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ABSTRACT

State-of-the-art English automatic speech recognition systems typi-

cally use phonetic rather than graphemic lexicons. Graphemic sys-

tems are known to perform less well for English as the mapping

from the written form to the spoken form is complicated. However,

in recent years the representational power of deep-learning based

acoustic models has improved, raising interest in graphemic acous-

tic models for English, due to the simplicity of generating the lex-

icon. In this paper, phonetic and graphemic models are compared

for an English Multi-Genre Broadcast transcription task. A range of

acoustic models based on lattice-free MMI training are constructed

using phonetic and graphemic lexicons. For this task, it is found

that having a long-span temporal history reduces the difference in

performance between the two forms of models. In addition, system

combination is examined, using parameter smoothing and hypothe-

sis combination. As the combination approaches become more com-

plicated the difference between the phonetic and graphemic systems

further decreases. Finally, for all configurations examined the com-

bination of phonetic and graphemic systems yields consistent gains.

Index Terms— Speech recognition, graphemic lexicon, lattice-

free MMI, model combination

1. INTRODUCTION

Hidden Markov model (HMM) based automatic speech recognition

(ASR) systems are typically built using sub-words units, such as

phones or graphemes. System performance depends on an appropri-

ate definition of sub-word units and the accuracy, and consistency,

of decomposing words into these sub-word units. Phonetic lexicons

provide a mapping between the orthographic representation of a

word, a sequence of letters (graphemes), into a sequence of phones.

However, generation of these lexicons requires linguistic knowledge

of the target language, which is time-consuming and expensive. On

the other hand, graphemic lexicons are attractive as the graphemes

are directly used. Moreover, graphemic lexicons can be easily ex-

panded to include out-of-vocabulary (OOV) words, unlike phonetic

lexicons. For languages with a close grapheme-to-phone mapping,

graphemic HMM-based systems have been shown to perform sim-

ilarly to phonetic systems [1, 2, 3]. However, for languages with

irregular grapheme-to-phone mappings, such as English, graphemic

HMM-based systems normally perform significantly worse than

their phonetic counterparts [2]. This is not surprising as the system

relies on the acoustic model to implicitly capture the irregulari-

ties of the graphemic to acoustic realisation. When more powerful
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deep learning based acoustic models are used, such as connectionist

temporal classification (CTC) [4] which model long-span tempo-

ral information, the gap between graphemic systems and phonetic

systems is small on a read English task [5].

This paper aims to find out whether recent deep-learning based

acoustic models, which also model long-span temporal information,

allow HMM-based graphemic systems to perform at the same level

of accuracy as phonetic systems for English. A range of models

are available including long short-term memory (LSTM) networks

[6], convolutional neural networks [7], time-delay neural networks

(TDNN) [8] and bidirectional LSTM networks [9]. Additionally var-

ious layer-wise combination schemes allow the advantages of several

models to be leveraged [10, 11]. These models also offer flexibil-

ity in terms of the span of the temporal information that they can

capture. For instance, the interleaved TDNN-LSTM model [11] ex-

tends the temporal span of the LSTM model with a wide window

into the future. These models can also be efficiently trained directly

from random initialisation by using approaches such as lattice-free

maximum mutual information (LF-MMI) estimation. This often re-

sults in improved performance over state-level minimum Bayes’ risk

(sMBR) trained models [12]. These complex models are likely to

have, possibly significant, variations in ASR performance depending

on the choice of training hyper-parameters. This variation in system

performance can be taken advantage of using system combination

[13]. This paper will examine two forms of system combination

with different complexities and costs. The first is a random ensemble

method [14], which utilises multiple training runs with different ran-

dom seeds to produce slightly different yet complimentary systems.

The second is model smoothing [15], which interpolates a number of

intermediate model parameters using weights estimated on a subset

of the training data. Finally, graphemic systems, if competitive with

the phonetic system, should be complimentary to phonetic systems.

The rest of this paper is organized as follows. Sections 2 and

3 describe graphemic acoustic models and model combination ap-

proaches respectively. Section 4 details the experiments conducted

on an English multi-genre broadcast transcription task with the pho-

netic and graphemic models as well as using different combination

approaches. Finally, conclusions are given in Section 5.

2. GRAPHEMIC ENGLISH SYSTEMS

2.1. Graphemic lexicon

At the core of any graphemic system is the graphemic lexicon. For

English, it is straightforward to form this from the 26 alphabet letters

/a-z/. In addition to these base graphemes, it may also be useful to

mark additional attributes such as apostrophes (DA) and abbrevia-

tions (DB). Excerpts from phonetic and graphemic lexicons are:
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Phonetic Lexicon

B.B.C.’s /b/ /iy/ /b/ /iy/ /s/ /iy/ /z/

information /ih /n/ /f/ /ax/ /m/ /ey/ /sh/ /en/

moon /m/ /uw/ /n/

the /dh/ /ax/

Graphemic Lexicon

B.B.C.’s b;DB b;DB c;DADB s

information i n f o r m a t i o n

moon m o o n

the t h e

From the first entry, the use of abbreviation and apostrophe attributes

potentially allows the graphemic system to handle the discrepancy

between the pronounced and written forms. The other three exam-

ples illustrate situations where graphemic systems may struggle to

model letter omission (’r’ in information), vowel (’oo’ in moon),

consonant (’th’ in the) and vowel-consonant (’tio’ in infor-

mation) recombination. Though some of these issues can be han-

dled using context dependent models, e.g. bi-graphemes and tri-

graphemes, for others the length of the context necessary for dis-

ambiguation will be prohibitively large. For example, the phonetic

lexicon used in Section 4 associates three phones, /dh/, /th/ and

/t/, with the sound corresponding to the grapheme sequence ’th’.

This problem is further compounded by the fact that the following

grapheme ’e’ depending on its neighbor is represented by 9 dif-

ferent vowel/consonant phones. The examples given in this section

suggest that for graphemic systems, context modelling may be even

more important than it is for phonetic systems [16].

2.2. Acoustic Model Structure

Rather than solely relying on acoustic modelling units to handle

the intricate grapheme-to-phone rules, it is also possible to examine

acoustic models capable of modelling long-span temporal informa-

tion. In a deep neural network (DNN) acoustic model [17], only a

small number of preceding and succeeding frames are typically used

to predict the current state, st, as is shown in (1)

(T)DNN:P (st|O1:T ) ≈ P
(
st|ot−τ(l) , . . . , ot+τ(r)

)
(1)

LSTM:P (st|O1:T ) ≈ P
(
st|o1 , . . . , ot+τ(r)

)
(2)

where the left τ (l) and right τ (r) context window sizes are typically

less than 10. A TDNN [8] has a more complex structure that enables

it to cover a significantly larger number of preceding and succeeding

frames without significantly increasing the number of model param-

eters. For example, the model considered in Section 4 uses τ (l) = 15
past and τ (r) = 10 future frames. The use of recurrent units in a

LSTM network, described in equation (2), allows even longer-span

temporal information to be modelled. Note that in practice the past

information is typically truncated after some fixed, yet large, number

of frames (40 in this work). Furthermore, the TDNN-LSTM model

[11] obtained by interleaving TDNN layers [8] with LSTM layers

[6] increases the context window to 50 frames into the past and 20

frames into the future. In addition to being more powerful classifiers,

these advanced deep-learning based acoustic models thus can utilise

a significantly longer span of temporal information than that used in

previous work with Gaussian mixture models.

3. MODEL COMBINATION

Training the deep neural network models discussed in Section 2

is a complicated process involving highly non-convex optimisation.

There may thus be large variations between the behaviours of inter-

mediate models from iteration to iteration, or between final models

when originating from different starting points. The latter is likely

to be larger when models are trained from different random initial-

isations using the LF-MMI criterion, as there is no cross-entropy

initialisation stage with common targets for all systems. Such vari-

ation typically results in the models making different predictions.

Depending on the level of useful variation, such diverse predictions

may help to resolve confusions. This serves as the basis for various

system combination approaches [18, 19, 20, 21].

3.1. Ensemble Methods

A combination of an ensemble of diverse and yet individually ac-

curate systems can often result in significant gains [22]. Common

methods to introduce diversity include random parameter initialisa-

tion for ASR [13, 14], bagging [23] and random decision trees [24].

Using different random initialisations has been shown to be a simple

and efficient approach of introducing diversity [13, 14]. In [14], this

method was able to provide significant diversity while keeping a sim-

ilar performance across the systems. Thus, combining the systems

in the ensemble could yield strong gains. A less common method

of ensemble generation is to take a number of intermediate models

during training and interpolate their parameters

Φ =
M∑

m=1

αmΦm (3)

where M is the number of models, Φm represents the parameters of

the mth model and αm represents its combination weight. This is

the idea behind model smoothing [15], designed to reduce unwanted

variations during the training. The models are normally selected

from the later stages of training using a fixed iteration interval be-

tween the selected models (6 in this work). The combination weights

are associated with the individual layers and optimised on a subset

of training examples. The combination weights are constrained to

sum to 1. Though generally it is hard to ensure that the combined

model would improve over the final trained model, this paper shows

that large performance improvements are possible.

To measure the diversity of the generated systems, it is possible

to use cross word error rate (cWER) [13]

cWER =
1

M (M − 1)

M∑

m=1

∑

n6=m

1
∑

R

r=1 |W
n
r |

R∑

r=1

L (Wm

r ,Wn

r ) ,

(4)

where Wm
r represents the 1-best hypothesis of the rth utterance, us-

ing the mth model, and R is the total number of utterances. The

cWER measures how different the 1-best hypotheses are between

models and was found to be more correlated with the combination

gains than the standard deviation of WERs [13].

3.2. Minimum Bayes Risk Combination

It is only possible to use model smoothing in equation (3) for com-

bining iterations of the same model training run. A more general sys-

tem combination approach is hypothesis-level combination. Exam-

ples of this form of approach are: ROVER [18]; confusion network

combination (CNC) [19]; and minimum Bayes risk (MBR) combi-

nation [20]. In this work MBR combination is used, which finds the

word sequence that attempts to minimise the expected WER across

2



the systems being combined [20]:

Ŵ = argmin
W

{
M∑

m=1

λm

∑

W′∈H

P
(
W ′|O1:T ;Φm

)
L
(
W,W ′

)
}
,

(5)

where λm are the combination weights, P (W|O1:T ;Φm) is the

posterior probability of the word sequence, W , given the observation

sequence, O1:T , and the acoustic model, Φm, H is a set of hypothe-

ses and L (W,W ′) represents the Levenshtein distance between two

word sequences W and W ′. Though more computationally expen-

sive, MBR combination has been shown to perform better than the

ROVER combination and CNC.

4. EXPERIMENTS

Experiments were conducted using the data from the 2017 English

Multi-Genre Broadcast (MGB-3) challenge. The data was supplied

by British Broadcasting Corporation (BBC) and consists of audio

from BBC television programmes. The data contains a wide range

of genres such as comedy, drama and sports shows. A total of 375

hours of audio data with associated subtitles is available for acoustic

model training. Lightly supervised decoding and selection was used

to extract 275 hours for training [25, 26]. A 6 hours development

set, dev17b, was also supplied. The acoustic model features were

40-dimensional Mel-filter bank features normalised using utterance

level mean normalisation and show-segment level variance normal-

isation [26]. Around 3600 left bi-phone dependent states were used

as targets. The results are based on automatic audio segmentation

using a DNN based segmenter [27] trained on the MGB-3 data.

To examine the impact of the acoustic model complexity on

phonetic and graphemic system performance, a range of acoustic

models of different topology and spans of temporal information

were built. These include feed-forward DNN, sub-sampled TDNN,

unidirectional LSTM and interleaved TDNN-LSTM models. The

DNN models had 7 hidden layers of 600-dimensional sigmoid units

and an input context window spanning from 10 frames into the

past to 10 frames into the future. The TDNN models had 7 layers

of 600-dimensional rectified linear units (ReLU) and wider input

context window spanning from 15 frames into the past to 10 frames

into the future.1 The LSTM model had 3 LSTMP layers, each

with 512-dimensional cells and 128-dimensional recurrent and non-

recurrent projections. The effective temporal information window

for the LSTM spans from 40 frames into the past to 7 frames into the

future. The interleaved TDNN-LSTM models had 9 layers of 600

dimensional ReLU units.2 The TDNN-LSTM model has the widest

temporal information window, starting from 50 frames into the past

and ending at 20 frames into the future. All models were trained

using the LF-MMI criterion on a single GPU [28] using Kaldi toolkit

[15]. For this work, only speaker-independent systems were used.

For the first pass decoding language model, a 3-gram language

model with a 64K words lexicon was used. This was trained on the

audio subtitles and 650M words of supplied BBC subtitles. In ad-

dition, a recurrent neural network language model (RNNLM) [29]

was also used to refine the result of the first pass decoding. The

CUED-RNNLM Toolkit v1.0 [30] was used to train the RNNLM

1The splicing indexes per layer can be described as {-1,0,1} {-1,0,1} {-
1,0,1,2} {-3,0,3} {-3,0,3} {-6,-3,0} {0} using the notation of [8, 11].

2The architecture can be described as {-2,-1,0,1,2} {-1,0,1} L {-3,0,3}
{-3,0,3} L {-3,0,3} {-3,0,3} L, where L represents an LSTMP layer with
512 cells and 128-dimensional recurrent and non-recurrent projections, using
notation of [8, 11].

using 1 layer of 1024-dimensional GRU units. Given the vocabulary

size (64K) and quantity of training data (e.g. 650M words), noise

contrastive estimation (NCE) was adopted to speed up training and

evaluation [31]. At test time, a 4-gram approximation [32] of the

RNNLM was used to rescore 4-gram lattices. As the RNNLM was

trained with the NCE, the unnormalized output layer probabilities

were used in rescoring, which provided a large speed up. MBR de-

coding/combination was used to produce the final output. Unless

stated otherwise, performance with the 3-gram model is quoted.

4.1. Phonetic and Graphemic Models

Model
Single Ph/Gr Comb

%WER %Rel %WER %Rel

DNN
Ph 27.8 —

26.3 -5.4
Gr 30.7 +10.4

TDNN
Ph 24.4 —

23.0 -5.7
Gr 26.9 +10.3

LSTM
Ph 25.0 —

23.2 -7.2
Gr 26.7 +6.8

TDNN-LSTM
Ph 23.4 —

21.7 -7.3
Gr 25.0 +6.8

Table 1. %WER of phonetic and graphemic systems and their MBR

combination on dev17b.

The impact of the acoustic model on the performance difference

between phonetic (Ph) and graphemic (Gr) systems is illustrated in

Table 1. The second column shows the relative degradation in per-

formance of the graphemic system. As the complexity of the model

and the span of available temporal information increases, the dif-

ference between phonetic and graphemic system WERs drops from

10.4 to 6.8% relative. The largest drop happens when the LSTM

units are used to model longer history information. This implies that

graphemic systems are more sensitive to shorter histories than are

phonetic systems. The third column in Table 1 shows that as the

graphemic system gets more competitive, the gain from combining

it with the phonetic system increases from 5.4 to 7.3% relative.

Model Context %WER RTF

Ph
Bi-phone 23.4 0.9

Mono-phone 23.9 0.7

Gr
Bi-grapheme 25.0 0.8

Mono-grapheme 26.2 0.6

Table 2. %WER of context dependent and independent phonetic and

graphemic TDNN-LSTM models on dev17b.

Graphemic systems are also expected to be sensitive to the

choice of acoustic modelling context. Wider contexts should be

more suitable for graphemic systems as they can better account for

the mismatch between the orthographic and spoken form. How-

ever, shorter contexts are appealing due to their simplicity and

speed of training as well as decoding. Table 2 shows that pho-

netic systems are significantly more robust when bi-phone units are

replaced with mono-phone units. Though mono-grapheme units

yield twice as large a degradation as mono-phone units, the sim-

plicity of graphemic lexicons offers an interesting compromise.
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Both context-independent systems are approximately 25% faster

than their context-dependent counterparts as shown by the real time

factor (RTF) in Table 2.

4.2. Model combination

Training
%WER

Comb

Criterion %WER %Rel

sMBR 23.7
21.3 -9.0

LF-MMI 23.4

Table 3. %WER of sMBR and LF-MMI trained phonetic TDNN-

LSTM models and their MBR combination on dev17b.

Rather than combining phonetic and graphemic systems, it is

also possible to combine systems from any diverse ensemble as dis-

cussed in Section 3. One simple way to produce an additional system

is to utilise an alternative training criterion such as sMBR training.

Table 3 shows that sMBR training yields a competitive model and

combination gains between systems with these criteria is larger than

that between phonetic and graphemic systems in Table 1. This can

partly be attributed to the larger performance differences between

the phonetic and graphemic systems being combined.

Additional systems can also be generated using simpler ap-

proaches. For example, the use of model smoothing does not require

another model to be trained. In this work, 20 models with an it-

eration interval of 6 were taken from the final epoch of LF-MMI

training and their combination weights were estimated on a sub-

set of training data as discussed in Section 3. Table 4 shows that

model smoothing is an effective way to improve system perfor-

mance for both graphemic and phonetic systems. Additionally by

performing model smoothing the difference between the phonetic

and graphemic systems is reduced (+6.0%). Though the gains from

combining phonetic and graphemic systems decrease after model

smoothing, dropping from 7.3 to 5.6% relative, there is still a large

gain in performance in the combined systems after model smoothing,

yielding a better performance than modifying the training criterion.

Model
%WER Ph/Gr Comb

Ph Gr %WER %Rel

Single 23.4 25.0 21.7 -7.3

Smooth 21.5 22.8 20.3 -5.6

Table 4. %WER of phonetic and graphemic TDNN-LSTM models

with and without model smoothing on dev17b.

Alternatively, random ensembles [14] can be built by changing

the random seed used to initialise models for LF-MMI training. This

is more expensive than model smoothing, but allows additional di-

versity to be introduced. LF-MMI training may benefit more from

random ensemble generation, as it avoids the cross-entropy initiali-

sation stage of approaches such as sMBR training, where the same

targets are normally used for all system, possibly reducing the di-

versity of the final systems after sequence training. In this work,

an ensemble of 3 TDNN-LSTM models was created by building 2

additional models using different seeds for random parameter ini-

tialisation. Table 5 shows that although the WER standard deviation

across systems is small, the cWER is large suggesting that these sys-

tems may be complementary. To put the cWER number in context,

an ensemble of sMBR trained models on the AMI IHM task with a

mean WER of 25% had a cWER of 12%. The last block in Table 5

shows that ensemble combination of multiple single models yields

the large gains of the approaches examined in this work. Given

the large gains from model smoothing, it is interesting to examine

ensembles of smoothed models. These are also shown in Table 5.

As expected the cWERs for the ensembles are reduced, as model

smoothing reduces the diversity from the precise stopping points.

However, there are still large gains of over 7% relative from the en-

semble combination. Additionally, the difference between phonetic

and graphemic, smoothed or unsmoothed, systems when combining

random ensembles has been reduced to just 5% relative.

Model
%WER

%cWER
Ensemble Comb

µ σ %WER %Rel

Ph
Single 23.5 0.06 17.9 20.9 -11.1

Smooth 21.6 0.10 13.5 20.0 -7.4

Gr
Single 25.0 0.10 20.4 22.1 -11.6

Smooth 22.8 0.06 14.9 21.0 -7.9

Table 5. %WER of phonetic and graphemic random ensembles

of TDNN-LSTM models with and without model smoothing on

dev17b.

Given the small difference between the phonetic and graphemic

ensembles, additional gains from combining the systems might be

expected. However, the extensive use of combination techniques

means that diversity between these ensembles has already been

significantly reduced. Table 6 shows that combining phonetic and

graphemic ensembles yields only 0.5% absolute or 2.5% relative

reduction in WER 3. At this point, it is interesting to see if im-

proved language modelling approaches can yield further benefits.

The last column in Table 6 shows that 4-gram LM rescoring reduces

the WER from 19.5 to 18.8%. The RNNLM gave an additional

improvement yielding a final error rate of 17.9% on this task.

Model
Comb Ph/Gr Comb

tg tg fg +rnn

Ph
Ensemble

20.0
19.5 18.8 17.9

Gr 21.0

Table 6. %WER of the final MGB-3 system on dev17b.

5. CONCLUSION

This paper has investigated whether the recent advances in deep

learning based approaches have enabled graphemic English ASR

systems to reach the performance level of traditionally used pho-

netic systems. It was found that a combination of long-span tempo-

ral history and future information with context-dependent graphemic

units is important to obtain competitive performance for graphemic

English ASR systems. The relative difference between phonetic

and graphemic systems can be further reduced by employing system

combination approaches, model smoothing and random ensemble

methods were both found to be effective. The combination of these

two methods yielded a graphemic English ASR system for multi-

genre broadcast transcription that is only 5% relatively worse than

an equivalent phonetic English ASR system, and is complementary.

3It is worth noting that the performance of combining an ensemble of two
phonetic systems was 20.2%. Thus simply enlarging the size of the phonetic
ensemble is not expected to match this graphemic/phonetic ensemble perfor-
mance.
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