The
University
NGy Of
&% Sheffield.

This is a repository copy of Testing robots using CSP.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150135/

Version: Accepted Version

Proceedings Paper:

Cavalcanti, A., Baxter, J., Hierons, R.M. orcid.org/0000-0002-4771-1446 et al. (1 more
author) (2019) Testing robots using CSP. In: Beyer, D. and Keller, C., (eds.) 13th
International Conference on Tests and Proofs (TAP 2019). 13th International Conference
on Tests and Proofs, 09-11 Oct 2019, Porto, Portugal. Lecture Notes in Computer Science,
11823 . Springer , pp. 21-38. ISBN 9783030311568

https://doi.org/10.1007/978-3-030-31157-5 2

This is a post-peer-review, pre-copyedit version of an article published in Tests and Proofs
(TAP 2019). The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-030-31157-5_2

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Testing Robots using CSP

Ana Cavalcanti!, James Baxter!, Robert M. Hierons?, and Raluca Lefticaru?

! Department of Computer Science, University of York, York, YO10 5GH, UK
2 Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK

Abstract. This paper presents a technique for automatic generation
of tests for robotic systems based on a domain-specific notation called
RoboChart. This is a UML-like diagrammatic notation that embeds a
component model suitable for robotic systems, and supports the defini-
tion of behavioural models using enriched state machines that can feature
time properties. The formal semantics of RoboChart is given using tock-
CSP, a discrete-time variant of the process algebra CSP. In this paper,
we use the example of a simple drone to illustrate an approach to gen-
erate tests from RoboChart models using a mutation tool called Wodel.
From mutated models, tests are generated using the CSP model checker
FDR. The testing theory of CSP justifies the soundness of the tests.

1 Introduction

RoboChart [38] is a domain-specific language for the design of robotic sys-
tems. Typically, robotic systems are described in the literature using state ma-
chines [50,44, 45,39] specified informally, with a notation that does not have
even a precise syntax. Recently, a number of domain-specific notations have
been proposed to enable tool support in the development of models, and auto-
matic generation of code. RoboChart is distinctive in its support to specify timed
properties, and in its formal semantics based on the process algebra CSP [32].

We can think of RoboChart as a profile for UML component and state-
machine diagrams. It is, however, enriched with facilities to specify time bud-
gets and deadlines. In RoboChart, a system is specified by a module, whose
components identify a robotic platform and one or more controllers. The robotic
platform identifies just the sensor and actuator functionality required for the
system. These requirements are modelled by variables, operations, and atomic
and instantaneous events that can communicate data.

Previous work on RoboChart has concentrated on verification by model
checking [37] and theorem proving [21]. RoboTool ? provides support for mod-
elling and automatic generation of a CSP model of a RoboChart module. Exten-
sive work has also been carried out in the verification of simulations of RoboChart
models [17]. Extensions of RoboChart deal with collections [16] involving robots
defined as instances of various modules, and with probabilistic properties [20].

A formal semantics also creates the opportunity for automatic generation of
sound tests from RoboChart models. In this paper, we present an approach via a

3 https://www.cs.york.ac.uk/robostar/

2 Cavalcanti et al.

& RoboChart Model

Fail:
Model (XMI) RoboTool (csp) B counter- Test
_ﬂ ® — / example | | €S
RoboChart
Metamodel Wodel Mutants H
ecore + OCL (XMI)J_
Wodel
program

Mutants FDR
(CsP)

Pass

Fig. 1. Overview of our testing approach

simple rescue application that uses a drone. The approach uses mutation testing
as supported by the tool Wodel [24,26]. We describe a few mutation operators
for RoboChart and the results of their application to our running example.

A high level overview of the approach is presented in Figure 1. The input
to Wodel is an XMI representation of a RoboChart model (developed using
RoboTool), the RoboChart metamodel, and Wodel programs that implement
RoboChart mutation operators. Wodel applies the RoboChart mutation opera-
tors to generate mutants, and eliminates ill-formed mutants, that is, those that
do not satisfy the well-formedness rules of RoboChart. For that, we use OCL
definitions of the RoboChart rules, which we briefly describe here. The valid
mutants can be loaded in RoboTool for analysis.

As already said, RoboTool generates CSP scripts for valid RoboChart models.
For each mutant, using the CSP model checker FDR, [23], we compare its CSP
specification to that of the original model. If the mutant is not a refinement
of the original model, FDR generates a trace of interactions common to both
models and a continuation that is forbidden by the original model. This is what
is needed to define a test for traces refinement as identified in the CSP testing
theory [11]. We illustrate this approach for our drone mutants.

The structure of this paper is as follows. Section 2 gives an overview of
RoboChart and introduces our running example. Wodel is presented in Section 3,
and CSP and FDR in Section 4. Our testing approach is the subject of Section 5.
Finally, we discuss related work in Section 6, and future work in Section 7.

2 RoboChart

Our example is a simple rescue application that uses a drone to deliver some
relief (water, mask, and so on) to a given target location identified via some
feature (a person or a vehicle, for instance) in a particular direction. Figure 2
presents the RoboChart model. The module, called Rescue, includes the defini-
tion of a robotic platform Drone and a controller Finder. In general, a module
can have several controllers running in parallel; in our example we have just one.

The platform provides two operations: move(lv: nat) and turnBack(), and de-
fines five events: switchOn, takeoff, land, found, and origin. They are abstractions

Testing Robots using CSP 3

) Rescue Moving
8 move(lv: nat)
«§ Finder turnBack()
5 Drone (R) Moving
[P] Moving (i) Flying
(i) Flying () camera Camera
(D camera 4 Found
i] < origin
'Iswm'hOn ! IswitchOn
[Jtakeorr __ Flying
H 42 ref stm_ref0 = FinderM b {:: rl: ;DFF
. found
origin
£3 Finderm
% Moving
DELIVERY: nat=2
TCLv:nat
TCToP:nat=1
Flying
() Camera
switchOn
Looking found/land Delivering —
switchOn ftakeoff; = oun
OFf wait (TOP) entry move(LV) entry wait (DELIVERY)
origin
- takeofF
Returning
origin/land [takeoff; wait (TOP); turnBack(); move(LV) land
Robotic platform of Controller £2 State machine
(@) Used interface [P] Provided interface (® Required interface
& Module TC Constant 0 Operation
Event [] Event @ [nitial junction

Fig. 2. RoboChart model of a simple rescue drone

for sensors and actuators. We have an on/off button, represented by the event
switchOn, and a motor that can be used to raise the drone off the ground, ab-
stracted by the event takeoff. Using the motor, we can also request that the
drone lands, moves forward with a particular speed, or turns back to return to
its origin: this is abstracted by the events land, and operations move(lv: nat) and
turnBack(). Finally, a camera can be used to identify the target of the rescue
operation, abstracted by the event found, or the origin.

Operations and events can be declared in interfaces. In the example, we have
interfaces Flying, Moving, and Camera also in the controller to define that it
requires all of the operations provided by the platform, and that it has the same
events. Connections between events define the dataflow. In general, connections
can be between events of different names, but of the same type. In our simple
example, we use the same event names in every component.

4 Cavalcanti et al.

Connections with the platform are asynchronous. Connections between con-
trollers can be either synchronous or asynchronous. Although implementations
are typically asynchronous, synchronicity can be defined for abstraction.

The behaviour of a controller is defined by one or more state machines. The
use of several state machines can represent different threads of computation or
provide modular description of functionality. In our example, we have just one
state machine FinderM. The notation is, by and large, standard.

Of note in the state machine notation is the fact that it is a self-contained
component that declares all the required variables and operations, and events
that it uses. In our example, these are all those provided by the platform (and
required by the controller for use in the machine). This means that a state
machine can be treated independently in verification, simulation, and testing.

A machine can also declare local variables, constants, and clocks. In our
example, we have three constants DELIVERY, LV, and TOP, which define the
amount of time that the drone stays on the ground once it finds its target, the
speed with which it moves, and the time it takes to take off.

The RoboChart notation to specify entry, during, exit, and transition actions
is well defined. It is a language with assignments, operation calls, sequence,
conditional, and inputs or outputs via events. Of note is the availability of time
primitives. For instance, wait(TOP) is an action that pauses for TOP time units.
In the example, it is used in the transition from the state Off to the state Looking.

The behaviour of the Rescue system is as follows. In the initial state Off,
indicated by the initial junction, it accepts a request to switchOn, and, as a
result, there is a takeoff. After that, the drone waits for TOP time units before
it moves to the state Looking. Upon entry in Looking, the operation move(LV)
is called and the drone proceeds until the target is reached as signalled by the
input event found. When that happens, the controller issues a command to land.
The drone moves to the state Delivering, whose entry action forces a pause of
DELIVERY time units. Afterwards, the transition to the state Returning is taken,
which causes the drone to takeoff, turnBack, and move again. In Returning, the
transition back to Off is taken when the origin is found, and then the drone lands.

A full account of RoboChart, including its semantics, can be found in [38].
Several other examples are available at https://www.cs.york.ac.uk/robostar/,
where the project files for this example can also be found.

3 Mutation testing and Wodel

The idea behind mutation testing is that we take an entity p, such as a piece of
code or a model, and use mutation operators to change (mutate) p in order to
simulate potential faults. If we have an initial entity p and a set M of mutants,
then a test suite T is assessed by determining what proportion of the (non-
equivalent) elements of M are distinguished from p by T (are killed by T).
The essential concept is that if a test suite T is good at distinguishing p
from its mutants, then T is also good at distinguishing p from some unknown
correct version of p (if p is faulty). In addition, mutation testing can be used to

Testing Robots using CSP 5

drive test-case generation: given a non-equivalent mutant m of p, one might aim
to generate a test case that kills m. This is the use of mutation testing that we
discuss here, although we use refinement rather than equivalence.

There is potential to automate many parts of mutation testing, such as the
generation of mutants and the execution of test cases on the mutants. As a result,
the application of mutation testing is typically supported by a tool. However,
mutation testing tools are normally language specific, leading to the need to
develop a new tool whenever we consider a new language.

This has motivated the development of Wodel, which is a domain-specific
language and tool for model-based mutation [24,26]. Wodel has been used in
a range of case studies, for example, automatic generation of exercises for au-
tomata training [25] or mutation of security policies [26]. Wodel is metamodel
independent, which means that users can define their own mutation operators
for arbitrary metamodels — Wodel comes with some predefined examples: finite
automata, probabilistic automata, and UML class diagrams.

Wodel is based on Eclipse Modelling Framework (EMF) and is available as
an Eclipse plugin. The framework provides an editor to define the mutation
operators, a compiler that transforms Wodel programs into Java code, metrics
for mutation footprints, which provide information about the static and dynamic
coverage of a metamodel and models used, a seed model synthesizer, and an
extensibility mechanism that allows pipelining external applications.

Wodel provides high-level mutation primitives, such as, creation, deletion,
reference reversal, attribute modification, object retyping, and object cloning,
together with strategies for their customization and support for composition of
mutation operators. The Wodel IDE provides an easy way for adding exten-
sion points, which allows users to register domain-specific post-processors to be
executed upon mutant generation, for instance, to identify mutant equivalence.

Section 5 gives example of Wodel statements to implement operators.

4 CSP and FDR

Communicating Sequential Processes (CSP) [46] is a process algebra. Computa-
tion is modelled by processes, whose behaviour, in its simplest form, is described
in terms of traces, that is, sequences of events. A CSP event is an atomic and
instantaneous communication on a channel that may be represented by a simple
flag, or carry values of particular types as parameters.

Processes can be defined using the basic processes Stop, representing dead-
lock, Skip, representing termination, and DIV, representing divergence (that is,
livelock). Events can be prefixed to a process P. For example, c.e — P is a
process that is ready to engage in the event c.e and then behave like P.

CSP events are defined by a channel name and, optionally, parameters. As
illustrated, a parameter e can be appended to a channel name ¢ using a dot
(c.e). This represents a communication of e via ¢. An exclamation mark can be
used (c!e) to indicate that e is output on c. Use ¢?z of a question mark indicates
that the parameter is accepted as input and bound to the variable name z.

6 Cavalcanti et al.

Processes P and @) can be combined using various operators, such as, internal
(nondeterministic) choice (P M Q) for the process, external choice (P O @) made
by the environment, parallel interleaving (P ||| @), parallel composition with
synchronisation on an alphabet of events A (P |[A]| @), and interrupt (P A Q).

A process @ is said to refine another process P, written P T @, if every
behaviour of @ is a possible behaviour of P. This allows for incremental devel-
opment of a correct program from a specification of how it should behave. In
our work, refinement is the conformance relation used in testing. So, a mutant
that merely refines the original model is not useful: it does not identify a fault.

CSP has various semantic models that permit reasoning about processes.
These models vary in the aspects of behaviour that they can capture, and,
therefore, in the processes they can distinguish. The most commonly used se-
mantic models for CSP are the traces model, the stable failures model, and the
failures-divergences model. Here, we consider just the traces model, and traces-
refinement. We say that P is traces refined by @, written P Cp @ if the set of
traces of () is included in that of P. This is our notion of conformance here.

To capture the timed behaviour of RoboChart models, we use a variant of
CSP that includes a special event tock to mark the passage of time. The testing
theory for this version of CSP is ongoing work, based on the testing theory for
the refusal-testing semantics of CSP. Here, as already mentioned, we consider
just traces refinement. We note, however, that testing in CSP-based theories can
consider traces refinement [11, 12] in isolation, and use an additional conformance
relation conf to deal with refusals. Exhaustive test sets for the richer notions of
refinement include the exhaustive test sets for traces refinement and conf. We
expect that the same approach works for tock-CSP and its notion of refinement.

Using their semantic models, CSP processes can be reasoned about using
mathematical proof, but automatic analysis of finite-state CSP processes can
be performed using model checking. This is implemented by the tool FDR, [23],
which checks whether one process refines another, and can produce counterex-
amples when a refinement does not hold. The semantics for RoboChart models is
calculated in RoboTool using the ASCII syntax for CSP (called CSP-M) that en-
ables checking of RoboChart models using FDR. We use checking of RoboChart
models in FDR as part of the testing strategy described next.

5 Mutation-driven testing

In this section, we present our approach to test generation using Wodel and
FDR. First, we present in Section 5.1 a few mutation operators and their imple-
mentation in Wodel. We then discuss how ill-formed mutants are discarded in
Section 5.2. Finally, in Section 5.3, we explain how we generate tests.

5.1 Mutation operators

To generate tests from RoboChart models, we have used a number of mutation
operators inspired by other works that use Wodel [24-26], and that consider

Testing Robots using CSP 7

Mutation

‘Wodel blocks #

mStActEnDu

retype one EntryAction as DuringAction 2
// modifies a state by changing an entry
action into a during action

mStActEnEx

retype one EntryAction as ExitAction 2
// modifies entry into ezit action

mTransSource

tr = select one Transition where { source <> 12
one Initial}

modify target “source from tr to other State

// changes the start state of a transition,
except the ome from the initial junction

mTransTarget

modify target “target from one Transition to 15
other State
// changes the ending state of a transition

mTransTrigger

interf = select one Interface where {events <> 6
null}

ev = select one Event in interf—>events

tg = create Trigger with {event = ev}

modify one Transition with {trigger = tg}

// modifies a transition by replacing its
trigger with another event

rSeqStatement

ss = select one SeqStatement 12
remove one Statement from ss—>statements
[1..5]
remove all SeqStatement where {statements =
null}
// randomly deletes 1—4 statements from a
sequence and all empty sequences

rState

st = select one State 3

remove all Transition where { source = st}

remove all Transition where { target = st}

remove st

// removes a non initial state and all
transitions from or to that state

rTran

remove one Transition where { source <> one 4
Initial}

// deletes one transition, except the one from
initial junction

rTranAction

tr = select one Transition where {action <> 2
null}

remove one Call from tr—>action

remove one SendEvent from tr—>action

remove one Action from tr

// removes the action associated with a
transition (call or send event)

Total

58

Table 1. Example of mutations used and corresponding Wodel blocks

8 Cavalcanti et al.

mutations for UML class diagrams [27], state models [49], or interfaces [19]. We
have adapted the operators to the particularities of the RoboChart metamodel.
Many of them apply to elements of state machines.

Some operators that we have applied to the example from Figure 2 are given
in Table 1. In the first column, we give the name we have assigned to the mutation
operator. The second column gives a block of Wodel statements that implements
the operator. The third column gives the number of different valid mutants
generated using the mutation operator. In total, for the example in Figure 2, we
have used 9 mutation operators and generated 58 valid mutants.

In RoboChart, a state can have associated actions identified in the meta-
model as EntryAction, DuringAction, or ExitAction, all having as super type
Action. We can use the Wodel statement retype to change one object type
with another — the implementations of the mutation operators mStActEnDu
and mStActEnEx use retype to change the type of a state action.

Wodel provides flexible statements such as remove, create or clone, which
make it possible to delete or create new objects. These statements can be used
in conjunction with different selection strategies, such as select one, or all, or as
specified by a clause where criteria. Also, it is possible to change objects using
a statement modify object selection strategy with attribute set.

We can redirect the source or target of a reference to another object, as illus-
trated by the implementation of the operators mTransSource and mTransTarget.
A RoboChart Transition has the source and target states specified by attributes
called source and target in the RoboChart metamodel. These attribute names,
however, are also Wodel keywords. To differentiate between Wodel syntax and
RoboChart metamodel elements, the latter are preceded by a caret symbol ~ (a
special notation used in the Xtext*-based editor for Wodel programs in order to
avoid this duplicity). This is illustrated by the implementation of the mutation
operators mTransSource, mTransTarget, and rState.

In Wodel, it is possible to compose statements, as shown in the implementa-
tion of rSeqStatement, where a remove statement is repeated a random number
of times between [1..5], to delete an action from a sequence. If all the statements
have been deleted, then the empty SeqStatement element is further removed.
Similarly, elements that would become invalid (having null attributes) are deleted
from the model. For instance, the incoming or outgoing transitions from a state
that is removed are also removed — see the rState operator.

The output of Wodel consists in XMI files; they have the same structure
as the initial model, and describe mutants that conform to the metamodel and
well-formedness rules of RoboChart. For Wodel validation of the mutants we
have embedded in the metamodel the RoboChart well-formedness rules using
the OCLinEcore language. They are further discussed in the next section.

For illustration, we include in Figures 3 and 4 the state machines for two
mutants of the model in Figure 2. The module and controller of the mutants
are the same, except that their names are changed to make them unique in a

* https://www.eclipse.org/Xtext/

Testing Robots using CSP 9

£2 mStACtEnDu_Output0_FinderM

mStActEnDu_Outputd_Moving
DELIVERY: nat=2
TCLv:nat
TCTOP: nat=1
(i) mStActEnDu_Output0_Flying
(i) mStActEnDu_Outputd_Camera

? switchOn
Looking Delivering
switchOn/takeoff: found/land - - found
OFf wait (TOP) entry move(LV) during wait (DELIVERY)

origin

- takeoff
Returning
Py /takeoff; wait (TOP); turnBack(); move(LV) land

Fig. 3. Mutant for RoboChart model in Figure 2 — the Delivering state has its entry
action changed into a during action (mStActEnDu operator)

d rSeqStatement_Output3_FinderM

% rseqStatement_Output3_Moving
DELIVERY: nat=2

TCLv:nat

TCTOP: nat=1
rSeqStatement_Output3_Flying
() rseqStatement_Output3_Camera

? switchOn
. Looking Found/land Delivering —
OFf swt;:"la?tn(!r\:;l;)eufﬁ entry move(LV) entry wait (DELIVERY) oun
origin

Returning fekeoff
origin/land Jwait (TOP); turnBack() s

Fig. 4. Mutant for RoboChart model in Figure 2 — two actions are removed from the
sequence in the transition from the Delivering state (rSeqStatement operator)

context (like a RoboChart package, for example) that includes both the original
model and the mutant. We explain below why this is important.

The machines in the mutants, on the other hand, are obtained by applying
two different mutation operators. For the mutant in Figure 3, we have used
the operator mStActEnDu that changes the entry action of a state to a during
action. We have applied it to the Delivering state in Figure 2. To obtain the
mutant in Figure 4, we have used rSeqStatement. We have applied this operator
to the action in the transition from Delivering, and it has removed two basic
RoboChart actions: the event takeoff and the call move(LV).

5.2 OCL constraints

Application of some operators may lead to an invalid mutant, that is, a mutant
that does not satisfy the RoboChart well-formedness conditions. An example

10 Cavalcanti et al.

context Connection
inv Cn9: (not self.bidirec
and ControllerDef.alllInstances ()
->exists(c | c.connections->includes(self))
and self.from.oclIsKindOf (StateMachine)
) implies self.from.oclAsType(StateMachine).stmDef ()
.ncInputEvents () ->excludes (self.efrom)

Fig. 5. OCL constraint for RoboChart well-formedness condition Cn9

of such an operator is mTransTrigger, which changes the event in a transition
trigger. An application of mTransTrigger may give rise to a transition whose
trigger event is associated with an outgoing (non-bidirectional) connection from
the state machine. In this case, the result is an event that is used as an input,
but associated with a connection that indicates it is used as an output. This
violates the RoboChart well-formedness condition called Cn9 stating that events
connected by such connections must not be used as inputs.

To exclude invalid mutants, we have translated the well-formedness condi-
tions of RoboChart into Object Constraint Language (OCL), a language for
specifying constraints on the structure of a metamodel. This allows the condi-
tions to be considered by Wodel along with the RoboChart metamodel. Wodel
then eliminates mutants that are not valid according to the constraints.

As an example, we provide in Figure 5 the OCL constraint for the RoboChart
well-formedness condition just described. The context declaration at the start
indicates it is a constraint on a Connection, the RoboChart metamodel ele-
ment representing connections. The constraint Cn9 is specified as an invariant
for this model element. It is formalised as an implication (implies), where the an-
tecedent identifies the connections to which the constraint applies. Specifically, it
applies when self, the initial connection being considered, is not bidirectional,
is contained in the connections of some ControllerDef (that is, it is a con-
nection of a controller rather than a module), and has a source (self.from) of
type (oc1IsKindOf) StateMachine (that is, it does not connect from the bound-
ary of the containing controller). ControllerDef.allInstances() identifies all
controllers in the model, and exists(c | c.connections->includes(self))
requires that there exists such a controller ¢ whose connections includes self.

Where these conditions are met, the constraint checks the source, from, of
self, casting it to the StateMachine type and applying a function stmDef ()
to obtain the definition of the state machine. The events used as inputs by the
state machine are then identified by another function ncInputEvents(), and
the event that self connects from (efrom) is required to not be among them.

The full set of OCL constraints can be found in the RoboChart reference
manual [52]. These constraints cover most of the well-formedness conditions of
RoboChart, but there are three that are not possible to define in OCL without
an impractical amount of effort. The first is Cn4, which requires types of the

Testing Robots using CSP 11

source and target events of a connection to agree. Checking this would involve
an implementation of a large part of the RoboChart type system within OCL.
The second condition not included in our OCL constraints is V1, which re-
quires that the initial value of a variable must agree with those of the declarations
of that variable in outer scopes. Since the initial value may be given by an arbi-
trarily complex expression, this requires an evaluator for RoboChart expressions.
Due to the complexity of the RoboChart expression language, this is non-trivial.
The final such well-formedness condition is J2, which states that the guards
of the outgoing transitions of a junction must form a cover. Since these guards
are arbitrary expressions that need to be checked for all instantiations of the
variables within them, this is a condition that can, in general, only be checked by
a theorem prover. It is beyond the capacity of OCL to express such a constraint.
The files with the Wodel mutants can be imported back into RoboTool,
so that their tock-CSP model is generated. Mutants that are not well formed,
because they do not satisfy Cn4 or V1, are identified by RoboTool. For those,
no CSP model is generated. For those that do not satisfy J2, a CSP model is
generated, but a deadlock check can be used to identify the issue.
So, there is no real problem in importing potentially invalid mutants into
RoboTool. Only tests based on valid mutants are generated, as explained next.

5.3 Test generation

With the CSP models for both the original model and for a mutant (automat-
ically generated by RoboTool), we can use the FDR model checker to generate
tests (for traces refinement). This is achieved by checking whether the original
model is traces-refined by the mutant. If it is, the check passes, and in this case,
the mutant does not identify a fault. No test is generated. Of the 58 mutants in
our example, five do not identify a fault and so are not useful.

If the mutant does identify a fault, FDR provides a counterexample for the
check. This is a trace that is common to both models, except for its last event,
which is allowed by the mutant, but not the original model. This last event is,
therefore, a forbidden continuation for the preceding trace. For example, for the
mutant in Figure 3, the check raises the following counterexample.

Rescue_switchOn.in -> Rescue_takeoff.out -> tock ->
moveCall.1l -> moveRet -> Rescue_found.in -> Rescue_land.out ->
Rescue_takeoff.out

This indicates that, for the Rescue module, if we observe interactions char-
acterised by the events switchOn and takeoff, and, after one time unit, the
time required for taking off, we observe a call and return of the operation move
with parameter 1, and then the events found and land, there should not be an
immediate takeoff. This would not allow time for the delivery of relief. Such un-
desirable behaviour arises in the mutant, because the change of the entry action
of Delivering to a during action allows it to be interrupted by takeoff.

12 Cavalcanti et al.

For the mutant in Figure 4, the check raises the following counterexample.

Rescue_switchOn.in -> Rescue_takeoff.out -> tock ->

moveCall.1l -> moveRet -> Rescue_found.in -> Rescue_land.out ->
tock -> tock -> tock —>

turnBackCall

Here, the forbidden continuation is the call of turnBack after the delivery and
take off time (three time units), but without the actual takeoff. In this case,
we have an attempt to turn the drone on the floor, which may damage it. The
mutant captures this fault because its takeoff event has been removed.

These traces and forbidden continuations are exactly the data that we need
to construct a test for traces refinement. In the CSP testing theory [11], a test is
characterised by a function T7(t,e) for a trace ¢ and a forbidden continuation.
In the first example above, the trace is shown below.

(Rescue_switchOn.in, Rescue_takeoff .out, tock,
moveCall.1, moveRet, Rescue_found.in, Rescue_land.out)

The forbidden continuation is Rescue_takeoff.out. As may be expected, the use
of the RoboChart events and operations of the robotic platform of a module
are captured in the CSP model as CSP events. The CSP events for RoboChart
events are tagged to indicate whether they are inputs or outputs, and the CSP
events for operation calls are tagged with the arguments.

The test corresponding to this trace and forbidden continuation is charac-
terised as a CSP process and it is shown below. It uses special events to indicate
whether the verdict of the test execution is inconclusive, fail or pass.

inc — Rescue_switchOn.in — inc — Rescue_takeoff .out — inc — tock —
inc — moveCall.l — inc — moveRet —

inc — Rescue_found.in — inc — Rescue_land.out —

pass —

Rescue_takeoff .out — fail — Stop

The verdict is given by the last (special) event observed before a deadlock. So,
the test first raises the inc event, and then offers the input to switchOn the drone.
If it is refused, we have a deadlock, and the verdict is inconclusive as it has not
been possible to drive the drone through the trace of events of interest for this
test. If it is accepted, an additional inc event is raised, and the output takeoff is
expected. This goes on, until the last event land of the trace is observed, when
the test raises the verdict event pass. If there is now a deadlock, the test passes.
If, however, we observe the forbidden event takeoff, then there is a fault, and the
verdict event fail is finally raised, before the test deadlocks.

The testing theory of CSP guarantees that this is a sound test. Any fault
identified is indeed a fault. The testing theory also guarantees exhaustiveness: if
all traces of the original model and all their forbidden continuations are consid-
ered, then we can uncover all faults if we can reveal all behaviours under testing.
These are, however, too many tests. Mutation helps us to select some.

Testing Robots using CSP 13

6 Related work

Mutation has been used in connection with several notations to guide test-
generation or assess the quality of a test suite [48,1, 3]. As said above, it tackles
the explosion of test cases by selecting on which errors to concentrate [22, 3, 33].

Budd and Gopal [10] have pioneered work on mutation testing with specifica-
tions based on predicate calculus. Mutation has been widely studied, and applied
using model checking [8, 29] like here, and in the context of Simulink [9], white-
box testing [43], contracts [34], and security properties [54,48]. Other related
works specifically for diagrammatic models, include mutation testing for state
and activity models [49], UML class diagrams [27], interfaces [19], or component-
based real-time systems described using a graph notation [28].

Aichernig et al. have considered various formalisms [2, 1, 3, 5]. In those works,
a test case is an abstraction according to traces refinement of the specification,
and so an implementation should refine the test case if it passes the test. Test-
case generation is, therefore, a reverse-refinement problem. We adopt a more
standard approach and use (failed) traces-refinement checks to identify tests.

For CSP, Clark et al. [48] presents mutant operators and uses mutation test-
ing for checking system security; the goal is to validate the specifications rather
than generate tests. For Circus, a data-rich extension of CSP, mutation is con-
sidered in [7] for test generation. In practical experiments, Circus [18] models
are translated to CSP for use of model checking via FDR as illustrated here.
Our mutation operators, however, are for a language whose semantics is given
in CSP, rather than CSP directly. Still, it would be interesting to explore the
value of mutating the semantics of the RoboChart models.

A recent overview paper [53] focusses on model-based mutation testing for
timed systems. It presents a taxonomy of the mutation operators and discusses
their usages on various formalisms, such as timed automata or synchronous lan-
guages. For timed systems initial works focused on timeliness (the ability of a
system to meet its deadlines) and introduced mutation operators for timed au-
tomata with tasks (TAT) [41, 42, 40], or timed automata similar to the UPPAAL
format [51, 6]. We plan to use these works as a starting point for developing ad-
ditional mutation operators for RoboChart time features.

There are several research groups working on mutation testing for timed
automata, developing tools such as MoMuT::TA [6,4], Ecdar [35,36] and us-
ing model-checking or refinement-check approaches to generate test data. The
mutation tool pUTA for UPPAAL timed automata is presented in [47] where
the authors introduce three new operators compared to previous works [51, 6].
In contrast to this work, our approach is based on a domain-specific language
similar to those used by practitioners. In addition, by basing the semantics on
CSP we introduce the potential to include richer types of observations such as
failures and refusal traces; future work will explore the use of such observations
within the mutation-testing framework presented here.

14 Cavalcanti et al.

7 Conclusions

This paper presents an approach to apply the well-established technique of muta-
tion testing to a domain-specific notation for robotics: RoboChart. It uses generic
tools: Wodel, for generation of mutants, and FDR, for generation of traces and
forbidden continuations. The conformance relation is traces refinement.

This experience has raised some interesting issues. First of all, we are defi-
nitely interested in testing for stronger conformance relations. More specifically,
we will ultimately define a testing theory for tock-CSP and adopt timed refine-
ment as a conformance relation. In that work, we will also take advantage of
results on testing with inputs and outputs [14, 15]. Experience shows that test-
ing for traces refinement, as considered here, is an important common step to
consider all the stronger conformance relations.

With the automation that we have in place, we will consider additional case
studies, completing a comprehensive implementation of mutation operators. We
are interested in assessing the performance of the approach in terms of generation
of useless mutants. Another aspect of performance to be investigated is the trade
off between more complex implementations of mutation operators that do not
generate invalid mutants, and simpler implementations that rely on the OCL
constraints to eliminate invalid mutants.

More interestingly, even for our simple example, we note the generation of
tests that are not feasible or not typical of execution in realistic environments.
Of particular note here is the issue of time. In our example tests, because FDR
generates the shortest traces that lead to a counterexample, as soon as the
drone takes off it finds the target. In typical environments, this is not going to
be the case; the target is going to be some distance away from the origin. The
RoboChart model, however, simply states that control software is ready to react
to a detection at any time, including immediately. It is in our plan for future work
to enrich RoboChart with features to model environments. The richer language
will discard such unlikely or even infeasible scenarios for tests.

Finally, the work described in this paper has assumed that there is a single
robotic systems, and tests apply inputs and observes outputs. Swarm robotic
systems, however, are formed by a collection of robots and has many interesting
and important applications. Swarms carry out tasks via collaboration between
robots, and are resilient to faults. In this case, the system interacts with its envi-
ronment at a number of physically distributed locations, namely, via a number of
robotic platforms. In such situations, there may be independent local testers and
this scenario alters how testing proceeds and the conformance relations used [31,
30]. There has been some work within the context of refinement and CSP [13],
but there does not yet appear to be research that uses mutation.

Acknowledgements This work is funded by the EPSRC grants EP/M025756/1
and EP/R025479/1, and by the Royal Academy of Engineering. We have ben-
efited from discussions with Pablo Gémez-Abajo and Mercedes Merayo with
regards to Wodel implementation, and Sharar Ahmadi, Alvaro Miyazawa, and
Augusto Sampaio with regards to our example and its simulation.

Testing Robots using CSP 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

B. Aichernig and He Jifeng. Mutation testing in UTP. Formal Aspects of Com-
puting, 2008.

B. K. Aichernig. Mutation testing in the refinement calculus. Formal Aspects of
Computing, 15(2):280-295, 2003.

B. K. Aichernig. Model-based mutation testing of reactive systems. In Theories of
Programming and Formal Methods, pages 23-36. Springer, 2013.

B. K. Aichernig, K. Hormaier, and F. Lorber. Debugging with timed automata
mutations. In Andrea Bondavalli and Felicita Di Giandomenico, editors, Com-
puter Safety, Reliability, and Security - 33rd International Conference, SAFE-
COMP 2014, Florence, Italy, September 10-12, 201/. Proceedings, volume 8666
of Lecture Notes in Computer Science, pages 49-64. Springer, 2014.

B. K. Aichernig, E. Jobstl, and S. TiranStefan. Model-based mutation testing via
symbolic refinement checking. Science of Computer Programming, 97(P4):383-404,
2015.

B. K. Aichernig, F. Lorber, and D. Nickovic. Time for mutants - model-based mu-
tation testing with timed automata. In Margus Veanes and Luca Vigano, editors,
Tests and Proofs - 7th International Conference, TAP 2013, Budapest, Hungary,
June 16-20, 2013. Proceedings, volume 7942 of Lecture Notes in Computer Science,
pages 20-38. Springer, 2013.

A. Alberto, A. L. C. Cavalcanti, M.-C. Gaudel, and A. Simao. Formal mutation
testing for Circus. Information and Software Technology, 81:131-153, 2017.

P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to generate
tests from specifications. In 2nd International Conference on Formal Engineering
Methods, pages 46-54. IEEE, 1998.

A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rummer, and
G. Weissenbacher. Mutation-based test case generation for Simulink models. In
Formal Methods for Components and Objects, pages 208—227, 2009.

T. A. Budd and A. S. Gopal. Program testing by specification mutation. Computer
Language, 10(1):63-73, 1985.

A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in CSP. In 9th
International Conference on Formal Engineering Methods, volume 4789 of Lecture
Notes in Computer Science, pages 151-170. Springer-Verlag, 2007.

A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in Circus. Acta
Informatica, 48(2):97-147, 2011.

A. L. C. Cavalcanti, M.-C. Gaudel, and R. M. Hierons. Conformance Relations for
Distributed Testing based on CSP. In B. Wolff and F. Zaidi, editors, IFIP Inter-
national Conference on Testing Software and Systems, Lecture Notes in Computer
Science. Springer-Verlag, 2011.

A. L. C. Cavalcanti and R. M. Hierons. Testing with Inputs and Outputs in CSP.
In Fundamental Approaches to Software Engineering, volume 7793 of Lecture Notes
in Computer Science, pages 359-374, 2013.

A. L. C. Cavalcanti, R. M. Hierons, S. Nogueira, and A. C. A. Sampaio. A
suspension-trace semantics for CSP. In International Symposium on Theoretical
Aspects of Software Engineering, pages 313, 2016. Invited paper.

A. L. C. Cavalcanti, A. Miyazawa, A. C. A. Sampaio, W. Li, P. Ribeiro, and
J. Timmis. Modelling and verification for swarm robotics. In C. A. Furia and
K. Winter, editors, Integrated Formal Methods, pages 1-19. Springer, 2018.

16

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Cavalcanti et al.

A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva
Filho, A. Didier, W. Li, and J. Timmis. Verified simulation for robotics. Science
of Computer Programming, 174:1-37, 2019.

A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146-181, 2003.

M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Interface mutation: An
approach for integration testing. IEEE Trans. Software Eng., 27(3):228-247, 2001.
M. S. Conserva Filho, R. Marinho, A. C. Mota, and J. C. P. Woodcock. Analysing
robochart with probabilities. In T. Massoni and M. R. Mousavi, editors, Formal
Methods: Foundations and Applications, pages 198-214. Springer, 2018.

S. Foster, J. Baxter, A. L. C. Cavalcanti, A. Miyazawa, and J. C. P. Woodcock. Au-
tomating Verification of State Machines with Reactive Designs and Isabelle/UTP.
In K. Bae and P. C. Olveczky, editors, Formal Aspects of Component Software,
pages 137-155, Cham, 2018. Springer.

G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers: a survey.
Software Testing, Verification and Reliability, 19(3):215-261, 2009.

T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 - A
Modern Refinement Checker for CSP. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 187-201, 2014.

P. Gémez-Abajo, E. Guerra, and J. de Lara. Wodel: a domain-specific language for
model mutation. In Sascha Ossowski, editor, Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, April 4-8, 2016, pages 1968-1973.
ACM, 2016.

P. Gémez-Abajo, E. Guerra, and J. de Lara. A domain-specific language for model
mutation and its application to the automated generation of exercises. Computer
Languages, Systems € Structures, 49:152-173, 2017.

P. Gémez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A tool for domain-
independent model mutation. Sci. Comput. Program., 163:85-92, 2018.

M. F. Granda, N. Condori-Ferniandez, T. E. J. Vos, and O. Pastor. Mutation
operators for UML class diagrams. In Advanced Information Systems Engineering
- 28th International Conference, CAiSE 2016, Ljubljana, Slovenia, June 13-17,
2016. Proceedings, volume 9694 of Lecture Notes in Computer Science, pages 325—
341, 2016.

J. Guan and J. Offutt. A model-based testing technique for component-based real-
time embedded systems. In Fighth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015 Workshops, Graz, Austria, April
13-17, 2015, pages 1-10. IEEE Computer Society, 2015.

W. Herzner, R. Schlick, H. Brandl, and J. Wiessalla. Towards fault-based gen-
eration of test cases for dependable embedded software. Softwaretechnik-Trends,
31(3), 2011.

R. M. Hierons, M. G. Merayo, and M. Nunez. Implementation relations and
test generation for systems with distributed interfaces. Distributed Computing,
25(1):35-62, 2012.

R. M. Hierons and H. Ural. The effect of the distributed test architecture on the
power of testing. The Computer Journal, 51(4):497-510, 2008.

C. A. R. Hoare. Programming: Sorcery or Science? IEEE Transactions on Software
Engineering, 4, 1984.

Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Software Engineering, 37(5):649-678, 2011.

W. Krenn and B. K. Aichernig. Test case generation by contract mutation in
Spec#. Electronics Notes in Theoretical Computer Science, 253(2):71-86, 2009.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Testing Robots using CSP 17

K. G. Larsen, F. Lorber, B. Nielsen, and U. Nyman. Mutation-based test-case
generation with Ecdar. In 2017 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan,
March 13-17, 2017, pages 319-328. IEEE Computer Society, 2017.

F. Lorber, K. G. Larsen, and B. Nielsen. Model-based mutation testing of real-time
systems via model checking. In 2018 IEEFE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops, Visteras, Swe-
den, April 9-13, 2018, pages 59-68. IEEE Computer Society, 2018.

A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, and J. Timmis. Automatic
property checking of robotic applications. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3869-3876, 2017.

A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis, and J. C. P.
Woodcock. RoboChart: modelling and verification of the functional behaviour of
robotic applications. Software € Systems Modeling, 2019.

B. Naylor, M. Read, J. Timmis, and A. Tyrrell. The Relay Chain: A Scalable
Dynamic Communication link between an Exploratory Underwater Shoal and a
Surface Vehicle. 2014.

R. Nilsson and J. Offutt. Automated testing of timeliness: A case study. In Hong
Zhu, W. Eric Wong, and Amit M. Paradkar, editors, Proceedings of the Second
International Workshop on Automation of Software Test, AST 2007, Minneapolis,
MN, USA, May 26-26, 2007., pages 55-61. IEEE Computer Society, 2007.

R. Nilsson, J. Offutt, and S. F. Andler. Mutation-based testing criteria for time-
liness. In 28th International Computer Software and Applications Conference
(COMPSAC 2004), Design and Assessment of Trustworthy Software-Based Sys-
tems, 27-30 September 2004, Hong Kong, China, Proceedings, pages 306-311. IEEE
Computer Society, 2004.

R. Nilsson, J. Offutt, and J. Mellin. Test case generation for mutation-based testing
of timeliness. Electr. Notes Theor. Comput. Sci., 164(4):97-114, 2006.

M. Papadakis and N. Malevris. Searching and generating test inputs for mutation
testing. SpringerPlus, 2(1):1-12, 2013.

H. W. Park, A. Ramezani, and J. W. Grizzle. A finite-state machine for accommo-
dating unexpected large ground-height variations in bipedal robot walking. IEEFE
Transactions on Robotics, 29(2):331-345, 2013.

C. A. Rabbath. A finite-state machine for collaborative airlift with a formation of
unmanned air vehicles. Journal of Intelligent & Robotic Systems, 70(1):233-253,
2013.

A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.
Springer, 2011.

F. Siavashi, D. Truscan, and J. Vain. Vulnerability assessment of web services with
model-based mutation testing. In 2018 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2018, Lisbon, Portugal, July 16-20, 2018,
pages 301-312, 2018.

T. Srivatanakul, J. A. Clark, S. Stepney, and F. Polack. Challenging formal spec-
ifications by mutation: a CSP security example. In 10th Asia-Pacific Software
Engineering Conference, pages 340-350. IEEE Press, 2003.

S. K. Swain, D. P. Mohapatra, and R. Mall. Test case generation based on state
and activity models. Journal of Object Technology, 9(5):1-27, 2010.

T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa,
F. Ruess, M. Suppa, and D. Burschka. Toward a Fully Autonomous UAV: Re-
search Platform for Indoor and Outdoor Urban Search and Rescue. IEEFE Robotics
Automation Magazine, 19(3):46-56, 2012.

18

51.

52.

53.

54.

Cavalcanti et al.

M. S. A. Trab, S. Counsell, and R. M. Hierons. Specification mutation analysis
for validating timed testing approaches based on timed automata. In 36th Annual
IEEE Computer Software and Applications Conference, COMPSAC 2012, Izmir,
Turkey, July 16-20, 2012, pages 660—-669, 2012.

University of York. RoboChart Reference Manual.
www.cs.york.ac.uk/circus/RoboCalc/robotool/.

J. J. O. Vega, G. Perrouin, M. Amrani, and P.-Y. Schobbens. Model-based muta-
tion operators for timed systems: A taxonomy and research agenda. In 2018 IEEE
International Conference on Software Quality, Reliability and Security, QRS 2018,
Lisbon, Portugal, July 16-20, 2018, pages 325—-332, 2018.

G. Wimmel and J. Jurjens. Specification-based test generation for security-critical
systems using mutations. In International Conference on Formal Engineering
Methods, volume 2495 of Lecture Nontes in Computer Science, pages 471-482.
Springer, 2002.

