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ABSTRACT

Pattern scaling is widely used to create climate change projections to investigate future impacts. We con-

sider the performance of pattern scaling for emulating the HadGEM2-ES general circulation model (GCM)

paying particular attention to ‘‘high end’’ warming scenarios and to different choices of GCM simulations

used to diagnose the climate change patterns. We demonstrate that evaluating pattern-scaling projections by

comparing them with GCM simulations containing unforced variability gives a significantly less favorable

view of the actual performance of pattern scaling. Using a four-member initial-condition ensemble of

HadGEM2-ES simulations, we infer that the root-mean-square errors of pattern-scaled monthly temperature

changes over land are less than 0.258C for global warming up to approximately 3.58C. Some regional errors are

larger than this and, for this GCM, there is a tendency for pattern scaling to underestimate warming over land.

For warming above 3.58C, the pattern-scaled projection errors grow but remain small relative to the climate

change signal. We investigate whether patterns diagnosed by pooling GCM experiments from several sce-

narios are suitable for emulating the GCM under a high-end warming scenario. For global warming up to

3.58C, pattern scaling using this pooled pattern closely emulates GCM simulations. For warming beyond

3.58C, pattern-scaling performance is notably improved by using patterns diagnosed only from the high-

forcing representative concentration pathway 8.5 (RCP8.5) scenario. Assessments of climate change impacts

under high-endwarmingusing pattern-scaling projections could be improved by using change patterns diagnosed

from pooled scenarios for projections up to 3.58C above preindustrial levels and patterns diagnosed from only

strong forcing simulations for projecting beyond that. Similar findings are obtained for five other GCMs.

1. Introduction

Pattern scaling (PS) enables the generation of gridded,

time-varying, climate change projections by combining

the spatial climate-change responses of multiple general

circulation models (GCMs) or Earth system models

(ESMs) with a driving time series of global-mean

temperature change DTt. The GCM spatial climate re-

sponses (hereinafter patterns) can be diagnosed from

any externally forced climate change simulations, such

as the representative concentration pathway (RCP;

van Vuuren et al. 2011) experiments from phase 5 of

the Coupled Model Intercomparison Project (CMIP5;

Taylor et al. 2012), provided the simulated response to

the external forcing is large enough compared to GCM

unforced variability. Multiple alternative DTt values can

then be prescribed, either as fixed specific warming

levels (SWLs) or transient changes to explore a wide

range of future scenarios and model uncertainties. Ef-

fectively, PS is an approximate physically based emu-

lator for the more complex GCM behavior in terms of

its geographical, seasonal, and multivariate response to
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global anthropogenic forcing (Osborn et al. 2016). The

appeal of PS is that climate projections for a wide pool

of climate change scenarios, including combinations of

GCMs and forcing scenarios not included in the training

data, can be quickly generated to represent both GCM

and scenario uncertainties. The approach is popular

within integrated impact studies that couple socioeco-

nomic and physical environmental prediction frame-

works (e.g., Arnell et al. 2013; Warren et al. 2008; van

Vuuren et al. 2006) or climate impact studies where

running a suite of GCMs is unfeasible (e.g., Gosling and

Arnell 2016; Ostberg et al. 2013; Warren et al. 2013).

Given its wide application, the ability of PS to emulate

transient GCM simulations deserves further evaluation.

The principal limitation of PS is that it encapsulates

climate change responses only as a linear function ofDTt

while the actual response of a GCM has features that

evolve differently (e.g., Good et al. 2015). This includes

both nonlinear changes and changes where there is a

local change that either lags or leads the global average

warming. Early validation of PS (Mitchell et al. 1999;

Mitchell 2003) revealed that errors attributed to non-

linearities existed but were small compared to the size of

the uncertainties arising from other factors (e.g., forcing

scenarios, GCM choice, and climate variability). Recent

analyses have found PS to be sufficient to approximate

the greenhouse gas responses of the latest generation of

GCMs (Heinke et al. 2013; Tebaldi and Arblaster 2014;

Osborn et al. 2016) but have also found that limitations

occur where strong regional differences in forcing exist

(e.g., sulfate aerosols; Ishizaki et al. 2012), for climate

variables with upper and/or lower bounds (e.g., cloud

amount or precipitation) and for scenarios where the

forcing stabilizes (Tebaldi and Arblaster 2014). Fur-

thermore, in its simplest form, PS only represents

changes in mean climate and not changes in internal

climate variability. The PS tool considered here, Clim-

Gen (Osborn et al. 2016), addresses some of these

limitations—for instance, by applying nonlinear functions

to precipitation and cloud cover and by superimposing

observed anomalies onto the local scenarios and, in the

case of precipitation, also transforming the anomalies to

represent projected changes in interannual variability.

In this paper, we extend previous PS evaluations by

focusing on three specific issues. First, we explore how

the accuracy of PS (in terms of reproducing the transient

GCM behavior) depends on the GCM simulation en-

semble size—and thus on the accuracy with which we

can diagnose the target climate change signal. Second,

we examine the contribution of nonlinear climate sys-

tem responses known to be present within the training

GCM data. Third, and of importance to impact studies

driven using PS data, is the performance of PS when

approximating GCM behavior under high-end warming

scenarios (i.e., SWLs of up to 68C or those associated

with the RCP8.5 concentration trajectory) when the

patterns themselves have been diagnosed by pooling

GCM simulations across multiple (usually weaker forc-

ing) scenarios.We explore these issues using an ensemble

of RCP simulations performed with the HadGEM2-ES

GCM (Caesar et al. 2013) and confirm that the two key

findings apply to five other CMIP5 GCMs as well (see

section SM2 in the supplemental material).

2. Data and methods

a. The ClimGen pattern scaler

In its simplest form, PS estimates the future change

in a climate variableV at a spatial grid cell at some time t

in the future by

DV
t
5aDT

t
, (1)

where DTt is the change in annual global-mean tem-

perature relative to a preidentified baseline. Coefficient

a is the linear change per degree of global warming for

the specific variable and grid cell. Spatial fields of these

coefficients, across the whole domain of interest, con-

stitute the ‘‘pattern’’ in PS. A normalized (i.e., local

change per degree of global warming) pattern is di-

agnosed from one or more simulations with a GCM.

The best way to diagnose the patterns is an important

consideration, with two problems to address. First, the

response to an external forcing can be obscured by in-

ternal climate variability, causing the diagnosed pattern

to differ from the true response of the model. This

problem can be reduced in three ways (Mitchell 2003):

initial-condition ensembles (where available) can be

averaged to strengthen the signal-to-noise ratio; pat-

terns can be diagnosed by regression over time (with

appropriate time filtering) instead of simply differencing

two periods; and patterns can be diagnosed simulta-

neously from several runs of the same GCM under dif-

ferent forcing scenarios (e.g., RCP2.6 and RCP4.5 data

pooled together) rather than diagnosed from a run of

the GCM under a single climate change scenario. By

adopting all three strategies (Osborn et al. 2016),

ClimGen is likely to represent the model’s response to

climate change forcing more accurately (see section

SM1 in the supplemental material for further details).

However, pooling data over time and from all RCP

simulations can exacerbate the second problem, namely

that nonlinear GCM behavior or differences in regional

forcing may be manifested by differences in patterns

between scenarios or over time within one scenario, thus

violating the linear assumption of Eq. (1). In this study,
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therefore, we also diagnose different patterns from

subsets of the RCP simulations to assess the impact on

PS performance.

Within ClimGen, separate fields of a are diagnosed for

each of the 12 calendar months and used in Eq. (1) to

produce climate projections at the monthly time scale

inclusive of changes in the annual cycle. We focus here

only on changes to mean near-surface temperature over

land (where PS is most commonly applied) and do not

consider changes in variability or over the oceans. For the

purpose of this paper, we diagnose the patterns and apply

PS on theGCM’s native grid (whereasClimGen is applied

after interpolation to a 0.58 latitude3 0.58 longitude land-

only grid) so that we can validate the PS climate pro-

jections against the actual GCM transient climate data.

The normalized change patterns (i.e., the fields of

a coefficients) required for PS are diagnosed from

HadGEM2-ES data for the 1951–2100 period using all

available ensemble members [see section SM1 and

Osborn et al. (2016) for details]. Alternative patterns are

calculated using data pooled from different RCP per-

mutations (Table 1). Some permutations purposely ex-

clude the RCP8.5 GCMdata from the pool to enable the

validation of PS projections (using RCP8.5 data in this

case) to be independent of the data used to diagnose the

pattern. Exploring the sensitivity of PS errors to the data

used to diagnose the fields of a coefficients is an im-

portant aspect of the validation exercise, since PS is

often applied using patterns calculated from one RCP

simulation to create a projection under DTt from an-

other scenario, with no consideration of the pattern

dependence of the GCM under each scenario. Once the

patterns have been diagnosed, PS projections are then

calculated by combining each of the pattern permuta-

tions in Table 1 with DTt from Fig. 1.

b. GCM data for evaluating the performance of PS

projections

Throughout this analysis we use PS to attempt to

emulate the transient near-surface air temperature re-

sponse of the HadGEM2-ES climate model, a coupled

ocean–atmosphere circulation model with dynamic

vegetation, land and ocean carbon, and tropospheric

chemistry components (Collins et al. 2011). Since a focus

of this study is the performance of the PS method under

high-end warming scenarios, we use HadGEM2-ES cli-

mate data from the CMIP5 RCP8.5 scenario as the

validating data (i.e., the target climate to be attained by

the PS projections). The RCP8.5 HadGEM2-ES data

available are as follows:

(i) a four-member ensemble covering 2001–2100, with

greenhouse gas forcing not yet stabilized (Jones

et al. 2011), and

(ii) a single-member extension to 2299, with CO2 con-

centration stabilizing by 2250 at 2000ppm (Caesar

et al. 2013).

These simulations are appended to an ensemble of runs

under historical forcing and four-member ensembles for

each of the other three RCPs (RCP2.6, RCP4.5, and

RCP6.0) are also used for diagnosing normalized change

patterns. For making the PS projections under RCP8.5

[via Eq. (1)], the driving DTt is the global-mean annual

air temperature simulated by HadGEM2-ES for 1951–

2299 derived from the historical simulations followed by

both parts of the RCP8.5 data described above. En-

semble means are used to 2100 and the single run

thereafter. TheDTt time series is filtered with smoothing

splines to isolate the forced climate change signal from

unforced interannual variability and is expressed as

anomalies from the simulated 1961–90 mean. Using

1961–90 as the reference baseline means that the re-

sulting PS projection data represent changes (anoma-

lies) from this period also. For validation of the resulting

PS projections, the individual gridcell HadGEM2-ES

TABLE 1. The various combinations of RCP-forced transient

GCM data used to generate the pattern coefficients needed for the

PS projections.

Pattern name

HadGEM2-ES simulations (1951–2100)

used to diagnose pattern

RCPall RCP2.6, RCP4.5, RCP6.0, and RCP8.5

RCP264560 RCP2.6, RCP4.5, and RCP6.0

RCP26 RCP2.6 only

RCP85 RCP8.5 only

FIG. 1. Smoothed HadGEM2-ES DTt (RCP8.5 monthly) used to

make the PS projections (shown here relative to the 1861–90

mean). Green, blue, and red locations show years where SWLs of

28, 48, and 68C, relative to 1861–90, are reached (2031, 2067, and

2101, respectively). Using smoothed data increases the likelihood

that reaching the SWL arises from the climate change signal, rather

than realization-dependent unforced variability.
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GCM data are also anomalized to the 1961–90 period

and a running 30-yr mean applied to isolate the climate

change signal.

As well as validating PS performance over the course

of the RCP8.5 simulation, we also look specifically at

years when global warming reaches SWLs of 28, 48, and

68C above preindustrial values to see if PS performance

is compromised at high-end warming levels. To identify

these years, we add 0.358C [the difference in global-

mean temperature between the means of the 1961–90

and 1861–90 periods in the observational HadCRUT4

dataset of Morice et al. (2012)] to the DTt time series.

The 1861–90 period is used to approximate the pre-

industrial level because it is the earliest 30-yr periodwith

land and marine instrumental data in both hemispheres.

The adjusted annual DTt series (Fig. 1) is then used to

select illustrative SWL years (the 30-yr means centered

on these years are used; see section SM1.2). Note that PS

projection errors during these periods are indicative of

PS performance for these SWLs, although strictly only

when they are reached by following theRCP8.5 scenario

because theGCM-simulated patterns could differ if, say,

the SWL of 28C was reached under a more slowly in-

creasing scenario (we partly address this by comparing

patterns diagnosed from different scenarios).

The gridded HadGEM2-ES validation data can be

used as either an ensemble mean or as single re-

alizations.We use both to investigate the contribution of

unforced variability to the assessment of PS perfor-

mance, but the ensemblemean is limited to pre-2100 and

thus excludes the 68C SWL (Fig. 1) centered on 2101 and

thus requiring the 2086–2115 30-yr mean.

c. Assessing the influence of climate system

nonlinearities

Errors in PS projections arise from errors in the di-

agnosed patterns and from nonstationary patterns for

some climate variables between scenarios and over time

within a scenario. Nonstationary patterns, violating the

PS assumption of linearity between local change and

global temperature change, may arise through different

regional forcings or through a nonlinear response of the

simulated climate system. We attempt to isolate the

component from nonlinear climate system behavior by

using prior identification of nonlinear behavior in

HadGEM2-ES (Good et al. 2015). Good et al. (2015)

compared changes in air temperature after two succes-

sive CO2 doublings to derive a local (i.e., grid cell) lin-

earity metric, the doubling ratio:

DV
db2

DV
db1

, (2)

where DVdb1 is the change in gridcell surface air tem-

perature to a 2 3 CO2 state, and DVdb2 is the further

change to a 4 3 CO2 state. The pattern of the doubling

ratio (Fig. 2a; after Good et al. 2015) indicates regions

where warming after the second doubling is greater than

after the first (red) and where it is less (blue). Good et al.

(2015) attribute the red Atlantic and European sectors

to the nonlinear weakening of the Atlantic meridional

overturning circulation (AMOC) affecting regional air

temperature. This behavior will be GCM-dependent,

though Sgubin et al. (2015) find that HadGEM2-ES

AMOC changes are similar to other CMIP5 GCMs

during transiently increasing forcing, and that model

dependence arises principally after a switch to de-

creasing forcing. High-latitude features with doubling

ratios below one (blue) are related to changes in snow or

sea ice that are rapid under the first doubling but then

stabilize (thus weakening feedbacks) in the second

doubling. Zones of high doubling ratios over South

America arise from a combination of vegetation, pre-

cipitation, and soil moisture dynamics influencing the

ratio of sensible to latent heat fluxes (Good et al. 2015);

this ratio changes more strongly in HadGEM2-ES than

FIG. 2. (a) HadGEM2-ES doubling ratio [after Good et al. (2015)]. (b) Land grid cells where the doubling ratio is less than 0.75 or

greater than 1.25 (gray shading). These cells are excluded to leave the land area where the HadGEM2-ES climate response to greenhouse

gas forcing is approximately linear.
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in the other fourGCMs they examined, so it is likely that

this nonlinearity is less pronounced for other GCMs

than HadGEM2-ES.

To investigate the influence of these known non-

linearities upon the PS projection errors, we define a

spatial mask (Fig. 2b) to exclude specific grid cells from

the error metrics presented in section 3c, excluding all

cells where the doubling ratio is ,0.75 or .1.25 (note

that we already exclude ocean areas from our analysis).

Although the threshold choice is arbitrary, it provides

one benchmark for identifying the influence of non-

linearities on PS performance.

3. Results

a. Validation of pattern-scaling performance

Metrics comparing each PS projection against the

transient GCM (HadGEM2-ES) data illustrate the abil-

ity of the ClimGen pattern scaler to capture the behavior

of the GCM. We first consider performance metrics

where the GCM data (the ‘‘target’’ data that we attempt

to reproduce using PS projections) are from the single-

member HadGEM2-ES simulation covering the full

2001–2299 period. This enables us to explore perfor-

mance at very high warming levels out to 2299, but the

single realization prevents us from quantifying the effects

of unforced climate variability (examined in section 3b

using all four ensemble members available to 2100).

Validation results considering climate system non-

linearity are described in section 3c.

Patterns of differences between the PS projection and

the single GCMensemblemember for representative 28,

48, and 68C SWL periods are shown in Fig. 3, as well as

PS–GCM differences using the ensemble mean for 28

and 48C. In these comparisons the PS projections are

generated using the so-called RCPall pool of training

data, since this is the ClimGen default and has been the

basis for constructing climate scenarios for the impact

work referenced earlier. Broadly, there are differences

from the single GCM run of both signs and with mag-

nitudes that are mostly between 08 and 1.258C for SWLs

of 28 and 48C. In some regions (e.g., eastern North

America), the PS–GCM differences have opposite signs

at 28 and 68C, perhaps indicating a nonlinear warming

pattern with the GCM data lying above the linear PS

regression line during one period and below it during

another.

However, many of these PS–GCM differences are

much smaller when the GCM ensemble mean is used

(only possible for SWLs of 28 and 48C), with absolute

differences nearly all less than 0.758C andmany less than

0.258C even for SWL of 48C. There is a tendency for the

PS projection to be biased cool over land, especially for

the 48C SWL, although this is not ubiquitous (e.g., there

is a warm bias overAsia at 28C SWL in January). For the

higher SWL of 68C (year 2101 in HadGEM2-ES

RCP8.5) stronger biases appear, with PS under-

estimating the GCM warming in the Amazon and

around theArctic but overestimating theGCMwarming

over the land around the North Atlantic in January.

These PS–GCM differences are large enough to have

practical significance [see the regional damage functions

of Arnell et al. (2018) for examples of the regional im-

pacts arising from differences in temperature change]

but are nevertheless small compared both to the climate

change signal and to the differences between GCM

projections (Heinke et al. 2013). Tebaldi and Arblaster

(2014) confirmed the overall validity of the pattern-

scaling approach as an approximate representation of

the CMIP3 and CMIP5 multimodel ensembles for land

air temperatures. This ‘‘validity’’ arises because errors in

pattern scaling were shown to be small relative to the

ensemble intermodel spread [Fig. 4 of Tebaldi and

Arblaster (2014) shows that the spread of change pat-

terns from different models is much larger than the

spread of change patterns from one model under dif-

ferent RCP scenarios, which represents nonstationary or

nonlinear behavior that PS cannot always capture].

Osborn et al. (2016) quantified similar results for the

CMIP5 ensemble: for annual temperature, around 10%

of the local variance across the ensemble arises from

differences in the normalized patterns of change be-

tween scenarios for the same model. There is some

spatial variation, but in only a few locations does the

contribution rise above 20%.

Here, we add detail to these results by calculating the

time-evolving magnitude of the pattern-scaling ‘‘error’’1

compared to the magnitude of the GCM projection it-

self. The root-mean-square (RMS) of all land gridcell

differences is much smaller than the RMS of the (30-yr

running mean) GCM land temperature change fields

that the PS projection is attempting to reproduce. Their

ratio decreases from about 0.3 to about 0.1 as global

warming approaches 38–48C, after which the ratio

gradually rises. This metric aggregates over all land grid

cells, including some where the local PS–GCM differ-

ences may nevertheless be quite large (Fig. 3); the local

error results are considered in more detail later. The

1Note that ‘‘error’’ is in quotation marks when we refer to the

difference between a PS projection and the corresponding GCM

projection, because this difference can arise through internal var-

iability in the GCM simulation as well as through errors in pattern

scaling.
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relative size of the PS ‘‘error’’ follows this pattern con-

sistently for all months of the year examined here (Fig. 4,

individual lines). This suggests that PS is able to repre-

sent the Arctic amplification of warming in winter

months equally as well as the more moderate warming

projected in other months, even though the amplifica-

tion is associated with nonlinear snow–albedo feedback

over high-latitude land.

FIG. 3. Differences (PS 2 GCM) between PS and (first and third rows) single-member GCM projections or (second and fourth rows)

ensemble-mean GCM projections of land air temperature change (8C) for (top two rows) January and (bottom two rows) July for periods

when DTt 5 (left) 28, (center) 48, and (right) 68C under RCP8.5. PS projections are generated using the RCPall pattern.
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This comparison is not wholly independent because

HadGEM2-ES RCP8.5 data are used in both the deri-

vation of the RCPall pattern and in the testing of the

PS projection based on this pattern. The comparison

beyond 2100 (or ;5.58C of global warming) is in-

dependent, since no GCM data beyond 2100 were used

in the pattern diagnosis. Completely independent tests

can be made of PS projections using a pattern diagnosed

from all simulations exceptRCP8.5 (i.e., theRCP264560

pattern) and show very similar results (cf. the green and

black lines in Fig. 5), so this lack of complete in-

dependence is not giving an overly optimistic view of PS

performance.

The RMS differences (Fig. 5) for the remaining pat-

tern permutations considered (Table 1) show compara-

ble levels of performance for lower global warming

levels, for which there is a low level of emission de-

pendence. At higher warming levels, however, the

RCP85 pattern is superior. TheRCP26 pattern performs

least well; we might attribute this, partly, to a less well-

defined pattern of coefficients from the RCP2.6

ensemble because of its weaker forcing, which is then

extrapolated to emulate high-forcing responses with

characteristics not present in the RCP2.6 training data.

The differences betweenmost PS projections commence

at approximately the DTt 5 38–48C (2050–70 for

HadGEM2-ES RCP8.5), which must be linked to non-

stationarity of the patterns because of, for example,

higher dependence on emission scenario.

Similar results are obtained for five more CMIP5

GCMs (see section SM2.1): theRCPall pattern performs

slightly better than the RCP85 pattern for specific

warming levels up to approximately 3.58C above pre-

industrial for CanESM2 and up to approximately 3.08C

for CCSM4, CSIRO Mk3.6.0, and IPSL-CM5A-LR

(acronym expansions are available online at http://

www.ametsoc.org/PubsAcronymList). For CNRM-CM5,

which warms the least under RCP8.5 out of the six

GCMs analyzed in this study, the RMS difference be-

tween the GCM and the PS projections is generally

larger and shows an earlier divergence between the

patterns such that PS with the RCP85 pattern has a

smaller error than with RCPall once global warming

exceeds about 28C.

The spatial patterns of ‘‘errors’’ for the best (RCP85)

and worst (RCP26) performing PS projections near to

DTt 5 38–48C illustrate the geographical source of their

performance disparities (Figs. 6a,b,d,e) compared to the

GCM climate change signal (Figs. 6c,f) for the 48C SWL.

Both patterns tend to underestimate the HadGEM2-ES

warming over land overall, but the regional differences

(of both signs in winter) are clearly stronger in the

RCP26 pattern for both theNorthernHemisphere (NH)

winter (Fig. 6a) and summer (Fig. 6d). It is possible that

this arises because patterns evolve differently over time

between RCP scenarios (nonlinear dependence on

forcing strength or regional differences in forcing) so

that the RCP26 pattern is simply not able to emulate the

RCP8.5 scenario very well. Alternatively, the local cli-

mate responsemay be linear, but that the change pattern

is more dominated by sampling variability when it is

diagnosed from just the RCP2.6 scenario, with a ten-

dency to underestimate the slope of the local to global

relationship and thus for PS to underestimate the pro-

jected warming.

It is also useful to examine PS projection ‘‘errors’’ as a

function of local (i.e., grid cell) warming (hereinafter

local DT) as opposed to global mean warming DTt. Ex-

amining local errors against local DT can tell us more

about the conditions under which PS performs well or

poorly. We define local DT as the surface air tempera-

ture change in each grid cell, relative to 1861–90, in the

FIG. 4. Global land RMS difference (8C) between the gridded PS projection (using the

RCPall pattern) and the single-member GCMprojection of land air temperature change under

RCP8.5. The RMS difference is expressed as a percent of the GCM climate change signal itself

(i.e., the global land RMS of the GCM gridded temperature change relative to simulated 1961–

90) and is plotted as a function of (a) time and (b) the GCM global DTt.
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validation GCM dataset and plot PS projection errors in

each cell as a function of local DT for the global 48C

SWL (Fig. 7). The final height of curves in Fig. 7 reflect

total accumulated errors for each PS projection while

curve steepness relates to the accumulation of errors at a

specific local DT. Error accumulation can be attributed

to either a poor PS performance or a greater density of

gridcell counts at that local DT. Quintile positions of the

gridcell local DT populations of each given month are

shown in Fig. 7 to show the distribution of cell counts

according to their local DT values.

For January (Fig. 7a) the performance of RCPall is

comparable to RCP85 through most local DT values,

only diverging for grid cells with local warming of more

than 108C, while the accumulated errors for other pat-

tern permutations (especially RCP26) grow at lower

local DT values. The divergence of the RCPall and

RCP85 error curves in Fig. 7a corroborates the correlation

of the January spatial errors shown in Fig. 6a with geo-

graphical locations of stronger warming shown in Fig. 6c.

For July (Fig. 7b) the range of local DT is narrower

than January (attributable to less summer warming in

the Northern Hemisphere), but the overall PS perfor-

mance rankings are the same as January, as are the ap-

proximate total accumulated error values. At first

glance, the similarity of the July and January accumu-

lated errors is surprising if we assume that PS

performance degrades with rising local DT, since the

GCM July warming is much lower than January (cf.

Figs. 6f and 6c and the range of local DT in Fig. 7).

However, the spatial patterns of July errors (Figs. 6d,e)

show that strong PS errors exist in July over Antarctica,

for both RCP26 and RCP85 patterns, despite only

moderate local DT (Fig. 6f). Note that PS is not typically

applied over Antarctica and the standard version of

ClimGen does not include Antarctica because of in-

sufficient observational data to combine with the PS

projections.

b. Quantifying GCM internal variability as a source

of PS–GCM projection differences

Comparing PS projections to a singleGCMsimulation

is useful but it is not a perfect measure of PS perfor-

mance at emulating the GCM ‘‘climate change signal,’’

since individual GCM realizations have a unique, in-

ternally driven climate component, independent of the

externally forced climate change signal. RMS differ-

ences considered so far, therefore, are a combination of

any deficiencies in PS emulation of the GCM externally

forced climate change signal and the unforced variabil-

ity simulated by the GCM on time scales of 30 yr or

longer (unforced variability on shorter time scales will

not inflate RMS differences because we compare 30-yr

running means). This was already visible in the much

FIG. 5. Global land RMS difference (8C) as a function of DTt, between gridded PS projections [using patterns

RCPall (black), RCP264560 (green), RCP26 (blue), and RCP85 (red)] and (left) the single-member GCM pro-

jection (2001–2299) underRCP8.5 and (right) the ensemble-meanGCMprojection (2001–2100). Results are shown

separately for (top) January and (bottom) July. Note the different axis ranges for the left and right columns.
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weaker PS–GCM difference patterns when comparing

with the ensemble mean than with a single GCM run

(Fig. 3). We can quantify these contributions to the

overall PS–GCM differences by recalculating global

land RMS differences between the PS projection and

the mean of all four HadGEM2-ES RCP8.5 ensemble

members, limited to the 2001–2100 period when all four

ensemble members are available.

FIG. 6. Differences (8C) between PS and single-member GCM projections of (a),(b) January and (d),(e) July land air temperature

change for the period when DTt 5 48C under RCP8.5. PS projections are generated using the patterns RCP26 in (a),(d) and RCP85 in

(b),(e). The GCM projected climate change anomalies (8C) for (c) January and (f) July are also shown.

FIG. 7. Cumulative land gridcell absolute differences (y axis, 8C) between PS projections [RCPall (black),

RCP264560 (green), RCP26 (blue), and RCP85 (red)] and the GCM projection as a function of increasing gridcell

local DT projected by the GCM (x axis, 8C). Data are for (a) January and (b) July for the period when global DTt5

48C under RCP8.5. Vertical lines indicate quintiles of gridcell local DT projected by the GCM (i.e., equal counts of

land grid cells lie between each pair of vertical lines).
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RMS differences show marked reductions when

comparing with the ensemble mean rather than with a

single GCM simulation (Fig. 8 for PS projection

RCPall). Given that the unforced variability in each

ensemble member is largely independent [see section

9.1 of Jones et al. (2011)], the standard deviation of

unforced variability at each grid cell in the ensemble

mean will be reduced by the square root of the en-

semble size. Thus with a four-member ensemble, we

expect the component of the PS–GCM difference

arising from GCM internal variability to halve com-

pared with a single ensemble member, while the dif-

ference arising from the genuine error between the PS

projection and the GCM response to the RCP forcing

will be unchanged.

For global warming up to about 38C, RMS differences

are approximately halved in all months except NH

summer (red line compared with the black mean of the

individual gray lines in Fig. 8), suggesting that the gen-

uine PS projection error is very small. Beyond DTt 5

38C, the externally forced climate signal becomes even

stronger compared with the internal variability and so

the reduction in PS–GCM differences diminishes, visi-

ble in a steepening of the ensemble-mean RMS curve

toward higher levels of warming (Fig. 8, red).

If we had an infinite ensemble of RCP8.5 runs from

HadGEM2-ES, we would expect the RMS difference

arising from the unforced GCM variability to be reduced

by the same amount as the reduction already seen in

going from one to four ensemble members. In other

words, the four-member ensemble mean still contains

significant levels of unforced variability, which unfairly

penalizes the apparent performance of PS at emulating

the GCM. Doubling the reduction in RMS differences

from the mean of the single-run results (Fig. 8, black

lines) to the four-member results (red lines) gives an es-

timate of theRMS differences with a hypothetical infinite

ensemble with no unforced variability (Fig. 8, red dashed

lines). This indicates that the genuine RMS difference

between PS andGCMprojections is close to zero (except

in NH summer) for global warming up to 38C under

RCP8.5, for HadGEM2-ES. The performance then de-

teriorates significantly for increased warming, although a

fair evaluation of PS performance would still show

smaller errors than the single or four-member results.

Even for the month with the largest residual error (July),

the inferred PS RMS error is less than 0.258C for global

warming up to 3.58C. Note the earlier caveat that the

RCP8.5 testing data were also partly used to define the

RCPall pattern used to make these PS projections.

FIG. 8. Global land RMS differences (8C) between gridded PS projections (RCPall) and each single-member

GCM RCP8.5 projection (gray; only one member extends to 2299) and the ensemble-mean GCM projection (red;

ends in 2100 when three of the four ensemble members stop), under RCP8.5, as a function of DTt. The mean of the

individual ensemble member results is shown in black, and the red dashed line indicates the inferred RMS dif-

ference from a hypothetical infinite ensemble. Results shown separately for January, April, July, and October.
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Similar results are obtained for the five other CMIP5

GCMs analyzed (see section SM2.2): inferred RMS er-

rors are also less than 0.258C for global warming up to at

least 4.08C for CanESM2, CCSM4, and IPSL-CM5A-

LR, up to 2.18–3.48C (depending on month) for CNRM-

CM5, and up to 3.48–4.28C for CSIRO Mk3.6.0. For all

GCMs except CNRM-CM5, PS performance is more

favorable than found for HadGEM2-ES.

We also investigate how this apparent reduction in PS

error (when comparing with a GCM ensemble mean)

varies as a function of gridcell climate change, local DT,

as per Fig. 7, but using localDT from the ensemble-mean

GCM data. To reduce the noise that would result if the

PS–GCM differences were plotted for each of the 9244

land grid cells, the grid cells are first grouped into 25

bins. Each bin is defined to contain all grid cells with a

particular range of GCM-simulated local DT, with the

ranges chosen so that the grid cells are divided equally

into the 25 bins (so each contains 369 grid cells, apart

from the final bin). We use local DT from the GCM

ensemble mean even when considering the PS–GCM

difference for the single GCM ensemble member, be-

cause the ensemble mean is a truer representation of the

climate change that the PS projection is attempting to

emulate and it also ensures that the same grid cells are

assigned to each bin regardless of the comparison being

made. The PS–GCM projection absolute differences at

each grid cell are averaged over the bin to obtain the

ratio Eens/Esgl, where Eens and Esgl are the bin-

averaged PS–GCM differences using the ensemble

mean and a single ensemble member, respectively. In

Fig. 9, we plot the Eens/Esgl ratios for the 48C SWL

period against the bin-averaged local DT and the width

of the bins indicates the density of local DT values (be-

cause each bin contains the same number of grid cells).

Where Eens/Esgl , 1, the PS–GCM difference is re-

duced by comparing with the GCM ensemble mean

rather than with a single GCM run for the 48C SWL. As

expected, this occurs across most local DT bins for both

January (Fig. 9a) and July (Fig. 9b). Improvements are

largest for the RCPall and RCP85 PS projections and

less clear when scaling the RCP26 pattern, suggesting a

higher contribution in the latter from actual pattern

deficiencies (in terms of capturing the forced climate

signal). For the RCP85 pattern the improvements are

greatest over regions with higher local warming,

FIG. 9. The ratio of absolute differences between gridcell PS projections and either single-member (Esgl) or ensemble-mean (Eens)

GCMprojections as a function of gridcell localDT projected by the ensemble-meanGCM (x axis, 8C) for the periodwhenDTt5 48Cunder

RCP8.5. Each panel is for a different PS projection, RCPall (black), RCP264560 (green), RCP26 (blue), and RCP85 (red), for (a) January

and (b) July. The PS–GCMabsolute differences were first averaged over localDT bins containing equal numbers of grid cells (indicated by

the gray histograms, which therefore also indicate the density distribution of gridcell temperature changes). Where Eens , EsgI, Eens/

Esgl is plotted in the lower half of the panel; where Eens. EsgI, Esgl/Eens is plotted in the upper half of the panel and the y-axis range is

reversed.
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especially in January (Fig. 9a). For a very few bins, no-

tably those with least local warming, PS performance

actually deteriorates when comparing with the GCM

ensemble mean (i.e., Eens . Esgl, and the ratio is

plotted as Esgl/Eens on the inverted scale in the top half

of each panel). The reduced PS–GCM projection errors

are not homogenous across all bins. When using the

RCPall pattern, there are four bins close to the center of

the distribution (with local DT close to 48C, which is

also a very dense part of the distribution in January;

Fig. 9a) with either no improvement or even de-

terioration when PS is compared to the ensemble mean.

For other bins, for instance those from local DT between

58 and 108C, the use of the GCM ensemble mean ap-

proximately halves the PS–GCM differences.

c. Quantifying GCM nonlinearity as a source of PS

error

Genuinely poor PS performance would arise from two

main sources: 1) nonlinearity in the response to the

same type of forcing, with the response pattern varying

over time or as the forcing strengthens, and 2) differ-

ences in the response patterns between scenarios be-

cause of different regional forcings (especially aerosol

and land-use changes). To assess the contribution from

the first of these sources, we apply a spatial mask to the

evaluation of PS projection performance as described in

section 2c. This mask excludes grid cells where separate

simulations (Good et al. 2015) have already demon-

strated that HadGEM2-ES responds nonlinearly to in-

creased CO2 forcing. Application of the mask excludes

2469 grid cells (27% of the land grid cells). We apply the

mask to the PS–GCM projection differences, using the

HadGEM2-ES ensemble mean to reduce the contribu-

tion of internal variability to the difference. The

comparison is made using mean annual temperature

changes because annual means were used to generate

the mask from Good et al. (2015), and we consider PS

projections from the same four pattern permutations

(Table 1).

Figure 10 compares the RMS of the PS–GCM differ-

ences between the masked (RMSDlin) and unmasked

(RMSDfull) global land fields over the course of the

RCP8.5 simulation. Masking known regions of non-

linearity (for this GCM, HadGEM2-ES) does decrease

the PS–GCM differences but by no more than 10% and

not until global warming reaches 48C. Furthermore, the

PS projection made using the RCP85 pattern (red line,

Fig. 10) shows no decrease until later in the simulation.

These results suggest that nonlinear responses within

HadGEM2-ESmake only a small contribution to the PS–

GCM land temperature differences for global warming

levels up to 58C at least.

Analyzing the pattern of PS–GCM differences using a

binned approach similar to Fig. 9 (not shown) for a

global SWL of close to 58C where the improvement is

greatest (Fig. 10), shows that exclusion of grid cells with

nonlinear behavior reduces the PS–GCM differences

particularly in regions with local warming around 68C or

with very high levels of local warming from approxi-

mately 108–188C.

4. Discussion and summary

We have investigated the performance of the popular

PS technique, as implemented by the ClimGen pattern

scaler (Osborn et al. 2016), for emulating the climate

change response of the HadGEM2-ES under the high-

end emission scenario RCP8.5.We repeated the analysis

with five other CMIP5 GCMs (see section SM2) and

obtained similar key findings. We focused on climate

changes over land, where the linear assumptions that

underlie PS are more reasonable and where PS is most

often applied. We evaluated changes in near-surface air

temperature, though the approach is applicable to other

variables (a companion paper will report our findings for

precipitation; C. J. Wallace et al. 2018, unpublished

manuscript). We have paid particular attention to the

impact on the performance metrics of the unforced cli-

mate variability present in the GCM simulations and of

nonlinearities in the climate change response of the

HadGEM2-ES.

Initially we show that even when unforced variability

is not accounted for, the difference between the PS and

GCM projections when evaluated over the global land

surface is only 10%–15% of the GCM climate change

response itself for a wide range of global warming (28–

78C; Fig. 4). This is much smaller than other sources of

FIG. 10. The ratio of the RMS differences between PS pro-

jections [RCPall (black), RCP264560 (green), RCP26 (blue), and

RCP85 (red)] and the ensemble-mean GCM projection of annual-

mean temperature change when they are calculated over a limited

set of land grid cells (RMSDlin, where the response of HadGEM2-

ES to CO2 forcing is approximately linear; see Fig. 2b) compared to

when the differences are calculated over all land grid cells

(RMSDfull), as a function of global warming (8C).
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uncertainty in climate change projections such as the choice

of forcing scenario and the spread among an ensemble of

multiple climate models. It is consistent with other re-

ported assessments [e.g., Table 2 of Heinke et al. (2013),

which assesses the linear change signal inCMIP3GCMs].

Using the mean of a four-member initial-condition

ensemble of GCM runs reduces the standard deviation of

unforced variability by half, and the difference between

the PS projections and the direct GCM results is then

notably reduced (Fig. 8). Indeed, for PS projections using

patterns diagnosed from a range of different GCM sim-

ulations, the PS–GCM difference is almost halved for a

range of global warming from 18 to 38C, indicating that

themajority of the remaining PS–GCMdifference can be

attributed to the residual internal variability in the four-

memberGCMensemblemean. This cannot be confirmed

since we do not have an infinite GCM ensemble and the

inference that there is almost zero error in the PS ap-

proximation for this range of global warming range

should be considered cautiously. PS cannot perfectly

represent even the linear component of the forced cli-

mate response because there will be some contamination

of the training data (used to diagnose the patterns) by

unforced variability itself, although we mitigate this by

pooling multiple temporally smoothed simulations across

all RCPs and regress over the entire 1950–2100 period to

generate the RCPall pattern. Lynch et al. (2017) also find

reduced bias andmean errorswhen patterns are diagnosed

using linear regression comparedwith the ‘‘delta’’method.

We recommend, therefore, that PS performance

should not be evaluated by comparison against a single

GCM simulation (or even a small ensemble) without

carefully considering the role of unforced internal GCM

variability as a cause of the differences found. Heinke

et al. (2013) compare the overall variance of the re-

siduals against the unforced variability simulated in the

GCM control runs to address this issue.When evaluated

against the HadGEM2-ES climate change signal rather

than a combination of signal and unforced variability,

the errors arising from the PS technique are very small

(inferred root-mean-square errors of 0.258Cor less when

land monthly temperature changes are aggregated

globally) for global warming up to 3.58C. For global

warming greater than this, the PS projection errors grow

mostly as a result of scenario dependence in the GCM

results but with a contribution from nonlinearity in the

GCMresponse. The climate change signal strengthens too,

so the error remains small relative to the climate signal.

We also evaluated the performance of patterns di-

agnosed from different sets of GCM simulations, and

summarize the evaluation against the four-member en-

semble mean in Fig. 5 (cf. right and left columns, which

shows the performance against the single run that

extends to much greater levels of warming). The PS

performance using patterns diagnosed from all RCP

runs pooled together [RCPall (black line), the default in

ClimGen] is similar to the RCP264560 (green) pattern

that is completely independent of the validation GCM

data (RCP8.5). They perform best for global warming

up to approximately 3.58C above preindustrial, but be-

yond this the pattern diagnosed from only the RCP8.5

data (RCP85, red) clearly performs better. Although

this is not an independent test (using the same simula-

tions to diagnose the patterns and to serve as the vali-

dation dataset is likely to overestimate performance),

we nevertheless recommend using patterns diagnosed

from strong forcing scenarios when making PS pro-

jections under high-end global warming scenarios. For

somemonths, the RCP85 pattern performs poorly under

global warming of 28C. The pattern diagnosed using only

RCP2.6 simulations (RCP26, blue) provides no advan-

tages over the RCPall pattern even for small amounts of

warming early in the RCP8.5 projection, and its per-

formance deteriorates earlier.

Since RCPall is the default in ClimGen configuration

used to generate climate scenarios for impact work,

these results suggest an improvement could be made by

using RCPall for warming up to approximately 3.58C

and then the RCP85 pattern for projections of high-end

warming. A transition period might be used to avoid

discontinuities. This recommendation applies when

emulating other GCMs too (see section SM2.1).

We examined the pattern of PS–GCM projection

differences geographically and as a function of local

warming. There is only limited correspondence between

the largest differences and regions that had previously

been identified as having a nonlinear response to CO2

forcing in this GCM (Good et al. 2015), underlining the

small contribution of nonlinear climate response to the

overall errors in PS projections. This implies that dif-

ferences in regional forcings are more important in

causing different climate change patterns that standard

PS cannot emulate, though nonlinear behavior may be

more important for scenarios that stabilize (Caesar et al.

2013). There is some evidence for nonlinearities con-

tributing to PS errors beyond 48C global warming,

however, andwe can attribute these to processes affecting

the northern Canadian coast (e.g., sea ice feedbacks) and

regions of South America (moisture dynamics) where we

see that errors, in the worst performing patterns, aremore

apparent and nonlinear response to CO2 is strongest.
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