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Abstract 

Wilderness protection is increasingly important in the era of the Sixth Extinction and the 

Anthropocene. Mapping environmental indicators along a continuum of human modification 

provides key information for wilderness protection. However, uncertainty may occur in 

identifying wilderness areas by reclassifying wilderness continuum maps. In this study, an 

approach integrating both Boolean overlay and Weighted Linear Combination (WLC) is used 

to identify discrete wilderness patches and evaluate their relative wilderness quality. This 

approach is applied to China with a resolution of 1km2. The wilderness patches are first 

identified using Boolean overlay with discrete thresholds for land use, distance from 

settlements and roads. A Wilderness Quality Index is then created using a WLC model by 

weighting and combining six wilderness quality indicators including biophysical naturalness, 

population density, remoteness from settlement, remoteness from roads/railways, settlement 

density and roads/railways density. An integrated wilderness map is then created by combining 

the results from the Boolean and WLC models. It is found that China is a highly wild country 

in parts, containing over 86,000 wilderness patches, with varying relative wilderness qualities, 

which covers approximately 42% of China’s terrestrial area. About 77% of the existing 

wilderness patches are not covered by nature reserves, indicating the obvious conservation gaps 

of China’s wilderness areas. The wilderness maps presented here could potentially support new 

wilderness protected area designation, connectivity conservation, and monitoring programs. 

This integrated approach of wilderness mapping is potentially useful for other countries in 

conducting their own wilderness inventories and developing wilderness conservation policies. 



4 

 

 

1 Introduction 

We are currently in the Sixth Extinction and a new geological epoch, known as the 

Anthropocene (Lewis & Maslin, 2015). Wilderness areas are shrinking rapidly, which in turn 

may have catastrophic effects on conserving biodiversity and maintaining ecosystem services. 

Over the past 20 years, approximately 9.6% of the remaining terrestrial wilderness has been 

lost globally (Watson et al., 2016; Allan et al., 2017) and only 13.2% of the oceans can still be 

classified as marine wilderness (Jones et al., 2018). With ongoing anthropogenic threats, 

including climate change, pollution and habitat loss, wilderness protection and restoration 

(rewilding) are increasingly important both present and in the future (Casson et al., 2016; 

Schumacher et al., 2018).  

Robust, reliable and repeatable mapping is crucial to the development of better wilderness 

protection policies since it provides basic information about the location, size and quality of 

these areas (Carver & Fritz, 2016). In the past 30 years, several wilderness mapping projects 

have been conducted at global scale, which have revealed patterns and trends in the world’s 

remaining wilderness (McCloskey & Spalding, 1989; Sanderson et al., 2002; See et al., 2016; 

Watson et al., 2016). However, limitations in the scale (generalization), completeness and 

resolution of global datasets indicate that global-scale assessments often do not include many 

locally important wilderness areas which have high conservation value at national and local 

levels. In order to address this issue, national wilderness mapping studies based on national 

datasets have been conducted in several countries including Australia (Lesslie & Maslen, 1995), 

the United States (Aplet et al., 2010), the United Kingdom (Carver et al., 2002), Iceland 
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(Ólafsdóttir & Runnström, 2011), Denmark (Müller et al., 2015), Scotland (Carver et al., 2012), 

Austria (Plutzar et al., 2016), China (Cao et al., 2017) and Switzerland (Radford et al., 2019). 

A summary of previous wilderness mapping projects is shown in Appendix (Table S1). 

China is the world’s fourth largest country, covering 9.6 million km2 of terrestrial area, 

and is the world’s most populous country with 1.4 billion people. Despite its population and 

long history, China is one of the 17 mega-biodiverse countries identified by Conservation 

International (Mittermeier, 1997), and contains significant areas of wilderness (McCloskey & 

Spalding, 1989; Sanderson et al., 2002). China can therefore be defined as one of the “mega-

wild” countries in the world (Watson et al., 2018). However, with China’s recent rapid 

economic development and associated urbanization, wilderness areas have been threatened as 

land is converted for agriculture, urbanization and infrastructure projects (especially road 

construction) as well as facing threats from improper management of tourism activities, 

poaching, and resource exploitation such as the damming of rivers, forestry and mining. 

To date, China's protected areas cover 18% of the total terrestrial area (Cao et al., 2015; 

Xu et al., 2017; Miller-Rushing et al., 2017), just exceeding the 17% terrestrial target set by the 

Aichi Targets (CBD, 2010). The overall system consists of various types of protected areas 

including Nature Reserves, Scenic Areas, Forest Parks, Geological Parks, Water parks, Wetland 

Parks and Desert Parks (Zhao et al., 2016). Within this system, nature reserves protect over 15% 

of the total land area and therefore represent the main component within the protected area 

system (Xu et al., 2017). According to the regulations, there are three types of functional zones 

in nature reserves. These include core, buffer and experimental zones, of which the core and 
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buffer zones are designed to protect ecosystems in their natural state and therefore human 

access is strictly prohibited except for scientific research purposes. In this way, China’s nature 

reserves serve as the main protection mechanism for its wilderness areas. 

In addition, China’s national policy of “Eco-civilization” creates new opportunities in 

wilderness protection. China is currently undergoing a process of establishing a new national 

park system and reorganizing the existing protected area system (Zhao et al., 2016; Yang, 2017; 

Huang et al., 2018). In 2017, China unveiled the general plan for the national park system, 

which called for the strictest measures to protect the country's natural ecosystems, the first of 

which will be set up in 2020 (The General Office of the CPC Central Committee Office of the 

State Council, 2017). This plan states that the key role of Chinese national parks is to “protect 

the authenticity and integrity of the natural ecosystem”. The authenticity of ecosystems in this 

context refers to landscapes and ecosystems with high degree of wildness, free from human 

disturbance and lack of human artefacts (Yu et al, 2018; Ouyang et al, 2018). Additionally, the 

latest guidelines suggest that national park should be composed of Core Protection Zone(CPZ) 

and General Control Zone(GCZ), in which human activities are prohibited in the CPZ and 

restricted it in the GCZ (The General Office of the CPC Central Committee, 2019). In this 

context, national parks and nature reserves will together serve as the main protection 

mechanism of China’s wilderness areas in the future (Yang et al, 2019). A new proposal has 

been made to establish a Chinese Wilderness Preservation System (CWPS), consisting of the 

core protection zones of nature reserves and national parks, as a sub-system of the new 

protected area system (Cao & Yang, 2017). In this context, there is an urgent need to identify 
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specific wilderness areas with discrete and clear boundaries based on widely acknowledged 

international wilderness definitions and criteria (Casson et al., 2016). This information can 

support protected area planning in general, but especially the designation and zoning of new 

national parks and nature reserves.  

There is currently no official definition of wilderness in China, though the word “Huāng-

Yě” (荒野 in Chinese) is commonly used (Tin & Yang, 2016), and so Category 1b “Wilderness 

Area” identified by the International Union for Conservation of Nature (IUCN) is used as a 

preferred frame of reference. IUCN Category 1b wilderness areas are defined as “A large area 

of unmodified or slightly modified land, and/or sea, retaining its natural character and 

influence, without permanent or significant habitation, which is protected and managed so as 

to preserve its natural condition” (Casson et al., 2016). According to this definition, wilderness 

area should be a clearly defined geographical space with a clear boundary (Dudley, 2008), with 

no permanent human settlements and mechanized vehicle roads within its boundary, and its 

land cover should be in its natural state. This clearly calls for robust and reliable wilderness 

maps to support decisions about the location, extent, and designation of China’s wilderness 

areas under the proposed CWPS.  

However, little research on mapping wilderness patches with clear boundaries at national 

scale has been done in China. Previous studies have notable limitations including poor data 

quality, subjective indicator weights and classification of wilderness quality (Cao et al., 2017; 

Cao et al., 2018). In addition, only the wilderness continuum itself was mapped, leaving 

wilderness patches with clear boundaries still to be identified. While the initial inventory in 
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these previous studies is useful in showing the overall geographical patterns in wilderness 

quality at national level, it remains difficult to apply the wilderness concept in relevant 

landscape planning policies without identifying specific wilderness patches with discrete and 

easily applied boundaries. It is important that this knowledge gap is closed before the new 

protected areas system is fully designed and implemented. Therefore, this paper aims to: 

1. Compare and integrate Boolean and WLC approaches in order to identify wilderness 

patches with clearly defined boundaries, while also quantifying the wilderness quality 

within these patches. 

2. Apply this approach to China’s terrestrial area at national scale by creating a new 

integrated wilderness map, which can be used to refine the result in the previous study 

by Cao et al (2017) and serve as the baseline for monitoring changes of wilderness 

quality in the future. 

3. Assess to what extent these wilderness areas are protected in China’s existing nature 

reserve system, which could then further inform and strengthen wilderness protection 

policies in China. 

2 An integrated approach for mapping wilderness 

2.1 Advantages and limitations of the WLC approach 

In the book “Wilderness and the American Mind” Roderick Nash proposes that wilderness 

is just one extreme on a scale of environmental modification continuum from the “paved to the 

primeval” (Nash, 1993). This emphasizes the transition of landscapes from urban areas to 
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“pristine” nature resulting from varying levels and types of human modification. Using this as 

a model, Lesslie firstly proposed the use of the wilderness continuum concept in creating the 

Australian Wilderness Inventory (Lesslie & Taylor, 1985). This has subsequently been regarded 

as the main theoretical basis of mapping wilderness and has been widely used across various 

spatial scales and locations (e.g. Carver & Fritz, 1995; Aplet et al., 2000; Carver et al., 2002; 

Mc Morran et al., 2008; Comber et al., 2010; Ólafsdóttir & Runnström, 2011; Carver et al., 

2012; Kuiters et al., 2013; Müller et al., 2015; Lin et al., 2016; Cao et al., 2017; Radford et al., 

2019; Hou et al., 2019). The wilderness continuum is usually mapped using spatial indicators 

of naturalness and remoteness wherein it is assumed that if an area is more natural and more 

remote from human disturbance, then it is likely to be relatively wilder in comparison to those 

areas which are more developed and easily accessible.  

To date, the most commonly used method in wilderness quality mapping is Weighted 

Linear Combination (WLC) which is one of the classic approaches of GIS-based Multi-Criteria 

Evaluation (MCE) models (Carver, 1991; Malczewski & Rinner, 2015). The principal 

advantage of the WLC approach is that it recognizes the relative nature of the wilderness 

concept and maps the wilderness continuum by considering the full range of the data inputs, 

which then identifies both the wildest and least wild locations and all points in between(Lesslie 

& Taylor, 1985; Carver et al., 2012; Orsi et al., 2013; Radford et al., 2019). Using this method, 

several wilderness indicators can be weighted according to their relative importance and 

combined to produce a wilderness continuum showing the variation in wilderness quality 

across the chosen area of interest. By reclassifying the wilderness continuum using statistical 
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methods, the areas with the highest wilderness quality (i.e. the wildest areas) can be highlighted 

and used to define candidate wilderness protected areas. For example, Kuiters et al. (2013) 

selected the top 1%, 5% and 10% wildest cells for Europe by reclassifying a wilderness 

continuum based on remoteness from settlement and roads and naturalness of land cover. In 

another example Lin et al. (2016) segmented the wilderness continuum for the Three Parallel 

Rivers Region of China into 10 levels using the unsupervised classification method, with level 

1 identified as wilderness areas to be protected. In a study covering the whole of China, Cao et 

al. (2017) reclassified the wilderness continuum to divide all lands into one of five types, 

including high-quality, relatively-high-quality, medium-quality, low-quality wilderness areas 

and all non-wilderness areas. Elsewhere Radford et al. (2019) identified two types of 

wilderness areas in Switzerland, which lie within the top 10% and top 25% wilderness quality 

by segmenting the wilderness continuum. As demonstrated in these examples, the thresholds 

used to reclassify the wilderness continuum are usually quite arbitrary and clearly exert a 

significant influence on the areas identified.  

In this paper it is suggested that there are two major limitations in identifying wilderness 

areas by reclassifying the wilderness continuum. Firstly, it ignores many local de facto 

wilderness patches (without permanent human settlements, mechanized vehicle roads, and 

unnatural land cover), which could not reach the top percent in terms of overall wilderness 

quality at the broad scale. For instance, if a threshold of the top 10% wildest areas is used in 

selecting the wilderness areas to be protected across the whole area of interest, all other 

wilderness patches below this threshold will be ignored, regardless of their regional and local 
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conservation value. Secondly, this approach may conversely include some localized non-

wilderness areas where permanent human settlements, mechanized vehicle roads, and 

unnatural land covers exist within larger wilderness areas. Again, this may cause improper 

delineation of protected area boundaries resulting in increased management costs, or elevated 

conflict with local, affected communities. 

2.2 Integrating the Boolean overlay and WLC approaches 

To overcome the above limitations, we suggest integrating the Boolean and WLC 

approaches. The Boolean approach results in a simple map defining wild or not wild and, 

despite being a less common approach, has previously been used in creating a wilderness map 

of Norway (Brun, 1986) and the first global wilderness inventory (McCloskey & Spalding, 

1989). Because defined boundaries are required for legal purposes, the Boolean overlay 

approach can be very useful in producing maps that clearly demarcate areas as either wild or 

non-wild when drawing up protected areas designation and zoning. However, Boolean overlay 

often results in the loss of information on overall patterns when determining relative wilderness 

quality, whereas the WLC approach maps the full spectrum of wildness by considering the full 

range of the data inputs, together with the relative importance of the indicators using user-

defined weights.  

    By integrating the two approaches, their own strengths can be maintained, and weaknesses 

avoided or minimized. The main advantage of using such an approach is that, in a single project, 

researchers can identify both the discrete boundaries of specific wilderness patches, while also 

quantifying the wilderness quality within these. As a result, this integrated approach can be 
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used in identifying potential wilderness protected areas and thereby significantly enhance the 

planning of potential new national parks and nature reserves. 

3 Methodology 

To achieve the research goal, two GIS-based models were used. Boolean overlay was 

used to identify the wilderness patches, and a WLC model was used in quantifying variations 

in the wilderness quality of these patches. This integrated wilderness model is shown in Fig.1. 

Before processing, data were converted to raster format and projected using Albers Equal Area 

Conic projection, with pixel size 1km×1km. This resolution is deemed sufficiently fine for 

mapping wilderness at national scale in China. 

3.1 Data collection 

Data quality is extremely important in any spatial analysis, and the best available data 

were used here. Data sources are described in Table 1, including land use, railway, roads, 

settlements, population density, and boundaries of nature reserves. Data for the province of 

Taiwan that are currently lacking in mainland China datasets, were obtained and merged with 

that for mainland China to produce a single dataset for the whole study region. In addition, data 

outside of China were included within a 20 km buffer to avoid edge effects along the national 

border. Before processing, all data were cross-checked for consistency using overlay methods 

and visual comparison. 

Settlements and roads were classified into different levels based on careful comparison and 

interpretation between different datasets and classification standards across China. Settlements 
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were classified into three types based on the size and level according to the classification 

standard in the datasets. Level 1,2,3 settlements represent urban built area, towns, and villages 

or hamlets respectively. Specific information on settlement types is shown in Appendix (Table 

S2). Roads were classified into three types by function and traffic volume. Level 1 roads are 

national important roads or highways, while level 2 and level 3 represents regional and locally 

important roads. Specific information of road types is shown in Appendix (Table S3). 

3.2 Identifying wilderness patches using Boolean overlay  

Although there is no single definition of wilderness or method for identifying wilderness 

patches, most wilderness definitions have treated wilderness as undeveloped land with minimal 

human impact or influence (Lesslie & Taylor, 1985) and thus emphasize the presence of natural 

land cover types, lack of human settlements and absence of mechanized access from roads and 

railways (Leopold, 1921; US Wilderness Act, 1964; McMorran et al., 2008; Kormos, 2008; 

Fisher et al., 2010; Casson et al., 2016; European Wilderness Society, 2019). These could be 

regarded as minimum basic requirements for wilderness areas and thus form the basis for a 

Boolean analysis. These are explained as follows: 

1. Wilderness areas should contain only natural land cover. The IUCN 1b guidelines state 

that wilderness areas are unmodified or slightly modified areas, retaining their natural character 

and influence (Casson et al., 2016). According to the Land Management Law and land use 

classification in China, artificial land cover includes construction land and agricultural land. 

Construction land consists of urban land, rural settlement and other modified lands (including 

mines, large industrial areas, oil fields, quarries, roads and airports), while agricultural areas 
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consist of rice paddy and arable fields (Liu et al., 2014). Thus, those areas with artificial land 

cover were excluded in identifying wilderness patches. 

2. Wilderness areas should be roadless. The WILD Foundation defines wilderness areas 

as the most intact, undisturbed wild natural areas where human control is largely absent and 

there are no roads, pipelines or other industrial infrastructure (Kormos, 2008). Being free of 

mechanized vehicle roads/railways is seen as a key wilderness attribute in many wilderness 

mapping studies (Aplet et al., 2000; Selva et al., 2011; Ólafsdóttir & Runnström, 2011; Ibisch 

et al., 2016; Hawes et al., 2018) due to their varying adverse effects on natural areas (Forman 

& Alexander, 1998). After reviewing 282 scientific papers which provide information on the 

spatial effect of various roads, Ibisch et al. (2016) suggest that most of the impact of roads on 

natural areas declines significantly at distances greater than 1km from the roadway. Roadless 

areas were therefore defined here as areas at least 1 km away from all types of roads and 

railways. 

3. Wilderness areas should be free from permanent human settlements. IUCN 1b 

guidelines state that wilderness areas should be without permanent or significant human 

habitation (Casson et al., 2016). Human settlements (including built-up areas, towns and other 

small settlements) affect the natural environment in many ways. It has been found that human 

settlements exert negative effects on protected areas up to 1km away through direct pressures 

including habitat loss, noise, trampling, firewood collection, exotic species establishment, and 

edge effects on microclimate (Mcdonald et al., 2009; Mcdonald et al., 2008; Theobald et al., 

1997; Decker et al., 2017). We therefore excluded all types of human settlements with a 1km 
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buffer in identifying wilderness patches. It should be noted that some types of indirect effects 

of urban areas may influence natural places at distances much greater than 1km (e.g. air 

pollution can be transcontinental) (Mcdonald et al., 2009). For the purposes of this study, these 

indirect effects that are regional to global in scale were not included in defining the minimum 

basic requirements for the identification of wilderness patches.  

Using these three basic minimum requirements, all areas were classified into either 

“wilderness patches” and “non-wild” areas using Boolean overlay. Importantly, no minimum 

size (area) was included as a requirement for wilderness in this study. Although several 

wilderness definitions emphasize that wilderness areas should be “large”, there is no 

universally accepted size or area threshold for wilderness. Considering the spatial 

heterogeneity of large parts of China, and the need to maintain the raw information of the 

wilderness areas, it was deemed more appropriate to include all wilderness patches at this stage 

since even the smallest wilderness patches might be ecologically important in a local or 

regional setting. This is particularly true in eastern China where the landscape is more heavily 

populated and highly modified. However, it is suggested that an area threshold could be applied 

later in the planning process according to specific policy objectives. For example, home-range 

sizes can be used to filter out smaller patches in modelling habitat suitability for conservation 

of wilderness-dependent species. 
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3.3 Mapping wilderness continuum using Weighted Linear 

Combination 

3.3.1 Wilderness indicators mapping 

Indicators which appropriately reflect variations in wilderness across China’s varied 

landscapes were selected using previous studies as a guide (Lesslie & Maslen, 1995; Aplet et 

al., 2000; Carver et al., 2002; Ólafsdóttir & Runnström, 2011; Carver et al., 2012; Carver et al., 

2013; Kuiters et al., 2013; Müller et al., 2015; Plutzar et al., 2016; Hawes et al, 2018; Radford 

et al., 2019). These include biophysical naturalness of land use (BN), population density (PD), 

remoteness from settlement (RS), remoteness from roads/railways (RR), settlement density 

(SD) and roads/railways density (RD). The above six indicators, which were deemed effective 

to reflect the wilderness quality from different perspective, were combined using the WLC 

approach to generate a wilderness continuum map. The selected six indicators are explained in 

the following paragraphs together with details on their meaning and measurement. 

Biophysical naturalness of land use (BN) reflects the degree to which an ecosystem has 

been changed from its original state due to human modification by settlement, deforestation, 

and agriculture. This is often determined by assigning values to land use types based on expert 

knowledge (Carver et al., 2002; Carver et al., 2012; Kuiters et al., 2013; Liu et al., 2014; Müller 

et al., 2015; Radford et al., 2019). In this study, different naturalness values (from 1 to 10, with 

10 being the highest degree of naturalness) were assigned to different land-use types by 25 

Chinese landscape experts, and the mean value was used to assign the naturalness score to each 

land use type (See Table 2, and details in Appendix Table S4). To account for the influence on 
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naturalness caused by the local pattern of land use immediately adjacent to the observer (Carver 

et al., 2012), and following Lin et al. (2016), the mean value was calculated for each central 

cell within a moving window of 3x3 cells, so that the naturalness value varies smoothly across 

landscape.  

Population density (PD) is an effective indicator of human disturbance on natural 

landscapes (Ge & Feng, 2009; Liu et al., 2014; Müller et al., 2015). Population density is 

supplied as a 1km resolution raster. The mean value was calculated for each central cell within 

a moving window of 3x3km cells to smooth the data and avoid edge-effects. 

Remoteness from settlement (RS) is a commonly used wilderness indicator since it is 

widely regarded as a defining characteristic of wilderness (Lesslie & Maslen, 1995; Fritz & 

Carver, 1998; Ólafsdóttir & Runnström, 2011; Kuiters et al., 2013; Plutzar et al., 2016). This 

was calculated using Euclidean distance from the nearest settlement in this study. As different 

settlements have different relative importance, weights for the three levels of settlements were 

derived from the expert survey (Appendix Table S5) and the remoteness from settlements was 

calculated using a WLC sub-model such that it took their different impacts into consideration 

(Formula 1).   Remoteness = ∑ 𝑅𝑖𝑛1 ∗ 𝛽𝑖    (1) 

Where n=3, 𝑅𝑖 represents the Euclidean distance from level-i settlements, 𝛽𝑖 are weights for 

different levels of settlements. 

Remoteness from roads/railways (RR) is also a commonly used wilderness indicator 

(Lesslie & Maslen, 1995; Carver et al., 2002; Ólafsdóttir & Runnström, 2011; Carver et al., 
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2012; Kuiters et al., 2013; Plutzar et al., 2016), since roads have the single largest impact on 

wilderness by means of fragmentation, connecting human settlements and giving access to land 

along their length and so facilitating its exploitation (Ibisch et al., 2016). Considering the large 

spatial scale of China and the resolution of the analysis, remoteness from roads and railways 

(RR) was calculated using Euclidean distance from the nearest roads/railways weighted by type. 

Higher level roads carrying higher traffic volume therefore have greater impact than lower 

level roads. The weights for the railway and three types of roads were derived from the expert 

survey (Appendix Table S6). Formula (1) was used, where n=4, 𝑅𝑖 represents the Euclidean 

distance from railway and different levels of roads,  𝛽𝑖 are weights for different levels of roads 

and railways. 

Settlement density (SD) reflects apparent naturalness, or absence of human artefacts 

which is related to perception of wilderness and visual impact (Carver et al., 2012; Radford et 

al., 2019). Considering the distance decay effect, a kernel density function was used with a 

search radius of 20km. This is assumed to be the maximum visual distance on a clear day 

(Bishop, 2002), and is also the distance an individual can reasonably walk in a day over a rough 

terrain (Lesslie & Maslen, 1995). The resulting kernel density raster is based on a quadratic 

formula with the highest value at the center of the surface and tapering to zero at the full extent 

of the search radius thus taking the distance decay effect into consideration. Overall settlement 

density was calculated by combining the kernel density raster for Level 1, Level 2 and Level 3 

settlements in a WLC sub-model (Formula 2). Density = ∑ 𝐷𝑖𝑛1 ∗ 𝛽𝑖    (2) 

Where, n=3, Di is settlement density, 𝛽𝑖 are weights for different levels of settlements 
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derived from the expert survey. 

Roads/railways density (RD) reflects the density of the transportation infrastructure and 

associated human artefacts such as bridges, dams, power lines, etc. (Carver et al., 2013; 

Radford et al., 2019). Roads/railways density was again calculated using a 20km radius kernel 

density filter for all railways together with Level 1, Level 2 and Level 3 roads. The same 

formula (2) as settlement density (SD) was used, where n=4, 𝛽𝑖 are weights for different levels 

of road/railways derived from the expert survey. 

3.3.2 Indicator weighting based on expert survey 

Following Müller et al. (2015) and Radford et al. (2019), an expert survey was used to 

derive a robust set of weights based on professional knowledge. Twenty-five Chinese landscape 

experts familiar with the wilderness concept and with research experience in protected areas 

were asked to complete a survey designed to establish weights which were used in the WLC 

model.  

Before starting the survey, the meaning of the six wilderness indicators were explained in 

detail to make sure the experts understood these correctly. They were then asked to conduct the 

importance rating for: (1) the relative importance of the six wilderness indicators; (2) the 

relative importance of different levels of settlements in calculating remoteness from settlement 

and settlement density; and (3) the relative importance of different levels of roads and railways 

in calculating remoteness from roads/railway and roads/railways density. 

After collating the data from the expert survey, the weightings were calculated using 

Formula 3. The final indicator weight was produced based on the average value of the 
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importance rating given by the 25 experts, which could reflect the collective expert opinion.  𝑊𝑖 = 𝐼𝑅𝑖∑ 𝐼𝑅𝑖𝑛1     (3) 

Where 𝑊𝑖 is the indicator weight, 𝐼𝑅𝑖 is the importance rating (the average value of the 25 

experts) for the i-th indicator, and n is the number of indicators (n=6 in this case). The details 

of weights from the expert survey are shown in Appendix (Table S7). 

3.3.3 Combining the wilderness indicators using Weighted Linear Combination  

The six indicator maps (BN, PD, RS, RR, SD and RD) were used to calculate a wilderness 

continuum using the WLC model and the weights derived from the expert survey. Each 

indicator was normalized due to the different measurement units and data ranges. Following 

Lin et al. (2016) and recognizing that human disturbance on landscapes are limited and 

substantially unnoticeable after reaching a certain threshold, a logarithmic function (Formula 

4) was used to normalize the wilderness indicators so that all normalized values range from 0 

to 1. 𝑁𝐼𝑖 = lg(𝑎𝑖+1)lg(𝑎𝑖𝑚𝑎𝑥+1)    (4) 

Where NIi is the normalized indicator, 𝑎𝑖 is the value of the i-th indicator. 

The Wilderness Quality Index (WQI) was then calculated according to Formula 5 using a 

WLC model. WQI = ∑ 𝑋𝑖𝑛1 ∗ 𝑤𝑖    (5) 

Where n=6, X is the normalized wilderness quality indicator, 𝑤𝑖  is the weight of the i-th 

indicator derived from the expert survey, in this case, 𝑤𝑖 = (0.192, 0.170, 0.155, 0.155, 0.164, 

0.164). 
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3.3.4 Sensitivity analysis 

The uncertainty of the wilderness continuum map mainly comes from the indicator 

weights. Therefore, it was necessary to conduct a sensitivity analysis to show the influence of 

the indicators weights on the results. Following Carver et al. (2013) and Radford et al. (2019), 

sensitivity analysis on the uncertainty of the indicator weights was conducted (Feizizadeh et 

al., 2014). We calculated 25 sets of weights (reflecting the opinion from each expert) as 

randomized weights. Twenty-five wilderness continuum maps were then created by running 

the WLC model 25 times using different sets of weights. To demonstrate the overall sensitivity 

of the model and identify areas of localized sensitivity, the mean and standard deviation of the 

25 result maps were calculated. This shows those regions that are most likely to be affected by 

the uncertainty related to the indicator weights and where the opinions of experts on the 

estimation of wilderness quality are much more consistent and robust. 

3.4 Integrating and comparing wilderness continuum with 

wilderness patches 

After identifying the wilderness patches from the Boolean overlay and generating the 

wilderness continuum from the WLC model, the mean value of Wilderness Quality Index 

(MWQI) within each wilderness patch was calculated to create an integrated wilderness map 

where the MWQI value reflects the general status of wilderness quality of each wilderness 

patch. The wilderness patches were then classified into ten levels based on the MWQI value 

using the Natural Breaks (Jenks) method. As a result, wilderness patches were identified 
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according to minimum basic requirements using Boolean analysis and were also differentiated 

according to their wilderness quality using information derived from WLC methods. 

To better illustrate the difference of the Boolean and WLC approaches, we quantitively 

compared the wilderness continuum map with the wilderness patches map. First, the wilderness 

map from the previous study (Cao et al., 2017) and the wilderness patches map obtained in this 

study were quantitatively compared. In the previous study, the wilderness continuum was 

reclassified using certain thresholds to define wilderness areas (including high-quality, 

relatively high-quality, medium-quality and low-quality wilderness areas). Here we calculated 

the area of de facto wilderness patches and non-wild patches contained in the four types of 

wilderness areas identified by the previous study. Second, the new wilderness patches map and 

the wilderness continuum map were further compared. We reclassified the wilderness 

continuum into 10 categories using the equal area method and labelled these as top 10% to top 

100%. We then calculated the area of wilderness patches and non-wilderness patches in each 

of these 10 categories, to further illustrate the limitations of reclassifying the wilderness 

continuum and the advantages of an integrated Boolean and WLC approach. 

3.5 Assessing the conservation status of wilderness areas  

Nature reserves in China are currently the main component of the protected areas 

system, which has the strictest protection mechanisms for wilderness areas. To date, there are 

2644 terrestrial nature reserves of different levels (including 474 national nature reserves) 

which take up 14.94% of total land area (Xu et al., 2017). These are well represented within 

the World Database on Protected Areas (WDPA) (Chen et al., 2009) and comprise 13.75% of 
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the total land area of China, which is 92% of the officially reported nature reserves by area. 

This data is not complete, but is the best available data which is enough to represent most of 

the nature reserves in China. These were overlaid with the wilderness patches map to assess 

the conservation status of wilderness areas in China. 

4 Results 

4.1 Wilderness patches 

Just over 86,000 wilderness patches were identified by Boolean overlay with a total area 

of just over 4 million square kilometers, which comprises approximately 42% of China’s 

terrestrial area (see Table 1 and Fig. 2). The individual patches were classified into five types 

according to patch size (area), varying from Extra-small, Small, Medium through to Large and 

Extra-large wilderness patches (see Table 3). With increased patch size class, there is a 

corresponding and successive decrease in the number of patches in each class. There are over 

70,000 Extra-small wilderness patches (smaller than 10km2) though these account for only 3% 

of the existing total wilderness by area, while there are only 19 Extra-large wilderness patches 

(larger than 10,000km2) accounting for nearly 23% of the existing total. It can be seen from 

Fig. 2 that the Extra-large wilderness patches are found only within the provinces of Xinjiang, 

Tibet, Qinghai and Inner Mongolia. Large wilderness patches are mainly distributed in western 

China, while Medium, Small and Extra-small wilderness patches are distributed throughout 

most of the provinces, but crucially these can still be found in the densely populated and 

developed east of China. This is an important finding for maintaining a sample of protected 
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wilder areas in eastern China. 

4.2 Wilderness indicators and the wilderness continuum 

map 

The spatial pattern of the six wilderness indicators are shown in Appendix (Fig. S1). These 

maps show the distribution and spatial patterns of biophysical naturalness of land use, 

population density, remoteness from settlement, remoteness from roads/railways, settlement 

density and roads/railways density. The different indicators share the same broad pattern at the 

national scale, reflecting the significant difference in landscapes between east and west China 

wherein the degree of human influence and landscape modification in the west of China is far 

lower than that in the east. Despite the similarity at the national scale, the precise patterns in 

the six wilderness indicators are significantly different at regional and local scales.  

The wilderness continuum map of China combining the six indicators with the collective 

expert weights using the WLC model, is shown in Fig. 3. The regions with the highest 

wilderness quality are distributed in the northern part of Tibet, the western part of Qinghai, 

the southern part of Xinjiang and the western part of Inner Mongolia, while the regions with 

the lowest wilderness quality are distributed in coastal areas, north China plain, Sichuan basin, 

and other urban agglomeration regions. 

The sensitivity to indicator weight uncertainty in the WLC model is shown in Appendix 

(Fig. S2). The maximum standard deviation is around 0.034 and as such is quite low, indicating 

that the estimation of wilderness quality is hardly affected by the uncertainty related to indicator 

weights. Specifically, regions with higher standard deviation are found principally in the 
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regions with low wilderness quality highlighting the areas affected by human settlements, 

mechanized roads and artificial land covers. While in areas maintaining high wilderness quality, 

the standard deviation is much lower, demonstrating general agreement between the experts 

concerning the regions that are of highest wilderness quality. This indicates the robustness of 

the method in wilderness quality mapping using weights derived from the expert survey. 

4.3 Integrated Wilderness Map 

The integrated wilderness map is shown in Fig. 4. This is a combination of the Boolean 

wilderness patch map and wilderness continuum map derived using WLC model. This shows 

not only the spatial distribution of wilderness patches, but also the variation of wilderness 

quality within these patches. The wilderness patches are classified into ten levels based on the 

MWQI value using the Natural Breaks (Jenks) method. Level 1 patches have the lowest 

wilderness quality and the Level 10 patches have the highest wilderness quality. Table 4 shows 

the MWQI value range, patch number and total area for each level of wilderness patches.  

To illustrate the relationship between wilderness patch size and MWQI value, a scatterplot 

and linear regression line between patch size and MWQI are shown in Fig. 5. This shows that 

when the patch area of wilderness is smaller, the value range of MWQI is larger. In addition, 

there is a statistically significant positive correlation between wilderness patch size and mean 

MWQI value (Pearson’s r =0.498, the number of cases N=86090, and correlation is significant 

at the 0.01 level), which means the larger the wilderness patch is, the higher its overall 

wilderness quality will be. 
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4.4 Comparison of Boolean and WLC approaches 

The comparison between the previous study and the wilderness patches map is shown in 

Fig. 6. The wilderness map from the previous study(Cao et al., 2017) using WLC alone is 

shown in Fig. 6(a) while Fig. 6(b) shows the differences in identifying wilderness areas in the 

previous study when compared to the Boolean approach used here (see Table 5). Of the 

wilderness areas identified by the previous study (which account for up to 52.6% of the 

country's land area), 64.3% are de facto wilderness patches, but 35.7% are non-wilderness 

patches and so were potentially misidentified as wilderness in the previous study. The 

misidentified wilderness areas in the previous study mainly occur in the east of China. On the 

other hand, of those areas which were not defined as wilderness areas in the previous study, 

79.7% are non-wilderness patches, but there are 20.3% of wilderness patches which were 

missed. These missed patches from the previous study mainly occur in the west of China. This 

demonstrates a level of potential uncertainty in the previous study resulting from defining 

wilderness using a WLC-based wilderness continuum without considering Boolean factors in 

a country with marked differences in wilderness attributes between regions. 

The comparison of the new wilderness continuum map and wilderness patches map 

generated in this study is shown in Fig. 7. The higher the wilderness quality index, the larger 

the area of the wilderness patches, and the smaller the area of the non-wilderness patches. This 

in turn reflects the consistency of the wilderness continuum map and the wilderness patches 

map. However, while non-wilderness patches exist even in the top 10% (3.04% in area), 

wilderness patches also exist in each category. For example, there are 8.52% of wilderness 
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areas exist even in the top 70% category (with relatively low wilderness quality). This further 

illustrates the limitations of identifying wilderness areas by reclassifying the wilderness 

continuum, where there are large differences between regions. 

4.5 Conservation status of wilderness areas in China 

The protection status of wilderness areas in China is shown in Fig. 8. This shows the 

spatial distribution of wilderness areas that are currently protected and not protected by nature 

reserves. Of all wilderness patches (accounting for 42% of China's total land area), about 23% 

of these wilderness areas are covered by nature reserves, leaving the remaining 77% outside 

existing reserves. The 77% contain large areas of “no man’s land” and low productivity land 

including the Taklimakan desert, Badain Jaran desert, southern Tibetean plateau, etc. The result 

shows the obvious conservation gaps in China’s wilderness areas and indicates the potential 

for future expansion of the protected areas system. However, there may be an overestimation 

of the wilderness conservation gap due to the incomplete dataset of nature reserves. Besides, 

the ongoing process of reorganizing and expanding the protected areas system in China, 

especially the delineating of national park pilot areas, ecological space, ecological red-line 

areas and other types of protected areas, may provide other forms of protection for wilderness 

areas. This could be systematically assessed in the future when data becomes available. It 

should be also noticed that not all wilderness patches identified here should be strictly protected 

which is neither necessary nor realistic, calling for identifying conservation priorities for these 

wilderness patches in the next steps. 

 To facilitate wilderness protection strategies at provincial level, we calculated the area 
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of the protected (de jure) and non-protected wilderness areas (de facto) for each provincial 

administrative region. Detailed information is shown in Table 6, which could be used in 

protected areas system planning and wilderness protection at provincial level. 

5 Discussion 

5.1 Improvements compared to the previous study 

The previous study on identifying wilderness areas in China has highlighted limitations 

in data quality and methods (Cao et al., 2017; Cao et al., 2018). This study provides significant 

improvements to the overall wilderness map for China in two principal areas: improvements in 

data quality/handling, and improvements to modelling wilderness across large, spatially 

heterogeneous areas using integrated Boolean overlay and WLC model for the purposes of 

supporting planning and policy decisions on protected areas and ecological networks. 

In terms of data quality, the best available national scale data were used in this study, 

including population density, the level 2 and 3 settlements, level 3 roads, and updated land use 

data, all of which were not used in the previous study. In addition, the work described here 

integrates data for Taiwan, and avoids edge effects by including data for a buffer of 20 km 

outside the Chinese national border. In terms of indicator weighting, the previous study did not 

distinguish between different levels of settlements and roads, and the wilderness indicators 

were treated with equal weights. This study considered the different impacts of different levels 

of settlements and roads and obtained the robust wilderness indicator weights through the 

expert survey and sensitivity analysis.  
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In terms of the uncertainty in defining wilderness areas, whereas the previous study (Cao 

et al., 2017) used the standard WLC modelling approach on its own, this paper addressed the 

problem using an integrated approach combining both Boolean and WLC methods. According 

to the comparison with the previous study using only WLC model, possible problems may exist 

in two aspects. One is the neglection of wilderness areas with relatively low wilderness quality, 

which may result in gaps in conservation networks. Another is that, many non-wilderness 

patches will be included, resulting in unreasonable boundaries of wilderness protected areas 

and even community conflicts. By integrating the Boolean approach and MCE models, the 

integrated map can effectively identify wilderness patches as well as assessing the relative 

wilderness quality levels of these in a single analysis. Therefore, it is recommended to use this 

integrated approach to wilderness mapping instead of simply reclassifying the wilderness 

continuum to avoid the problems we have identified, especially in countries where different 

regions exhibit large, spatially heterogeneous differences in patterns of wilderness quality. 

5.2 Potential applications in wilderness conservation 

The data and maps produced here provide the basis for a wider discussion of approaches 

to wilderness mapping as well as for looking more closely at the wilderness patterns across 

China. These maps can also inform ongoing conservation efforts within the country.  

Firstly, the integrated wilderness map could be used in setting wilderness conservation 

target areas, especially in protected area designation or zoning of national parks, nature reserves 

and World (Natural) Heritage Sites (Kormos et al., 2016). Because large gaps in wilderness 

protection exist, there is an urgent need to designate new national parks and more nature 
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reserves that will cover these existing de facto wilderness areas. This should be based on the 

further assessment of conservation value of the wilderness patches, by incorporating datasets 

reflecting the ecological values in terms of biodiversity and ecosystem services.  

Secondly, the integrated wilderness map and wilderness continuum map could be used 

together to better model ecological connectivity, which is an important aspect of modern 

landscape-scale conservation (Worboys et al., 2010; Soule & Noss, 1998). Here ecological 

connectivity between the core wilderness patches can perhaps be best evaluated using the 

continuous wilderness map as a resistance surface in Linkage Mapper and Circuitscape (Kupfer, 

2012). Using such an approach, the fragmentation and isolation of the existing wilderness areas 

can be assessed, and ecological connectivity mapped to identify likely wildlife movement 

corridors. This is especially helpful in identifying any barriers and pinch-points in the network 

that need to be addressed through land use changes and creation of intermediate “stepping-

stone” refugia or built infrastructure such as wildlife bridges and underpasses.  

Thirdly, both the integrated wilderness map and the wilderness continuum map can be 

used for long-term monitoring of changes in wilderness quality. Once mapped at the beginning 

of a protected areas program, datasets can be updated at set intervals in the future and re-

mapped using the same approaches to create new wilderness maps. Comparing the new maps 

with the old maps will highlight areas of change (loss and gain) and so help inform landscape 

planning policy and management decisions in wilderness protection and rewilding. 

5.3 Limitations and future research 

While the integrated approach to wilderness mapping has clear advantages, it needs to be 
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recognized that the approach still has certain limitations. As with any GIS-based analysis that 

relies on combinations of off-the-shelf data, there are concerns with data quality associated 

with resolution, generalization and uncertainty. This is especially true of any country the size 

of China where data quality varies between different datasets and regions. Like their global 

counterparts, such national mapping projects are limited by difficulties of ground-based 

validation (Stokes & Morrison, 2003), which may then cause overestimation or 

underestimation of wilderness areas.  

In geographically diverse countries such as China, it is necessary to apply and adjust the 

proposed method at regional and local scales to support on-the-ground wilderness protection 

projects in the future (Flanagan & Anderson, 2008; Carver et al., 2012; Carver et al., 2013; 

Orsi et al., 2013; Ceauşu et al., 2015; Lin et al., 2016; Măntoiu et al., 2016; Tricker & Landres, 

2018; Adhikari & Hansen, 2018). At a local scale, more accurate datasets with on-the-ground 

validation are required. Additionally, more realistic models to map wilderness indicators at very 

high resolutions are needed. For example, at the national scale, remoteness from roads and 

settlements are based on simple Euclidean distance functions, whereas at the local scale a range 

of factors that influence on-foot travel times such as barrier features, topography, and 

vegetation can be incorporated to produce non-linear or anisotropic remoteness models (Carver 

et al., 2012; Carver et al., 2013). In addition, a wilderness perception survey could be 

incorporated in modelling wilderness (Kliskey & Kearsley, 1993; Kliskey, 1998; Flanagan & 

Anderson, 2008; Larkin & Beier, 2014). This is especially true in regions where social and 

cultural factors are important for nature conservation.  
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6 Conclusion 

This paper improves on previous work by Cao et al (2017) and confirms that the total area 

of wilderness in China accounts for 42% of its terrestrial area, with over 70% of the existing 

wilderness areas left outside of the nature reserves. While the concept of wilderness is not 

“black and white”, discrete boundaries are nonetheless required for planning and policy for the 

legal protection of wilderness. To this end, an integrated approach combing Boolean overlay 

and WLC models is proposed to map both discrete wilderness patches and internal variations 

in wilderness quality. We suggest that the updated maps could be used in further developing 

national wilderness protection policies. Besides, this approach could easily be adapted and 

modified for use in other countries. Should the Nature Needs Half and Half Earth visions 

(Locke, 2014; Wilson, 2016) be realized, and protected area targets met (Butchart et al., 2015), 

further work using this approach will be required to support the policy and management 

decisions crucial for future wilderness protection.  
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Table 1 

Data sources. 
Layer Dataset Resolution Source Year 
Land use  Land 

use/Land 
cover 

1km Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (RESDC) 
(http://www.resdc.cn ) 

2015 

Settlements Level 1 
settlements 

Vector National Catalogue Service for Geographic 
Information (NCSFGI) (www.webmap.cn) 

2015 

Level 2 
settlements 

Vector NCSFGI 2015 

Level 3 
settlements 
(mainland 
China) 

Vector NCSFGI 2015 

Level 3 
settlements 
(Taiwan) 

Vector Open Street Map (OSM) 
(https://download.geofabrik.de/asia.html)  

2017 

Railway Railway Vector NCSFGI 2015 

Roads Roads Vector NCSFGI 2015 

Roads Vector Open Street Map 2018 

Population 
density 

Population 
density 
(mainland 
China) 

1km RESDC 2015 

Population 
density 
(Taiwan) 

1km Socioeconomic Data and Applications Center 
(SEDAC). Gridded Population of the World (GPW 
version 4) 
(http://sedac.ciesin.columbia.edu/data/collection/gpw-
v4) 

2015 

Protected 
areas 

Protected 
areas 
boundary 

Vector World Database on Protected Areas (WDPA) 
(https://www.protectedplanet.net/) 
 

2016 

http://www.webmap.cn/
https://download.geofabrik.de/asia.html
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://www.protectedplanet.net/
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Table 2 

Biophysical naturalness of land use (0 = lowest, 10 = highest). 

  

Land-use type (Land-use code) Biophysical 
naturalness 

Land-use type (Land-use 
code) 

Biophysical 
naturalness 

Paddy field (11) 3.04  Intertidal zone (45) 8.76  

Dry field/Arable crops (12) 2.88  Bottomland (46) 8.48  

Woodland (21) 7.20  Urban land (51) 1.28  

Shrubbery (22) 7.16  Rural settlement (52) 2.12  

Open forest land (23) 6.88  Other construction land (53) 1.24  

Other woodland (24) 4.72  Sand land (61) 8.68  

High coverage grassland (31) 7.56  Gobi land (62) 9.12  

Medium coverage grassland (32) 7.48  Saline land (63) 8.36  

Low coverage grassland (33) 7.44  wetland (64) 8.84  

River canal (41) 4.36  Bare land (65) 7.48  

Lake (42) 8.12  Bare gravelly land (66) 8.44  

Reservoir pond (43) 3.60  Other unutilized land including 
alpine desert and tundra (67) 

9.52  

Permanent glacier and snowfield (44) 9.76    
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Table 3 

Classification of wilderness patches based on patch size. 

Wilderness 

patches type 

Patch size 

(km2)  
Patch number  

Ratio of patch 

number (%) 
Total area 

Ratio of total 

area (%) 

Extra-small  1~9 70223 81.57 124328 3.08 

Small 10~99 10181 11.83 310634 7.69 

Medium  100~999 5203 6.04 1649980 40.85 

Large  1000~9999 464 0.54 1028025 25.45 

Extra-large  ≥10000 19 0.02 925773 22.92 

Total —— 86090 100 4038740 100 
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Table 4 

Classification of wilderness patches based on mean value of Wilderness Quality Index. 

Patch 

type 
Mean WQI 

Number of 

patches  

Ratio of 

patches (%) 
Total area 

Ratio of total 

area (%) 

Level1 0.524052 - 0.679224 1411 1.64  1899 0.05  

Level2 0.679225 - 0.718797 4025 4.68  6097 0.15  

Level3 0.718798 - 0.746559 7393 8.59  14383 0.36  

Level4 0.746560 - 0.769291 10774 12.51  23890 0.59  

Level5 0.769292 - 0.789720 13187 15.32  36891 0.91  

Level6 0.789721 - 0.809536 14371 16.69  60134 1.49  

Level7 0.809537 - 0.830253 13454 15.63  116252 2.88  

Level8 0.830254 - 0.854041 9542 11.08  252002 6.24  

Level9 0.854042 - 0.882121 8079 9.38  930508 23.04  

Level10 0.882122 - 0.954130 3854 4.48  2596684 64.29  
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Table 5 

Comparison of the result map in the preliminary study and the new wilderness Boolean map. 

  

Area of 

defacto 

Wilderness 

patches 

Proportion 

of defacto 

Wilderness 

patches 

(%) 

Area of 

defacto 

non-

wilderness 

patches 

Proportion 

of non-

wilderness 

patches 

(%) 

Total area 

High-quality wilderness 336087  91.88  29694  8.12  365781  

Relatively high-quality wilderness 863944  80.60  208009  19.40  1071953  

Medium-quality wilderness 704335  65.16  376651  34.84  1080986  

Low-quality wilderness 1179151  51.86  1094619  48.14  2273770  

Other areas 939633  20.26  3699241  79.74  4638874  
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Table 6 

Conservation status of wilderness areas at provincial level. 

Provincial 

Administrative 

Regions 

Total 

Area(km2) 

Wilderness 

areas(km2) 

Ratio of 

wilderness 

areas (%) 

Area of 

protected 

wilderness 

areas 

Ratio of 

protected 

wilderness 

areas (%) 

Xinjiang 1660000 1190653 71.73  171855 14.43  

Tibet 1228000 859270 69.97  327393 38.10  

Inner Mongolia 1183000 636985 53.84  19136 3.00  

Qinghai 722300 523621 72.49  269621 51.49  

Gansu 454400 200981 44.23  44387 22.09  

Sichuan 481400 177689 36.91  45481 25.60  

Heilongjiang 473000 155946 32.97  11559 7.41  

Yunnan 383300 70500 18.39  16181 22.95  

Jilin 187400 43600 23.27  3946 9.05  

Guangxi 236000 20752 8.79  3751 18.08  

Shaanxi 205600 20466 9.95  1333 6.51  

Shanxi 156300 16611 10.63  619 3.73  

Guangdong 180000 13178 7.32  654 4.96  

Hebei 187700 12901 6.87  317 2.46  

Liaoning 145900 11829 8.11  544 4.60  

Fujian 121300 11603 9.57  668 5.76  

Ningxia 66400 10478 15.78  1271 12.13  

Taiwan 36000 9482 26.34  2095 22.09  

Jiangxi 167000 9190 5.50  1022 11.12  

Hunan 211800 5734 2.71  2179 38.00  

Jiangsu 102600 5487 5.35  299 5.45  

Hainan 34000 5424 15.95  727 13.40  

Guizhou 176000 4919 2.79  579 11.77  

Anhui 139700 3986 2.85  750 18.82  

Hubei 185900 3975 2.14  870 21.89  

Zhejiang 102000 3924 3.85  110 2.80  

Shandong 153800 2947 1.92  1081 36.68  

Henan 167000 2298 1.38  285 12.40  

Beijing 16800 2220 13.21  72 3.24  

Shanghai 6300 769 12.21  52 6.76  

Chongqing 82300 562 0.68  143 25.44  

Tianjin 11300 470 4.16  2 0.43  

Hongkong 1101 36 3.27  0 0.00  

Macao 25.4 0 0.00  0 0.00  
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Figures 

  

Fig.1. Flow Chart of GIS-MCE Wilderness Model in China.  
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Fig.2. Spatial distribution of wilderness patches identified by the Boolean overlay. 
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Fig.3. Wilderness continuum map of China.  
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Fig.4. Integrated wilderness map of China.   
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Fig.5. Scatterplot between patch size and MWQI. 
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(a) 

 

(b) 

Fig.6. (a) China wilderness map produced in the previous study (Cao et al., 2017). (b) Errors 

in identifying wilderness areas in the preliminary study. 
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Fig.7. The area proportion of wilderness patches and non-wilderness patches in 10 categories 

with different wilderness quality.  
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Fig.8. Conservation status of wilderness areas in China.  
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Appendix. Supplementary Data 

Table S1  

Summary of previous wilderness mapping research (continental and national scale). 

 Area/Country Researchers Indictors 

1 Europe Kuiters et al., 
2013 

①Naturalness of land cover and vegetation; ②
Remoteness from settlement; ③Remoteness from 
access; ④Terrain ruggedness. 

2 Australia Lesslie & 
Maslen, 1995 

①Remoteness from settlement; ②Remoteness 
from access; ③Biophysical naturalness; ④
Apparent naturalness. 

3 United States Aplet et al., 
2000 

①Solitude; ②Remoteness; ③Uncontrolled 
processes; ④Natural composition; ⑤Unaltered 
structure; ⑥Pollution. 

4 United 
Kingdom 

Carver et al., 
2002 

①Remoteness from local population; ②
Remoteness from national population centers; ③
Remoteness from mechanized access; ④Apparent 
naturalness; ⑤Biophysical naturalness; ⑥
Altitude. 

5 Iceland Ólafsdóttir & 
Runnström, 
2011 

①Proximity analysis (remoteness from access; 
remoteness from settlement; apparent naturalness); 
②Viewshed analysis. 

6 Scotland  Carver et al., 
2012 

①Perceived naturalness of land cover; ②Absence 
of modern human artefacts; ③Ruggedness of the 
terrain; ④Remoteness from mechanized access. 

7 Denmark Müller et al., 
2015 

①Human population density; ②Distance from 
selected modern human artefacts; ③Perceived 
naturalness of land cover; ④Ruggedness of 
terrain. 

8 Austria Plutzar et al., 
2016 

①Remoteness from settlement; ②Remoteness 
from access; ③Apparent naturalness; ④
Biophysical naturalness. 

9 China Cao et al., 2017 ①Remoteness from the settlements; ②Remoteness 
from vehicular access; ③Biophysical naturalness; 
④Apparent naturalness.  

10 Switzerland Radford et al., 
2019 

①Naturalness; ②Human impact; ③ 
Remoteness; ④Ruggedness. 
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Table S2 

Settlement Type and description. 
Settlement 
type 

Description Number of settlements 

Level 1 
settlement 

urban built area 3062 polygons and 
54,654km2 in total 

Level 2 
settlement 

usually represents towns (Xiang or Zhen in 
Chinese), as well as other forms of human 
settlements, including Mongolian yurts, grazing 
points, etc. 

64,370 points 

Level 3 
settlement 

Villages and hamlet (Cun in Chinese). Village is 
generally smaller than a town, below 10000 
people and hamlet is generally smaller than a 
village with just a few houses. 

3,479,119 points 
(3,464,473 in mainland 
China and 14,646 in 
Taiwan) 
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Table S3 

Road Type and description. 
 Road type Description Data 

Source 

Railway Railway —— NCSFGI 
Level 1 
Road 

 

Highway Used to connect political, economic and 
culturally important cities and regions, and is the 
backbone of the national highway network 

NCSFGI 

First grade 
road 

Mainly connected to important political and 
economic centers and leads to key industrial and 
mining areas. It is the national trunk road 

NCSFGI 

Second grade 
road 

Connecting political, economic centers or large 
industrial mines, or a heavily transported 
suburban road 

NCSFGI 

Motorway 
(5111) 

Motorway/freeway OSM 

Trunk (5112) Important roads, typically divided OSM 

Primary (5113) Primary roads, typically national OSM 

Level 2 
Road 

 

Third grade 
road 

Connecting counties and townships NCSFGI 

Fourth grade 
road 

Feeder roads connecting counties, townships, 
villages 

NCSFGI 

Secondary 
(5114) 

Secondary roads, typically regional. OSM 

Tertiary (5115) Tertiary roads, typically local OSM 

Level 3 
Road 

 

Substandard 
way 

Roads that have not yet reached any road grade 
standards which are more common in suburban 
and rural area 

NCSFGI 

Unclassified 
road 

Is not classified, usually small roads NCSFGI 

Minor roads 
(512x) 

Unclassified roads (5121)：Smaller local roads OSM 

Residential roads (5122)：Roads in residential 
areas  

Living street (5123)Streets：where pedestrians 
have priority 

Pedestrian roads (5124)：Pedestrian only streets  

Very small 
roads (514x) 

Service roads (5141)：Service roads for access 
to buildings, parking lots, etc 

OSM 

Track roads (5142)：For agricultural use, in 
forests, etc. Often gravel roads 

track_grade1 (5143)；track_grade2 (5144)；
track_grade3 (5145)；track_grade4 (5146)；
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track_grade5 (5147) 
  



58 

 

 

Table S4 

Results on naturalness of land use from the expert survey. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Mean

Value

Paddy field (11) 2 3 3 2 3 4 3 6 3 1 3 6 3 3 1 3 6 2 3 4 4 2 3 1 2 3.04

Dry field (arable crops, 12) 2 3 3 2 4 3 2 3 3 1 3 5 2 3 1 3 6 2 3 4 6 2 3 1 2 2.88

Woodland (21) 7 9 8 8 9 6 9 8 9 8 6 7 8 5 6 8 6 5 8 9 7 8 7 5 4 7.20

Shrubbery (22) 6 9 8 7 9 7 6 10 9 8 8 7 7 7 6 8 6 5 8 8 7 6 7 5 5 7.16

Open forest land (23) 6 9 8 7 8 7 5 10 7 8 5 8 7 7 5 8 7 5 8 9 7 6 7 4 4 6.88

Other woodland (24) 4 6 7 5 6 5 4 3 6 1 4 6 2 4 2 4 6 3 8 9 5 4 7 3 4 4.72

High coverage grassland (31) 8 9 9 8 9 8 8 10 9 6 7 7 6 5 6 7 6 9 6 9 7 10 8 9 3 7.56

Medium coverage grassland (32) 8 9 9 7 8 6 7 10 8 6 5 8 7 7 6 7 6 9 6 9 7 10 8 7 7 7.48

Low coverage grassland (33) 8 9 9 7 8 4 6 8 7 6 7 9 8 9 7 8 5 9 6 8 7 10 8 5 8 7.44

River canal (41) 9 6 4 4 2 2 5 4 5 1 1 5 4 4 5 6 5 1 8 9 5 4 5 3 2 4.36

Lake (42) 9 8 8 7 9 9 9 8 9 7 6 8 7 7 10 8 5 9 10 9 7 10 7 7 10 8.12

Reservoir pond (43) 2 1 8 4 6 1 6 3 2 1 3 2 1 3 5 5 3 2 5 9 5 4 4 3 2 3.60

Permanent glacier and snowfield (44) 10 10 9 10 10 10 10 10 10 10 10 9 10 10 10 10 9 10 10 9 9 10 9 10 10 9.76

Intertidal zone (45) 9 9 8 10 9 9 10 10 10 6 6 7 5 9 10 10 9 9 10 9 9 8 8 10 10 8.76

Bottomland (46) 9 9 8 9 8 9 9 10 8 6 4 7 5 9 10 10 9 9 10 9 9 8 8 10 10 8.48

Urban land (51) 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 2 2 1 3 1 1 1.28

Rural settlement (52) 1 3 2 1 2 3 2 4 1 2 1 3 1 2 2 3 3 1 2 3 3 1 4 2 1 2.12

Other construction land (53) 1 1 2 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1.24

Sand land (61) 9 10 9 8 8 9 8 10 8 9 9 8 7 10 8 10 8 9 10 8 7 10 8 7 10 8.68

Gobi land (62) 9 10 10 10 9 9 8 10 8 10 10 8 8 10 10 10 8 9 10 9 9 10 7 7 10 9.12

Saline land (63) 9 10 8 8 8 9 7 10 8 7 10 8 7 10 7 10 7 8 10 9 6 9 7 7 10 8.36

wetland (64) 9 10 7 9 9 9 10 10 8 8 10 7 7 10 10 10 8 8 10 9 8 9 8 8 10 8.84

Bare land (65) 9 10 7 9 5 9 4 8 8 5 4 7 7 10 5 10 8 8 8 9 6 6 8 8 9 7.48

Bare gravelly land (66) 9 10 8 10 8 9 7 10 8 5 10 7 8 10 10 10 8 8 8 9 6 7 8 8 10 8.44

Others (67) 9 10 10 10 10 10 10 10 8 10 10 8 10 10 10 10 8 9 10 9 8 10 9 10 10 9.52
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Table S5 

Results on weighting of different levels of settlements from the expert survey. 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Mean

Value
Weights

Settlment L1 10 9 9 10 9 10 9 10 10 10 10 9 10 10 10 10 8 5 10 9 10 10 5 10 10 9.280 0.388

Settlment L2 7 9 9 8 8 10 8 8 8 9 10 8 8 8 8 8 7 5 10 9 10 9 4 9 9 8.240 0.344

Settlment L3 4 8 10 7 6 10 6 6 5 8 6 7 4 6 5 6 6 5 8 8 4 6 3 8 8 6.400 0.268
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Table S6 

Results on weighting of railway and different levels of roads from the expert survey. 

 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Mean

Value
Weights

Railway 10 9 9 10 9 10 10 10 10 10 6 10 10 10 10 10 8 9 10 10 10 10 6 10 9 9.400 0.284

Road L1 10 9 9 10 9 10 10 10 8 10 10 9 10 10 10 9 8 10 10 9 10 9 5 10 8 9.280 0.281

Road L2 7 9 9 7 8 10 8 9 6 9 8 8 10 10 8 7 7 8 10 9 9 8 4 8 8 8.160 0.247

Road L3 3 7 10 4 7 9 6 7 4 8 6 7 8 6 5 5 6 7 6 9 6 4 3 7 6 6.240 0.189
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Table S7 

Results on weighting of the six wilderness indicators from the expert survey. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Mean

Value
Weights

BN 10 10 10 10 9 10 10 10 10 10 10 10 8 10 10 10 10 10 10 10 10 10 9 10 9 9.800 0.192

PD 7 8 9 9 8 8 10 8 10 10 9 7 8 8 8 10 8 8 9 10 10 10 8 9 7 8.640 0.170

RS 8 8 10 8 6 8 10 10 8 6 4 8 10 5 8 8 8 9 8 8 6 9 8 10 7 7.920 0.155

RR 8 9 8 7 4 9 10 8 9 9 3 8 10 5 8 8 9 9 8 8 6 9 8 8 9 7.880 0.155

SD 8 9 9 9 6 8 10 9 5 8 10 9 8 10 10 10 8 7 9 10 8 5 8 9 7 8.360 0.164

RD 8 10 8 9 5 9 10 10 7 6 8 9 8 10 10 10 9 7 9 8 8 5 8 9 9 8.360 0.164
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Figure S1 

Wilderness indicators map of China. (a) Biophysical naturalness of land use. (b) Population 

density. (c) Remoteness from settlement. (d) Remoteness from roads/railways. (e) Settlements 

density. (f) Roads/railways density. 
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Figure S2 

Sensitivity to indicator weight uncertainty in the WLC model. 

 

 


