Assessment of a learner’s language pro-
ficiency is a key part of learning both in measuring progress made
and for formal qualifications required e.g. for entrance to university
or to obtain a job. Given the high demand from English learners, it
will be very difficult to train sufficient examiners and the introduc-
tion of automatic markers will be beneficial especially for practice
situations. The diagram of a general automatic assessment system is
shown in Figure 1 [1, 2, 3, 4]. In free speaking tests, the candidate is
asked to speak for e.g. 20-60 seconds in response to a prompt. The
text of the candidate’s speech is unknown so an automatic speech
recognition (ASR) system is used to determine what they said. Nor-
mally, most of the grader’s input features are derived from the ASR
transcriptions. Therefore, the ASR system performance is of great
importance to the auto-marker system [5, 6].

In a multi-level testing scenario, learners can vary in profi-
ciency from across the Common European Framework of Reference
(CEFR) grades [7], from minimal proficiency (A1), through lim-
ited but effective (B1), to fully operational command of the spoken
language (C2). The ASR system must handle this wide range of

This research was partly funded under the ALTA Institute, University of
Cambridge. Thanks to Cambridge Assessment English, University of Cam-
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proficiencies for speakers across different first languages (L1s).
This is a highly challenging task. First, there are large variations
in accents, pronunciations, speaking rates, grammatical correct-
ness, vocabulary and recording conditions. Second, there is limited
non-native English ASR training data that is publicly available and
thus it cannot be expected to cover all the variations that will be ob-
served in deployment due to both speakers and recording conditions.
Third, for training good ASR systems, high-quality transcriptions
are required. The transcription quality of non-native English learner
speech is often compromised, because it is difficult to understand
and often contains unusual names. In [8], it was shown that the
average word error rate (WER) between each pair of three pro-
fessional transcription services was 23.5% for this form of speech
data. Crowd-sourcing is often used for transcribing this data [9, 10].
It enables more transcriptions at the cost of lower inter-annotator
agreement and more spelling errors. Another problem with the
crowd-sourced transcription is that its deletion rate is normally very
high, especially for poor English speakers because the transcribers
tend to avoid transcribing uncertain information when they cannot
understand the speech. These errors can be mitigated to a certain
extent through the combination of multiple transcriptions [8].

Feature
Extraction

Text

Features
Grader Grade

Speech
Recogniser

Fig. 1. Spoken language assessment auto-marker framework.

Given the challenges presented in the building of ASR systems
for non-native English learner speech, it can be difficult for a sin-
gle ASR system to achieve a high performance [6]. Combining
an ensemble of ASR systems often gives significant performance
gains over one single system, especially when the quantity of train-
ing data is limited [11]. However, if a hypothesis-level combina-
tion of the ensemble is used, such as ROVER [12], confusion net-
work combination [13] or minimum Bayes’ risk (MBR) combina-
tion [14], the computational overhead for performing recognition
through the ensemble scales linearly with the number of systems
and thus may be impractical for real-time applications. One possible
method of reducing this computational cost is teacher-student (TS)
training [15, 16, 17, 18]. This trains a single student model to em-
ulate the combined performance of the ensemble. Only this single
student model needs to be used for recognition, thereby only requir-
ing a single decoding run. One common criterion for TS training is
to minimise the Kullback-Leibler (KL) divergence between the stu-
dent and teacher ensemble frame posteriors [19, 15]. Although TS



training with the frame posteriors can yield better performance than
training on forced alignment hard targets, the frame-level criterion
does not take into account the sequential nature of speech and se-
quence training can often yield significant performance gains [20].
Thus, sequence-level criteria have been introduced into the TS train-
ing framework. The aim of sequence TS training is to train a stu-
dent to produce the same decoding word sequence hypothesis as the
teacher ensemble. In [16], the KL divergence between the word se-
quence posteriors from the student and a sequence-trained teacher
ensemble was used as the criterion. The teachers in the ensemble
were first trained by a cross-entropy (CE) criterion and then fur-
ther trained by a maximum mutual information (MMI) criterion or a
state-level MBR (sMBR) criterion [21, 20]. The sequence TS train-
ing in [16] was extended in [18] to the lattice-free MMI (LF-MMI)
framework, proposed in [22].

In this paper, sequence-level TS trained systems are explored
for non-native English learner data. A lightly-supervised approach
is used to mitigate the impact of the errors in the crowd-sourced tran-
scriptions on the training of the LF-MMI acoustic model. Sequence-
level TS training is implemented within a LF framework, allowing
the student to achieve a similar performance to that of an ensemble
with only a single decoding run. Adaptation of the student model to
different L1s and grades is also explored.

The rest of the paper is organised as follows. Section 2 describes
the LF-MMI acoustic model. Section 3 introduces the sequence-
level TS training implementation, which can be used within a LF
framework. Section 4 gives the experimental setup and results. Sec-
tion 5 draws the conclusions.

2. LATTICE-FREE MMI ACOUSTIC MODEL

The aim of MMI training is to maximise the posterior probability
of the correct utterance while minimising the probability of all other
transcriptions, by minimising the objective function:
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where 0 (-) represents the Kronecker delta function. s is correct
state sequence of utterance r, ® represents model parameters. G
represents the set of all state paths in the lattice, or phone graph in
the LF implementation. Here, p™ (O, |s,, ®) is the acoustic score
with an acoustic scaling factor, k. Ideally, the sum in the denomi-
nator should be taken over all possible sequences. This can be com-
putationally expensive, however, when the hypothesis space is large.
To reduce this computational cost, it is common in practice to limit
the sum to consider only the most likely hypotheses, determined by
pruning a lattice generated by a decoding pass with the training data,
using an initial model. In conventional DNN based hybrid model
training, the neural network is first trained using a CE criterion to
provide the initial model . The CE-trained neural network is then
used to generate the hypothesis lattice for each utterance, which is
then used to compute the gradient for the MMI criterion of (2).

The disadvantages of this conventional MMI training approach
are twofold. First, the MMI training requires a CE-trained initial
model. Second, it is very expensive to generate and store the denom-
inator lattice for each training utterance. The LF-MMI implementa-

tion in [22] avoids the need for CE initialisation and lattice gener-
ation. It calculates the denominator by directly applying forward-
backward computations [23, 24] on an unpruned denominator graph
on GPU hardware. For speeding up the computations, a phone-level
language model, instead of a word-level language model, is used
to generate a phone graph. The phone-level language model sig-
nificantly reduces the number of state sequences that needs to be
represented in the lattice, thereby reducing the computational cost
required to perform forward-backward computations. A pruned 4-
gram phone language model is normally trained using a phonetic
decomposition of the training data transcriptions

To further reduce the computational cost, a 30ms frame rate
rather than a 10ms frame rate is often used. When using a 10ms
frame rate, the conventional 3-state HMM, shown in Figure 2, re-
quires a minimum of 30ms to traverse. When using a 30ms frame
rate, a simpler 2-state HMM topology, shown in Figure 2, can in-
stead be used, to preserve the minimum of 30ms required to traverse
aphone. In this 2-state topology, the first emitting state does not have
a self-loop and can be activated only once for each occurrence of the
sub-word units. Only the second emitting state has a self-loop con-
nection. This topology is similar to the one used in the Connectionist
Temporal Classification (CTC) approach [25]. This simpler topol-
ogy results in fewer states and a smaller output layer, thus further
reducing computation. LF-MMI systems have been shown to give
better or comparable performance when compared with their lattice-
based counterparts over a range of tasks [22, 26, 27, 28]. However,
the LF-MMI systems are very sensitive to errors in the transcrip-
tions [22]. This problem is further exacerbated when there is a high
deletion rate in the training transcriptions, as is often the case with
crowd-sourced transcriptions. High deletion rate, however, does not
interact well with powerful, sharp, acoustic model as what is nor-
mally used for building LF-MMI systems [22, 26].

88 o8

Standard HMM LF-MMI HMM

Fig. 2. HMM topology used in standard neural network models and
LF-MMI models.

3. SEQUENCE TEACHER-STUDENT TRAINING

Rather than just using a single model, significant performance gains
can often be obtained by combining together an ensemble of multiple
models [12]. If the models have a diversity of different behaviours,
then errors may occur at different locations between the hypotheses
of the models. This may allow the models to correct for each other’s
errors. In this paper, diversity is introduced into the ensemble by be-
ginning training from different random initialisations [16]. Ensem-
ble methods may be especially beneficial when the quantity of train-
ing data is limited, such as the present situation of using non-native
English learner speech. The ensemble of models can be combined at
the hypothesis level, using methods such as ROVER [12], confusion
network combination [29] and MBR combination [14]. However,
these can be computationally expensive when performing recogni-
tion, as a separate decoding run is required for each of the models.
This may hinder the application of ensemble methods to real-time
automatic assessment systems.



TS training is one possible method that can be used to alleviate
the computational cost of using an ensemble for recognition. In TS
training, a single student model is trained to emulate the combined
performance of the ensemble. Only this single student model then
needs to be used for recognition and assessment, thereby reducing
the computational cost. One possible method of training the stu-
dent is to minimise the KL-divergence between the frame-level state
posteriors of the student and teachers [19]. This criterion only prop-
agates frame-level posterior information from the teacher ensemble
to the student, and may not adequately capture the sequential nature
of speech data. Instead, a sequence-level criterion can be used, by
minimising the KL-divergence between the state sequence posteriors
of the student and teachers [16],

]:TS:_ZZP(ST
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where & represents the teacher model parameters and ® represents
the student model parameters. In this work, an ensemble is used
as the teacher. There are several possible methods of combining the
teachers in the ensemble to obtain the sequence posterior targets used
to train the student. A simple method is to take a sum combination
of the sequence posteriors [16]:

M
07.7<f>) =3 AP (s/]O,, @™). )

m=1

P (s7.

where M is the number of teachers in the ensemble. Here, A,
and ®"" represent the interpolation weights and model parameters
of teacher m, respectively. This form of targets can be interpreted
as a Monte Carlo approximation to Bayesian inference of the state
cluster sequence.

The gradient of the criterion in (3) is calculated as
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This gradient can be efficiently computed using a forward-backward
pass over each denominator phone graph produced by the student
and teacher models. In this paper, a LF implementation of the gradi-
ent computation is used as that in [18], allowing for a simple integra-
tion with existing LF-MMI training implementations and models.

4. EXPERIMENTS

4.1. Training and evaluation data sets

Experiments were conducted using the data from the Business Lan-
guage Testing Service (BULATS) Online Speaking Test of Cam-
bridge English Language Assessment [30]. The BULATS test com-
prises 5 sections: A. responses to short questions; B. read aloud sen-
tences; C-E. free speaking responses with a maximum length of 60
(sections C and D) or 20 seconds (5 parts of section E). The ASR
training set, TRN, consists of 334 hours of BULATS data, which
mainly covers 28 L1s' and the 5 CEFR grades ranging from Al to
C2. C1 and C2 grades are merged due to a lack of C2 speakers. The
distributions of the L1s and grades are shown in Figure 3, respec-
tively. Transcriptions that combined two crowd-sourcing transcrip-
tions using the approach in [8] were available for this data set.

Two evaluation data sets were used. The first one, EVL.trans,
was used for evaluating the quality of the transcriptions. This data

I'There are 75 L1s in total but most have only 1 or 2 speakers.

set was also used in [8] for the same purpose. It contains 88 speakers
in 10 hours of speech. All are Indian Gujarati native speakers, and
are roughly evenly distributed across CEFR grade range [7]. Each ut-
terance has been transcribed by crowd-sourcers. Additionally, each
utterance has also been transcribed by professional services [8]. This
allows us to evaluate the quality of transcriptions on the professional
transcriptions using this data set.

The second evaluation data set, EVL.asr, was used for assess-
ing the performance of ASR systems. It consists of 226 speakers
from Polish, Arabic, Vietnamese (Viet.), French, Thai and Dutch
L1s. The speakers are roughly evenly distributed across the CEFR
grade range [7]. To assess the performance of the ASR systems,
word error rates (WERs) were calculated for Sections C, D and E,
containing a total of 14 hours of spontaneous speech. This data set
has been transcribed by native English speaking transcribers [31, 6].
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Fig. 3. L1 (left) and grade (right) distributions of TRN.

4.2. Lightly-supervised training

As discussed in Section 2, LF-MMI systems are highly sensitive to
transcription errors, especially deletions. Given this, the solution
proposed in this paper to reduce the impact of the poor quality of
the crowd-sourced transcriptions is to use a lightly-supervised (LS)
approach. LS approaches are often used to produce better transcrip-
tions than the original transcriptions [32, 33, 34]. The idea is to
use an acoustic model and a biased LM to recognise the training
data and generate the hypotheses which are then selected and used
as the training transcriptions. In order to produce high quality tran-
scriptions using a strong system, in this paper, a joint stacked hybrid
DNN and LSTM system is used for the LS transcription generation.

The diagram of the joint system is shown in Figure 4. This sys-
tem was shown to give good performance for a range of downstream
tasks in the BULATS test in [6]. A bottleneck DNN (BN-DNN) was
first trained. The BN-DNN had a 720 x 1000* x 39 x 1000 x 6000
structure, where the BN feature size is 39. The input feature vector
of the BN-DNN consisted of 9 consecutive frames of 40-dimensional
log Mel-filter bank features plus their delta. Thus the dimension of
the feature vector was 720. The bottleneck features were appended
with a 52-dimensional PLP4-A+ A2 4+ A? feature vector. An HLDA
transform was applied to the PLP features and a global semi-tied
transform was applied to the BN features, reducing the dimension of
the combined feature vector from 91 to 78. This feature vector was
used to train both DNN and LSTM Hybrid acoustic models with a
context window of [-4,4]. The hybrid systems were implemented
using the Kaldi toolkit [35], the DNN had a 702 x 1000° x 8949
structure with 8949 tri-graphemic state outputs. A graphemic lex-
icon was used because it was shown to give a better performance
than a phonetic lexicon for this task [36]. The LSTM had 2 hidden
layers, each with 1000 memory cells and 500 recurrent projection
units [37]. Cross entropy a state-level MBR (sMBR)-based sequence
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Fig. 4. Joint decoding system that is used for generating the lightly-
supervised (LS) transcriptions.

training were applied [21]. The models were trained on the com-
bined crowd-sourced transcriptions. An in-domain LM was trained
on 1.83M words from the combined crowd-sourced transcriptions
of the training data, using the SRILM toolkit [38]. This LM was
then interpolated with a general LM that was trained on Broadcast
News English (BNE) [39] using an interpolation weight of 0.83 for
the BULATS LM and a weight of 0.17 for the BNE LM. The choice
of a large interpolation weight for the TRN data allows the LM to be
used as a biased LM. Thus, the data in TRN can be decoded using
this system to produce LS transcriptions for training the LF-MMI
system.

%WER
Trans |l A1 a2 BI B2 C |Overall | RTF
CWD || 40.3 31.3 27.5 186 159| 25.1 -
Joint || 39.7 314 274 19.1 17.8| 25.6 3.1
Table 1. %WER on EVL.trans for different grades for crowd-

sourced (CWD) transcriptions and transcriptions produced by the
joint DNN and LSTM hybrid system. The decoding real-time factor
(RTF) is also calculated for the joint system.

Table 1 shows the WERs on EVL.trans for different grades for
the crowd-sourced transcriptions and the transcriptions produced by
the joint system using as the reference the professional transcrip-
tions. It can be seen that the joint DNN and LSTM system yields a
comparable overall WER to the crowd-sourcers. As the English pro-
ficiency of the speakers improves, the performance gap increases.
For A1 speakers, whose English is the most difficult to transcribe,
the transcriptions produced by the joint DNN and LSTM system is
better than the crowd-sourced transcriptions. Also, for Al speakers,
the crowd-sourced transcriptions have a deletion error rate of 14.3%
while the deletion error rate from the joint system is only 12.3%.
Thus, the transcriptions from the joint system are of a higher quality
and have a lower deletion rate than the crowd-sourced transcriptions
for poorer speakers. Moreover, it is expected that the transcriptions
from the ASR systems are more consistent than the crowd-sourced
transcriptions across the utterances where there are large variations
in the accents and audio quality. The table also shows that the de-
coding real-time factor (RTF) required by the joint system is 3.17%,
which makes it challenging to deploy in a real-time system.

Two 9-layer interleaved time-delay DNN (TDNN) and long-
short term memory (LSTM) LF-MMI systems were built using
the Kaldi toolkit [35] using crowd-sourced transcriptions and the

2The real-time factors were calculated based on threads rather than cores.

LS transcriptions from the joint system, respectively. The TDNN-
LSTM models had the same structure as that in [28]. They had 6
TDNN [40] layers with 600-dimensional ReLU units and 3 LSTM
layers with 512 cells with 128 recurrent and non-recurrent projec-
tions [37]. The acoustic model features were 40-dimensional log
Mel-filter bank features normalised using speaker level mean and
variance normalisation. Around 2500 context-dependent graphemic
states were used as output targets, which is much fewer than that of
the joint DNN and LSTM system. The LM is the same as that used
in the joint system.

Table 2 shows the WER on EVL.asr for different grades using
the two LF-MMI systems. It can be seen that the LF-MMI trained on
the LS transcriptions performs consistently better than that trained
on the crowd-sourced transcriptions across different grades. Over-
all, it gives about 2% absolute WER improvement, with the perfor-
mance gap increasing as the grade becomes worse. For A1 speakers,
the LF-MMI system trained on the LS transcriptions gives about 5%
absolute WER reduction over that trained on the crowd-sourced tran-
scriptions. This implies that the LF-MMI system trained on the LS
transcriptions is significantly more robust for data that is highly chal-
lenging to transcribe. Compared with the joint system, the decoding
RTF required by the LS trained LF-MMI system is only 0.6, which
is about 5 times faster than that of the joint system.

%WER
System || o1 A2 BI B2 C |Overall | KTF
CWD [[492 399 297 278 238] 304 ||
LS | 444 369 274 263 224 283 |

Table 2. %WER on EVL.asr for different grades for the LF-
MMI TDNN-LSTM systems trained on crowd-sourced (CWD) and
lightly-supervised (LS) transcriptions.

4.3. Teacher-student training

As shown above, the LF-MMI system is much less computationally
expensive to use for recognition than the joint DNN and LSTM sys-
tem. It does, however, have a poorer WER than the joint DNN and
LSTM system shown in Figure 4, which gives a WER of 25.9% on
EVL.asr. This is because the joint system can leverage the combina-
tion of a DNN model and a LSTM model. In this paper, ensemble
method is used to improve the performance of the LF-MMI system.
Ensemble methods previously have been shown to give significant
gains over single systems [12, 41, 16]. Ensemble methods can also
be applied to the LF-MMI system to potentially provide performance
gains. In this experiment, an ensemble was generated by training
3 TDNN-LSTM LF-MMI systems, beginning from different model
parameter random initialisations [16]. These are trained toward the
1-best LS transcriptions provided by the joint DNN and LSTM sys-
tem. Hypothesis-level combination was performed using minimum
Bayes’ risk (MBR) combination. However, hypothesis-level com-
bination can be computationally expensive, as a separate decoding
run is required for each member of the ensemble. This can present a
hindrance when aiming to develop a real-time automatic assessment
system. TS training can be used to reduce this computational cost. A
LF implementation of sequence-level TS training was used to train
a single student model to emulate the combined performance of the
ensemble. The combined state sequence posteriors of the ensemble,
which was given in (4), was used as the training target. The student
used the same TDNN-LSTM structure as each of the teachers in the
ensemble, and therefore should have a decoding RTF that is similar



to each of the teachers in the ensemble. Equal interpolation weights
were used for both MBR combination and TS training.

Table 3 compares the ensemble performances using these dif-
ferent combination methods. The results suggest that the ensemble
can outperform a single LF-MMI system. Using hypothesis-level
MBR combination, the ensemble consistently performs better than
the single LF-MMI system across the grades and on average it gives
1.6% absolute performance gain. For each grade, the performance
gain from the ensemble combination is similar. However, the RTF
of the MBR ensemble combination is about 3 times of that of the
single system, mainly due to the 2 decoding runs that are required
for the additional members of the ensemble. The last row of Table 3
shows the performance of the student model. It can be seen from
the table that, the student yields a slightly better performance than
the MBR combination of the ensemble. By looking at the perfor-
mance for each grade, the largest WER improvement, which has a
1% absolute WER reduction, is from the A1 speakers. This suggests
that the student model, trained toward the state sequence posterior
targets of the ensemble, may be more robust to the erroneous tran-
scriptions than the LF-MMI models that are trained toward 1-best
targets. When using TS training to combine an ensemble, only a sin-
gle student model is used for recognition. As such, the single student
model has a decoding RTF of 0.6, similar to that of a single LF-MMI
system. Furthermore, the student model has a decoding RTF that is
about 5 times faster than the joint DNN and LSTM system®, with
only a slight degradation in the WER performance. Thus, this stu-
dent model may be more suitable for real-time deployment.

may have significantly different characteristics. It may be possible
to adapt a general system toward the L1 or grade of the speaker who
is being assessed. This is in some ways similar to speaker adaptation
methods [43].

It is assumed in this paper that the L1 specified by each speaker
is correct. In practice, the L1 could be predicted using methods such
as in [44]. The grade which a speaker is estimated to fall into can be
obtained by using a first pass automatic assessment using the general
system. In the initial work in this paper, however, it is assumed that
the grade for each speaker is known before-hand, and is taken as
that which has been assigned by professional human examiners and
is provided with the EVL.asr data. It is also assumed that the L1
and grade ranges for the test speakers are the same as those for the
speakers in the training set. Data used for adaptation was obtained
from within TRN, and its distribution over L1s and grades is shown
in Table 4. The total amount of adaptation data (about 21 hours) is
about 6% of the amount of TRN (about 334 hours). The columns of
the table give the amount of data for each L1 over all grades. Except
for French, which has about 10 hours of data, there is very limited
data for other Lls, especially for Thai which only has about 0.92
hours of data. The amount of data for each grade varies for each L1.
In general, B1 and B2 take up most of the data for each L1, and Al
has the least amount of data with only 0.77 hours in total. Unlike the
TRN data, the data in the EVL.asr set has been designed such that
there is a fairly even distribution of the quantity of data across all
L1s and grades.

| Hrs H Polish Arabic Viet. French Thai Dutch [ Totall

%WER
System Al A2 Bl B2 C |Overan | NTF
Single 444 3690 274 263 224] 283 | 06

Ensemble+MBR || 42.9 354 252 246 21.2| 267 || 1.8

Ensemble+TS || 41.9 35.1 252 242 210| 264 | 06

Al 0.18 0.09 0.10 033 0.07 0.00 | 0.77
A2 || 045 021 0.13 1.14 029 0.00 | 2.22
B1 120 052 124 416 038 0.16 | 7.66
B2 075 061 154 429 0.13 129 | 8.61
C 0.13 0.17 0.18 052 0.05 098 | 2.03

Table 3. %WER on EVL.asr for different grades and real-time fac-
tors (RTF) for single LF-MMI system, MBR combination of LF-
MMI ensemble and TS trained LF-MMI system with a teacher en-
semble.

The joint DNN and LSTM system has a slightly better perfor-
mance than the combined LF-MMI ensemble. As such, it may be
beneficial to instead use this joint system as the teacher for teacher-
student training. This may allow the good performance of the joint
DNN and LSTM system to be leveraged upon directly, while main-
taining the fast decoding RTF of the student model with a TDNN-
LSTM structure. The differences between the sets of state clusters,
and frame rates of the joint system and TDNN-LSTM model make
it difficult, however, for the sequence-level teacher-student training
method that has been described in Section 3 to be used directly.
It may be possible to generalise the teacher-student training frame-
work, using methods such as that described in [42], to allow for these
differences between models. This may be an interesting direction for
future research.

4.4. L1 and grade adaptation

The systems considered thus far have been trained on data from all
L1s and grades. These systems are therefore fairly general. How-
ever, speech from speakers with different L1s or estimated grades

3The decoding configurations for both the joint and LF-MMI systems
were not optimised and the standard configurations in Kaldi were used for
both systems.

Total || 2.71 1.60 3.19 1044 092 243 [21.29

Table 4. %L1 and grade band distribution of the adaptation data
from TRN. The L1s in EVL.asr are considered.

In this experiment, the student model, trained toward the LF-
MMI ensemble on all of the TRN data, is used as the initial general
acoustic model. Two methods are considered to adapt this general
model to each L1 or grade. The first uses LF-MMI training with
only the adaptation data for each L1 or grade, where the targets are
obtained as the 1-best LS transcriptions. This form of targets is re-
ferred to as “LS-1best”. The second uses sequence-level TS training,
again on only the adaptation data for each L1 or grade, where the tar-
gets are obtained as the state sequence posteriors from the LF-MMI
ensemble. Unlike the 1-best LS transcriptions, this form of targets
may capture the uncertainty about what the correct transcription of
the adaptation data utterances should be, represented within a lattice
or graph. This form of targets is therefore referred to as “En-graph”.
The propagation of uncertainty about the transcriptions may be par-
ticularly beneficial for utterances that are more difficult to transcribe
and therefore are more prone to errors in the 1-best transcriptions.
These two methods can be viewed as realisations of the same KL-
divergence criterion, with different forms of targets, as shown in (1)
and (3). Using either form of targets, the general student acoustic
model is adapted by performing one epoch of training. The learning
rates used for the different L1s or different grades are the same.

Table 5 first considers adaptation to the L1 of the speaker. The
adapted systems for each L1 are tested on the speakers belonging
to that L1 from the EVL.asr test set. The results suggest that L1



adaptation using both forms of targets yields consistent gains across
all L1s. Using the LS-1best targets, the adaptation yields good per-
formance gains for Polish and Vietnamese, and the WERs for these
two L1s are reduced by about 5% relative. Adapting to Thai, which
has the least amount of adaptation data, yields the least performance
gain, which is only a 1% relative WER reduction. Overall, L1 adap-
tation using LS-1best targets drops the WER from 26.4% to 25.6%.
This performance is similar to that of the joint DNN and LSTM sys-
tem, but has a much smaller decoding RTF, assuming that the L1 of
the test speaker is known. L1 adaptation using the En-graph targets
does not yield as much performance gains as when using the LS-
1best targets. This may be because the initial general student model
has already been trained toward the same targets from the ensemble,
so there may be little more that can be gained.

System| Target %WER
y & Polish Arabic Viet. French Thai Dutch[Overall
TS |En-graph|| 20.8 314 322 224 30.0 208 | 264
+Adapt LS-1best|| 19.8 30.5 30.6 22.0 29.7 20.2 | 25.6
P En-graph|| 20.3 30.8 309 21.9 299 204 | 25.8

Table 5. %WER on EVL.asr for L1-level adaptation of the TS
trained system.

Table 6 next considers adapting the acoustic model to the es-
timated grade that the speaker is assessed as having. In this ini-
tial work, it is assumed the estimated grade is taken as that which
has been assigned by professional human examiners, provided with
the TRN and EVL.asr data. Starting again from the general student
model, adaptation data for an estimated grade from all L1s are used
to adapt the acoustic model to that grade. The adapted systems for
each grade are tested on the speakers with the same estimated grade
from the EVL.asr test set. Consistent gains are seen to be obtained
using both forms for targets for grade adaptation. The gains obtained
from grade adaptation, however, are less than those from L1 adap-
tation in Table 5. This may indicate that the variability of speech
between different L1s is greater than the variability within a L1 be-
tween different estimated grades. For grade adaptation using the LS-
1best targets, the performance gains appear to increase as the speak-
ers’ English proficiency improves from A1l to C. This may be related
to the observation in Table 1 that the quality of the LS transcriptions
improves with the grade of the speaker. On the other hand, the gain
for Al speakers after adaptation is significantly greater when using
the En-graph targets, than when using the LS-1best targets. This
suggests that the information about the transcription uncertainty that
is captured within the En-graph targets may be especially beneficial
when the quality of the 1-best targets is poor.

%WER
Al A2 Bl B2 C |Overall
419 351 252 242 21.0] 264
418 349 248 238 205 260
413 350 250 239 207 | 26.1

System | Target

TS En-graph
LS-1best
En-graph

+Adapt

Table 6. %WER on EVL.asr for grade-level adaptation of the TS
trained system.

5. CONCLUSIONS

This paper explores the building of a high performance ASR system
for non-native spontaneous English learner data that is suitable for

real-time deployment. By leveraging upon a sequence-level teacher-
student training approach, a LF-MMI system can emulate the per-
formance of the combination of an ensemble while only requiring
a single decoding run, and with a RTF of about 0.6. This system
can also be adapted to speakers from different L1s and grades using
both the 1-best word sequence and the state sequence posteriors as
the targets. The adaptation can yield performance gains of about 5%
relative in the best-case scenario.
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