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Abstract— With the fourth industrial revolution in progress, 
traditional manufacturing processes are being transformed. 
Fusion welding is no exception from this transformation. The 
centuries-old manual craft is being reshaped by cyber-physical 
systems, turning into a digitized process governed by industrial 
informatics. By implementing process monitoring in welding 
applications invaluable data are collected that can be utilized in 
the new, futuristic smart factories of Industry 4.0.  

In this article two purposes are being served. The first is to 
present the status quo alongside the future trends of welding 
process monitoring on industrial implementation. The second is 
to present the results of an ongoing investigation of robotic Gas 
Tungsten Arc Welding (GTAW) monitoring for defect detection 
and characterization. Deviations from the optimal values in 
three welding conditions (surface integrity, shielding gas flow 
rate and surface contamination) were introduced during 
stainless steel 316L beads-on-plates welding. Acquired data 
during the welding process were used to extract features in order 
to identify correlations between the disturbances and the 
monitored signals. 

I. INTRODUCTION 

Welding process monitoring can be defined as the 
simultaneous measuring and monitoring of weld conditions 
and additional factors which contribute to the quality of a weld 
[1]. To understand the principles and explore the possibilities 
of real-time process monitoring in welding, the welding 
process needs to be considered as a complex and uncertain 
system [2]. The adjustable welding parameters (also referred 
to as control variables) are the inputs of the system, whereas 
the properties of the generated weld and the heat affected zone 
(HAZ) are the outputs. What defines the output, apart from the 
input parameters, are the pre-determined constants and 
processes that comprise the system, in this case the welding 
conditions. Welding conditions are parameters such as the 
chemical composition of the metals and the groove geometry, 
which are expected to remain constant throughout the process. 
On the contrary, inputs of the system such as current, voltage, 
heat input and travel speed are expected to vary throughout the 
process based on the desired output. However, controlling the 
welding conditions to their nominal values may not always be 
feasible, therefore fluctuations and variations from their 
expected values will occur. These disturbances of the system’s 
conditions result in alterations of the output, and subsequently 
undesired properties of the weld. 

The uncertainty of the process’ outcome highlights the 
need for monitoring of the process, either by directly detecting 
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the disturbances of the welding conditions or their effect on 
the system’s output. The online monitoring of a welding 
process is an active area of research, mainly attributed to the 
complex physics underlying the process and the lack of 
commercial efficient and reliable solutions [3].  

Studies performed in this area are revolving around the 
physical phenomena that are involved in the arc welding 
processes, particularly those related to the plasma arc and its 
effects on the weld pool properties. Proposed solutions in the 
field spread from numerical simulations of the arc to vision 
systems with advanced image analysis. Acoustic sensing, 
ultrasonic emission analysis and electromagnetic emission 
analysis can also be used. Recent development growth in the 
field of artificial intelligence sees welding monitoring 
applications investigated by intelligent systems based on 
machine learning and fuzzy logic [4]. 

Monitoring Classifications 

The sensor technologies used in research related to process 
monitoring are divided into four main categories: arc sensors, 
optical sensors, infrared sensors and ultrasonic sensors. 
Additionally to these categories, research has been conducted 
in the fields of x-ray radiography, plasma emissions 
spectroscopy and acoustic emissions. Each sensor category 
has its own benefits and disadvantages relating to the type of 
the welding method and process monitoring application. For 
example, optical and infrared sensors are susceptible to plasma 
radiation, but they reveal features (e.g. cooling rate 
temperature gradient and melt pool 3D geometry) that other 
methods are unable to provide.   

Independently of the sensor categorization, welding 
monitoring methods can also be classified at different levels 
according to the nature of the monitoring which relates to the 
type of measurements. At the lowest level (Level 1), inputs of 
the system are monitored, to ensure their correct values 
throughout the different stages of the process. On the mid-level 
(Level 2) the welding conditions (constants) of the process are 
monitored to ensure their nominal values are maintained at a 
constant (or within accepted levels of variation).  On the upper 
level (Level 3) the variables that are affected by welding 
conditions and controlled by the welding parameters are 
monitored. These intermediate parameters (e.g. temperature 
gradient) are not the final output of the process but have a 
closer relationship with the result than individual welding 
parameters and conditions [5]. 
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Welding monitoring systems can also be classified in three 
levels based on the system’s ability to detect, identify and 
correct disturbances occurring in the process. On the lowest 
level (Level 1ǯ) the system is able to detect disturbances that 
occur in real-time. At the mid-level (Level 2ǯ), the system has 
the ability not only to detect the disturbances but also to 
identify their origin, highlighting the malfunction in the 
process. At the highest level (Level 3ǯ) the system is equipped 
with a feedback mechanism that intervenes in the process 
correcting the disturbances [6]. 

 Adoption barriers 

 Despite the fact that welding monitoring technologies 
have demonstrated sufficient abilities in defect detection, these 
technologies have not been widely commercialized with the 
current state of adoption by industry in low levels. This 
situation is mainly attributed to the variety and complexity of 
the welding processes, which opposes to the specific 
application suitability of the monitoring methods [7]. 
Additional barriers and obstacles that monitoring systems 
developers need to overcome include the high initial costs, 
fragile and sensitive equipment operating in harsh industrial 
environments (e.g. contact-requiring sensors in high 
temperatures, fumes and spatter), arc radiation interference, 
restricted access in the welding area and weight limitations 
preventing the attachment of bulky components on the 
welding torch [8].  

Under the context of Industry 4.0 to be explored in Section 
II, the aforementioned barriers are expected to be removed 
giving rise to a truly digitized welding process dominated by 
data analytics and industrial informatics. In Section III the 
experimental setup and results of an ongoing welding 
investigation for predictive quality control will be presented. 

II. INDUSTRY 4.0 

Industry 4.0, a term deriving from the German Industrie 
4.0 conceived in 2011 at the Hannover Fair, is the context that 
has been the driving force behind the ongoing forth industrial 
revolution. It refers to the applications of Cyber-Physical 
Systems (CPS) in the fields of manufacturing and production 
[9]. The goal of Industry 4.0 is to pave the way towards the 
“factory of the future”, turning organizations into truly digital 
enterprises utilizing industrial informatics and the networking 
of the Industrial Internet of Things (IIoT) in both their vertical 
and horizontal value chains. 

Red Queen Hypothesis 

In Lewis Carroll’s 1871 book “Through the Looking-
Glass”, the Red Queen provides an explanation to Alice 
regarding the nature of the glass-land, which came to be 
known as the Red Queen Hypothesis [10]. “Now, here, you 
see, it takes all the running you can do, to keep in the same 
place” [11]. In an evolutionary race between prey and 
predators the ability to move fast and adapt to a dynamically 
changing environment ensures the survival of a species. Fast-
forwarding to the 21st century, this hypothesis is applied in the 
field of manufacturing where companies who can quickly 
adapt to the fast-moving digital industrial ecosystem will stay 
competitive, whereas companies lose their customers when 
they can’t anticipate demands for connected products and 
services [12].  

In the “2016 Global Industry 4.0 Survey”, responses were 
collected from over 2,000 participants from nine major 
industrial sectors and twenty four countries [13]. The results 
revealed that Industry 4.0 is no longer considered as a future 
trend revolving around a “buzzword”, but companies have 
moved from talk to action. 33% of the participants classified 
their companies’ current level of digitization and integration 
as high level, whereas 72% expect a high level of digitization 
in five years. To achieve that level, the companies are heavily 
investing in Industry 4.0. Global industrial products 
companies are investing US$907 billion per year through to 
2020, with an average of 5% investment as a percentage of 
their annual revenue. 55% of the participants expect return of 
investment within two years. These investments are not only 
towards digital technologies (e.g. sensors and connectivity 
solutions) and software applications (e.g. modelling software, 
manufacturing execution systems), but also on training of their 
employees, since digital skills was found to be the biggest 
challenge in Industry 4.0 implementation.  

In order to expand on the Industry 4.0 applications in 
welding manufacturing processes, the context of the design 
principles need to be analyzed, providing insight on how the 
future of welding will be shaped. While there are various 
definitions of what is Industry 4.0, all of them seem to agree 
on the following four design principles: interconnection, 
information transparency, decentralized decisions, and 
technical assistance [14]. 

A.  Interconnection 

Through the industrial adaption of the Internet of Things 
(IoT), the IIoT aims to connect people, machines, and products 
through communication technologies. Modules of 
standardized wireless communication devices (RFID, 
Bluetooth, Wi-Fi, etc) are being embedded, attached or 
connected on sensors, machines and equipment to allow real-
time smooth exchange of information. Modularity and flexible 
adaptability is of high importance especially where 
manufacturing data are exchanged cross-disciplinarily along 
the product life-cycle (see B. Information Transparency). 
These characteristics are required not only on physical 
equipment but also on the software, where an adaptable code 
results in automatic re-configuration with less errors and 
transition time. 

Interconnection in Welding 

 Recent developments on applied interconnection in 
welding applications are focusing on human/machine 
communication that enables the remote control of welding 
parameters. Wireless foot-pedals and controls with 
operational frequencies in the industrial, scientific and 
medical (ISM) radio bands are already available in the 
market, where applications of voice-activated controls 
embedded on the helmet are taken into consideration [15].  

 Wireless Bluetooth 4.0 communication (also in the ISM 
radio bands) between the helmet and the power source is 
also an option explored. Signals for the arc status are used 
to control the auto-darkening shades of the helmet’s visor, 
ensuring the safety of the welder [16].  

 Modern welding power sources are expected to be have 
the ability to connect to computers and the internet. 
Subsequently, sufficient documentation of each welding 



  

station is provided with details of the usage, arc status and 
values of welding parameters, enabling remote asset 
utilization management [17, 18]. 

B.  Information Transparency 

With digitization at the core of the forth industrial 
revolution, data acquired from sensors in the manufacturing 
plant are fused with models created from software to create 
virtual copies of the physical world. Digital copies of 
manufactured products are created by the combination of pre-
production fabrication guidelines, environmental and machine 
condition monitoring data, data from process monitoring 
during production and results from post-production of in-line 
metrology and quality assurance tests. These copies are then 
stored  in databases both locally and in the cloud, with access 
to the respected parties involved, ensuring a digital trust 
between them. In order for this digital ecosystem to function 
properly, safety measures regarding cyber-security need to be 
taken. Clear guidelines on data integrity and digital security 
need to be applied not only for the data acquired during 
manufacturing but also for the communication data between 
the parties involved and the intellectual property surrounding 
the manufactured products. 

Information Transparency in Welding 

 Data collected from the variety of sensors involved in 
welding process monitoring are fused with the data 
collected from the power sources to create detailed 
performance documentation for each weld. These data, as 
described above, need to be securely stored with access 
only to respected stake-holders. Therefore not only strong 
foundations of digital trust are established between the 
manufacturer and the customer but also their reliability 
and reputation is ensured in case faulty products require 
further investigations. In areas where post-production 
testing is a requirement, the test-results can be linked and 
stored alongside with the collected process data. 

C.  Decentralized Decisions 

The aforementioned design principles on interconnection 
and information transparency empower CPS with the ability to 
make decisions locally, without the need for approval from 
higher levels of hierarchy. Validation data required for the 
decision making can be provided between the interconnected 
parts, avoiding causing delays and bottleneck effects in a 
production line.  

Decentralized Decisions in Welding 

 The most important feature of real-time welding process 
monitoring systems is their ability to detect, identify and 
classify disturbances, parameter variations, process 
interruptions and malfunctions as they occur. With 
decentralized decisions, modern welding systems are 
expected to have the authority not only to automatically 
readjust parameters and alter conditions but also to 
intervene with process interruptions when deemed 
necessary. To achieve such high level of automation, the 
monitoring systems should be equipped with advanced 
data analytics recruiting machine learning and predictive 
models, while maintaining fast data transferring and high 
processing power. As the number of monitoring 
parameters is increasing and the predictive models 

become more complex, more processing power will be 
required, hence the need for intelligent sensors with 
embedded processors. 

 In cases where complex geometries of welded products 
proscribe the use of a feedback mechanism, or in cases 
where the system’s response time forbids a Level 3ǯ 
monitoring system, the analyzed data can be used in post-
weld evaluation to ensure the weld quality. This solution 
reduces the cost both in terms of time spent from waiting 
the results of a Non-Destructive Testing (NDT), as well 
as in terms of money to perform the NDT.  

D.  Technical Assistance 

The term technical assistance in Industry 4.0 refers to the 
ability of CPS to support human actions in a production line. 
This assistance can be in the form of physical support, where 
difficult and hazardous tasks are performed by robotic 
systems, or in the form of comprehensive representation of 
complex datasets via visualized information. The former 
protects the manual worker from work-related hazards and the 
latter ensures faster reactions and better decision making.  

Technical Assistance in Welding 

Robotic welding has been around from the very beginning 
of the third industrial revolution. Since the 1960s when 
industrial robots were introduced, the welding processes have 
grown to be the most common applications on industrial robots 
worldwide [19]. Apart from reducing processing time, 
improving productivity and obtaining high quality welds, 
among the benefits of the robotic welding there is also the 
reduction of exposure of human welders to the hazardous 
welding environment [20]. Risks emerging from arc radiation 
exposure, fumes, extreme temperatures and prolonged sitting 
positions have been reduced, and the concept of technical 
assistance has been incorporated for years in the welding 
industry. There are however cases where robotic welding 
cannot be applied, as in products with complex geometries 
limiting robotic movement and access. Manual welding isn’t 
predicted to be completely replaced in the near future, raising 
the need for technical assistance to be provided in additional 
ways. 

 Advances in monitoring technologies have been applied 
to welding wearables, attaching sensors and display 
screens on welding helmet. Arc sensors detect and register 
arc initiations and welding durations, projecting 
information to the welder about total arc time [15]. This 
development can also be used in predictive maintenance, 
calculating the electrode replacement based on the 
operational time recorded. 

 Another way of visualizing information to the welder can 
be by applying augmented reality technologies in the 
welding helmet. This innovating technology will 
transform manual tasks and with significant options for 
applications in welding. Apart from the projection of 
welding parameters and conditions on the welder’s field 
of view, process monitoring systems can visualize 
corrections to ensure quality. Vision systems and arc 
sensors used for torch position identification can be 
utilized to “show” the welder the correct positioning while 
infrared thermography can be utilized to project to the 
welder isothermal images marking potential defects.  



  

 Under the concept of “Virtual Welding” the welding 
process and the welders are modelled in the virtual world. 
This digitization allows programmers to check the robot 
movement for correct torch positioning, avoiding 
unnecessary rejects that lead to wastes. Additionally it 
helps human welders in training, allowing them to 
practice virtual welds holding dummy welding torches, 
avoiding exposure to hazards and eliminating materials 
and consumables wastes. Both augmented reality and 
virtual reality training modules are already available [21, 
22]. 

III.  EXPERIMENTAL SETUP AND RESULTS 

As welding process monitoring is advancing in the context 
of Industry 4.0, the need for complex data analytics is 
emerging. In order for a system to be able to detect and 
characterize disturbances, machine learning algorithms are 
recruited to “teach” a monitoring system how to do it. In this 
section the experimental setup to detect disturbances utilizing 
time-domain features of acquired signals is described. The aim 
of this research is to evaluate the extracted features as potential 
detectors and identifiers of weld disturbances in real-time 
process monitoring.  

The present welding trials were performed on robotic Gas 
Tungsten Arc Welding (GTAW), using an ABB IRB 2400/16 
robotic arm (Figure 1) connected with a VBCie IE175i Heat 
Management System power source. The welding system was 
used to deliver linear beads-on-plates welds on stainless steel 
316L plates. The welding parameters of the experiment are 
presented on Table I. The data acquisition system (DAQ) was 
composed of a Tektronix DPO 2022B Digital Oscilloscope 
connected to a custom-built sensor box developed by the 
University of Sheffield. Measurements of both voltage and 
current were acquired.  

Three welding conditions were recruited to introduce 
undesired disturbances to the welding process, in order to 
simulate potential disturbances that could occur in a welding 
workshop. Surface integrity was disturbed by machined 
notches on the plates, to simulate improper surface preparation 
and material handling. Shielding gas flow disturbances 
introduced by flow rate reduction from a brass ball valve were 
used to simulate potential regulator failures and accidental 
hose step-on. Amounts of grease applied on the welding path 
simulated surface contamination. All three disturbances were 
introduced in three levels (0, 1 and 2) resulting in 27 

combinations of welding conditions and subsequently 27 
welds. Level 0 represents the optimal condition in which the 
system is expected to perform normal. This translates into no 
contamination, no notch or in the nominal value of the 
shielding gas flow rate. Level 1 represents “small” 
disturbance, which was simulated by 0.1 ml of grease, a V-
shaped notch of 0.2 mm depth and 0.4 mm width, or a gas flow 
reduced by 15%. Level 2 represents “bigger” disturbance, 
simulated by 0.2ml of grease, a V-shaped notch of 0.6 mm 
depth and 1.2 mm width, or a gas flow reduced by 75%. 

TABLE I.  EXPERIMENT WELDING PARAMETERS 

Parameter Value 
Current and polarity 
Welding current 
Shielding gas 
Shielding gas flow rate 
Feeding wire 
Wire feeder speed 
Torch travel Speed 

Direct Current - Electrode Negative 
128 A 
Pure Argon  
17 L/min 
Inconel 718, 0.889 mm 
4.4 mm/s 
3.3 mm/s 

 

The acquired data were analyzed in order to extract time-
domain features including the first four statistical moments 
(mean, variance, skewness and kurtosis). A total of 15 features 
were extracted for each acquired signal (Table II ) [23].  

TABLE II.  DEFINITIONS OF TIME-DOMAIN FEATURES 

Feature Definition 

Mean (average amplitude) ଵ ൌ ଵ ሺ݅ሻୀଵݏ  

Variance (standard deviation) ଶ ൌ ቀσ ሺ௦ሺሻିభሻమೖసభ ିଵ ቁଵȀଶ 
Root-mean-square amplitude 
(RMS) ଷ ൌ ቆଵ ௦ሺሻమೖసభ ቇଵȀଶ 
Square of mean of rooted absolute 
amplitude (SMRA) ସ ൌ ൬ଵ ඥȁݏሺ݅ሻȁୀଵ ൰ଶ 
Peak value ହ ൌ  ሺ݅ሻȁݏȁݔܽ݉
Skewness coefficient  ൌ σ ሺݏሺ݅ሻ െ ଵሻଷୀଵሺ݇ െ ͳሻଶଷ 

 

Kurtosis coefficient  ൌ σ ሺݏሺ݅ሻ െ ଵሻସୀଵሺ݇ െ ͳሻଶସ 
 

Peak factor (crest factor) ଼ ൌ  ଷହ
Margin factor ଽ ൌ  ସହ
Waveform factor ଵ ൌ ଷభೖσ ȁ௦ሺሻȁೖసభ  

Impulse factor ଵଵ ൌ ହభೖσ ȁ௦ሺሻȁೖసభ  

Min amplitude ଵଶ ൌ ݉݅݊ሺݏሺ݅ሻሻ 
Max amplitude ଵଷ ൌ  ሺ݅ሻሻݏሺݔܽ݉
Max - Min  ଵସ ൌ ଵଷ െ  ଵଶ
Peak - Mean ଵହ ൌ ହ െ  ଵ
 

In order to evaluate the features as potential disturbance 
detectors - and subsequently disturbance identifiers - analysis 
was first performed on data corresponding to individual 
disturbances. Each recorded signal was segmented into 1562 
parts and for each segment the time-domain features were 
calculated. By plotting together each group of similar 
disturbances (e.g. Figure 2), correlations were observed for 

 
Figure 1: The robotic arm with a GTAW torch attached 



  

each feature. In Figure 2, the correlations of the first statistical 
moment (mean) on both current and voltage signals are seen 
for the welds where the disturbances were individually 
introduced to the welds. The voltage signal mean increased in 
the presence of grease and in the decrease of shielding gas flow 
rate, and decreased in the presence of surface marks.  The 
current mean, decreased in the presence of contamination and 
increased in the presence of surface marks. While a higher 
value variation was recorded during shielding gas flow 
disturbances, not sufficient correlation was stablished on the 
mean values, mainly attributed to uneven quantification of the 
disturbance (manual brass-valve). 

Of the 15 different time-domain features that were 
extracted, some showed higher correlations than others in 
different conditions of disturbances. In current measurements 

the features that presented the highest correlation level on all 
three disturbances were the “squared mean of rooted absolute 
amplitude (SMRA)” and the “waveform factor” (Figure 3). In 
voltage measurements higher correlations were found on the 
“peak mean” and “standard deviation (variance)” (Figure 4). 
The difference found in the correlation levels of different 
features attributed to different disturbances can be utilized in 
future machine learning algorithms in order to distinguish 
between the disturbances. Using similar datasets, a system 
incorporating neural networks can be trained to distinguish the 
disturbances and pinpoint the source of disturbance in a 
recorded signal.  

Detection and characterization of the disturbances become 
more complicated when two or three types of disturbances are 
simultaneously introduced to the weld. From Figure 2 it is 

 
Figure 2: Current and voltage mean values for the following welding conditions:  

(C = contamination, GF = gas flow, N = notch)  
(Left: C:0-2, GF:0, N:0; Middle: C:0, GF: 0-2, N:0; Right: C:0, GF:0, N:0-2) 
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Figure 4: Examples of voltage peak mean (top) and standard deviation 

(bottom) values for individually induced disturbances. 
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Figure 3: Examples of SMRA (top) and Waveform factor (bottom) of 

current signals for individually induced disturbances. 
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extracted that voltage in welds with simultaneous 
contamination and gas flow rate disturbances will show 
sufficient correlation levels. However, when these 
disturbances are occurring in the presence of a notch, it is 
expected that the correlation in the measurements will not be 
so clear since the effects of the different disturbances to the 
measurements are opposing to each other. As a result, when 
the time-domain features are collectively analyzed for all of 
the 27 welds simultaneously, the correlation levels are reduced 
compared to the individual disturbances (Figure 5).  

 

IV.  CONCLUSION 

The industrial digitization under the context of Industry 4.0 is 
already being adopted by manufacturers of welding 
equipment. Interconnected cyber-physical systems are 
designed to generate invaluable industrial data through real-
time process monitoring, with high implementation expected 
in the “factory of the future”. It is therefore becoming essential 
the development of tools for analysis of data captured by 
monitoring systems. In order to detect and identify 
disturbances of the welding process that will result in failures, 
time-domain features for correlation analysis were recruited in 
the present work. Extracted from welding voltage and current 
signal measurements, the features have revealed significant 
correlations with induced disturbances, providing a potential 
tool to be used in identification, characterization and 
classification of welding process disturbances. 
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Figure 5: Voltage mean value vs. contamination  

(Top: C:0-2, GF:0, N:0; Bottom: C:0-2, GF: 0-2, N:0-2) 
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