
This is a repository copy of Data-driven approaches for modeling train control models:
Comparison and case studies.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150313/

Version: Accepted Version

Article:

Yin, J, Su, S, Xun, J et al. (2 more authors) (2020) Data-driven approaches for modeling
train control models: Comparison and case studies. ISA Transactions, 98. pp. 349-363.
ISSN 0019-0578

https://doi.org/10.1016/j.isatra.2019.08.024

© 2019 ISA. Published by Elsevier Ltd. All rights reserved. Licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Please cite the paper as:
Yin J., Su S., Xun J., Tang T., Liu R. (2019) Data-driven approaches for modeling train control models:
Comparison and case studies. ISA Transactions, in press.
https://doi.org/10.1016/j.isatra.2019.08.024

Data-Driven Approaches for Modelling Train Control Models:

Comparison and Case Studies

Jiateng Yin1∗, Shuai Su1†, Jing Xun1, Tao Tang1, Ronghui Liu2

1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, 100044, China

2. Institute for Transport Studies, University of Leeds, Leeds LS29JT, UK

September 2, 2019

Abstract

In railway systems, the train dynamics are usually affected by the external environment (e.g., snow and

wind) and wear-out of on-board equipment, leading to the performance degradation of automatic train control

algorithms. In most existing studies, the train control models were derived from the mechanical analyzation of

train motors and wheel-track frictions, which may require many times of field trials and high costs to validate

the model parameters. To overcome this issue, we record the explicit train operation data in Beijing Metro

within three years and develop three data-driven approaches, involving a linear regression-based model (LAM),

a nonlinear regression-based model (NRM), and furthermore a deep neural network based (DNN) model, where

the LAM and NRM can act as benchmarks for evaluating DNN. To improve the training efficiency of DNN

model, we especially customize the input and output layers of DNN, batch normalization based layers and

network parameter initialization techniques according to the unique characteristics of railway train models.

From the model training and testing results with field data, we observe that DNN significantly enhances the

predicting accuracy for the train control model by using our customized network structure compared with LAM

and NRM models. These data-driven approaches are successfully applied to Beijing Metro for designing efficient

train control algorithms.

Keywords: Train control models; Data-driven approaches; Artificial neural networks; Field test

1 Introduction

Due to the rapid development of communication, control and computer technologies in the last several decades,

Automatic Train Operation (ATO) system has been developed and widely implemented in many urban rail transit

lines throughout the world to replace manual driving. With ATO systems in urban railways, the driver no longer

has to cautiously operate the train control handle, which remarkably reduces the manual labors for driving trains.

Meanwhile, the rail line capacity is also enhanced with the aid of accurate monitoring and advanced control algo-

rithms of ATO systems (Yin et al., 2017). More recently, the unattended train operation systems, in which there

is no driving cabin but only one serving staff, were put into operation in Paris Metro Line 14 and Dubai Metro,

which may represent the future direction of railway transportation systems.

In modern urban rail systems, the on-board ATO systems drive the trains automatically by tracking a pre-given

position-velocity trajectory with designed control algorithms (e.g., feedback control and model predictive control

∗
E-mail address: jtyin@bjtu.edu.cn (J. Yin)

†shuaisu@bjtu.edu.cn (S. Su)

(Qiu et al., 2019)). However, a practically significant issue associated with ATO system is the inaccuracy of train

control models under different environment, such as the equipment wear and tear, extreme weather (e.g., rain, snow)

or the variance of track and air frictions, as shown by Figure 1. Especially, the initial train control models provided

by the manufactory will become inaccurate with variant model parameters due to these influencing factors. Thus,

the designed ATO algorithms may be unable to track the trajectory precisely which greatly reduces the performance

of train operations, for example, low energy efficiency and impaired riding comfort (Cohen et al., 2015). Therefore,

it is practically significant to construct an accurate train control model as the basis of designing ATO algorithms

in real-world operations.

Some existing studies have addressed the train control modeling (TCM) issue with simulation tools and vehicle

model parameter identifications (Andersen et al., 2012; Bham and Benekohal, 2002; Fadhloun et al., 2015; Wang and

Rakha, 2018). However, these traditional techniques require a large amount of empirical knowledge and experiences

from the perspective of mechanical engineering. Moreover, these parameters of TCM have to be tested and validated

in field experiments repeatedly, which can be very expensive in practice. Meanwhile, we notice that the urban rail

trains run periodically from the origin to the destination on the same line and a lot of historical data are recorded

in a metro system. Thus, it is possible to directly apply data-driven techniques in TCM problem to learn the

underlying features of train dynamics with the aid of historical train running data. In some relevant areas, such as

quadrotor flying modelling (Bansal et al., 2016) road traffic prediction (Ma et al., 2015), data-driven approaches

involving neural networks and deep learning have shown their superior capabilities in modelling a huge amount of

high-dimensional data to predict the motion of robotics or vehicles, while these new technologies have not been

fully investigated in railway train control fields.

(a) Trains in the depot (b) Trains running through curves (c) Trains running under extreme weather

Figure 1: The complex external environment of rail trains

As ATO systems being extensively promoted through urban rail transit systems and high-speed railway systems,

it has become an emerging technology for railway engineers to construct an accurate, efficient and flexible longitude

train control model (Lagay and Adell, 2018). In this paper, we will address this problem by using data-driven

approaches based on the historical train running data for directly quantifying an accurate train control model in

urban rail systems. Specifically, we record the explicit train operation data in Beijing Metro from 2015 to 2018, which

are used to develop three data-driven approaches, involving a linear regression-based model (LAM), a nonlinear

regression-based model (NRM), and furthermore a deep neural network based (DNN) model. In particular, the

DNN model is constructed by a multi-layered feed-forward Artificial neural network (ANN) combined with batch

normalization layers which provide the capability to model high-dimensional train operation data. We compare the

DNN model with traditional train control models in Su et al. (2013) and Howlett and Pudney (1995) with field

data in Beijing Metro, and our results demonstrate significant performance improvement by using DNN model. We

also embed the developed data-driven models into a virtual train control platform, by which we design and validate

automatic train control algorithms that have been tested in the field and then successfully implemented in Beijing

Metro since 2018.

1.1 Literature Review

The longitudinal TCM depicts the motions of railway rolling stock vehicles in the direction of the track (Cole,

2006). Due to the complexity of TCMs arising from the interactions of the wheel/rail system, track gradients

and track bends, and traction/braking motors, a lot of studies have investigated the mathematical modeling of

longitudinal TCMs, dating back to the birth of railways (Grag, 2012). Generally, the existing literature on identifying

TCMs can be classified into two categories, i.e., physical-driven models and simulation-based tools. The former class

of research employs principles of mechanics to describe the longitudinal movement of vehicles on the tracks, which

typically involve the vehicle dynamics acceleration/deceleration estimation (Bham and Benekohal, 2002; Fadhloun

et al., 2015; Oprea et al., 2013), track friction coefficient identification (Wu et al., 2014) and in-train forces by drag

forces and gravitational components. For example, an efficient and comprehensive alternative model was defined in

Oprea et al. (2013) based on set-valued friction with Coulomb’s law in order to quantify the train braking dynamics.

Wang and Rakha (2018) developed a new TCM through a series of highly nonlinear functions by simultaneously

considering the train acceleration, deceleration and resistance frictions. The model was calibrated and tested

through the field data of Portland light rail train fleet. A comprehensive survey of TCMs from the perspective of

mechanical engineering can be found in Wu et al. (2016). In the aspect of simulation models, some advanced tools

were developed to quantify the train energy consumption (Andersen et al., 2012; Gbologah et al., 2014; De Martinis

and Corman, 2018), and simulate the macroscopic metro lines (Grube et al., 2011). For instance, OpenTrack

developed by Swiss Federal Institute of Technology Zürich is able to simulate the rail system operations based on

user-defined train, infrastructure, and timetable databases (Nash and Huerlimann, 2004). More recently, Serajian

et al. (2019) developed a simulation technique to investigate the effects of train length on in-train longitudinal forces

during the braking of a train. The train brake delay time was also taken into account in this study.

Currently, TCMs have been widely applied to a lot of theoretical research and practical implementations (Cao et

al., 2019). For example, Howlett and Pudney (1995) proposed a general model for optimal train control where train

position is set as the independent variable, and then developed a series of energy-efficient train control strategies

to minimize the traction energy consumption (Albrecht et al., 2016). For designing automatic train speed control

algorithms, relevant studies typically employed second-order continuous state-space formulations with nonlinear

or uncertain influencing disturbances to model the longitudinal train movement. For example, Gao et al. (2013)

designed an on-line approximation-based robust adaptive controller, in which a radial basis function was utilized as

the approximator of TCM. Li et al. (2014) further extended the model by considering the interactive forces among

the connected vehicles of a train and developed a robust sampled-data cruise control method for high-speed trains.

Here we refer to Yin et al. (2017) that gives a literature review for the automatic train control algorithms and

applications.

In recent years, a significant change in transportation engineering is that much more accurate data are collected

in real-time from a variety of sources, which significantly contribute to the vast amount of research in the field of

data-driven approaches for traffic flow prediction (Lv et al., 2015; Seku la et al., 2018), travel demand estimation

(Toole et al., 2015), and traffic speed prediction (Ma et al., 2015), etc. For instance, combining neural networks and

a profiling method, Seku la et al. (2018) proposed a data-driven approach for estimating historical traffic volumes

between sparsely located traffic sensors in the Maryland highway network. As a powerful tool for depicting the deep

features with a large amount of data, deep neural networks (DNN) are particularly favored by a lot of researchers,

and the applications in image recognition, acoustic modeling, etc., have demonstrated great improvement compared

with shallow networks (Hinton et al., 2012). In transportation fields, a deep learning model with autoencoders

(AEs) and denoising autoencoders (DAEs) was developed by Duan et al. (2016) for traffic data imputation. More

recently, Wu et al. (2018) proposed a novel multi-layered hierarchical flow network representation to estimate travel

demand using multiple data sources. A transportation-focused computational graph was developed to capture the

deep-rooted structure of traffic demand flow estimation problem. Finally, the proposed computational graph was

evaluated and validated under a demonstration network.

However, there is very few literature in the field of railway train operations to the best of our knowledge that apply

data-driven approaches for modeling railway train dynamics. Chen and Gao (2012) developed neural network (NN)

based models to estimate the train station parking error. However, this study only considers the braking process of

trains and the constructed NNs are actually shallow networks with only two input nodes and one output node. Due

to the complexity of train operations which involve accelerating, cruising, coasting and braking operations, these

models cannot be directly applied to TCM problems.

In summary, most previous studies concentrate on TCM in the field of mechanical engineering, but very few of

them consider data-driven modeling techniques. In order to improve the accuracy of TCMs in urban rail systems,

this paper proposes three data-driven models, i.e., LAM, NRM and DNN, with the field data collected in Beijing

Metro. According to the unique features of urban railway trains, we customize the input&output layers and batch

normalization layers to enhance the performance of DNN. Moreover, we report the model training and testing

results with field data, conduct numerical experiments to validate the model parameters and analyze the practical

and implementation difficulties of the developed data-driven models.

The rest of this paper is organized as follows. In Section 2, we present the developed mathematical models

involving LAM, NRM, and DNN. In particular, we explicitly present the construction of DNN, involving the design

of input and output layers, batch normalization layers and DNN parameter selections according to the unique

features of train control models. In Section 3, we describe the collection of field data and define six performance

indicators to evaluate the accuracy of each model. In Section 4, we train and validate the developed models, and

then, we present a comprehensive comparison of these three models to describe their practical implementations in

practice. Section 5 concludes this paper.

2 Mathematical Models

2.1 Problem Statement

In the current literature (e.g., Howlett and Pudney (1995); Li et al. (2014)), the TCM in a railway system can

be typically expressed with a state-space formulation, given as follows

F = M ×
dv

dt
− f(v, s) (1)

v =
ds

dt
(2)

where F denotes the train traction or braking force, M is the mass of the train, and s, v and t respectively

represent the train position, speed and time. Function f(v, s) denotes the auxiliary resistances caused by the

friction resistances, gradients and track bends, etc. In the train driving process, the driver or ATO controller

receives the real-time feedback data (i.e., train position s, speed v and speed limit vlim) from on-board and track-

side sensors. The speed controller or driver compares the feedback information with a recommended speed profile

v̂ to determine the best control command u = F
M

. Afterward, the control command u drives the train motors to

generate force F (traction force F+ or braking force B−) to move the train.

The closed-loop feedback control process of a railway train is illustrated in Figure 2. Here we can see that TCM

is actually affected by two kinds of influencing factors, i.e., the transformation of control command u to the traction

& braking motors and the resistances of trains during its movement. In practice, the explicit modeling of these

two parts is very complex due to a lot of nonlinear properties and uncertain parameters that are difficult to be

characterized mathematically (Yin et al., 2014, 2019). For example, the wheel-track and air frictions can both be

expressed as highly nonlinear functions with respect to train speed v.

Automatic speed

controller (or

driver)
Train

F + ,v x

t

v̂

limv

x : position

v̂ : recommended speed

: speed limit

u : control commend

: braking forces

f : resistances

u

Train speed controller

,v x

Speed sensors/

positioning devices

Traction&braking

motors

v : speed

t : time

B-

limv

F +
: traction forces

B-

Resistances f

Figure 2: Closed-loop feedback control process of a railway train (Yin et al., 2017)

In the practical operations of urban rail systems, the trains run cycle by cycle through the first station to the

destination and then travel back to the origin to prepare for the next cycle. The real-time train operation data are

recorded by on-board ATO systems with a fixed time interval (for example each 0.2 second) in a discrete format.

The recorded data typically includes the train position, speed, control command, train weight, line speed limit, line

gradient, track bend, external weather, etc, at each time unit. Figure 3 demonstrates the recorded line speed limit,

train speed and controller output of a train from one segment in Beijing Metro. We can see that, when the control

command is positive, the train is in the traction phase and its speed is increased. When the control command is

zero or negative, the train is in the coasting or braking phases, and the train speed is decreased. In this sense, the

TCM can be essentially denoted by a mapping function from the current train state and input control command to

the next train state. If we consider using speed and position as the state of a train, the mapping function is given

by

{st+1, vt+1} = Φ{st, vt, ut, · · · s0, v0, u0}

where st and vt are a set of train position and velocity vectors. Thus, it is very reasonable to directly approximate

TCM using the historically recorded data in order to obtain the regression-based function Φ. In particular, if

function Φ is accurate enough, we can use it for evaluating the performance of different ATO control algorithms in

the simulation environment. For example, we can use the data-driven models to test if the train can arrive on time

to the next station or if the ATO algorithm is energy-efficient.

Therefore, the aim of this study is to construct a data-driven model that uses the initial train state and control

command u as input to predict the future train states. By training with historically recorded data, the model should

be able to accurately predict the longitude movement of a train given arbitrary control sequences from the origin to

the destination. For this purpose, this study constructs three data-driven approaches, which are a baseline model

with linear regression, a nonlinear model and a DNN-based model, explicitly described in the following content.

0 200 400 600 800 1000 1200
Distance (m)

0

5

10

15

20

25

Ve
lo

cit
y

(m
/s

)

0

2

4

6

8

10

Co
nt

ro
lle

r o
ut

pu
t

Speed limit
Train velocity
Controller output

Figure 3: Illustration of historical recorded data

2.2 Model 1: Linear Regression-Based Model

A simple dynamic model of TCM can be constructed by selecting function f(v, s) from the class of affine functions

and fitting the linear coefficients to the observed data with least squares regression. This linear regression-based

model (LAM) serves as our baseline model, and it has been shown to achieve good performance in many previous

studies due to its concise structure (Su et al., 2013). In particular, LAM was demonstrated to be useful in urban

rail transit where the train velocity is relatively low and the friction force has an approximately linear relation with

train velocity.

In our work, LAM is basically defined as follows.

vt+1 = vt + α1ut + γ1 (3)

st+1 = st + β1vt + β2ut + γ2 (4)

Let Xt = [vt, st]
T denote the vector of train state defined on a set of discrete time units t ∈ {0, 1, · · · , T}. The

above discrete-time state-space model can be rewritten as follows.

Xt+1 = AXt + BUt + W (5)

where

A =

[

1 0

β1 1

]

, B =

[

α1

β2

]

, and W =

[

γ1

γ2

]

.

Then, the task for constructing LAM is to find the optimal coefficient vectors A, B and W given observed values of

X and U , which is similar to system identification technique. In this model, we minimize mean squared prediction

error over a set of historical train running data by solving

LAM: min
A,B,W

∑

0<t≤T

∥Xt − X̂t∥ (6)

s.t. Xt+1 = AXt + BUt + W, ∀t > 0 (7)

where X̂t is the observed value of Xt for each t ∈ {0, 1, · · · , T}. The above problem results in a linear least squares

problem with no constraints, which can be solved effectively using least-square regression methods.

2.3 Model 2: Nonlinear Regression-Based Model

The second model refers to a nonlinear regression-based model (NRM) that further extends LAM model by taking

account into some nonlinear factors. Specifically, the effects of track resistances, air frictions, and track gradients

are all nonlinear factors associated with train velocity and position, which can be involved in NRM. On the basis

of the discrete state-space model in the above section, we first present a general formulation of NRM as follows.

vt+1 = vt + α1ut + fr(vt) + fg(st) (8)

st+1 = st + β1vt + β2ut + γ (9)

where fr(vt) = fa + fbvt + fcv
2
t is the Davis equation that refers to the track resistance and air friction, and fa, fb

and fc are the Davis parameters. fg(st) = g · sin(θ(st)) represents the line gradient where θ(st) is the line slop at

position st and g is the standard gravity parameter. Thus, our aim is to obtain a set of model parameters involving

α1, β1, β2, γ, and David parameters fa, fb and fc from historical train running data, which minimizes the expected

cost between the predicted train running state and observed train running state. Define vector Xt = [vt, st]
T to

represent the train position and velocity at time unit t. With a given initial state X0, we can formulate TCM

problem into an optimization model to find a set of train dynamic parameters from historical data samples X̂t.

NRM: min
fa,fb,fc,α1,β1,β2,γ

∑

0<t≤T

∥Xt − X̂t∥ (10)

s.t. Xt+1 = XT
t

[

fc 0

0 0

]

Xt +

[

fb + 1 0

β1 1

]

Xt +

[

α1

β2

]

ut +

[

fa + fg(st)

γ

]

, ∀t > 0 (11)

The aim of the above model is to find a set of parameters involving fa, fb, fc, α1, β1, β2 and γ in order to minimize the

least square error between the predicted train states and observed train states from historical data. Nevertheless,

the above model is a nonlinear model with a set of nonlinear equality constraints (11), which is actually difficult

to be solved. Meanwhile, we see that the model can be equivalently reformulated into an unconstrained nonlinear

optimization model by inverting the constraints into the objective function. Let nonlinear function G denote

constraint (11) that maps a train state Xt and control command ut to train state Xt+1, i.e., Xt+1 = G(Xt, ut).

Model (10) can be equivalency formulated into the following model

NRM: min
fa,fb,fc,α1,β1,β2,γ

∑

0<t≤T

∥G(Xt−1, ut−1) − X̂t∥ (12)

As model (12) is a nonlinear optimization model with no constraints, it can be efficiently handled by a stochastic

gradient descent (SGD) algorithm that enables to generate the optimal solution (or local-optimum) given a set of

training data samples (Bottou, 2010).

2.4 Model 3: Deep Neural Network Based Regression Model

Since our research in this paper is motivated by a practical issue, we first only tried LAM and NRM models as

described above. However, we found that they can only achieve good performance if we only consider one operation

phase, for example, train braking phase. If we consider the whole train operation process on the segment which

involves accelerating, cruising, coasting and braking phases, the performances of LAM and NRM can become very

bad since these simple models are unable to approximate such complex vehicle dynamic systems.

With the exponential growth of computing resources and advanced parameter learning methods (e.g., SGD,

ADAM), deep learning has shown its superior advantages in pattern recognition and function regression. Using

a feed-forward artificial neural network with more than one layer of hidden units between its input and output,

they have been successfully applied in image classification, speed recognition, traffic prediction, and computer

gaming (Hinton et al., 2012; LeCun et al., 2015). Thanks to the advantages of DNN in modeling high-dimensional

data classifications and approximations, our study constructs a customized DNN network in order to enhance the

accuracy and robustness of LAM and NRM. Notice that the train dynamics have some unique characteristics that

are different from other robotics (Bansal et al., 2016). For example, the input data (i.e., train velocity, position,

and control command) are not on the same scale and the train states are usually affected by many other factors.

Figure 4 demonstrates the general framework of DNN network to approximate the real-world TCM with the help

of historical data to accurately predict the running of trains. Specifically, the lower part of Figure 4 represents the

close-loop control process of a physical TCM, which is composed of the following four parts: The traction&braking

motor transfers the control command u to traction or braking forces to drive the train. Due to the movement

of train, it suffers from a series of resistances, termed as f in this figure. Meanwhile, the speed sensors or other

positioning devices monitor the real-time velocity and position of the train, and transmit the real-time data to train

speed controller. The controller receives the real-time data and generate a new control command u by feedback

control algorithms to drive the train. In our work, we recorded all the train running data from the physical TCM

(i.e., the lower part of Figure 4) with the aim to train our DNN model. In particular, the input data of train speed

control of physical TCM are used as input of DNN, while the output data of physical TCM are used as output (i.e.,

labels) to train DNN. More details about data collection can be found in Section 3. We can then use DNN model

to predict the train running states if the DNN model is well trained with real-world data collected from physical

TCM. In other words, the DNN model is trained to replace two blocks, i.e., traction&braking motors and train

blocks, in real-world implementations of DND (see Section 4.3 for details).

Automatic speed

controller (or

driver)
Train

F + ,v x

t

v̂

limv

x : position

v̂ : recommended speed

: speed limit

u : control commend

: braking forces

f : resistances

u

Train speed controller

,v x

Speed sensors/

positioning devices

Traction&braking

motors

v : speed

t : time

B-

limv

F +
: traction forces

B-

Resistances f

t

v̂

limv

,v x

1tx +

1tv +

Input layer Hidden layers
Batch

normilization

Batch

normilization
Output layers

Figure 4: Illustration of DNN for predicting train dynamics

ts

tv

1ts +

1tv +

Linear transformations

(a). Model 1: Linear

model

ts

tv

1ts +

1tv +

Nonlinear

transformations

(b). Model 2: Nonlinear

model

()g tf s

ts

tv

1st+

1tv +

Activation functions

(c). Model 3: DNN model

t Nv -

t Ns -

Input

Output

Input

Output

Input

Output

DNN Layers

tu tu

tu

-1ts

t Nu -

Figure 5: Comparison of input and output data for the constructed models

2.4.1 Input and output layer

Due to the limitation of linear or nonlinear regressions, the constructed benchmark LAM and NRM models only

utilize the current train state Xt and controller command ut as model input to predict the next train state Xt+1,

which are essentially “one-step predictors”. In fact, the train dynamic model is a very complicated system subject to

many influencing factors from the train controller, traction motors and external resistances (see Figure 4). Further,

there are typically time-delays in this closed-loop control process of a railway train (Yin et al., 2014). Here, the

train time-delay refers to a short period of time (usually 1 to 3 seconds) to transform the control command ut to

the traction force F+ (or braking force B−) of a train. In other words, the next state Xt+1 of a train is not only

related to its former state Xt and ut, but also related to a series of its former states Xt−1, Xt−2, Xt−3, ut−1, ut−2,

ut−3, etc. Since DNN has advantages in handling high-dimensional input data, we hereby employ the train running

data in the former N steps as the input data for constructing our DNN model, which is actually a “multi-step

predictor”. A comparison of input data for these three models is explicitly presented in Figure 5. Thus, the input

data sample and output data sample of DNN at time t are respectively expressed as follows.

Input data:

Xt = {st−N , vt−N , · · · , st−n, vt−n, · · · , st, vt|∀0 < n ≤ N,N ∈ Z
+} (13)

Ut = {ut−N , · · · , ut−n, · · · , ut|∀0 < n ≤ N,N ∈ Z
+} (14)

Output data:

Xt+1 = {st+1, vt+1}. (15)

In the above equations, we call parameter N as a feedforward timewindow, and we set t−n to 0 for any 0 < n ≤ N

if t − n < 0, indicating the start-up of a train at stations. In practice, the value of parameter N can be properly

set according to the type of a train. For example, the time-delay of a transit light train is usually about 1 to 3

seconds. In this case, parameter N should at least cover this time period to keep the accuracy of TCM. Using Eq.

(13), we actually convert the original input [vt, st]
T and ut into a set of high-dimensional vectors of data samples,

and each data sample has a dimension of 3N , This treatment enables to capture the specific state of a train within

a time period of [t−N, t] rather than a time unit t. For simplicity, we define xt to represent the input data vector

[Xt, Ut], and xi for i ∈ N to represent each element of input data vector xt, where N = {1, 2, · · · , 3N}.

Example. Consider an example that the time-delay of a heavy-haul train is 3 seconds and the sampling time interval

is 0.2 second in the recorded data. Then, the dimension of a DNN input layer should be at least 3/0.2 ∗ 3 = 45

to fully capture the dynamics of a train control model. We will further investigate the setting of parameter N for

predicting accuracy in the experiments with field data. �

2.4.2 Batch normalization

As described above, the inputs in our DNN model involve the train speed (unit: m/s), position (unit: m) and

controller command (unit: m/s2). It is clear that these three classes of input data are actually not in the same scales,

which may cause the low efficiency for training DNN. Thus, training of DNN model requires the data preprocessing

step, i.e., data normalization. Specifically, data normalization refers to normalizing the data dimensions so that

they are of approximately the same scale. There are two common ways of achieving this normalization. One is to

divide each dimension by its standard deviation, once it has been zero-centered. Another form of this preprocessing

normalizes each dimension so that the min and max along the dimension is -1 and 1 respectively. Meanwhile, we

note that training DNN is inherently complicated due to the fact that the distribution of each layer’s inputs changes

during the training process. Due to these above two reasons, we here employ the batch normalization technique to

reduce the internal covariate shift and accelerate the training process of DNN (Ioffe and Szegedy, 2015). To clearly

present the detailed process of batch normalization for DNN model, we take the first batch normalization layer,

i.e., the layer between input layer and hidden layer for example. Define vector y
(0)
t = {y1, y2, · · · , y3N} to be the

output of the first batch normalization layer, and each yi for i ∈ N represents an element of vector y
(0)
t . With

batch normalization, the input data xt is transformed to y
(0)
t by the following calculations.

µβ =
1

3N

3N
∑

i=1

xi (16)

σ2
β =

1

3N

3N
∑

i=1

(xi − µβ)2 (17)

x̄i =
xi − µβ
√

σ2
β + ϵ

(18)

yi = γix̄i + βi (19)

Eqs. (16)-(18) represent the standard normalization process where ϵ is a constant added to the mini-batch variance

for numerical stability (when σ2
β = 0). Eq. (19) indicates the scale and shift process, where γi and βi are a pair

of parameters, which aim to guarantee that the transformation inserted in the network represents the identity

transform.

2.4.3 DNN network structure

Our developed DNN model is a feed-forward artificial neural network structured with an input layer at the

bottom, stacked hidden layers and output layer, and each layer contains several neurons combined with a batch

normalization procedure. With multiple hidden layers, the DNN can effectively characterize complex mapping

functions between high-dimensional input feature vectors and observed data. To efficiently predict the dynamic

state of a train, we implement a multi-layer neural network combined with batch normalization (Fang et al., 2017),

described as follows.

Define y(0) to be the input of the first hidden layer. For a DNN model with L hidden layers, the output of a

hidden layer l is described as

x(l) = f(w(l)y(l−1) + b(l)) (20)

where l = 1, · · · , L, w(l) and b(l) respectively denote the neural weight matrix and bias of the l-th hidden layer, and

f(·) is the activation function. The most commonly used activation function involves rectified linear unit (ReLU),

Logistic function, and softmax, etc. Here, out study uses a softmax activation function combined with ReLU, which

is given by

x
(l)
i =

eŷ
(l−1)
i

∑

i∈N eŷ
(l−1)
i

, ∀i ∈ N (21)

where x
(l)
i denotes the ith element of hidden layer l, and ŷ

(l−1)
i denotes the ith element of max{w(l)y(l−1) +b(l), 0}.

Given a set of training input data x = {x1,x2, · · · ,xT } and observed data x̂ = {x̂1, x̂2, · · · , x̂T }, we aim to train

the DNN model such that the Euler distance between the input and output data is minimized. In this sense, we

use a mean square error loss function, and formulate the lost function as

J(w,b) =
1

T

∑

0<t<T

∥x̂t − y
(L)
t ∥22 (22)

where y
(L)
t = {st+1, vt+1} is the output of layer L in DNN after Batch renormalization, in which these two terms

st+1 and vt+1 denotes the predicted train position and velocity at time t+1, respectively. We see that, the best train

control model can be achieved by a set of DNN coefficients w∗ and b∗, which yield the minimal value of nonlinear

loss function J(w,b). In other words, the considered problem is evenly transformed into a nonlinear optimization

problem.

In this study, we adopt the back-propagation algorithm with the ADAM (an efficient algorithm for first-order

gradient-based optimization of stochastic objective functions) to fine tune the model parameters w and b. We can

refer to Kingma and Ba (2014) for details about the implementing procedures of ADAM algorithm.

Remark 2.1: It is worth to clarify that the DNN structure developed in this paper actually differs from conventional

deep learning structures (e.g., deep belief networks, convolutional neural networks) that are commonly employed in

image processing, natural language processing, etc. The main reason is that the dimensions of input data are not

so large as those in other machine learning fields. Thus, it is not required to employ complex network structures to

model the train control models according to our computational results (see Section 4).

3 Data Description and Performance Indicators

3.1 Field data description

The proposed data-driven approaches were applied to the field data collected from on-board computers in Beijing

Metro Yizhuang Line and Changping Line from 2015 to 2018. In the data collection and processing, multiple sensors

(i.e., radars, infrared sensors, and acceleration sensors) were installed on the trains to track the trains’ position,

velocity, accelerations, gradients, etc (Yin et al., 2017). Data fusion algorithms were utilized to pre-process the data

from multiple sensors. The train controller outputs were recorded by on-board ATO systems, which automatically

operate the trains. In particular, the sampling time interval for the collected data is 0.2 second. Thus, we generate

one data sample with train state information (speed, position, gradient) and controller output each 0.2s. Considering

all the collected data samples in these three years, the total data volume is about 30GB. For simplicity, we employ

the data of a single train, which ran two cycles through a single day and each cycle includes a total of 26 segments

(13 up-direction segments and 13 down-direction segments) in Yizhuang Line, as shown in Figure 6. Since the

consumed time for one cycle is about one hour, we can actually obtain a total of 18, 000 data samples in one cycle

and 36, 000 data samples in one single day. Figure 7 is a plot of recorded train speed and controller output over

time (in 0.2-second unit).

Turn around

Time

Station

1

Turn around

2

3
4

5

6

7

8

9

10

11

12

13

14

Turn around

Train 1

U
p

 d
ir

e
ct

io
n

D
o

w
n

 d
ire

ctio
n

U
p

 d
ir

e
ct

io
n

D
o

w
n

 d
ire

ctio
n

Cycle 1 Cycle 2

Figure 6: Illustration of space-time trajectory for the train with two cycles

Here it is worth to mention that, even though the trains are automatically controlled by the same feedback

algorithm, the collected data, involving the control command u, train position s and train velocity v are actually

different every day (or cycle) due to the varying environment and other influencing factors. In our study, we have

picked out the data sets under the same conditions for the training of DNN. In particular, we use the train running

data at the same weather (involving normal weather, rain, snow, fog, and smog) and the same departure time from

the origin. The reason is that the trains at different time period have different weight. For example, the train

weight on morning peak hours is higher than the trains on off-peak hours. In the numerical experiments, we will

present the model training and testing results that are trained by the data set under normal weather conditions.

3.2 Performance indicators

In order to evaluate the performances of LAM, NRM and DNN, we adopt the mean absolute error (MAE), root

mean square error (RMSE) and mean relative error (MRE) to verify the effectiveness of the developed models

(Duan et al., 2016). Different from existing literature, one of the unique features in this study is that our proposed

data-driven models predict both the positions and velocities of a running train. It is thus necessary to evaluate the

performances with respect to the train position dimension and train velocity dimension separately. Therefore, a

total of six performance indicators are defined, which are respectively given as follows

MAES =

∑T
t=1 |ŝt − st|

T
(23)

RMSES =

√

∑T
t=1(ŝt − st)2

T
(24)

MRES =

∑T
t=1

|ŝt−st|
ŝt

T
(25)

(a) Up direction

(b) Down direction

Figure 7: Typical data recorded in a single cycle by a train

MAEv =

∑T
t=1 |v̂t − vt|

T
(26)

RMSEv =

√

∑T
t=1(v̂t − vt)2

T
(27)

MREv =

∑T
t=1

|v̂t−vt|
v̂t

T
(28)

where MAES , RMSES and MRES represent the MAE, RMSE and MRE of train position predicting results, and

MAEv, RMSEv and MREv represent the predicting results of train velocities.

4 Experiment Results

In this section, we use the filed data in Beijing Metro to verify the effectiveness of developed data-driven mod-

els. Specifically, we first conduct sensitive analysis with respect to the key parameters of the DNN model, in

order to summarize insightful experiences for efficiently designing DNN structures. Then the training and testing

performances of LAM, NRM and DNN models are explicitly compared based on the performance indicators from

Eqs. (23)-(28). Finally, we present the details for implementing the data-driven models in practical applications in

Beijing Metro. The experiments are conducted using Python language (version 3.7) on a computer with I7-8700K

CPU (8 cores and 16 threads), 16 GB memory and RTX 2070 GPU.

Using the field data collected in Beijing Metro, the model training and testing procedures are specified as follows.

We first employ the data of a single train in one year from Yizhuang Line, which ran two cycles through a single

day and each cycle includes a total of 26 segments (13 up-direction segments and 13 down-direction segments), as

we have described above. According to the number of segments, the data are grouped into 26 data sets and each

data set Di represents the train running states on segment i. Using each data sets i, we train LAM, NRM and

DNN models and save these well-trained models. For convenience’s sake, we use the term instance i to indicate the

training and testing of developed models with each data set Di in the following content. We train LAM, NRM and

DNN models using linear regression, SGD, and ADAM, respectively. The learning rates for SGD and ADAM are set

as 0.01 and 0.005, respectively. We terminate the training process under the following two terminating conditions:

1) the running time exceeds 10 minutes; 2) the loss function keeps constant for 1000 iterations. Then we save the

trained models and calculate the performance indexes using Eqs. (23)-(28).

Remark 4.1: Typically, the model training and testing procedures in machine learning fields are conducted by

using two different groups of data sets respectively. Since our study focuses on the regression of train control models,

the model testing step is conducted in a different manner. Specifically, we first use a group of data to train the

proposed models on each segment i (model training step). In the model testing process, we choose a new group of

train running data on the same segment from time t = 0 to t = T . We input the initial train state s0 and v0 and the

control command ut for t = 0, 1, · · · , T to the well trained models. The models can output a series of observed train

states s1, v1, · · · , sT , vT , as shown in Figure 8. Then, we compare the observed train sates with the field recorded

data to test the predicting accuracy of data-driven models. In particular, if we consider the train running data on

a whole segment, we can set s0 = 0 and v0 = 0 for simplicity, indicating that a train departs from the station at

time t = 0.

Input Output

{ | 0,1, , }
t
u t T= , }, }, }

0s

0v

Trained

data-driven

models
{ | 1, , }
t
s t T= , }, }, }

{ | 1, , }
t
v t T= , }, }, }

Figure 8: Input and output of model testing process

4.1 Parameter tuning of DNN model

In this section, we conduct a series of experiments to test the performance of DNN with different hyper-parameters

and structures, which can be beneficial to determine the best parameter settings of DNN models.

First, the experiments are conducted to test the performance of DNN with different numbers of nodes in each

hidden layers. To balance the predicting accuracy and computational effort, we build the DNN with one input

layer, two hidden layers (i.e., Layer 1 and Layer 2) and one output layer, where each layer is combined with batch

normalization. In the experiments, parameter N for DNN is initialized as 9 since the time-delays are about 1 second

in urban rail trains, which indicates that the dimension of input layer for DNN is 27. We alter the number of nodes

in each hidden layer from 20 to 40 in order to analyze the performance of DNN. We define integer values Lk to be

the number of nodes on each hidden layer k. In this sense, a total of 400 (i.e., 20 × 20) experiments are conducted

with different numbers of neuron nodes on each layer. We use data group D1 to train the models (the maximum

20 25 30 35 40
20

25

30

35

40

0

100

200

300

400

500

600

Nodes in Layer 2

Nodes in Layer 1

M
A

E
S

(a) MAES

20
25

30
35

40

20

25

30

35

40
0

5

10

15

20

25

Nodes in Layer 2

Nodes in Layer 1

M
A

E
v

(b) MAEv

Figure 9: Performance indicators with different of nodes on each layer

training time limit is 10 minutes), and then we test the models with field collected data and record the value of

performance indicators MAES , RMSES , MRES , MAEv, RMSEv, MREv in each experiment.

As the general tendency is similar, we only present the performance indicators of MAES and MAEv with different

values of L1 and L2, which are shown in Figure 9a and Figure 9b, respectively. From the results, we see that MAES

and MAEv increase unexpectedly in some specific cases. This phenomenon is particularly noticeable when the nodes

of Layer 1 are more than those of Layer 2. The possible reason is that DNN falls into a local optimal solution that

terminates the iterations of DNN training process. Even though, we see that the performance of DNN is relatively

stable in most experiments and DNN returns very small errors with respect to MAES and MAEv, which indicates

that most local optimal solutions are avoided. Moreover, we can see that DNN models are more stable as the

numbers of nodes are larger. From this set of experiments, we draw the experiences in constructing a DNN model

that local minima can be improved with a larger number of nodes on Layer 2. Therefore, our following experiments

will set L1 and L2 as 20 and 35, respectively.

Next, we analyze the impact of parameter N on DNN predicting accuracy. As stated in Section 2.4.1, DNN

employs high-dimensional input data, which acts as a multi-step predictor. Here, we alter the value of N from 1 to

20 to train and then test DNN models. Since the minimal discrete time unit is 0.2s, the developed DNN traces the

backward train states from 0.2s to 4s, and the number of nodes in the input layer of DNN is increased from 3 to 60

as N varies from 1 to 20. After training DNN models with different values of N , we test the models as described

above. Table 1 explicitly presents the testing performances of DNN with respect to these six indicators.

From Table 1, we can clearly see that DNN performs very bad when the value of N is smaller than 8. In particular,

when N equals to 1, 2 or 3 (i.e., 3, 6 or 9 nodes in the input layer of DNN), the position and velocity predicting

errors are very large and DNN models are actually not usable. This may indicate two conclusions: 1) DNN does

not have unique advantages when the input data dimension is shallow; 2) The time-delay parameter of TCM has

an important effect on the regression model that must be carefully considered in practical implementations. As

we gradually increase N from 9 to 20, the number of nodes in the DNN input layer is added from 27 to 60. The

obtained results in these experiments are much better and stabilized. And we find that adding more nodes in the

input layer may not lead to evident improvement with respect to these performance indicators. Meanwhile, note

that DNN models with more input nodes consume much longer time for the training of DNN. Therefore, it is very

important to determine the best DNN parameters according to the rough ranges of time-delay and time-constant

parameters of train control models. In our following experiments, we choose N = 9 (i.e., 27 nodes in the input

Table 1: Model test performance with different values of parameter N

Performance MAES RMSES MRES MAEv RMSEv MREv

N=1 716.989 777709 0.9299 22.3436 814.693 5.4334

N=2 472.023 403887 2.7372 13.1870 230.2840 1.0045

N=3 247.596 147956 2.5676 5.6872 71.5937 0.7228

N=4 9.73934 162.82 0.0470 0.2071 0.07637 0.0682

N=5 29.8879 4239.29 0.2742 1.2011 7.5334 0.1255

N=6 4.16205 26.79 0.0196 0.1171 0.0215 0.0306

N=7 70.1021 21542.3 0.7900 1.8251 20.7973 0.2292

N=8 8.17914 103.48 0.0210 0.2632 0.1373 0.1393

N=9 2.00332 7.57 0.0130 0.0692 0.0088 0.0186

N=10 9.96671 19.44 0.0311 0.2335 0.1104 0.0719

N=11 4.52388 45.07 0.0190 0.1064 0.0528 0.0176

N=12 9.46758 13.10 0.0240 0.2347 0.0892 0.0512

N=13 4.02104 36.21 0.0169 0.0997 0.0254 0.0173

N=14 2.39357 9.72 0.0090 0.0658 0.0081 0.0166

N=15 2.68499 13.97 0.0193 0.0904 0.0174 0.0186

N=16 8.50665 11.58 0.0163 0.2988 0.1776 0.0880

N=17 4.17673 7.19 0.0100 0.1353 0.0364 0.0390

N=18 2.24129 5.38 0.0080 0.0545 0.0057 0.0136

N=19 1.47835 4.60 0.0055 0.0468 0.0041 0.0120

N=20 3.85592 2.08 0.0123 0.0909 0.0186 0.0170

layer) to balance the DNN predicting accuracy and computational efforts.

4.2 Comparison of LAM, NRM and DNN models

In order to analyze the performance of DNN compared with LAM and NRM models, we then conduct a series of

experiments to use the recorded train operation data to train and test the LAM, NRM and DNN models. We pick

up four groups of data sets D1, D2, D3 and D4, corresponding to instance 1, instance 2, instance 3 and instance 4.

The model training results with training data sets D1 - D4 respectively by LAM, NRM and DNN are shown in

Table 2. It can be seen that all these three developed models can realize a good predicting performance in the model

training process. Specifically, MAES (i.e., the average train position predicting error) is at most 1.16 meters, and

MAEv (i.e., the average train velocity predicting error) is at most 0.24m/s in these experiments. In addition, we

observe that the performance indicators of the nonlinear model NRM are only a little better than the benchmark

linear model LAM. The possible reason is that the nonlinear characteristics of transit train model are caused by

frictions or other influencing factors, which are not evident compared with the train traction&braking forces. More

importantly, we can see that the improvement of DNN is also not very obvious compared with LAM and NRM.

Even though DNN achieves the best results in Instance 1 and Instance 4, the improvements are only about 8% to

33%, and DNN even generates worse performances in Instance 2 and Instance 3 compared with LAM and NRM.

In addition, we also record the details of the predicted position and velocity errors on each segment. For example,

the predicted position and velocity errors of instance 1 by LAM, NRM and DNN are shown in Figures 10 and 11.

An interesting phenomenon is that the position predicting errors by LAM in Figure 10a and NRM in Figure 10b

are very similar, which is possibly due to the reason that the basic parameters (i.e., α, β) for LAM and NRM are

identical. From the velocity prediction errors in Figure 11a to Figure 11c, we see that the errors are much larger in

the beginning and ending periods, i.e., when the time unit is less than 200 or larger than 500. In particular, these

Table 2: Performance comparison with training data

Performance indicators LAM NRM DNN

Instance 1 MAES 1.16 1.15 1.04

RMSES 3.76 3.76 2.10

MRES 0.01 0.01 0.01

MAEv 0.09 0.05 0.04

RMSEv 0.02 0.01 0.00

MREv 0.03 0.04 0.01

Instance 2 MAES 0.03 0.02 0.22

RMSES 0.01 0.01 0.11

MRES 0.00 0.00 0.00

MAEv 0.13 0.03 0.02

RMSEv 0.03 0.00 0.00

MREv 0.12 0.03 0.01

Instance 3 MAES 0.13 0.12 0.38

RMSES 0.40 0.40 0.55

MRES 0.01 0.00 0.00

MAEv 0.24 0.03 0.02

RMSEv 0.08 0.00 0.00

MREv 0.12 0.03 0.01

Instance 4 MAES 0.99 1.00 1.04

RMSES 3.16 3.16 2.29

MRES 0.00 0.01 0.00

MAEv 0.07 0.06 0.04

RMSEv 0.01 0.01 0.00

MREv 0.07 0.40 0.01

two periods correspond to the train traction and braking phases. This observation is actually consistent with the

practical experiences that the train models are much more complex in traction&braking phases. In addition, we

see that DNN model does not present evident improvement compared with LAM and NRM models in the training

data sets.

0 100 200 300 400 500
Time unit

−6

−4

−2

0

2

4

6

Po
sit

io
n

er
ro

r (
m

)

LAM

(a) LAM

0 100 200 300 400 500
Time unit

−6

−4

−2

0

2

4

6

Po
sit

io
n

er
ro

r (
m

)

NRM

(b) NRM

0 100 200 300 400 500
Time unit

−6

−4

−2

0

2

4

6

Po
sit

io
n

er
ro

r (
m

)

DNN

(c) DNN

Figure 10: Position predicting error with training data for Instance 1

0 100 200 300 400 500
Time unit

−0.4

−0.2

0.0

0.2

0.4

Ve
lo

cit
y

er
ro

r (
m

/s
)

LAM

(a) LAM

0 100 200 300 400 500
Time unit

−0.4

−0.2

0.0

0.2

0.4

Ve
lo

cit
y

er
ro

r (
m

/s
)

NRM

(b) NRM

0 100 200 300 400 500
Time unit

−0.4

−0.2

0.0

0.2

0.4

Ve
lo

cit
y

er
ro

r (
m

/s
)

DNN

(c) DNN

Figure 11: Velocity predicting error with training data for Instance 1

The former set of experiments presents the performance indicators by the training data set. However, the models

trained by training data sets may have over-fitting problems, as stated in many existing research (Scheres and Chen,

2012; Yin et al., 2016). Next, we are particularly interested in the performance comparison when we test these

three models after they are well trained. Specifically, we first initialize the trains’ positions and velocities as zeros

and input a vector of field train control command ut for t ∈ T in each experiment. We respectively use LAM, NRM

and DNN models to predict the states of trains from one segment to the next. Finally, we can obtain a group of

observed position and velocity curves respectively by these three models, which are then compared with the field

observed position and velocity curves on the corresponding segment.

Figure 12 demonstrates the field data and the predicted train positions and velocities by LAM, NRM, and DNN,

corresponding to Instance 1 in the model training experiments. The results are remarkable: (1) Even though LAM

and NRM models have relatively good performance in the model training experiments, they cannot accurately

predict the curves of train position and velocity from the model testing results, and the predicting errors are

gradually accumulated as the time horizon moves. Finally, a large derivation between the predicted and observed

train state is observed. The possible reason is that LAM and NRM are over-trained that impair the robustness

and flexibility as they have fewer parameters. (2) We see that DNN evidently outperforms both LAM and NRM

0 100 200 300 400 500
Time unit

0

200

400

600

800

1000

1200

1400

Po
sit

io
n

(m
)

LAM
NRM
DNN
Field data

(a) Comparison of train position curves

0 100 200 300 400 500
Time unit

−5

0

5

10

15

20

25

Ve
lo

cit
y

(m
/s

)

LAM
NRM
DNN
Field data

(b) Comparison of train velocity curves

Figure 12: Field data and predicted train states by LAM, NRM and DNN in Instance 1

0 100 200 300 400
Time unit

0

200

400

600

800

1000

Po
sit

io
n

(m
)

LAM
NRM
DNN
Field data

(a) Comparison of train position curves

0 100 200 300 400
Time unit

−10

−5

0

5

10

15

20

Ve
lo

cit
y

(m
/s

)

LAM
NRM
DNN
Field data

(b) Comparison of train velocity curves

Figure 13: Field data and predicted train states by LAM, NRM and DNN in Instance 2

in the testing experiments. It achieves outstanding performance and the predicted position and velocity curves by

DNN are nearly the same as those in the field data. The results by instance 2 in Figure 13 also reveal similar

phenomenons, which could verify the effectiveness of DNN compared with LAM and NRM. Moreover, Table 3

reports the quantitative comparisons among LAM, NRM, and DNN in the testing experiments. The results are

generally consistent with the phenomenons in Figure 12. In all these four instances, the predicted position and

velocity errors by LAM and NRM are very large with respect to all the six performance indicators. The largest

position predicting error even exceeds 240m in Instance 2. Meanwhile, DNN still maintains a very small predicting

error in all these four instances, and its performance entirely outperforms LAM and NRM. In particular, we see

that the largest velocity predicting error is only about 0.25m/s in Instance 3, which demonstrates its capability to

model the train dynamics in practice.

Table 3: Performance comparison with testing data

Performance indicators LAM NRM DNN

Instance 1 MAES 89.32 87.42 2.00

RMSES 103.67 114.32 7.57

MRES 0.64 0.55 0.01

MAEv 3.13 2.48 0.07

RMSEv 3.41 2.66 0.01

MREv 1.13 0.77 0.02

Instance 2 MAES 63.13 242.12 3.44

RMSES 68.81 318.86 4.50

MRES 0.69 0.78 0.09

MAEv 1.84 7.60 0.23

RMSEv 2.12 8.38 0.30

MREv 0.90 2.57 0.11

Instance 3 MAES 131.3 106.9 8.19

RMSES 147.70 141.71 9.63

MRES 0.75 0.59 0.08

MAEv 3.46 3.26 0.25

RMSEv 3.79 3.59 0.30

MREv 1.06 1.00 0.07

Instance 4 MAES 75.69 121.75 7.46

RMSES 89.11 161.36 9.35

MRES 0.65 0.65 0.10

MAEv 3.05 3.73 0.24

RMSEv 3.31 4.08 0.34

MREv 1.09 1.18 0.08

For clearly understanding the learning process of DNN models, we present the detailed predicted train velocity

and position curves during different iterations of DNN in instance 1. Figure 14 demonstrates the predicted results

and field data under iterations 0, 40000, 80000, 120000, 160000, 200000 and 250000. From the figures, we can see

that DNN model performs very bad in the beginning phase with a set of initial parameters. From iterations 80000

to 120000, its performance becomes better and better as DNN model gradually learns the weights with ADAM.

As we continue to train the model parameters of DNN, we see that it is finally capable to accurately predict train

positions and velocities after about 200000 iterations.

Remark 4.2: In our experiments, we have also tried to use shallow NN (feed-forward NN with only one hidden

layer) and adaptive-network-based fuzzy inference system for modeling train control dynamics. However, we have

(a) Predicted train velocity curves

(b) Predicted train position curves

Figure 14: Predicted train velocity and position curves during different iterations

Simulation

Validation of ATO

algorithms

Performance evaluation

Field applications

Training and testing

of DNN models

Braking

Traction

MA

Communication

Algorithm

improvement

Recorded

data

Figure 15: Simulation platform based on DNN models

found that the performances of these shallow networks are very sensitive to the initial parameter settings. In

particular, when we generate the initial parameters randomly, we obtain good results in about two experiments

within a total of ten experiments. In this sense, they cannot meet the practical requirements.

4.3 Real-world implementations in Beijing Metro

We implement our data-driven approaches through a collaboration project with Beijing Metro and a railway

signalling company in order to improve the ATO algorithms from Oct. 2014. Some background information about

the project can be found in Yang et al. (2016) and Yin et al. (2017). Before developing the data-driven models

described in this study, we have to take a long trial-and-error process to field-test our designed ATO algorithms

since the train parameters provided by vehicle companies are not accurate enough. As we have gradually collected a

lot of historical data from 2014 in Beijing Metro, we began to develop TCMs in our lab by using the historical data.

Initially, we trained linear regression based models, which are however not useable in practice since the identified

train models are very different from the real-world case. Then, we turned our attention to the nonlinear train control

models and moreover the DNN models. The huge amount of practical data enable to train and polish the NRM and

DNN models in our lab, and the results are satisfying that they provide accurate and robust solutions to predict

train moving dynamics. In particular, the high accuracy of the DNN model enables us to test our ATO algorithms

directly through the in-lab environment, which greatly reduces the cost of field tests in the past. Until now, a

virtual platform (as shown in Figure 15) has been successfully established based on the data-driven approaches and

all the ATO algorithms can be pre-tested in this platform. Using this platform, we have embedded energy-efficient

train control strategies in ATO systems in Beijing Metro since 2017.

As more and more data-driven (or artificial intelligence (AI) based) frameworks being developed in recent years,

our experience in railway engineering is that although AI techniques have shown their advantages in some aspects

(e.g., image processing, gaming), direct implementation of AI techniques in real-time railway train control is still

impractical due to a lot of engineering limitations. For example, the computational capability of vehicle on-board

computers still block the implementation of deep learning algorithms. On the other hand, the output of deep learn-

ing algorithms may be unforeseen as we have shown in Figure 14, and trial-and-error tricks are very common in AI

field (such as reinforcement learning, stochastic gradient descent). In practical engineering areas, this is actually

not allowed at all due to its unreliability and safety risks. Instead, our research demonstrates that data-driven and

deep learning techniques can be very useful and effective in modeling real-world complex processes in an off-line

environment since they have the capabilities in capturing a high-dimensional and huge amount of historical data.

It is more reasonable to train (off-line) and validate data-driven models which can be useful for both testing in labs

and field applications.

Remark 4.3: Our former experiments have shown the advantages of DNN compared with LAM and NRM ap-

proaches. Nevertheless, we do acknowledge that there are disadvantages of the developed DNN models in this

paper. First, our experiments in the former sections have shown that “the better results are obtained when the

DNN model is larger”. However, the training time of DNN model is also increased dramatically. In this sense, how

to realize the trade-off between model complexity and model predicting accuracy is a remained question. Second,

our paper only implements DNN models for urban rail transit systems, where the external environment is much

simpler compared with high-speed railways. It is undoubtedly that the DNN models cannot be directly applied in

high-speed railways.

5 Conclusion

In this paper, we proposed a data-driven approach for modeling the train control models in urban rail systems with

the aid of historical data. Three data-driven models, i.e., LAM based on linear regression, NRM based on nonlinear

optimization and DNN based on deep neural network, were respectively developed and their parameter training

algorithms were also specified. In particular, to improve the training efficiency of DNN, we designed the input

and output layers of DNN and embedded batch normalization techniques according to the unique characteristics of

railway train dynamics. To compare the performance of these three models, we defined six performance indicators

to evaluate the train position and velocity predicting errors. The models were trained and tested with field data

in Beijing Metro. The results demonstrate that DNN can significantly improve the accuracy of train models by as

much as ten times compared with LAM and NRM. We also test the robustness of the DNN model associated with

different model parameters, and moreover, we present our field experiences in implementing our data-driven models

in practical train operations.

With the aid of advanced sensoring and communication technologies, a big amount of data have become avail-

able in recent years. Undoubtedly, deep learning is a very promising technique in the oncoming years that may

tremendously change our life (Wang et al., 2018). Our study takes a first step toward applying these new tech-

niques in practical applications of urban rail transit systems. Even though, some key issues still deserve further

investigations. First, although our experiments have shown that DNN can be relatively stable with a large number

of nodes on each hidden layer, it may still reach a local optimum under some particular parameter settings. In

this sense, new training algorithms of DNN models should be explored to overcome these issues. Second, our paper

only utilizes a fully-connected artificial neural network, and other deep learning structures such as recursive neural

network and long short-term memory network should be addressed to further improve the flexibility and robustness

of data-driven train control models.

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Nos. U1734210, 71901016,

61790570, 61790573), the Beijing Jiaotong University Education Foundation (Nos. 9907006519) and by the China

Postdoctoral Science Foundation Funded Project (2019M650474). The collaboration with the UK partner is made

possible thanks for a Newton Fund grant supported by the Royal Academy of Engineering (UK-CIAPP\286).

References

Albretcht A., Howlett P., Peter P., Vu X., Zhou P., 2016. The key principles of optimal train control-part 1:

formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points.

Transportation Research Part B, 94, 482-508.

Albrecht T., 2014. Energy-efficient train operation. In: Hansen, I.A., Pachl, J. (Eds.), Railway Timetabling &

Operations, Hamburg, pp. 91-116.

Andersen D.R., Booth G.F., Vithani A.R., Singh S.P., Prabhakaran, A. Stewart M.F., Punwani S., 2012. Train

energy and dynamics simulator (teds)-a state-of-the-art longitudinal train dynamics simulator. In: Proceedings of

the ASME 2012 Rail Transportation Division Fall Technical Conference (RTDF2012), Omaha (USA). American

Society of Mechanical Engineers, pp. 16-17.

Bansal S., Akametalu A.K., Jiang F.J., Laine F., Tomlin C.J., 2016. Learning quadrotor dynamics using neural

network for flight control. arXiv preprint arXiv:1610.05863.

Bham G., Benekohal R., 2002. Development, evaluation, and comparison of acceleration models. In: 81st Annual

Meeting of the Transportation Research Board, Washington, DC.

Bordes A., Chopra S., Weston J., 2014. Question answering with subgraph embeddings. In Proc. Empirical Methods

in Natural Language Processing, 2014.

Bottou L., 2010. Large-scale machine learning with stochastic gradient descent. Proceedings of COMPSTAT 2010,

USA.

Cao Y., et al., 2019. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains.

IEEE Transactions on Vehicular Technology, 2019. (DOI:10.1109/TVT.2019.2914936)

Chen D., Gao C., 2012. Soft computing methods applied to train station parking in urban rail transit. Applied Soft

Computing, 12, 759-767.

Cohen J.M., Barron A.S., Anderson R.J., Graham D.J., 2015. Impacts of unattended train operations on produc-

tivity and efficiency in metropolitan railways. Transportation Research Record: Journal of the Transportation

Research Board, 2534, 75-83.

Cole C., 2006. Longitudinal train dynamics. Handbook of railway vehicle dynamics, 239-277.

De Martinis V, Corman F., 2018. Data-driven perspectives for energy efficient operations in railway systems: Current

practices and future opportunities. Transportation Research Part C: Emerging Technologies, 95, 679-697.

Duan Y., Lv Y., Liu Y., Wang F-Y., 2016. An efficient realization of deep learning for traffic data imputation.

Transportation Research Part C, 72, 168-181.

Fadhloun K., Rakha H., Loulizi A., Abdelkefi A., 2015. Vehicle dynamics model for estimating typical vehicle

accelerations. Transportation Research Record, 2491, 61-71.

Fang S., Fei Y., Xu Z., Tsao Y., 2017. Learning transportation modes from smartphone sensors based on deep

neural network. IEEE Sensors Journal, 17(18), 6111-6118.

Hannun A. Y., Rajpurkar P., Haghpanahi M., Tison G. H., Bourn C., Turakhia M. P., Ng A.Y., 2019. Cardiologist-

level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.

Nature medicine, 25(1), 65.

Gao S., Dong H., Chen Y., Ning B., Chen G., Yang X., 2013. Approximation-based robust adaptive automatic train

control: an approach for actuator saturation. IEEE Transactions on Intelligent Transportation Systems, 14(4),

1733-1742.

Grag V., 2012. Dynamics of Railway Vehicle Systems. Elsevier.

Gbologah F., Xu Y., Rodgers M., Guensler R., 2014. Demonstrating a bottom-up framework for evaluating energy

and emissions performance of electric rail transit options. Transportation Research Record, 2428, 10-17.

Grube P., Nunez F., Cipriano A., 2011. An event-driven simulator for multi-line metro systems and its application

to Santiago de Chile metropolitan rail network. Simulation Modelling Practice and Theory, 19, 393-405.

Hinton et al., 2012. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing

Magazine, 82-97.

Holett P.G., Pudney P.J., 1995. Energy-efficient train control. Springer-Verlag, Berlin.

Ioffe S., Szegedy C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv preprint arXiv:1502.03167.

Kingma D.P., Ba J., 2014. ADAM: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Lagay R., Adell G.M., 2018. The Autonomous Train: a game changer for the railway industry. 2018 16th Interna-

tional Conference on Intelligent Transportation Systems (ITSC), 1-5, IEEE.

LeCun Y., Bengio Y., Hinton G., 2015. Deep learning. Nature, 521, 436-444.

Li S., Yang L., Li K., Gao Z., 2014. Robust sampled-data cruise control scheduling of high speed train. Transporta-

tion Research Part C, 46, 274-283.

Lv Y., Duan Y., Kang W., Li Z., Wang F.Y., 2015. Traffic flow prediction with big data: a deep learning approach.

IEEE Transactions on Intelligent Transportation Systems, 16(2), 865-873.

Ma et al., 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor

data. Transportation Research Part C, 54, 187-197.

Nash A., Huerlimann D., 2004. Railroad simulation using OpenTrack. WIT Transactions on The Build Environment,

74, 2004.

Oprea R.A., Cruceanu C., Spiroiu M.A., 2013. Alternative friction models for braking train dynamics. Vehicle

System Dynamics, 51(3), 460-480.

Qiu et al., 2019. Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with

prescribed performance. IEEE Transactions on Fuzzy Systems, 2019.

Scheres S.H., Chen S., 2012. Prevention of overfitting in cryo-EM structure determination. Nature Methods, 9(9),

853.

Seku la P., Marković N., Laan Z.V., Sadabadi K.F., 2018. Estimating historical hourly traffic volumes via machine

learning and vehicle probe data: A Maryland case study. Transportation Research Part C, 97, 147-158.

Serajian R., Mohammadi S., Nasr A., 2019. Influence of train length on in-train longitudinal forces during brake

application. Vehicle System Dynamics, 57(2), 192-206.

Silver D., Huang A., Maddison C.J., et al., 2016. Mastering the game of go with deep neural networks and tree

search. Nature, 529(7587), 484.

Su S., Li X., Tang T., Gao Z., 2013. A subway train timetable optimization approach based on energy-efficient

operation strategy. IEEE Transactions on Intelligent Transportation Systems, 14(2), 883-893.

Toole J.L., Colak S., Sturt B., Alexander L.P., Evsukoff A., González M.C., 2015. The path most traveled: Travel

demand estimation using big data resources. Transportation Research Part C, 58, 162-177.

Wang Y., Zhang D., Liu Y., Dai B., Lee L.H., 2018. Enhancing transportation systems via deep learning: A survey.

Transportation Research Part C, in press.

Wang J., Rakha H.A., 2018. Longitudinal train dynamics model for a rail transit simulation system. Transportation

Research Part C, 86, 111-123.

Wu Q., Cole C., Luo S., Spiryagin M., 2014. A review of dynamics modelling of friction draft gear. Vehicle System

Dynamics, 52(6), 733-758.

Wu Q., Spiryagin M., Cole C., 2016. Longitudinal train dynamics: an overview. Vehicle System Dynamics, 54(12),

1688-1714.

Wu X., Guo J., Xian K., Zhou X., 2018. Hierarchical travel demand estimation using multiple data sources: A

forward and backward propagation algorithmic framework on a layered computational graph. Transportation

Research Part C, 96, 321-346.

Yang X., Li X., Ning B., Tang T., 2016. A survey on energy-efficient train operation for urban rail transit. IEEE

Transactions on Intelligent Transportation Systems, 17(1), 2-13.

Ye H., Liu R., 2017. Ye H., Liu R., 2017. Nonlinear programming methods based on closed-form expressions for

optimal train control. Transportation Research Part C, 82, 102-123.

Yin J., Chen D., Li L., 2014. Intelligent train operation algorithms for subway by expert system and reinforcement

learning. IEEE Transactions on Intelligent Transportation Systems, 15(6), 2561-2571.

Yin J., Zhao W., 2016. Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A

deep learning approach. Engineering Applications of Artificial Intelligence, 56, 250-259.

Yin J., Tang T., Yang L., Xun J., Huang Y., Gao Z., 2017. Research and development of automatic train operation

for railway transportation systems: A survey. Transportation Research Part C, 85, 548-572.

Yin J., Yang L., Zhou X., Tang T., Gao Z., 2019. Balancing a one-way corridor capacity and safety-oriented

reliability: a stochastic optimization approach for metro train timetabling. Naval Research Logistics (NRL),

66(4), 297-320.

