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DCD-Based Recursive Adaptive Algorithms Robust

Against Impulsive Noise
Yi Yu, Lu Lu, Member, IEEE, Zongsheng Zheng, Student Member, IEEE, Wenyuan Wang,

Yuriy Zakharov, Senior Member, IEEE, and Rodrigo C. de Lamare, Senior Member, IEEE

Abstract—The dichotomous coordinate descent (DCD) algo-
rithm has been successfully used for significant reduction in the
complexity of recursive least squares (RLS) algorithms. In this
work, we generalize the application of the DCD algorithm to RLS
adaptive filtering in impulsive noise scenarios and derive a unified
update formula. By employing different robust strategies against
impulsive noise, we develop novel computationally efficient DCD-
based robust recursive algorithms. Furthermore, to equip the
proposed algorithms with the ability to track abrupt changes in
unknown systems, a simple variable forgetting factor mechanism
is also developed. Simulation results for channel identification
scenarios in impulsive noise demonstrate the effectiveness of the
proposed algorithms.

Index Terms—Dichotomous coordinate descent, impulsive
noise, recursive least squares, variable forgetting factor

I. INTRODUCTION

A
DAPTIVE filtering has been a prominent technique in

a variety of applications such as system identification,

active noise control, and echo cancellation (EC) [1]. The least

mean square (LMS) and recursive least squares (RLS) algo-

rithms represent two typical families of adaptive algorithms.

The complexity of LMS is O(M) arithmetic operations per

sample (ops), where M is the filter length, but its convergence

is slow especially when the input signal is highly correlated.

RLS improves the convergence at the cost of a high complexity

of O(M2) ops. To reduce the complexity, some fast RLS

algorithms were proposed as summarized in [1, Chapter 14].

However, these fast algorithms are numerically unstable in

finite precision implementation since they are based on the

matrix inversion.

Alternatively, the dichotomous coordinate descent (DCD)

iterations for solving the normal equations in the RLS algo-

rithms were proposed [2]. They result in not only numerically
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stable adaptive algorithms but also in performance comparable

to that of the original RLS algorithm. An important property

of the DCD algorithm is that it only requires addition and shift

operations, which are simpler for implementation than multi-

plication and division, and thus it is well suited to real-time

implementation. Moreover, the DCD-RLS algorithm reduces

the complexity to O(M) ops for input signals with the tapped-

delay structure. The DCD algorithm was also applied for the

complexity reduction in the affine projection algorithm [3],

sparse signal recovery [4], and distributed estimation [5].

Regrettably, the LMS and RLS algorithms undergo per-

formance deterioration in impulsive noise [6], owing to the

squared-error based minimization criteria. Realizations of im-

pulsive noise process are sparse and random with amplitude far

higher than the Gaussian noise, and therefore, best modeled by

heavy-tailed distributions, e.g., the α-stable distribution. Such

noise scenarios are common in such as echo cancellation, un-

derwater acoustics, audio processing, and communications [7],

[8]. For adapting impulsive noise scenarios, existing literature

have reported various robust approaches. For instance, the

recursive least M-estimate (RLM) algorithm [9] exploits the

Hampel’s M-estimate function to suppress impulsive interfer-

ences. Based on the lp-norm of errors, the recursive least p-

norm (RLpN) algorithm was developed [10]. By gathering all

the p-norms from p = 1 to 2 of the error, the continuous

mixed p-norms (CMPN) algorithm was derived [11]; however,

it has slow convergence for correlated inputs due to the

gradient descent (GD) principle. Taking advantage of the

Geman-McClure (GMC) estimator, a recursive algorithm [12]

for Volterra system identification was derived, which shows

a better performance than RLpN and RLM algorithms in

impulsive noise modeled by the α-stable distribution [7].

When impulsive noise appears, by incorporating the step-size

scaler into the update term, a robust subband algorithm was de-

veloped [13]. The correntropy measures the similarity between

two variables, which is helpful for suppressing large outliers;

thus, the maximum correntropy criterion (MCC) has been used

for improving the anti-jamming capability of adaptive filters

to impulsive noise, yielding the GD-based MCC [14]–[16]

and recursive MCC (RMCC) algorithms [17], [18]. However,

these robust recursive algorithms have also high complexity

of O(M2) ops. In particular, the complexity of the fixed-point

variant of MCC algorithm in [17] is O(M3) due to the direct

inverse of an M ×M matrix.

This work focuses on a class of low-complexity robust

algorithms against impulsive noise by resorting to the DCD

approach. Concretely, a generalized DCD-based robust recur-
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sion is derived. By applying different robust strategies to this

recursion, we develop DCD-based robust algorithms, such as

the DCD-RMCC, DCD-RLM, and DCD-RLpN algorithms.

We also design a variable forgetting factor (VFF) scheme for

improving the tracking capability of the algorithms.

II. DCD-BASED ROBUST ALGORITHMS

A. Unified Formulation

Suppose that at time instant n, the desired signal dn and

an M × 1 input signal vector xn are available and obey the

relation dn = x
T
nw

o + vn, where the M × 1 vector w
o

needs to be estimated, and (·)T denotes the transpose. The

additive noise with impulsive behavior, vn, here is described

by the α-stable process1, also called the α-stable noise. A

(symmetric) α-stable random variable is usually characterized

by the characteristic function [7]

φ(t) = exp(−γ|t|α). (1)

The characteristic exponent α ∈ (0, 2] describes the impul-

siveness of the noise (smaller α leads to more outliers) and

γ > 0 represents the dispersion degree of the noise. Note that

when α = 1 and 2, it reduces to the Cauchy and Gaussian

distributions, respectively.

To effectively estimate w
o in such noise scenarios, we

define a unified robust exponentially weighted least squares

problem:

wn = argmin
w

{

n
∑

i=0

λn−iϕ
(

di − x
T
iw

)

+ δn‖w‖22

}

, (2)

where 0 ≪ λ < 1 is the forgetting factor, δn > 0 is a

regularization parameter, and ϕ(·) is a function that specifies

the robustness against impulsive noise.

By setting the derivative of (2) with respect to w to zero,

we arrive at the normal equations:

Rnwn = zn, (3)

where

Rn =
n
∑

i=0

λn−ifixix
T
i + δnIM

= λRn−1 + fnxnx
T
n + (δn − λδn−1)IM

(4)

is the time-averaged autocorrelation matrix of xn,

zn =
n
∑

i=0

λn−ifidixi

= λzn−1 + fndnxn

(5)

is the time-averaged crosscorrelation vector of dn and xn, and

IM is an M×M identity matrix. Also, fn = ϕ′(ǫn)/ǫn, where

ǫn = dn − x
T
nwn is the a posteriori error and ϕ′(ǫn) is the

derivative of ϕ(ǫn).
At time instant n − 1, let ŵn−1 denote the approximate

solution of (3) for estimating w
o, and the corresponding

residual vector is rn−1 = zn−1 − Rn−1ŵn−1. By defining

1Other models describing the noise with impulses include the contaminated-
Gaussian (CG) model [5] and the Gaussian mixture model (GMM) [19].

TABLE I
DCD-BASED ROBUST RECURSIVE UPDATE

Parameters: 0≪ λ < 1, δ0 > 0
Initialization: R0 = δ0IM , ŵ0 = 0, r0 = 0

for n = 1, ...

en = dn − x
T
nŵn−1

Rn = λRn−1 + fnxnx
T
n + (δn − λδn−1)IM

bn = λrn−1 + fnenxn − (δn − λδn−1)ŵn−1

Using DCD iterations to solve Rn∆wn = bn, which yields ∆ŵn and rn

ŵn = ŵn−1 + ∆ŵn

end

∆wn = wn − ŵn−1, from (3) we obtain an auxiliary system

of equations:

Rn∆wn = zn −Rnŵn−1 , bn. (6)

Applying the recursive expressions (4) and (5), bn can be

rewritten as

bn = λrn−1 + fnenxn − (δn − λδn−1)ŵn−1, (7)

where en = dn − x
T
nŵn−1 denotes the a priori error.

By using the DCD algorithm to solve the problem in (6),

we arrive at an approximate solution of the original normal

equations (3):

ŵn = ŵn−1 +∆ŵn. (8)

Although (7) shows that bn requires the residual error vector

of the original system (3), after some algebra we notice that

it is equivalent to the residual error vector for the auxiliary

system (6), i.e., rn = zn −Rnŵn = bn −Rn∆ŵn. At time

index n, fn in (7) is not yet available, but by resorting to the

a priori error, we may approximate fn as

fn ≈ ϕ′(en)/en. (9)

This completes the derivation of DCD-based robust recursion,

summarized in Table I.

Table II presents the leading DCD algorithm for solving the

system of equations Rn∆wn = bn (readers can refer to [2],

[3] for details), where [rn]l is the l-th entry of rn, and [Rn]l,l
and [Rn]:,l are the (l, l)-th entry and the l-th column of Rn,

respectively. Herein, [−H,H] denotes the amplitude range for

elements of the solution vector ∆ŵn. It is often chosen as

a power-of-two number so that all multiplications by µ can

be implemented by bit-shifts. Mb is the number of bits for

a fixed-point representation of ŵn within the range [−H,H].
Nu stands for a maximum number of elements in ∆ŵn that

are updated. The solution ∆ŵn approaches the optimal one

(i.e., ∆ŵn = R
−1
n bn ) as Nu increases. As seen in Table II,

the implementation of DCD only requires shift and addition

operations, excluding multiplication and division operations.

B. Robust Strategies

Applying a particular robust strategy to define ϕ(e) in (2),

we can compute fn by (9) to arrive at a DCD-based robust

algorithm. Table III gives examples of ϕ(e) for the DCD-

RMCC, DCD-RLM, and DCD-RLpN algorithms derived from

the widely studied MCC, M-estimate, and lp-norm strategies,

respectively. We note the following about the proposed algo-

rithms:
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TABLE II
LEADING DCD ALGORITHM

Parameters: H, Nu, Mb,

Initialization: ∆ŵn = 0, rn = bn, y = 1, µ = H/2
for j = 1, ..., Nu

l = arg max
j=1,...,M

{|[rn]j |}

while |[rn]l| ≤ (µ/2)[Rn]l,l and y ≤Mb

y = y + 1, µ = µ/2
end

if y > Mb

break

else

[∆ŵn]l ← [∆ŵn]l + µsign([rn]l)
rn ← rn − µsign([rn]l)[Rn]:,l

end

end

TABLE III
SOME ROBUST DCD-BASED ALGORITHMS

Robust Algorithms ϕ(e) in (2) f(e) = ϕ′(e)/e in (9)

DCD-RMCC 1√
2πβ

[

1− exp
(

− e2

2β2

)]

exp
(

− e2

2β2

)

DCD-RLM

{

e
2
/2, if |e| ≤ ξ

ξ
2
/2, |e| > ξ,

{

1, if |e| ≤ ξ

0, |e| > ξ,

DCD-RLpN |e|p |e|p/(|e|2 + ε)

1) For the DCD-RMCC algorithm, β > 0 denotes the kernel

width. When β → ∞, fn approaches 1 so that the DCD-

RMCC algorithm reduces to the DCD-RLS algorithm. When

β → 0, fn becomes 0, and the DCD-RMCC update is frozen.

Thus, β balances the robustness and dynamic performance of

the algorithm in impulsive noise.

2) The DCD-RLM algorithm uses the modified Huber M-

estimate function [20] for ϕ(e)2. When |en| < ξ, thus fn
equals 1 so that the DCD-RLM algorithm becomes the DCD-

RLS algorithm. Otherwise, fn becomes 0 to stop the update

(ideally, this only happens when the impulsive noise appears).

To effectively suppress the impulsive noise, the threshold ξ is

adaptively adjusted by ξ = τ σ̂e,n,

σ̂2
e,n = ζσ̂2

e,n−1 + cσ(1− ζ)med(ae
n), (10)

where 0 < ζ < 1 is a weighting factor (except ζ = 0
at the algorithm start), med(·) is the median operator

which helps to remove outliers in the data window a
e
n =

[e2n, e
2
n−1, ..., e

2
n−Nw+1], and cσ = 1.483(1 + 5/(Nw − 1))

is the correction factor [9]. It is worth noting that, the window

length Nw should be properly chosen. Larger Nw makes a

more robust estimate σ̂2
e,n from (10) but requires a higher

complexity. A typical value of τ is 2.576. If en is assumed to

be Gaussian (which is reasonable except when being polluted

by impulsive noise), this value means the 99% confidence to

prevent en from contributing to the update for |en| ≥ ξ [9].

3) The convergence of the RLpN algorithm in the α-stable

noise requires 0 < p < α. If p = 2, the DCD-RLpN algorithm

will also become the DCD-RLS algorithm. When p = 1, this

corresponds to the recursion sign algorithm [22] with good

robustness against impulsive noise.

Remark 1: In a nutshell, when impulsive noise happens,

its negative influence on the updates of Rn and bn will be

2Other M-estimate functions may also be used, e.g., the Huber [21] and
Hampel [9] functions.

TABLE IV
COMPLEXITY OF ALGORITHMS PER INPUT SAMPLE

Algorithms Additions Multiplications Divisions

LMS 2M 2M + 1 0

(R) RLS 3M2 + M 4M2 + 4M + 1 1

(R) DCD RLS

(general input)
M2 + 2M + Pa

3

2
M2 + 7

2
M + 1 0

(R) DCD RLS

(tap-delayed input)
3M + Pa 5M + 2 0

lowered significantly due to by multiplying a tiny scaler fn
into the updates. Then, we can generalize the DCD recursion

to find ∆ŵn from the system of equations Rn∆wn = bn

with impulse-free. Hence, according to (8), the proposed DCD-

based algorithms can work well in impulsive noise.

C. Computational Complexity

The direct solution of (3) is wn = R
−1
n zn. The regu-

larization δn is to maintain the numerical stability of this

solution [1]. However, this leads to the complexity of O(M3)
due to the matrix inversion R

−1
n . Generally, δn is chosen

as δn = λn+1δ0 (e.g., in this paper), it makes (4) become

Rn = λRn−1 + fnxnx
T
n. Then, using the matrix inversion

lemma, R−1n can be calculated in a recursive way so that the

complexity of the resulting algorithm is O(M2), while it is

still high for large M .

Table IV mainly compares the complexity of robust (R)

RLS-type with that of proposed (R) DCD variant in terms

of ops, where we drop the calculation of fn dependent on a

specific robust strategy. As in [2], the DCD recursion requires

Pa = 2NuM +Mb additions at most for finding ∆ŵn. Thus,

it is clear to see from Table IV, for general input vector

form, the DCD version reduces the complexity by at least

a factor of 0.5 in contrast with the original algorithm, in

terms of multiplications and additions. On the other hand, if

the input vector xn has a tapped-delay structure, i.e., xn =
[xn, xn−1, ..., xn−M+1]

T, where xn is a data sample at time n,

the calculation of Rn will be simplified. Specifically, assuming

fn ≈ fn−1, we can obtain the lower-right (M −1)× (M −1)
block of Rn by copying the upper-left (M − 1) × (M − 1)
block of Rn−1. Then, considering the symmetry of Rn, we

only need the calculation of its first column:

[Rn]:,1 ≈ λ[Rn−1]:,1 + fnxnxn. (11)

Equation (11) is exact when fn = 1 [2]. As claimed in Sec-

tion II. B, fn is normally close to 1, and becomes very small

to suppress the update only when the impulsive noise happens.

As such, using (11) is also suitable for computing Rn in the

proposed DCD recursion. In this scenario, the complexity is

reduced to the same order of magnitude as that of LMS. This

reduction is considerable especially for a long w
o such as in

EC applications.

D. Improving Tracking Performance

For the proposed algorithms, there is also a trade-off be-

tween steady-state error and tracking capability for abrupt

changes of wo, because of using the fixed forgetting factor λ.
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To address this problem, one may utilize the adaptive combi-

nation (AC) of two independently running DCD-based filters.

Like the AC-RLpN algorithm in [10], it combines RLpN filters

with the large forgetting factor for low steady-state error and

with the small one for good tracking capability. However, it

requires at least double complexity of the original algorithm.

Alternatively, the VFF has been also an effective mechanism

for improving the original RLS algorithm [23]–[25]. Conse-

quently, to equip the proposed DCD-based algorithms, we also

propose a simple VFF scheme:

λn = λmin + (1− λmin) exp(−ρe2n,f ), (12)

where ρ > 0 is a design parameter, e2n,f is the impulse-free

squared error which can be estimated by (10). As n → ∞,

e2n,f converges to a small value, and according to (12), λn

approaches 1, thus reducing the steady-state error. When w
o

has a sudden change, e2n,f becomes large due the mismatch

estimation at that time, and λn will approach a small forgetting

factor λmin, thus speeding up the convergence.

III. SIMULATION RESULTS

In this section, simulations are conducted for identifying

the network echo channel response w
o of length M using an

adaptive filter. The echo channels in Fig. 1 are from the ITU-

T G.168 standard, with M = 128 taps [26]. For the tapped-

delay input vector xn, its element xn is given by the first-order

autoregressive model xn = ̺xn−1 + ϑn, where ϑn is a zero-

mean white Gaussian random process with unit variance. Both

̺ = 0 (which is used only in Fig. 2(b)) and ̺ = 0.9 correspond

to the white and correlated inputs, respectively, with the

eigenvalue spreads of 1 and 346. The α-stable noise is set to

α = 1.4 and γ = 1/20. We use the normalized mean square

deviation, NMSD(n) = 10 log10(||wn −w
o||22/||w

o||22), as a

performance measure. All simulated curves are the average

over 100 independent runs.
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Fig. 1. Network echo channels: (a) sparse channel, (b) disperse channel.

Fig. 2 shows the NMSD performance of the DCD-RLS, GD-

based MCC3, RMCC, and proposed DCD-RMCC algorithms.

As expected for impulsive noise scenarios, the performance

of the original DCD-RLS algorithm is poor, while the MCC-

based algorithms are performing very well. The DCD-RMCC

3The update equation is wn = wn−1 + µfnenxn [16].

performance approaches that of the original RMCC algorithm

as Nu increases. In particular, Nu = 8 ≪ M (at most

eight entries of wn are updated per time n) has been enough

for the DCD-RMCC performance to approach closely the

RMCC performance regardless of whether w
o is sparse or

not. However, as seen from Table IV, the DCD-RMCC with

Nu = 8 reduces significantly the complexity of the RMCC.

Although the DCD-RMCC requires 2.5 times multiplications

of the GD-based MCC, the former (even if with Nu = 1)

has much faster convergence than the latter. Likewise, the

convergence of the proposed low-cost DCD-RLM and DCD-

RLpN versions also approximate well that of the RLM and

RLpN algorithms, respectively; these results are omitted for

brevity.
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 DCD−RLS

GD−based MCC
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DCD−RMCC (N
u
=1)

DCD−RMCC (N
u
=4)

DCD−RMCC (N
u
=8)

DCD−RMCC (N
u
=16)

Fig. 2. NMSD curves of the DCD-RLS and MCC-based algorithms: (a) sparse
channel and correlated input; (b) disperse channel and white input. Param-
eters of algorithms are chosen as: λ = 0.998 (all the algorithms); µ =

0.001, β2 = 0.6 (GD-based MCC); β2 = 0.03 (RMCC); H = 1, Mb = 16

(DCD).

Fig. 3 shows the NMSD of the proposed DCD-RMCC,

DCD-RLM and DCD-RLpN algorithms, with Nu = 8. The

proposed algorithms show robustness in α-stable noise and

can arrive at similar performance by properly setting their

parameters. This reason is they generally behave like the

DCD-RLS and use a tiny fn to suppress the algorithms’

adaptation once the impulsive noise appears. In addition,

we also show the DCD-CMPN algorithm by applying the

CMPN criteria in [11], i.e., ϕ(e) =
∫ 2

1
|e|pdp and f(e) =

((2|e| − 1) ln(|e|)− |e|+ 1) /
(

|e| ln2(|e|)
)

. For the lp-norm

based algorithms, p should be slightly less than α in α-stable

noise; thus, the DCD-RLpN may outperform the DCD-CMPN,

since the latter inherits the behavior of p > α.

Fig. 4 demonstrates the tracking capability of the proposed

algorithms, in a scenario where the echo channel changes at

time n = 8001 by shifting its impulse response by 12 samples.

As one can see, using the proposed VFF instead of the fixed
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Fig. 3. NMSD curves of DCD-based RLS algorithms for the sparse channel.
Parameters setting of algorithms is: λ = 0.9998 (all the recursive algorithms);
ζ = 0.99, Nw = 9 (DCD-RLM). [Nu = 8].

one, the DCD-based algorithms can reduce the steady-state

error and improve the tracking capability.

Fig. 4. NMSD curves of DCD-based RLS algorithms for the sparse channel.
Parameters of VFF are: ζ = 0.99, Nw = 9, ρ = 3, λmin = 0.97.

IV. CONCLUSION

We have proposed a general low-complexity recursion for

developing RLS-type adaptive filtering algorithms operating

in impulsive noise scenarios. This is based on using DCD

iterations. As examples of the MCC, M-estimator, and p-

norm strategies applied to this recursion, we have developed

the DCD-RMCC, DCD-RLM, and DCD-RLpN algorithms,

respectively. These algorithms show a performance similar

to that of their high-complexity counterparts, RMCC, RLM,

and RLpN algorithms, respectively. To improve the tracking

capability of the algorithms, a simple time-varying forgetting

factor mechanism has also been developed. Simulation results

demonstrate the performance of the proposed algorithms.
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