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Abstract 

The solubilization of membranes by detergents is critical for many technological applications 

and has become widely used in biochemistry research to induce cell rupture, extract cell con-

stituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic de-

tails of solubilization have been extensively investigated, but the kinetic aspects remain poorly 

understood. Here we used a combination of single-vesicle Förster resonance energy transfer 

(svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipa-

tion monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron 

sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-

time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of sur-

face-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity acces-

sible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the 

vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and 

micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes 

studied here and become a unique tool to unravel the complex kinetics of detergent-lipid inter-

actions. 
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Introduction 
 
Detergent-induced membrane solubilization is critical for applications including membrane-pro-

tein purification1, 2, and targeted drug delivery, where vesicle rupture enables release of encap-

sulated therapeutics3. Despite decades of widespread use, the complexity of membrane solu-

bilization, coupled with limitations in current technology, have made characterizing its mecha-

nism extremely challenging.4   

 Initial biochemical experiments indicated that the rate of membrane solubilization depends 

on the lipid phase, and the type and concentration of detergent5. The non-ionic detergent Triton 

X 100 (TX-100), for example, solubilizes phosphocholine (PC) rich membranes relatively slowly 

below the gel-to-liquid transition temperature but speeds up rapidly in the fluid phase6, 7. In the 

gel state, however, the concentration of detergent required to achieve complete solubilization is 

strongly dependent on the lipid chain length8. For most biochemical applications, TX-100 is the 

solubilizer of choice, and is used as a reference for measuring the activity of other surfactants9, 

10. Turbidity measurements also reported the TX-100: lipid ratios required to solubilize lipid ves-

icles as a function of phase11, 12, 13 and lipid14, and isothermal titration calorimetry has probed 

the initial TX-100-membrane interaction15. These experiments suggest an interplay between 

surfactant monomers and lipids at the detergent’s critical micellar concentration (CMC) in which 

lipid re-arrangement leads to heat transfer and mixed-micelle formation within the intact mem-

brane16. 

 Importantly, the solubilization activity of TX-100 is inhibited by membrane cholesterol, 

though the precise mechanism is still unclear. Cholesterol may initiate liquid ordered, detergent-

resistant regions across the membrane12, 17, but whether these are microdomains18, detergent-

resistant rafts19 or a combination of both20 requires confirmation. Alternatively, TX-100 may pro-

mote liquid-ordered phases via interaction with order-preferring cholesterol-rich regions rather 

than initiating lipid reorganization21. 
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Despite its complexity, the most widely adopted model to describe membrane solubilization is 

the three state mechanism22. In State 1, detergent monomers partition the bilayer until a satu-

ration value (Rsat) is reached23, 24. This results in an increase in mass and an increase in turbidity 

due to vesicle swelling, and potentially, fusion between vesicles. In State 2, the membrane starts 

to disintegrate, and this phase involves the formation of mixed detergent-lipid micelles coexisting 

with the bilayer. State 3 corresponds to breakdown of the membrane into mixed-micelles in 

solution. There are, however, many unanswered questions, particularly regarding the timescales 

of these processes mostly due to a lack of methods that can unambiguously dissect each stage 

of the solubilization process. While Cryo-TEM, NMR and conventional dynamic light scattering 

all provide snapshots of the membrane conformation25, 26, 27, they cannot provide dynamic in-

sight. Conversely, ITC probes the thermodynamics and turbidity measurements reveal solubili-

zation conditions, but neither reveal structure28, 29. Molecular dynamics simulations have at-

tempted to bridge this gap17, 30, 31 and coarse-grained simulations reveal a sequence of events 

in broad agreement with the three-state mechanism10. Additionally, phase contrast and fluores-

cence microscopy have also been used to study the solubilization mechanism of giant (10-

20m) unilamellar vesicles (GUVs) and the influence of cholesterol11. These studies demon-

strated that alterations in vesicle shape following the injection of non-ionic TX-100 or anionic 

sodium dodecyl sulfate (SDS) are regulated by the very different flip-flop rate of both detergents. 

For TX-100, an almost instantaneous flip-flop rate (<0.5 s) ensures equilibration of detergent 

molecules across both leaflets5, 13, 32 that results in swelling and an increase in surface area of 

the GUVs. In these studies, the formation of pores in the POPC bilayer leads to complete solu-

bilization into micelle-like structures for TX-100 concentrations of ~0.18 mM, well below the de-

tergent CMC (~0.28 mM). In contrast, SDS exhibits a flip-flop rate in the range of minutes to 

hours at room temperature, and a concentration of SDS (~30 mM) much higher than its CMC (~ 

8 mM) was needed to induce solubilization and no increase in surface area was observed. These 
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studies confirmed a stepwise solubilization mechanism of GUVs by both detergents and demon-

strated that the structures adopted by the lipid-detergent complex are strongly influenced by the 

ability of the detergent to rapidly equilibrate between both leaflets. Unfortunately, conventional 

techniques such as phase contrast and fluorescence microscopy used in these studies can only 

resolve changes in shape for large objects with diameters usually above ~5-10 m, which con-

stitutes only one end of the curvature space of lipid membranes. Furthermore, traditional optical 

microscopy quantifies macroscopic changes in size and packing density but provides little struc-

tural information at the molecular level. Therefore, there is a need to develop complementary 

methods that can monitor the solubilization process of individual vesicles smaller than the dif-

fraction limit (~250 nm) that constitute the other end of the membrane curvature space, and 

which are commonly used in biotechnological applications but cannot be studied by conventional 

microscopy.  

 In this work we demonstrate the combination of single-molecule fluorescence and Förster 

resonance energy transfer (FRET) to monitor, in real-time, the detergent-induced solubilization 

of large unilamellar vesicles (LUVs) with sizes smaller than the diffraction limit. FRET is sensitive 

to 1-10 nm distances between two small organic dyes termed donor (D) and acceptor (A)33 and 

in svFRET, lipophilic D and A fluorophores are incorporated directly within the membrane to act 

as reporters of molecular interactions. Although svFRET has been applied to investigate the 

kinetics of membrane fusion34, 35 and pore formation36, its application for characterizing solubili-

zation kinetics has not been reported. Importantly, by immobilizing individual vesicles on the 

surface of a microscope slide via biotin-streptavidin interactions, structural changes in the lipid 

vesicle can be monitored without interference from vesicle fusion. We demonstrate that by mon-

itoring the time-dependent variations in FRET efficiency (EFRET) and total emission intensity 

(ID+IA) following the addition of detergent provides a means to differentiate, for the first time, 

each structural step along the solubilization process and unambiguously extract the rates of 

swelling and lysis events as a function of detergent concentration and cholesterol content.  
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 Solubilization profiles of LUVs of sizes between 100 nm and 200 nm at concentrations of 

TX-100 near the critical micellar concentration (CMCTx-100 ~ 0.28 mM) were characterized by a 

rapid increase (~ 5 s) in vesicle surface area, reported by a pronounced decrease in FRET 

efficiency with no change in total intensity. This swelling step is followed by a slow lysis phase 

(~40 s) involving loss in lipid content that results in a remarkable decrease in total intensity 

without significant variation in FRET efficiency. By measuring the diffusion coefficient of labelled 

LUVs using fluorescence correlation spectroscopy (FCS), we estimated a 34% increase in ves-

icle size induced by TX-100 and confirmed that the observed decrease in EFRET on immobilized 

LUVs reflects vesicle swelling. Quartz-crystal microbalance with dissipation (QCM-D) revealed 

a 5% mass gain during the first few seconds after TX-injection followed by a 63% mass loss at 

the final stages of solubilization with timescales comparable to those observed by svFRET, thus 

confirming the assignation of each event in the svFRET trajectories. When the same experi-

ments were carried out in the presence of 20% cholesterol, we observed a remarkable decrease 

in the rate of swelling with much smaller impact on the lysis rate, suggesting that the previously 

reported resistance to solubilization conferred by cholesterol to POPC vesicles might arise from 

cholesterol inhibiting the initial step of detergent insertion in the lipid bilayer. In summary, we 

demonstrate the use of a multi-disciplinary approach combining the novel application of svFRET 

to dissect the elementary stages of the solubilization process and extract kinetic information with 

FCS and QCM-D to quantify changes in size and mass of sub-micron size vesicles with high 

membrane curvature. Given that membrane curvature is emerging as an important mechanism 

regulating the recruitment of numerous proteins and peptides37, the svFRET technique should 

become an exceptional tool that complements current optical microscopy and phase contrast 

methods when targeting the entire curvature space of lipid bilayers. 
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Results and Discussion    

PC- and phosphoserine (PS)-rich model-membrane vesicles incorporating 20% choles-

terol were prepared as detailed in the Methods and are schematically shown in Figure S1. The 

amounts of donor (Dil) and acceptor (DiD) per vesicle were optimized (1:1, 0.1 % of each dye) 

such that the average FRET efficiency (EFRET) per vesicle was initially close to 0.5, enabling 

nanometer length scale changes to be quantified by an observable change in EFRET in either 

direction. The production of homogeneously distributed unilamellar vesicles (d ~ 200 nm) was 

confirmed by dynamic light scattering (Figure S2). Steady-state fluorescence measurements 

were carried out as an initial step to characterize the interaction between TX-100 and labelled 

vesicles. As the concentration of TX-100 was progressively increased, we observed a decrease 

in EFRET (Figure 1a), from a value of 0.43 ± 0.05 in the absence of TX-100, to 0.13 ± 0.02 in the 

presence of 4.4 mM with a half-maximal concentration constant of 0.39 ± 0.07 mM. These data 

suggest that the addition of TX-100 induces changes in vesicle structure, or composition, that 

results in a high distance separation between the dyes. The decrease in EFRET was further con-

firmed by time-correlated single photon counting, where the amplitude weighted average lifetime 

of Dil progressively increased as a function of TX-100 (Figure 1b, Table S1).    

   

Having established FRET as a sensor of fluorophore separation in the ensemble, fluo-

rescence correlation spectroscopy (FCS) was used to probe the diffusion of single vesicles. The 

high sensitivity of FCS to the size of diffusing vesicles makes it an attractive technique for ac-

cessing their diameter under solubilizing conditions. Interestingly, the use of FCS techniques 

has mainly focused on the formation of micelle-like structures, the understanding of vesicle fu-

sion and protein-lipid interactions, but their application in the context of lipid-detergent interac-

tions remains under-explored38, 39, 40. 
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The translational diffusion times of vesicles prepared with 0.2 % (1-palmitoyl-2-{6-[(7-

nitro-2-1, 3-benzoxadiazol-4-yl) amino] hexanoyl}-sn-glycero-3-phosphocholine) (NBD-PC) 

(Figure S3), a fluorescent analog of PC, were recorded. NBD-PC replaced Dil and DiD for com-

patibility with the apparatus. Normalized cross-correlation functions obtained from freely-diffus-

ing vesicles progressively shifted towards longer diffusion times as a function of TX-100 (Figure 

1c). In the absence of detergent, vesicles of diameters ~100 nm and ~200 nm displayed diffu-

sion times, D, across the confocal volume of 6.1 ± 0.03 ms and 8.0 ± 0.3 ms, respectively 

(Figure 1d). D associated with the diffusion of the smaller vesicles increased by ~13 % in 0.1 

mM TX-100 and by ~34 % in 0.2 mM TX-100. The larger 200 nm-diameter vesicles also dis-

played a similar trend, representing an ~8 % and ~18 % increase in hydrodynamic diameter at 

0.1 mM and 0.2 mM TX-100, respectively. These data point toward an increase in mean vesicle 

diameter when incubated with TX-100, and was attributed to vesicle expansion, fusion or a com-

bination of both in solution. It is interesting to note that the relative increase in D and the resulting 

increase in size (Table S2) are slightly higher for smaller LUVs and that this trend is maintained 

at the two concentrations of TX-100 investigated. This results in a 25% higher slope for the 100 

nm LUVs (9.40 ± 1.4) x 103 µs mM-1 compared to (7.0 ± 1.4) x 103 µs mM-1 for the 200 nm LUVs 

(Figure 1d). We interpreted this as evidence that the degree of swelling depends on vesicle 

size; an observation that emphasizes the importance of membrane curvature modulating the 

initial stages of TX-100 insertion in the lipid bilayer. As shown in recent molecular dynamics 

studies, the formation of lipid packing defects is intimately linked to membrane curvature in ad-

dition to lipid composition41 and we hypothesize that the higher slope observed for the smaller 

vesicles might reflect the formation of stress-induced defects that facilitate the insertion of de-

tergents. This is an interesting finding to consider for further studies because many natural and 

synthetic compounds must partition in the lipid bilayer to reach their targets. 
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In the next step, to rule out the possibility of fusion and investigate in more detail each 

step of the solubilization process, Dil/DiD labelled vesicles containing a low percentage of bioti-

nylated lipids and 20% cholesterol were immobilized onto a NeutrAvidin-coated surface and 

imaged via total internal reflection fluorescence microscopy. As illustrated in Figure 2a, biotinyl-

ated vesicles were anchored to NeutrAvadin tethered to the surface via biotinylated polyethylene 

glycol (PEG). In the absence of TX-100 the vesicles were stable with no variation in the svFRET 

efficiency observed (Figure 2b). Perturbation of single vesicles by TX-100 was then reported 

as observable changes in the svFRET efficiency in real-time with 50 ms time integration (Figure 

2b, 2c). To suppress photobleaching and optimize conditions for svFRET, the fluorescence re-

sponse of single vesicles labelled with DiD were investigated as a function of excitation intensity 

and percentage of dye-loading content. As demonstrated in Supplementary Text I, Figure S4 

and Table S3, excitation intensities < 0.04 mW/cm2 with 0.25 % dye were necessary for long-

term (180 s) stability of the incorporated dyes. In the absence of TX-100, the FRET efficiency 

from single vesicles remained largely invariant with a value of EFRET ~ 0.5. Injection of 0.16 mM 

TX-100 then induced variations in EFRET and total intensity on remarkably different time scales. 

Immediately after injection of TX-100, the FRET efficiency decreased from a value of ~0.46 to 

~0.22 in a 250 sec time window (Figures 2d, S5). Most of this change happened in the first 100 

seconds after injection, pointing towards a ~20% increase in the separation distance between 

FRET pairs. Assuming spherical vesicles, this distance scales directly with the vesicle radius 

and thus agrees well with the FCS data. Importantly, within this time window, the total intensity 

decreased only by ~ 7%. At time scales longer than 250 seconds, the FRET efficiency did not 

change further, whereas the total intensity decreased progressively to ~ 50% of its initial value. 

The different timescales and responses of both signals suggest that they represent different 

distortions of the vesicle structure. The rapid decrease in FRET efficiency without significant 

variation in total intensity indicates a structural change involving no loss of lipid content and we 

assigned it as arising from vesicle swelling induced by TX-100 molecules inserting into the lipid 



10  

 

bilayer and increasing the average inter-dye distance. The time window where the FRET effi-

ciency does not change but the total intensity is strongly decreased suggests a structural distor-

tion involving the diffusion of lipids into solution and it was assigned to a lysis step resulting in 

the formation of micelles. The FRET efficiency plateau value observed in this time window (E ~ 

0.22) represents an inter-dye distance ~6.5 nm within these micelles. These observations point 

towards a fast vesicle expansion event with half-life tE, followed by a slower lysis event (tL). The 

expansion step was observed to occur on average 12 times faster than lysis, and at 0.08 mM 

TX-100, the half-lives associated with each event increased by ~75 % (Figure 2e). The ability 

to unambiguously discriminate between expansion and lysis events and extract individual kinetic 

rates for each stage during LUV solubilization is a completely new finding only afforded by the 

development of svFRET for surface-immobilized vesicles. 

The observation of a stepwise solubilization mechanism in LUVs qualitatively agrees with 

optical microscopy and phase contrast measurements reported in GUVs composed of POPC 

and sizes of ~20-30 µm11, 12. In these studies, it was found that the addition of sub-CMC con-

centrations of TX-100, in the range of those used in our work, resulted in an increase in vesicle 

diameter a few seconds after injection. Increasing further the concentration of TX-100 to near 

CMC values resulted in dynamic perforation of the bilayer leading to complete solubilization in 

a timescale of ~20-30 seconds. Importantly, when SDS was used as the detergent, no increase 

in surface area was detected and the solubilization process was slow and only efficient at con-

centrations well above the CMC (8 mM). It was suggested that the different rates of detergent 

equilibration between the two leaflets of the bilayer may govern the solubilization process and 

dictate the morphological changes taking place in the vesicle during the initial stages. A direct 

quantitative comparison between our findings on LUVs and the previous work on GUVs is not 

straightforward for several reasons. First, as discussed in those studies, optical microscopy and 

phase contrast have access only to the cross-section of the focal plane of the vesicle and thus 
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quantification of surface area in vesicles that might adopt non-trivial shapes becomes unfeasi-

ble. Secondly, given the size of the GUVs and the injection of detergent using a micropipette, 

the concentration of detergent around the vesicle is not homogeneous, the vesicle deforms more 

rapidly on the side facing the micropipette, and this might influence the overall kinetics of the 

process. In contrast, for the immobilized LUVs used in our study, filling the entire microchannel 

takes place in ~1 second and the detergent flow wave front should achieve a steady-state con-

centration much faster than any of the processes investigated. Nevertheless, it is clear that LUVs 

and GUVs shared some common solubilization features by TX-100. This includes similar con-

centration requirements and the presence of an initial and rapid expansion step followed by a 

slower step where lipids are released to the solution to form micelle-like structures. Thus, our 

svFRET studies on highly curved sub-micron size vesicles are complementary to optical micros-

copy on giant vesicles and both suggest a common general mechanism of solubilization. 

Since cholesterol alters the membrane structure42, we next employed svFRET to assess 

the influence of cholesterol on the stability and kinetic mechanism of vesicle solubilization. 200 

nm diameter vesicles were prepared in the absence of cholesterol and were induced to solubilize 

by 0.08 mM TX-100. Here, the expansion and lysis half-lives reduced by ~76 % and ~21 % 

respectively, compared with vesicles loaded with 20 % cholesterol. When the TX-100 concen-

tration was doubled, tE and tL reduced further to 1.2 ± 0.4 and 17.6 ± 1.6 seconds, respectively, 

as shown via a comparative bar plot summarizing the relative variations in tE and tL as a function 

of cholesterol and TX-100 concentration (Figure 2f, Figure S6). To the best of our knowledge, 

these values constitute the first direct measurement on the effect of cholesterol on each individ-

ual step of the solubilization process. The relatively small decrease observed for the kinetic rate 

of the lysis step in the presence of 20% cholesterol compared to that with no cholesterol added 

agrees with previous observations on binary POPC/Cholesterol mixtures where no significant 

effect on the solubilization rate was found at any temperature using turbidity measurements43. 

In contrast, the remarkable decrease in the timescale for vesicle swelling in the presence of 
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cholesterol was not detected in previous turbidity measurements but agrees with recent phase 

contrast and light scattering observations on a similar lipid bilayer composition11, 44. In these 

studies, a significant decrease in the surface area variation during the swelling step was reported 

from a value of 48% with no cholesterol to ~32% in the presence of 30% cholesterol. Because 

the swelling event reflects mostly the initial interaction between TX-100 and the lipid membrane, 

the slower rate of swelling in the presence of cholesterol can be interpreted as a decrease in 

the association rate of TX-100 to the lipid bilayer. A decrease in the association rate of TX-100 

aligns well with the reported decrease in binding constant induced by cholesterol in POPC ves-

icles11 and potentially reinforces the curvature-mismatch hypothesis27 whereby the incorporation 

and packing of cholesterol is incompatible with the association of TX-100 molecules due to their 

opposite curvature. 

The svFRET and FCS experiments discussed so far have provided new structural and 

kinetic information regarding the solubilization mechanism of LUVs by TX-100. However, given 

that the main consequence of swelling and lysis events is the transfer of mass from the vesicle 

to solution and vice versa, a complete description of the mechanism will benefit from the devel-

opment of methods that can evaluate such mass gain or loss at each stage of the process. To 

quantify the transfer of mass during solubilization, we employed a label-free quartz-crystal mi-

crobalance with dissipation (QCM-D) monitoring approach (Supplementary Text II). QCM-D 

has recently emerged as a very useful method to monitor vesicle fusion45, vesicle adsorption to 

surfaces46 and protein-vesicle interactions47 but its application in the context of detergent-in-

duced solubilization has not been reported. Here, PC/PS vesicles containing 20 % cholesterol 

were immobilized onto a quartz sensor surface and interactions with 0.16 mM TX-100 were 

followed by changes in oscillation frequency and dissipation, reflecting mass and viscoelasticity 

on the sensor surface, respectively (Figure 3a). Interactions between immobilized vesicles and 

TX-100 were observed via changes in both frequency and dissipation traces immediately after 

TX-100 injection corresponding to a ~5% mass gain at the sensor which we attributed to TX-
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100 incorporation into vesicles. This was followed by an interaction that leads to a conforma-

tional change in intact vesicles, with no mass loss, over the first 35 s. As the local TX-100 con-

centration then increased, the deposited mass accumulated on the surface leading to a de-

crease in resonance frequency. A substantial mass loss of ~63% was then observed via an 

increase in resonance frequency, indicating material immobilized to the surface was released 

into solution (Figure 3b). These processes occurred on similar timescales to those obtained 

under the same conditions using svFRET and control experiments performed simultaneously 

indicated no interaction with the PEG-coated sensor surface and TX-100 (Figure 3a). These 

findings support a mechanism through which TX-100 accumulates on the curved membrane 

surface, preceding a rapid expansion of the vesicle structure that, in turn, precedes a slower 

lysis event (Figure 4).   

In summary, we have directly monitored the solubilization of sub-micron size lipid vesicles 

that cannot be resolved using conventional optical techniques in response to TX-100 using 

svFRET, FCS and QCM-D. We show that the combination of svFRET and surface-immobiliza-

tion of LUVs is a unique method to discriminate between the swelling and lysis steps and un-

ambiguously quantify the kinetic rates of each process without interference from vesicle fusion. 

Our data demonstrate that detergent-induced swelling is a relatively fast process that is strongly 

slowed down by the presence of cholesterol whereas the subsequent lysis step is only margin-

ally affected. The increase in vesicle size during swelling was calculated using FCS and sug-

gested that increasing the membrane curvature facilitates the insertion of detergent molecules. 

Our assignation and characterization of the timescales for the swelling and lysis steps by 

svFRET and FCS was further supported by quantifying the mass gain (swelling) or loss (lysis) 

using QCM-D measurements. Understanding the structural stability and dynamics of small ves-

icles with high curvature is crucial not only because they are commonly employed in biotechno-



14  

 

logical applications but also because important traffic pathways between the endoplasmic retic-

ulum (ER) rely on the formation of LUVs and a large fraction of the ER consists of tubules of ~ 

30 nm radius48. In the future, the experimental approach presented here may be useful in several 

directions: to quantify the effect of membrane curvature on each step of the solubilization pro-

cess, to determine the role of lipid composition on the solubilization of LUVs and to quantify the 

interaction with small molecules that need to target and cross the lipid membrane. 

Methods  

Materials 

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (PS), 1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine (PC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap bi-

otinyl) (sodium salt) (biotinylated lipid) phospholipids were purchased from Avanti Polar Lipids 

Inc. 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (Dil) and 

1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine, 4-Chlorobenzenesul-

fonate Salt) (DiD) membrane stains were purchased from ThermoFisher Scientific. 1-

palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn glycerophosphocholine 

(NBD-PC) was purchased from Sigma Aldrich. All phospholipid samples were used without ad-

ditional purification and stored in chloroform at -20oC prior to use. Dil, DiD and cholesterol stocks 

were stored at 4oC in chloroform prior to use. Triton X-100 was purchased from Sigma Aldrich 

and freshly suspended in 50 mM Tris (pH 8) prior to use. 

 

Preparation of large unilamellar vesicles 

Mixtures of lipids and lipophilic dyes were homogeneously dispersed in chloroform, dried by 

nitrogen flow and stored under continuous vacuum pumping at room temperature for 5 hours. 



15 

 

Phospholipid mixtures were subsequently re-suspended in buffer solution (50 mM Tris, pH 8) 

and mixed well by vortex. Large unilamellar vesicles were prepared by the extrusion method at 

room temperature, in which they were passed through a polycarbonate membrane filter of 

defined pore size. A molar ratio of 65: 35 PC: PS was used throughout. Vesicles were labelled 

with dyes (0-0.5 %), cholesterol (0-20 %) and biotin (1 %) at the molar percentages specified in 

the text. The mean size of the prepared vesicles in solution was evaluated by dynamic light 

scattering using a Zetasizer V molecular size detector (Malvern Instruments Ltd., UK). 

Steady-state fluorescence spectroscopy 

Fluorescence emission spectra were acquired using a Varian Eclipse fluorescence spectropho-

tometer. Spectra from Dil and DiD were recorded using an excitation wavelength of 532 nm at 

magic angle. FRET efficiencies were approximated by the apparent FRET efficiency, EFRET = 

(I665/[I665 + I565]), where I665 and I565 represent the fluorescence intensities of the acceptor at 665 

nm, and donor at 565 nm, respectively. The FRET efficiency data shown in Figure 1a was fitted 

to a Hill model of the form, 𝐸𝐹𝑅𝐸𝑇 = 𝐴 + 𝐵 [𝑇𝑋−100]𝑛𝑘𝑛+[𝑇𝑋−100]𝑛, where A and B are the measured FRET 

efficiencies at the start and end of the titration, k is the half-maximal concentration constant and 

n is the Hill coefficient. The parameters of the fit shown in Figure 1a are A = 0.43 ± 0.04, B = 

0.12 ± 0.01, k = 0.39 ± 0.07 and n = 2.0 ± 0.3 (2 = 0.99). Error bars represent the standard error 

of the mean from 3 individual experimental runs.  

 

Time-resolved fluorescence spectroscopy 

Fluorescence lifetime measurements were performed with a Hamamatsu C6860 Synchroscan 

streak camera.  The 80 MHz, 100 fs (full width half maximum) 800 nm output of a Ti: Sapphire 

oscillator was frequency doubled with a beta barium borate crystal, giving 400 nm excitation 
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pulses.  The 400 nm light, with an average power of less than 1 mW, was subsequently focused 

through the optical path length (1cm) of the solution cuvette.  Fluorescence from the sample was 

then collected and collimated with a lens before being focused onto the entrance slit of a 

Chromex 250is imaging spectrograph.  Excitation light was removed with a yellow schott glass 

filter that cuts all light below 420 nm.  A spectral window of 585–607 nm corresponding to Dil 

fluorescence emission was selected with the spectrograph before the light was directed into the 

streak camera. Time-resolved fluorescence dynamics were then recorded enabling time con-

stants of approximately 10 ps to be resolved with instrument response deconvolution. 

 

Fluorescence Correlation Spectroscopy 

Samples were deposited on glass-bottomed well plates (Whatman) and excited by the linearly 

polarized light of a 488 nm continuous wave laser (Becker & Hickl) which was spectrally cleaned 

(Semrock, US, FF01-482/18), redirected by a dichroic mirror (Semrock, US, DI01-R488) and 

focused into the sample by a 60 x water immersion microscope objective (Olympus, 

UPLSAPO60xW/1.2) mounted in an inverted microscope (Olympus, IX-71). The fluorescence 

was focused onto a  = 50 m pinhole (Thorlabs) before being split by a 50:50 nonpolarizing 

beamsplitter cube (Thorlabs). Each beam was then focused onto an avalanche photodiode 

(MPD50CTC APD, ∅   = 50 μm, Micro Photon Devices). An emission filter (Semrock, 525/45) 

placed in front of the beamsplitter was used to discriminate fluorescence from scattered light. 

The detector signals were processed and stored by two time-correlated single photon counting 

(TCSPC) modules (Becker & Hickl, SPC 132). Typically 20 million photons were collected for 

each correlation curve with count rates between 5 and 20 kHz. All measurements were made at 

a stabilized temperature of 25.0 ± 0.5 °C. The excitation power as measured in the focus of the 
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microscope objective by a power meter (Thorlabs) was 0.02 mW corresponding to a mean irra-

diance of 7.15 kW/cm2 assuming a Gaussian intensity distribution along the optical axis. The 

focal area and the detection volume were calibrated with Rhodamine 123 in aqueous solutions 

at low irradiance using an estimated diffusion coefficient of 4.6 ± 0.4 × 10−10 m2 s−1, yielding a 

radial 1/e2 radius of xy = 0.27 m and volume of focus of V = 0.53 m3. Correlation functions 

were calculated according to 𝐺 = 〈𝐼(𝑡)+𝐼(𝑡+𝜏)〉〈𝐼(𝑡)2〉  where I(t) is the intensity at time t and fitted accord-

ing to  
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where N is the number of molecules, t is the cor-

relation time, AT is the amplitude of the triplet and T is the triplet time. defines the ratio be-

tween the axial and radial 1/e2 radii, z and xy, respectively: 
xy

z




 . Translational diffusion 

coefficients, D, were determined by 𝐷 =  𝜔𝑥𝑦24𝜏𝐷  where D is the diffusion time. All diffusion coeffi-

cients were corrected for temperature and viscosity effects and are reported for 25oC. Hydrody-

namic radii, Rh, were estimated according to 𝑅ℎ = 𝑘𝑇6𝜋ηD where k is Boltzmann’s constant, T is the 

system temperature and  is the solution viscosity. Power series were performed in order to 

determine the photobleaching limits. A triplet-state contribution of 1 s with the expected irradi-

ance-dependent amplitude was observed in all cases. All measurements were repeated at least 

20 times and curves distorted due to occasional transits of big aggregates were excluded. The 

surfactant was added to the diluted vesicle samples immediately before the FCS measurement. 

Error bars indicate the standard error of the mean.  

 

Single-vesicle TIRF Spectroscopy  

Fluorescence emission at the donor and acceptor wavelengths were acquired from single vesi-

cles by using a prism-type total internal reflection fluorescence microscope equipped with green 
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(532nm) and red (635nm) lasers (Crystalaser, USA). Microscope slides were successively 

treated with biotinylated poly-ethyleneglycol (PEG) and NeutrAvidin, before pM concentrations 

of fluorescently-labelled vesicles were added. Fluorescence trajectories were acquired with an 

integration time of 50 ms. The base buffer used for imaging was 50 mM Tris (pH 8), 6 % (w/v) 

glucose, 165 U/mL glucose oxidase, 2170 U/mL catalase and 2 mM trolox. Specified concen-

trations of TX-100 were included in imaging buffer prior to being injected into the sample. Spa-

tially-separated fluorescence images of donor and acceptor emission were collected in custom 

built relay optics with a 550 nm long-pass filter and imaged in parallel using an EMCCD camera 

(iXON, Andor Technology). All measurements were performed at room temperature. SvFRET 

efficiency after background correction was approximated by the apparent FRET efficiency, EFRET 

= (IA/[IA + ID]) ~ Ro
6/([Ro

6+R6]), where IA and ID are the fluorescence intensities of the acceptor 

and donor, respectively, Ro is the Forster radius and R is the separation distance between the 

probes. Since the quantum yields of Dil and DiD are similar, EFRET closely matches the true 

efficiency of energy transfer. Half-lives were calculated by applying double exponential fits con-

sisting of a rise (I = Aet/tE) and decay (I = Be-t/tL) component to the donor trajectories. Data anal-

ysis was carried out using laboratory-written analysis routines developed in MATLAB 7. Ensem-

ble information from svFRET measurements was obtained by assembling single-vesicle FRET 

trajectories into population FRET contour plots. 

 

Quartz Crystal Microbalance with Dissipation (QCM-D) monitoring.  

Quartz crystal microbalance with dissipation monitoring (QCM-D) experiments were performed 

using a Q-sense E4 system (Biolin Scientific). SiO2-coated AT-cut quartz sensors (QSX 303, 

Biolin Scientific) were used, for which the fundamental frequency was 4.95 ± 0.05 MHz. The 

sensors were initially subjected to a 10 minute cleaning step by UV−ozone, prior to being soni-
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cated in solutions of 2 % Hellmanex III and 2 x ultrapure Milli-Q water for 10 minutes. The sen-

sors were then dried with N2 and placed under UV−ozone for a further 30 minutes. Each sensor 

was then immersed in 100% ethanol for 30 minutes and dried with N2 before installation in the 

flow modules. The QCM-D flow chambers were first flushed with ultrapure Milli-Q water for 1 

hour, and then with 50 mM Tris buffer (pH 8) for 20-30 minutes before each measurement until 

a stable baseline was established (<0.5 Hz shift over 10 min). The flow rate was kept constant 

at 20 μL/min. The sensor surfaces were then functionalized with biotinylated polyethyleneglycol 

(Iris Biotech) which acts as a biocompatible support for specific immobilization of Avidin. The 

sensor surfaces were then rinsed with 50 mM Tris buffer (pH 8.0) for 15 min to remove unad-

sorbed molecules. Thereafter, Avidin was immobilized on the sensor surfaces by incubating a 

0.1 mg/mL Avidin solution in 50 mM Tris buffer (pH 8.0) for 20 min, following a rinse step with 

50 mM Tris buffer (pH 8.0) for 20 min to wash unbound Avidin molecules. Subsequently, vesicles 

coated with 1 % biotinylated lipids were immobilized on the sensor surfaces by incubation with 

a 33 µg/mL vesicle solution for 70 min. Triton X-100 (TX-100) detergent solutions at specified 

concentrations were then introduced into the QCM-D flow chambers. Changes in mass (m) 

were related to changes in frequency (f) via the Sauerbrey equation ∆m = – (C · ∆f)/n where n 

is the overtone number and C is a constant related to the properties of the quartz (17.7 ng Hz-

1cm-2). 
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Figure 1. TX-100 vesicle interactions reported using ensemble FRET and FCS. (a) FRET efficiency 

of Dil/DiD labeled vesicles versus TX-100. The solid line represents a Hill model fit. Inset: corresponding 

variation in fluorescence spectra. (b) Average lifetime of Dil versus TX-100. Inset: corresponding time-

resolved fluorescence decays. Solid lines represent bi-exponential fits. (c) Top: FCS cross-correlation 

curves (solid lines), fits (dashed lines) (inset: zoomed in) associated with 100 nm- (black) and 200 nm-

sized (red) vesicles. Also shown are FCS curves for 200 nm-sized vesicles in the presence of 0.1 mM 

(green) and 0.2 mM (blue) TX-100. Bottom: residuals of the fits. (d) Top: Diffusion times of NBD-PC 

labeled vesicles as a function of TX-100. A PC: PS lipid ratio of 65: 35 was used under all conditions. 

Solid lines represent linear fits. Bottom: corresponding residuals.  
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Figure 2. Real-time visualization of solubilization kinetics by svFRET. (a) Schematic of the immobi-

lization scheme. The schematic is for illustration purposes only and is not to scale. (b) Representative 

variation in the fluorescence emission of Dil and DiD (top panel), the sum of their intensities (middle 

panel) and the corresponding variation in FRET efficiency obtained before (< 90 s) and after (>90 s) 

injection of 0.16 mM TX-100. (c) Relative FRET state occupancies observed over 1000 s. (d) FRET 

contour plot showing the variation in EFRET before and after TX-100 injection (dashed white line) (N = 

105). (e) Corresponding scatter plot of expansion half-live, tE versus that of lysis, tL obtained after injection 

of 0.08 mM (blue) and 0.16 mM (red) TX-100. Dashed lines represent the center of each distribution. (f) 

Comparative bar plots summarizing the variation in tE and tL as a function of TX-100 and percentage of 

cholesterol incorporated within the vesicle bilayer. Error bars indicate the standard error of the mean.  
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Figure 3. TX-100 induced vesicle solubilization monitored by QCM-D. (a) Variation in frequency 

(blue) and dissipation (red) of the 7th overtone associated with surface immobilized vesicles in the pres-

ence of TX-100. The dashed lines represent data collected from a control sensor pre-treated with PEG 

and NeutrAvidin, but lacks vesicles. The arrow indicates the time-point of the solubilization. (b) Frequency 

versus dissipation observed during the interaction between surface immobilized vesicles and TX-100.  
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Figure 4. Mechanism of TX-100 induced vesicle solubilization. Detergent molecules approach lipid 

vesicles inducing a fast conformational expansion prior to lysis and the release of mixed-micelles into 

solution.  

 

 


