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Abstract. Linear perturbation theory is used to model the ideal MHD stability

of tokamak equilibria under the application of external 3D magnetic perturbations

[C.C. Hegna, Physics of Plasmas 21:072502, 2014]. We use the ELITE code [H.R.

Wilson et al., Physics of Plasmas 9:1277, 2002] to produce both a linear plasma

response, as well as the linear axisymmetric toroidal eigenmodes which are used as basis

functions for the 3D perturbative stability analysis. The symmetry breaking produces

coupling of modes with different toroidal mode number, n, leading to modification

of the linear growth rates, and poloidal localisation of the non-axisymmetric peeling-

ballooning mode at sufficiently large applied field.

1. Introduction

The efficient production of fusion power requires large pressure at the plasma core

while retaining low pressure at the plasma edge, such that plasma facing components

(PFCs) operate in an acceptable environment. Such pressure profiles are observed

in high confinement mode (H-mode) plasmas. However, the establishment of a steep

pressure gradient at the edge, the so called pedestal region, together with large bootstrap

driven edge current density destabilises peeling-ballooning (PB) instabilities [1]. Those

instabilities are manifested as edge localised modes (ELMs) which correspond to rapid

bursts of particles and heat to PFCs, especially to the divertor of the reactor. For large

tokamaks like ITER, unmitigated ELMs will be sufficiently large to deliver heat fluxes

that exceed the melting point of tungsten [2], the main material of the divertor tiles.

Therefore, ELM control methods are required to avoid damage of the reactor PFCs and

exhaust region [3].

One method of ELM control that is widely applied to tokamaks around the world,

and will be installed in ITER, uses non-axisymmetric magnetic perturbations (MPs)



Non-axisymmetric Equilibrium and Stability using the ELITE Stability Code 2

produced by magnetic coils placed around the plasma, typically inside the tokamak

vessel. Experimental observations indicate two main operational states with these coils.

One, ELM mitigation, where there is a decrease in energy loss per ELM ∆WELM and

an increase of ELM frequency fELM . The other, ELM suppression, i.e. no ELMs. For

ITER-like shape low density n/nGW ∼ 0.3, where nGW = Ip/πa
2 is the Greenwald

density limit, Ip the plasma current and a the minor radius, and low collisionality

ν∗ ∼ 0.01, complete suppression has been observed at DIII-D [4] and AUG [5], while for

higher collisionality ν∗ ∼ 1 KSTAR [6] has also achieved ELM suppression - collisionality

is the ratio between collision frequency and the characteristic bounce frequency of

trapped particles. The exact physics mechanism that allows this ELM free regime

is still to be understood. ITER will operate in a high Greenwald fraction n/nGW ∼ 0.7,

low collisionality ν∗ ∼ 0.01 regime which makes extrapolation from current machines

challenging in the absence of a rigorous physics basis.

External 3D fields affect transport and MHD properties of the plasma. The resonant

component of the field drives current structures at flux surfaces where the safety factor

q is rational. Under certain conditions these can lead to magnetic islands, which greatly

increase cross-field transport [7],[8],[9]. As a result, the pressure gradient in the pedestal

is relaxed below global stability boundaries. However, plasma flow in the pedestal

region can be strong enough for island structures to heal [10],[11],[12],[13]. In addition,

equilibrium geometry can influence MHD stability boundaries, and so affect the onset

of ELMs. An infinite toroidal mode numbner n or local ballooning analysis reveals

that the dominant effect of the applied 3D field is to alter the local magnetic shear,

which has significant consequences for ideal MHD stability [14],[15],[16]. However,

for the intermediate n modes, responsible for the occurrence of ELMs, a global 3D

analysis is needed. Global 3D stability codes exist [17],[18],[19],[20] but simulations

of ideal MHD stability of medium to high n modes under the application of MPs are

extremely challenging. Simulations performed with non-linear fluid codes demonstrate

that toroidal mode coupling is one of the key mechanisms to influence the growth rate

of unstable PB modes [21],[22].

The work presented here focuses on the impact of toroidal symmetry breaking on

the ideal MHD stability of the plasma. In a toroidally axisymmetric system, the linear

response is described by decoupled toroidal modes, i.e. toroidal mode number n, is a

“good quantum number” and only poloidal mode number coupling occurs. We consider

an additional non-axisymmetric part of the equilibrium B
(1)
N , where N is the (assumed

single) toroidal mode number of the imposed 3D field, that is much smaller than the

axisymmetric part B
(0)
0 ; typically B

(1)
N /B

(0)
0 ∼ 10−4, so linear perturbation theory can

be employed to provide the required geometrical coupling of the axisymmetric modes.

This coupling will result in energy transfer between neighbouring toroidal Fourier modes

that can directly affect the evolution of instabilities. In this paper, we will explore this

coupling mechanism.
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2. Perturbative MHD Stability Framework

2.1. Features of Perturbative MHD

A perturbative stability analysis has been performed to first order in Ref.[23] to

approximate changes in axisymmetric stability due to the presence of narrow island

structures. However, second order corrections, as in Ref.[24], are required to capture

perturbative non-axisymmetric effects. First, consider the momentum equation, which

for simplicity in the formalism is normalised to the mass density ρ,

F~ξn =
∂2

∂t2
~ξn ⇒ (F(0) + ǫF(1) + ǫ2F(2) + ...)~ξn = −ω2

n
~ξn (1)

produced from a plasma displacement ~ξn, where F(0) is a force operator due to the

axisymmetric equilibrium, F(k) is a force operator due to axisymmetric and non-

axisymmetric equilibrium changes of order k and ǫ represents a small parameter

proportional to B
(1)
N /B

(0)
0 ≪ 1. Eqn.(1) represents an eigenvalue equation, where the set

of −ω2
n and ~ξn represent the eigenvalues (frequency or growth rate) and eigenfunctions

(perpendicular displacement) respectively. Due to the perturbative nature of the higher

order contributions the eigenvalues and eigenvectors can be expanded in the small

parameter ǫ:

ω2
n = ω(0)2

n + ǫω(1)2
n + ǫ2ω(2)2

n + ... (2)

~ξn = ~ξ (0)
n + ǫ~ξ (1)

n + ǫ2~ξ (2)
n + ... (3)

Solving order by order, we derive to k ≤ 2,

0th Order: F(0)~ξ (0)
n = −ω(0)2

n
~ξ (0)
n (4)

1st Order: F(1)~ξ (0)
n + F(0)~ξ (1)

n = −ω(1)2
n

~ξ (0)
n − ω(0)2

n
~ξ (1)
n (5)

2nd Order: F(2)~ξ (0)
n + F(1)~ξ (1)

n + F(0)~ξ (2)
n = −ω(2)2

n
~ξ (0)
n − ω(1)2

n
~ξ (1)
n − ω(0)2

n
~ξ (2)
n (6)

The unperturbed system

F(0)~ξ (0)
n = −ω(0)2

n
~ξ (0)
n (7)

is considered to be unstable and non-degenerate, i.e. ω
(0)
n 6= ω

(0)
m for n 6= m. Thus,

the eigenvalues −ω
(0)2
n and eigenfunctions ~ξ

(0)
n are fully determined for a range of

n and can be used as basis functions for the solution of higher order equations.

These basis functions are orthogonal, and considered to be normalised such that

〈~ξ
(0)
m |~ξ

(0)
n 〉 =

∫
~ξ

†(0)
m · ~ξ

(0)
n J d3x = δnm, where J is a weight function representing

the Jacobian of the coordinate system.

To obtain first order corrections for the eigenvalues and eigenfunctions, the inner

product of Eqn.(5) with ~ξ
(0)
n is considered,

〈~ξ (0)
n |F(0)|~ξ (1)

n 〉+ 〈~ξ (0)
n |F(1)|~ξ (0)

n 〉 = −ω(0)2
n 〈~ξ (0)

n |~ξ (1)
n 〉 − ω(1)2

n 〈~ξ (0)
n |~ξ (0)

n 〉 (8)
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The first terms on the left and right hand sides of Eqn.(8) cancel, due to the fact that

F(0) is Hermitian. This leads to a simple relation for the 1st order correction of the

eigenvalue,

ω(1)2
n = −〈~ξ (0)

n |F(1)|~ξ (0)
n 〉 (9)

Taking the inner product of Eqn.(5) with ~ξ
(0)
m (m 6= n) leadings to

(ω(0)2
m − ω(0)2

n )〈~ξ (0)
m |~ξ (1)

n 〉 = 〈~ξ (0)
m |F(1)|~ξ (0)

n 〉 (10)

One can use the freedom in the solution to Eqn.(5) for ~ξ
(1)
n to satisfy an orthogonality

relation 〈~ξ
(0)
n |~ξ

(1)
n 〉 = 0. This allows the representation of the perturbed state as a

superposition of the unperturbed states,

~ξ (1)
n =

∑
m 6=n

〈~ξ (0)
m |~ξ (1)

n 〉~ξ (0)
m (11)

Substituting Eqn.(11) into Eqn.(10) provides the first order correction of the

eigenfunction that depends on known quantities,

~ξ (1)
n =

∑
m 6=n

〈~ξ
(0)
m |F(1)|~ξ

(0)
n 〉

(ω
(0)2
m − ω

(0)2
n )

~ξ (0)
m (12)

At this stage it can be noted that if the first order correction of the force operator F(1)

is non-axisymmetric, then the correction to the eigenfunction is non-zero ~ξ
(1)
n 6= 0, but

there is no change to the eigenvalue, i.e. ω
(1)2
n = 0. On the other hand, if the first

order correction of the force operator F(1) is axisymmetric, the opposite is expected. In

addition, for a non-axisymmetric magnetic perturbation with a toroidal mode number

N , a triplet mode emerges: {n − N, n, n + N}. This leads to a poloidal localisation of

the 3D mode, provided the coupling is strong enough.

In order to calculate corrections to either the mode structure or the growth rate

of peeling-ballooning modes due to the presence of 3D fields, second order corrections

need to be considered. Repeating the above procedure for Eqn.(6), we derive:

ω(2)2
n = −〈~ξ (0)

n |F(2)|~ξ (0)
n 〉 − 〈~ξ (0)

n |F(1)|~ξ (1)
n 〉 (13)

The second order force operator F(2) can be dropped from the analysis as it provides

corrections due to axisymmetric changes, and substituting Eqn.(12) into Eqn.(13), the

second order correction of the eigenvalue is explicitly expressed as,

ω(2)2
n = −

∑
m 6=n

〈~ξ
(0)
n |F(1)|~ξ

(0)
m 〉〈~ξ

(0)
m |F(1)|~ξ

(0)
n 〉

(ω
(0)2
m − ω

(0)2
n )

= −
∑
m 6=n

||F
(1)
nm||2

(ω
(0)2
m − ω

(0)2
n )

(14)

For a single toroidal mode number N , Eqn.(12) and Eqn.(14) result in solely in first

neighbour coupling m = n±N , leading to the triplet mode {n−N, n, n+N}. Note that

since the numerator of Eqn.(14) is always positive, for ω
(0)2
m > ω

(0)2
n the contribution is

stabilising, while for ω
(0)2
m < ω

(0)2
n the contribution is destabilising. Most importantly,
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if the spectrum contains extrema, the most unstable mode will become more unstable

and the most stable mode becomes more stable.

The above method provides corrections to the mode structure and growth rate of

unstable peeling-ballooning modes provided the total 3D equilibrium configuration and

axisymmetric peeling-ballooning eigenfunctions are known. The total 3D equilibrium

can be obtained from any linear or non-linear 3D equilibrium code, for example

VMEC [25], or considering the linear plasma response as can be provided by

axisymmetric stability codes like MARS [26], IPEC [27], etc. In this work, the low

n version of the stability code ELITE [28],[29] is used. ELITE is an axisymmetric

eigenvalue ideal MHD stability code that can efficiently calculate the peeling-ballooning

instability from low to high n toroidal modes. In addition, because the code solves

for a displacement functional that minimises the perturbed potential energy, it can also

provide the linear plasma response in marginal stability, i.e. assuming negligible inertial,

provided an appropriate boundary condition is imposed at the plasma-vacuum interface.

ELMs are a medium to high n ideal MHD phenomenon and no global ideal 3D MHD

stability code has been used to resolve the effect of MPs on the stability of these modes,

since the resolution required in the poloidal and toroidal direction is significant. The

perturbative approach allows the examination of individual triplets that simplify the

numerical complexity of the problem. The aim of this work is to be able to routinely

produce stability diagrams for shots with applied MPs as is done currently with ELITE

for axisymmetric shots. This is the first stage of a project to develop a tool which can

optimise plasma response and ELM stability together.

2.2. Linear Perturbed Equilibrium

We adopt an axisymmetric orthogonal flux coordinate system (ψ0, θ0, φ0), where the

poloidal flux ψ0 serves as the normal to the axisymmetric flux surface coordinate and

(θ0, φ0) define the axisymmetric orthogonal poloidal and toroidal angles. For this

analysis only the perpendicular component ~ξ⊥ of the displacement is retained. The

parallel displacement ~ξ|| produces no force for an incompressible plasma and in general

is found to be significantly smaller than the perpendicular displacement such that it does

not contribute in the inertia of the system. For those reasons, the parallel displacement

is not required and the displacement under consideration takes the form,

~ξ (0)
n = X(0)

n

∇ψ
(0)
0

|∇ψ
(0)
0 |2

+ U (0)
n

∇ψ
(0)
0 × ~B

(0)
0

B
(0)2
0

(15)

The binormal component of the displacement, U , can be expressed in terms of the

normal component X:

[
B

(0)
φ0

B
(0)2
0

( ~B
(0)
0 · ∇)− in]U (0)

n = [∂ψ0
+ ∂ψ0

ln(J
(0)
0 B

(0)2
0 ) + 2µ0

∂ψ0
P

(0)
0

B
(0)
0

]X(0)
n (16)

For a given toroidal mode number n, ELITE solves an eigenvalue equation for the

set of poloidal Fourier harmonics, Xnl(θ
∗
0), of the normal displacement. From these one
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can reconstruct the component of the displacement normal to flux surfaces:

X(0)
n =

∑
l

X
(0)
nl exp [−i(lθ∗0 − nφ0)] (17)

The straight field line angle θ∗0 can be computed form the local magnetic pitch ν
(0)
0 , such

that

θ∗0 =
1

q(0)

∫ θ0

0

ν
(0)
0 dθ0 =

1

q(0)

∫ θ0

0

~B
(0)
0 · ∇φ

(0)
0

~B
(0)
0 · ∇θ

(0)
0

dθ0 (18)

The perturbation is inserted into ELITE as a fixed boundary condition at the plasma-

vacuum interface. As long as the plasma surface is not a rational surface of the applied

field, magnetic induction is used to link the covariant normal field B
(1)
ψ0N

at the plasma

boundary to the normal displacement X
(1)
N as given by,

X
(1)
Nl = −

iq(0)J (0)

ν(0)g
(0)
ψψ

B
(1)
ψ0 Nl

(l −Nq(0))
(19)

where J (0) is the Jacobian, g
(0)
ψψ = 1/|∇ψ

(0)
0 |2 is the covariant metric of the normal

coordinate and (l, N) are the poloidal and toroidal mode numbers of the MP field. This

method is an approximate as the correct boundary condition should be specified in

terms of currents in the MP coils rather than a perturbed flux at the plasma boundary.

Nevertheless, this approximation is sufficient to investigate the impact of the 3D fields

on the plasma stability as discussed here. In order to calculate the 3D equilibrium fields,

the total perpendicular displacement ~ξ
(1)

⊥N is required. Since ELITE provides the radial

profiles of the poloidal harmonics of the normal displacement, the binormal displacement

can be obtained considering Eqn.(16).

Once the total perpendicular displacement ~ξ
(1)

⊥N is computed, the magnetic

induction ~B
(1)
N = ∇ × (~ξ

(1)
⊥N × ~B

(0)
0 ) can be used to obtain the 3D components of the

equilibrium magnetic field. Using a similar representation for the coordinate system

in terms of the axisymmetric (∇ψ
(0)
0 ,∇ψ

(0)
0 × ~B

(0)
0 , ~B

(0)
0 ), the 3D components of the

magnetic field become,

~B
(1)
N = B

(1)
ψ0N

∇ψ
(0)
0

|∇ψ
(0)
0 |2

+B
(1)
s0N

∇ψ
(0)
0 × ~B

(0)
0

B
(0)2
0

+B
(1)
b0N

~B
(0)
0

B
(0)2
0

(20)

B
(1)
ψ0N

= ( ~B
(0)
0 · ∇)X

(1)
N (21)

B
(1)
s0N

= ( ~B
(0)
0 · ∇)U

(1)
N − S(0)X

(1)
N (22)

B
(1)
b0N

= −B
(0)2
0 (∇ · ~ξ

(1)
⊥N + 2~ξ

(1)
⊥N · ~κ

(0)
0 ) + ~ξ

(1)
⊥N · ∇P

(0)
0 (23)

where S(0) = −(∇ψ
(0)
0 × ~B

(0)
0 /|∇ψ

(0)
0 |2)·∇×(∇ψ

(0)
0 × ~B

(0)
0 /|∇ψ

(0)
0 |2) is the local magnetic

shear and ~κ
(0)
0 = b̂

(0)
0 · ∇b̂

(0)
0 is the magnetic curvature, with b̂

(0)
0 = ~B

(0)
0 /B

(0)
0 .
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2.3. Perturbative Coupling Coefficients

The calculation of the correction terms requires a knowledge of the perturbed force as

resulting from the 3D equilibrium. Considering an ideal and incompressible plasma, a

displacement ~ξn of the plasma will result in a force,

~F = ~J × ~δBn + ~δJn × ~B +∇(~ξn · ∇P ) (24)

where the quantities without index represent equilibrium quantities and (~ξn, ~δBn, ~δJn)

represent the mode displacement, magnetic field and current density respectively. In

order to express ~F in an ordered way, the equilibrium can be split into an axisymmetric

and non-axisymmetric part, i.e. ~B = ~B
(0)
0 + ~B

(1)
N . As such, ordering of the force operator

results in,
~F (0) = ~J

(0)
0 × ~δB

(0)

n + ~δJ
(0)

n × ~B
(0)
0 +∇(~ξ (0)

n · ∇P
(0)
0 ) (25)

~F (1) = ~J
(0)

0 × ~δB
(1)

n±N+ ~J
(1)
N × ~δB

(0)

n + ~δJ
(0)

n × ~B
(1)
N + ~δJ

(1)

n±N× ~B
(0)
0 +∇(~ξ (0)

n ·∇P
(1)
N ) (26)

~F (2) = ~J
(1)
N × ~δB

(1)

n±N + ~δJ
(1)

n±N × ~B
(1)
N (27)

where ~δB
(0)

n = ∇× (~ξ
(0)
n × ~B

(0)
0 ) and ~δB

(1)

n±N = ∇× (~ξ
(0)
n × ~B

(1)
N ). The zeroth order force

is due to the original axisymmetric equilibrium and the first order arises due to the non-

axisymmetric equilibrium that provides first neighbour coupling between the toroidal

axisymmetric modes. The second order force leads to changes in the axisymmetric

growth rate but is dropped from the calculation, as it is assumed that ~F (1) ≪ ~F (2).

The coupling coefficients F
(1)
nm can be calculated using the above 3D equilibrium

quantities ( ~B
(1)
N , ~J

(1)
N ,∇P

(1)
N ) and axisymmetric toroidal modes {~ξ

(0)
n } obtained using

ELITE. Considering Eqn.(26) and taking the inner product with ~ξ
(0)
n , after some

algebraic manipulation the coupling coefficients F
(1)
nm are split into a volume and surface

contribution, such as

F
(1)
nm volume = −

∫
[~ξ (0)†
n · ( ~J

(1)
N × ~δB

(0)

m + ~δJ
(0)

m × ~B
(1)
N )]

+ [∇× (~ξ (0)†
n × ~J

(0)
0 )] · (~ξ (0)

m × ~B
(1)
N )

− ~δJ
(0)†

n · (~ξ (0)
m × ~B

(1)
N ) dV

(28)

F
(1)
nm surface = −

∫
(~ξ (0)†
n · n̂

(0)
0 )[(~ξ (0)

m × ~B
(1)
N ) · ~J

(0)
0 − ~δB

(1)

m±N · ~B
(0)
0 + ~ξ (0)

m · ∇P
(1)
N ]

+ ~δB
(0)†

n · [ ~B
(1)
N (~ξ (0)

m · n̂
(0)
0 )− ~ξ (0)

m ( ~B
(1)
N · n̂

(0)
0 )] dS

(29)

In order to retain accurate numerics even for high toroidal and poloidal mode numbers

a Fourier representation is retained as described in the above section.

Finally, screening currents that arise due to electron flow at rational surfaces block

the corresponding resonant harmonics of the applied magnetic perturbation, and in the

absence of resistivity lead to δ-function current layers. The calculation of those layers
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(a) (b)

Figure 1: Normalised radial equilibrium plasma profiles for a) the pressure, outer mid-

plane current density and q-profile as well as b) the normalised PB growth rate for the

cbm18 dens6 equilibrium.

is subtle within a single fluid MHD model due to large Pfirsch-Schlüter currents but

can be approximated from the jump of the normal derivative of the perturbed flux

∆Nl = [(l −Nq(0))/q(0)][[∂ψXNl]] according to Ref.[30] and given by,

µ0
~J

(1)
||N screening

= −
∑
l

l∆Nlδ(ψ
(0) − ψ

(0)
l )

n2
∮
B

(0)2
0 /|∇ψ

(0)
0 |2dS

exp [−i(lθ∗0 −Nφ0)] ~B
(0)
0 (30)

where ψl corresponds to the poloidal flux at a rational surface. The corresponding

coupling coefficients that arise from this contribution are given by,

F
(1)
nm screening = −

∫
~ξ (0)†
n · ( ~J

(1)
||N screening

× ~δB
(0)

m ) dV (31)

3. Application to RMPs

The calculation of the non-axisymmetric part of the equilibrium begins with an initial

axisymmetric equilibrium that is stable to low n toroidal modes but unstable to

intermediate to high n ballooning modes, to which MP fields are applied. We examine

such an equilibrium for a large aspect ratio circular cross-section plasma of core pressure

P
(0)
0 = 22.8 [kPa], core magnetic field B

(0)
0 = 1.8 [T], core parallel current density

J
(0)
||0 = 0.7 [MAm−2] and edge safety factor q

(0)
a = 2.71. The axisymmetric equilibrium

plasma profiles and PB stability analysis are illustrated in Fig.1.

3.1. Linear Plasma Responce to MPs

Two cases are examined, one for a resonant magnetic field and one for a non-resonant

magnetic field at the plasma-vacuum interface for a toroidal mode number N = 3 MP

field. Fig.2 illustrates the normal displacement ~ξ
(1)
N · n̂

(0)
0 that represents the boundary
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Figure 2: Normal displacement ~ξ
(1)
N · n̂

(0)
0 [m] and Fourier decomposition of the normal

magnetic field ~B
(1)
N · n̂

(0)
0 [T] for the (a) resonant and (b) non-resonant N=3 MP

configuration at the plasma surface. The solid blue line represents the resonant location

q
(0)
a N = 8.13 of the plasma surface.

condition, and the poloidal mode structure of the corresponding normal magnetic field
~B
(1)
N · n̂

(0)
0 , where n̂

(0)
0 = ∇ψ

(0)
0 /|∇ψ

(0)
0 | is the unit vector normal to the magnetic flux

surfaces of the axisymmetric reference equilibrium.

In the resonant case the plasma response is characterised by a strong peeling-

like normal displacement (strong edge localisation), while in the non-resonant case

a kink-ballooning response is observed (penetration further inside the plasma). The

normal displacement is strongly peaked around rational surfaces in both cases, due to

resonance with the corresponding poloidal harmonics, leading to large local response and

potential break down of the linear response. Although, away from the rational surfaces

(~ξ
(1)
N · n̂

(0)
0 )/R

(0)
0 ∼ ( ~B

(1)
N · n̂

(0)
0 )/B

(0)
0 , such that a linear response is valid in the majority

of the plasma volume and in many cases is observed to match with a non-linear plasma

response model [31]. The mode structure and the poloidal cross-section reconstruction
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(4,3) (5,3) (6,3) (7,3)(8,3)

(a)

(4,3) (5,3) (6,3) (7,3)(8,3)

(b)

(c) (d)

Figure 3: The radial dependence of the poloidal Fourier harmonics ξl for l = [0, 70] of

the normal displacement ~ξ
(1)
N · n̂

(0)
0 [m] as a function of ψ

(0)
0 for (a) a resonant and (b)

a non-resonant N = 3 MP field. The harmonics that peak around resonant surfaces are

the corresponding resonant harmonics. In addition, the reconstruction of the poloidal

cross section of the mode (c) and (d) for the resonant and non-resonant case respectively.

of the normal displacement are depicted in Fig.3.

In this ideal MHD model, individual poloidal harmonics of the normal magnetic

field are screened at their corresponding rational surfaces so that island formation is

prohibited, since field line bending is minimised, i.e. ( ~B
(0)
0 · ∇) ∝ (l − Nq(0)) = 0.

Nevertheless, this screening is imperfect due to poloidal coupling in toroidal geometry.

In the non-resonant case, this screening effect is reduced since the poloidal harmonics

of the vacuum MP field are already minimised at the rational surfaces. However, in

the resonant case the harmonics of the vacuum MP field are maximised at the rational

surfaces and strong screening is observed, leading to significant modification of the prior

MP vacuum field. The normal field and its poloidal mode structure are illustrated in

Fig.4.
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(a) (b)

(c) (d)

Figure 4: The (a),(c) normal component of magnetic field ~B
(1)
N · n̂

(0)
0 [T] and (b),(d)

its poloidal mode structure B
(1)
Nl [T] in a straight field-line angle coordinate system as

reconstructed from ELITE output data for (a),(b) a resonant and (c),(d) a non-resonant

N=3 MP configuration. The straight white line indicates the position of the q-profile.

The calculation of the current density becomes straight forward once the magnetic

field and metrics of the coordinate system are known. Fig.5 illustrates the parallel

current density J
(1)
||N created around rational surfaces, which has two contributions. One

contribution corresponds to the existence of Pfirsch-Schlüter current density due to

quasi-neutrality and non-vanishing pressure gradient. The second contribution arises

due to screening currents at rational surfaces. The ideal plasma response results

in large Pfirsch-Schlüter current density for both MP configurations, which is the

dominant contribution to the current density. The final perturbed quantity is the non-

axisymmetric pressure calculated using the linearised perturbation P
(1)
N = −~ξ

(1)
⊥N ·∇P

(0)
0 .

For the toroidal mode coupling coefficients the pressure gradient ∇P
(1)
N is needed and

obtained through the linearised force balance ~J
(1)
N × ~B

(0)
0 + ~J

(0)
0 × ~B

(1)
N = ∇P

(1)
N . The

non-axisymmetric pressure profile is shown in Fig.6.
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(a) (b)

Figure 5: The parallel current density J
(1)
||N [Am−2] as reconstructed from ELITE output

data for the (a) resonant and (b) non-resonant N = 3 MP configuration.

(a) (b)

Figure 6: The plasma pressure P
(1)
N [Pa] as reconstructed from ELITE output data for

the (a) resonant and (b) non-resonant N = 3 MP configuration.

In order to verify that the computed non-axisymmetric equilibrium as resulted

from ELITE is valid, BOUT++ [32] is used to model the linear plasma response

imposing a fixed parallel magnetic potential A
(1)
||N at the outer boundary of the

computational domain. At first the A
(1)
||N is computed using the original coordinate

system [∇ψ
(0)
0 ,∇θ

(0)
0 ,∇φ

(0)
0 ] and then transformed into a field aligned coordinate system

[∇ψ
(0)
0 , ~B

(0)
0 ,∇(φ

(0)
0 − q(0)θ

(0)∗
0 )] that BOUT++ uses, employing the transformation

A
(1)
||N ≡ A

(1)
||N exp [−i(q(0)Nθ

(0)∗
0 )]. The physics model under consideration is based on

a reduced ideal MHD model appropriate for flute-like and incompressible perturbations,

where more information can be found in Ref.[32] and Ref.[33]. As it can be observed from

Fig.7 and Fig.8, the non-axisymmetric equilibrium pressure and parallel current density
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(a) (b)

Figure 7: The (a) parallel current density J
(1)

||N [Am−2] and (b) plasma pressure P
(1)
N

[Pa] as calculated from BOUT++ for the resonant N = 3 MP configuration.

(a) (b)

Figure 8: Comparison of the plasma pressure poloidal mode structure in the straight

field line angle coordinate system between (a) ELITE and (b) BOUT++ results.

match well with ELITE. Some discrepancy occurs close to rational surfaces, which is

attributed to the non-uniform grid spacing along the normal direction that allows very

fine resolution close to rational surfaces with ELITE, and as a result sharper features

can be resolved.

3.2. Impact of Symmetry Breaking on Ideal MHD Stability

Once the 3D equilibrium magnetic configuration and the axisymmetric peeling-

ballooning eigenmodes are computed the corrections due to the MP can be obtained.

Fig.9 shows the calculation of the normalised growth rate of the system for the resonant

and non-resonant case. In the resonant case, it can be observed that the growth rate

of unstable PB modes increases indicating further destabilisation and stronger coupling

with the m = n − N toroidal modes. However, It should be noted that the increase
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(a) (b)

Figure 9: Perturbative 3D PB normalised growth rates γ/ωA as a function of external

B
(1)
N /B

(0)
0 and toroidal mode number n for (a) the resonant and (b) non-resonant N = 3

MP configuration.

(a) (b)

(c)

Figure 10: Comparison of the mode structure of a n = 12 unstable PB mode for (a) an

axisymmetric equilibrium and (b) a non-axisymmetric equilibrium for the non-resonant

N = 3 MP field of amplitude B
(1)
N /B

(0)
0 ∼ 10−3. (c) Poloidal dependence of the normal

displacement for the triplet mode (blue line) and the plasma response (green) at the

radial location where the triplet mode is maximum.
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is small at experimentally relevant MP field amplitudes. On the other hand, in the

non-resonant case it can be seen that the growth rate of unstable PB modes reduces,

indicating stronger coupling with the m = n + N toroidal modes and stabilisation of

PB modes from the applied MP field. Although, in both cases the lower n modes

become more stable. In addition, the impact in the non-resonant case is stronger, even

though the plasma response is smaller. Such a feature indicates the importance of the

poloidal spectrum of the applied MP field, and not only its absolute magnitude, to

influence plasma stability. Finally, 3D MHD stability indicates the existence of distinct

mode families, i.e. coupling of a whole range of toroidal modes. However, the notion of

mode families in this perturbative analysis is misleading, since weak coupling is assumed

between the toroidal modes where only first neighbour coupling is retained. As a result

the axisymmetric notion of distinct toroidal modes is preserved but replaced by the

triplet mode {n−N, n, n+N}.

The reconstruction of the 3D normal displacement of the instability results in a

concentration of the mode structure into distinct poloidal locations as can be observed

from Fig.10, due to the interplay of different primary poloidal harmonics from each

toroidal eigenmode, provided that the coupling between these harmonics is strong

enough. Specifically, the 3D mode is maximised between locations where the pressure

gradient is amplified from the plasma response and the normal displacement of the

plasma response crosses zero.

4. Conclusion

To summarise, applied MP fields that break the axisymmetric nature of tokamak

plasmas, are widely used to control ELMs. The 3D plasma stability can be studied in a

perturbative way, as long as the full 3D equilibrium and the axisymmetric toroidal modes

are known. The stability code ELITE has been used to obtain both the axisymmetric

toroidal eigenmodes required for the toroidal coupling and also the fixed boundary

linear plasma response to the applied MP field. In addition, screening current density

is captured but has not been observed to have a strong impact on MHD stability. On

the contrary, the 3D equilibrium profiles and the geometrically induced toroidal mode

coupling had a significant impact on MHD modes above a certain phenomenological

threshold for the amplitude of the applied field. We illustrate these results by perturbing

an axisymmetric equilibrium, which is stable for n < 8, and has an increasing growth

rate for n ≥ 8. The growth rate is enhanced by the magnetic perturbation in the case

of a resonant applied field, due to stronger coupling with the lower n sideband. On the

other hand, decrease of the linear growth rate is observed due to stronger coupling with

the higher n sideband of the axisymmetric system in the non-resonant case. It should be

noted that in axisymmetric equilibria, where extrema exist in the growth rate spectrum,

a variety of trends can exist. In addition, the absolute amplitude of the response is not

the only key factor for efficient toroidal coupling, and consequent impact on the PB

growth rates, i.e. the poloidal spectrum of the perturbation is also very important.



Non-axisymmetric Equilibrium and Stability using the ELITE Stability Code 16

The coupling of toroidal harmonics can significantly influence the ballooning

instability even for a low MP field of B
(1)
N /B

(0)
0 ∼ 10−3. This then raises questions

about the validity of our perturbative approach in which we couple toroidal eigenmodes,

without taking into account the influence of the MP field on the axisymmetric mode

structure of the triplet. In order to resolve such an issue, a more general variational

approach can be followed using the individual poloidal and toroidal Fourier modes

from the axisymmetric PB modes as a basis for trial functions, summing over both

with coefficients to be determined by minimisation of the energy functional. This

provides significantly more degrees of freedom, allowing the MP field to influence the

ballooning structure of each constituent axisymmetric mode. Future work will focus

on implementing such a variational formulation of the 3D stability and provide further

insight regarding the physics mechanisms that allows an ELM free operational state

necessary for the advanced operation of ITER.
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