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Theoretical Molecular Rheology of Branched Polymers in Simple and Complex Flows:
The Pom-Pom Model
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The nonlinear rheological constitutive equation of a class of multiply branched polymers is derived
using the tube model. The molecular architecture may be thought of as twoq-arm stars connected by a
polymeric “crossbar.” The dynamics lead to a novel integrodifferential equation which exhibits extreme
strain hardening in extension and strain softening in shear. Calculations of flow through a contraction
predict that the degree of long-chain branching controls the growth of corner vortices, in agreement
with experiments on commercial branched polymers. [S0031-9007(97)04103-3]

PACS numbers: 83.10.Nn, 47.50.+d, 83.20.Fk, 83.85.Pt

Polymer melts and concentrated solutions are complex
fluids whose dynamics are dominated by the topologi-
cal restrictions of uncrossability of long-chain molecules.
Substantial theoretical progress has been made within the
framework of the tube model [1] in which the constraints
on a given chain segment are modeled by a tube of di-
ametera, coarse graining the curvilinear path of the poly-
mer. Two dominant modes of “entangled” dynamics at
long time scales emerge: Linear polymers may change
their configurations viareptation—or curvilinear diffu-
sion, which leads to a sharp distribution of modes in stress
relaxation and a viscosity scaling with molecular weight as
M3.4 [1–3]. Polymers with long-chain branching are con-
strained tofluctuationmodes of the entangled arms, which
lead to a broad relaxation spectrum and exponential depen-
dence of viscosity on their arms’ molecular weight, even
in the case of simple star polymers [4,5], where the theory
agrees quantitatively with experiments over a range of ma-
terials and molecular weights [6]. An additional process
of retractionmay follow large deformations by which ex-
tended chain segments with free ends rapidly regain their
equilibrium contour length inside the extended tubes. This
accounts for the extreme shear thinning of linear and star
polymers [1]. Commercial long-chain branched polymers
differ distinctly from linear polymers [7–9] in rheological
response. Low density polyethylene (LDPE), in particu-
lar, which has multiple, irregularly spaced, long branches,
shows “strain hardening” in transient extensional flows
that differs qualitatively from the behavior of unbranched
melts. In shear flow, however, the behavior of LDPE
is highly “strain softening,” not unlike ordinary linear
polymers. Existing phenomenological constitutive theo-
ries do not capture this behavior. Even the very general
integral-type equation [8], containing arbitrary functions of
the strain invariants, cannot combine the observed strain
hardening in both uniaxial [8]and planar[10] extension
together with the softening in shear. Such equations there-

fore cannot consistently account for the special behavior
which occurs in complex flows of LDPE, when imple-
mented in non-Newtonian flow solvers [11]. In particular,
linear and branched melts of identical viscosity and ter-
minal relaxation times exhibit very different flow fields in
a contraction: Linear polymers mimic Newtonian fluids,
while branched polymers set up a large rotating vortex in
the corner of the contraction [12,13]. A theory connecting
the molecular topology to features of the flow is highly
desirable. The tube model does indeed predict that the
large-strain properties of branched polymers differ from
the strain softening of linear polymers [14], suggesting that
it might provide the missing mathematical structure if pur-
sued to a full constitutive equation. In this Letter we show
that the outcome of such a project accounts for the effects
of branching in both simple and complex flows.

The class of branched polymers chosen for this study
can be thought of as a generalization of theH-polymer
structure [15,16]. The “pom-pom” molecules contain just
two branch points of chosen functionality—a “crossbar”
links two pom-poms ofq arms each (see Fig. 1). Struc-
tural parameters are the molecular weight of the crossbar
Mb , molecular weight of the armsMa, and the branch num-
ber q. The entanglement molecular weightMe [1] is an-
other important molecular parameter, but will serve only
to define the dimensionless path lengthssa  MayMe and
sb  MbyMe. The model polymer contains the essential
feature of a strand between the two branch points. This
strand cannot diffuse at all on length scales longer than
a until the relaxation of the starlike arms is complete. At
longer time scales the melt may be considered as entangled
crossbar strands only, diluted by the (relatively) rapidly
moving arms [16] to a volume fractionfb. The crossbars
therefore behave at these time scales like linear polymers
with large friction at their extremities, and so diffuse by
reptation. The reptation time is longer than the terminal
relaxation of the arms by a factor ofs

2
b, and the retraction
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FIG. 1. The pom-pom model polymersq  3d with effective
confining tube on the crossbar. Configurations are shown
schematically under (a) no strain and at higher strains causing
(b) no and (c) partial withdrawal of the branch points.

time by sb, so over a wide range of deformation rates all
non-Newtonian response arises from the dynamics of the
crossbars alone.

The retraction of the crossbars under large strains also
differs from the rapid relaxation of linear polymers and
dangling arms. Instead they extend under strain until their
tension is sufficient to withdraw the dangling arms into
tubes originally occupied by crossbars [13]. The conse-
quence of this new process of “branch point withdrawal”
in a flow is radical: At deformation rates slow compared
to the retraction dynamics of the arms yet fast enough to
stretch the crossbars, some of the arm material, saysc per
arm, may be aligned with the crossbar (see Fig. 1). The
frictional drag of the “blob” of the remaining relaxed arm
zb is then determined by the relaxation time of the now-
shorter arms, which is exponentially faster insc:

zb  2kT
tasscd

a2
q , (1)

wheretassd is the relaxation time of the segment a distance
s from the branch point. To leading order ins this varies
astasxd  tas0d exps215fbsy4d. The key consequence
of this flow-induced renormalization ofzb is to limit the
dimensionless stretch factorlstd of the backbone to the
valueq determined by the degree of branching. In the limit
of highly entangled backbones it becomes valid to work
with preaveraged dynamic variables. The stretch then
couples to the flow (with local deformation rate gradient
K) as a driven Gaussian spring [17]:

D

Dt
l  lsK : Sd 2

1

ts

sl 2 1d , (2)

strictly for l , q, and wherets  sbqtas0d is the stretch
relaxation time. DyDt is the substantive time deriva-
tive. When the maximum stretch would be exceeded, the
dynamical evolution is transferred to the variablescstd,
which measures the withdrawal and alignment [first term
of Eq. (3)] of the branches:

Dsc

Dt


µ

q
sb

2
1 sc

∂

K : S 2
1

2tasscd
, (3)

opposing their star-arm-like relaxation [second term in
Eq. (3)]. The final dynamical variable needed to construct
the stress is the second moment of the orientation distri-
bution functionSstd for tube segments containing cross-
bars [1]. These orient in the flow, reptate, and retract,
like linear polymers, but have a time-dependent reptation
time (like wormlike micelles [18], but due to changes in
configuration of the dangling ends rather than in molecu-
lar weight). The evolution equation forSstd is therefore
a simple modification of the Doi-Edwards result for en-
tangled linear polymers:

Sstd 

Z t

2`

dt0

tbst0d
exp

√
Z t

t0

dt00

tbst00d

!

QsssEst, t0dddd , (4)

where Q is the Doi-Edwards tensor [1] describing the
average orientation att of tube segments created att0

and deformed byEst, t0d. The exponential term is their
survival probability and the reptation time varies astb 

s4yp2ds2
bfbtafscstdg. Thus we arrive at a small set of

evolving structural dynamical variablesSstd, lstd, and
scstd, from which the stress may be calculated. Both the
tension and contour length of the crossbar increase linearly
with l, and we need to respect the quadratic scaling of
modulus with volume fraction of entangled material. Extra
contributions arise from arm material aligned with the
crossbar. The final expression for the polymeric stress
is [17]

s 

15

4
G0fb

µ

fbl2std 1
2qscstd

2qsa 1 sb

∂

Sstd . (5)

A “solvent stress” contribution from material relaxing at
much faster rates than the flow rates (the pom-pom arms
and all higher “Rouse” modes in this case) is added via a
Newtonian term. In all our simulations we chose a solvent
viscosityhs  G0tsy8. Together with Eqs. (2)–(4), this
defines the constitutive theory for a melt of these branched
polymers at deformation rates up totas0d21.

The results for extensional and shear-stress transients
after the initiation of flow were computed for a system
with the molecular parametershq  5, sa  3, sb  30j.
Results are shown in Fig. 2 together with data on LDPE
for comparison. The deformation rates (dimensionless in
terms of the stretch relaxation timets) vary from 0.045 to
6.0 (in terms oftb they are 6 times higher). As expected,
the low rates exhibit simple stress growth to a steady-state
plateau. As the extension rate is increased, a very small
amount of extension thinning is observed before the cross-
bars begin to stretch. Throughout the range of deformation
rates over which the plateau stress is growing, the equi-
librium value ofl is also rising. At still higher rates, a
marked change of behavior sets in:l reaches its maximum
value in finite time, and thereafter branch-point withdrawal
occurs—sc rapidly rises and finds its equilibrium value.
The stress growth now shows a rapid hardening behav-
ior which is cut off by the maximum sustainable stretch.
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FIG. 2. (a) Start-up transient viscosities in uniaxial extension
and shear for the LDPE [9]; (b) start-up viscosities for thehq 

5, sa  3, sb  30j pom-pom model in shear and extension
deformation rates are 0.045, 0.09, 0.18, 0.375, 0.75, 1.5, 3.0,
and 6.0 in terms of the stretch relaxation timets. Weissenberg
numbers for orientation may be obtained by multiplying these
rates by 6.1.

For higher deformation rates, the extension viscosity thins
again as the steady-state extensional stress now grows only
weakly. The qualitative similarity with extensional data on
LDPE [11,19] is remarkable, and especially significant in
occurring for both uniaxialandplanar extension.

The computations for shear flow show very different be-
havior. Figure 2 also shows the growth of shear stress
for the same range of deformation rates as before. Over-
shoots in the shear stresssxy are evident but liebelowthe
slow-flow case. Although the backbone may stretch tran-
siently, and even reach its maximum value, no hardening
effect results in steady state, and the shear response is uni-
formly thinning. The unique softening behavior in shear
arises because of the separation in time scale of orientation

and stretch of the active crossbar segments: At rates which
couple to the stretch in extension, the molecule has already
aligned in shear parallel to the flow direction, reducing the
coupling termK : S in Eq. (3). This necessary separation
is a direct consequence of the entangled state of the cross-
bar. Although LDPE is structurally more complex than
the pom-pom molecule, the generic feature of a moderate
separation in time scales between segmental stretch and
orientation will survive. We believe this accounts for the
similarities between the LDPE data and our model.

The constitutive equation set derived above retains
structure of molecular significance yet is simple enough
to be applied to flow in complex geometries. As an
example we have chosen the “benchmark” problem of
flow into a planar 4 : 1 contraction. The calculations
were performed using a mixed Euler-Lagrange method
[20] with a slightly modified version of the equations.
sssThe numerical scheme utilizes a co-deforming grid of
finite elements so that history-dependent quantities are
local to the grid. One approximation of the equation
set was necessary to make the computation feasible—the
integral expression forSstd was replaced by a differential
approximation which has been shown to give very similar
results in all flow geometries [17]:DAyDt  K ? A 1

A ? KT 2 t
21
b sA 2 Id andSstd  AstdytrfAstdg.ddd

Figure 3 shows the flow and molecular stretch fields
flsrdg of an unbranched moleculesq  1d and branched
pom-poms withq  5. The Weissenberg number, based
on the upstream wall shear rate, is unity in all cases.
We  3Qtsy2L2, whereQ is the areal flux through the
contraction andL is the upstream width of the channel.
Contrasting Figs. 3(a) and 3(b), one sees that the pom-
pom branching produces an enlargement of the corner
vortex, a phenomenon frequently observed with branched
LDPEs. From the simulation, the molecular source of
this phenomenon can be discerned. The color coding
shows that only the branched polymer is stretched in the
contracting region by the strong extensional flow there.

Surprisingly, the maximum stretch does not occur along
the center line where the extension rate is greatest, but
close to the boundary between the corner vortex and the
funnel of material drawn into the contraction. This can
be explained by following a fluid element as it moves
from the wall region into the funnel, or more simply by
looking at the flow and stretch fields at earlier times. This
is done in Fig. 3(c) which shows that, during the start-up
transient, a high degree of stretch develops at the apex
of the vortex where strand material is stripped of the wall
by the sink flow. This wall material, while not stretched
by the shear, ispreoriented by it, and hence rapidly
stretched by the extensional flow in the funnel. The
enhanced version of this effect in the transient survives as
the “wing” of high stretch in the steady flow of Fig. 3(b).

Thus, the vortex growth in a fluid with strong extension
hardening arises from the need to maintain a balance
between shear and extensional stresses [21]. For fluids
with a high Trouton ratio, Tr (such as the pom-pom)
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FIG. 3(color). Flow from start-up into a4 : 1 contraction computed for the pom-pom model with fixed total and crossbar molecular.
In (a) and (b) the upstream strain at the wall since initiation is 12.5. (a) We 1, q  1 (linear polymer); (b) We 1, q  5; (c)
We  1, q  5 but at a transient upsteam strain of 5.0. Note the “spur” of preoriented material joining the wall and the funnel.

Keiller et al. showed that flow into a planar sink is con-
fined to a narrow cone whose semiangle is proportional to
Tr21y2 [22]. Thus, higher Tr produces enlarged vortices.

The molecular modeling and simulations described here
have relatively straightforward generalizations to other
molecular architectures, and to polydisperse ensembles of
molecules. With this new approach, molecular theory can
be used to explain the influence of polymer architecture on
polymeric flow fields. The progress described here may
help in future designs of polymers for specific processing
properties.
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