
This is a repository copy of Low complexity DOA estimation for wideband off-grid sources 
based on re-focused compressive sensing with dynamic dictionary.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/150009/

Version: Accepted Version

Article:

Cui, W., Shen, Q., Liu, W. orcid.org/0000-0003-2968-2888 et al. (1 more author) (2019) 
Low complexity DOA estimation for wideband off-grid sources based on re-focused 
compressive sensing with dynamic dictionary. IEEE Journal of Selected Topics in Signal 
Processing, 13 (5). pp. 918-930. ISSN 1932-4553 

https://doi.org/10.1109/jstsp.2019.2932973

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Low Complexity DOA Estimation for Wideband

Off-Grid Sources Based on Re-Focused

Compressive Sensing with Dynamic Dictionary
Wei Cui, Qing Shen, Wei Liu, Senior Member, IEEE, and Siliang Wu

Abstract—Under the compressive sensing (CS) framework,
a novel focusing based direction of arrival (DOA) estimation
method is first proposed for wideband off-grid sources, and by
avoiding the application of group sparsity (GS) across frequencies
of interest, significant complexity reduction is achieved with
its computational complexity close to that of solving a single
frequency based direction finding problem. To further improve
the performance by alleviating both the off-grid approximation
errors and the focusing errors which are even worse for the off-
grid case, a dynamic dictionary based re-focused off-grid DOA
estimation method is developed with the number of extremely
sparse grids involved in estimation refined to the number of
detected sources, and thus the complexity is still very low due to
the limited complexity increase introduced by iterations, while
improved performance can be achieved compared with those
fixed dictionary based off-grid methods.

Index Terms—Off-grid, wideband, direction of arrival (DOA),
compressive sensing (CS), underdetermined.

I. INTRODUCTION

Direction of arrival (DOA) estimation has been an active re-

search area over the decades with applications including radar,

sonar, radio astronomy, navigation, acoustics, and wireless

communications [1]–[3], and will continue playing a signif-

icant role in many other aspects in the future, such as internet

of things (IoT) [4], wireless sensor networks (WSN) [5], and

massive multiple-input multiple-output (MIMO) systems [6].

With the development of millimeter wave techonology, the

Massive (also known as large-scale) MIMO communication

system has attracted great attention in recent years, offering

enhanced communication network capacity, broad coverage,

improved link reliability, and high spectral and energy ef-

ficiency [7]–[9]. In a massive MIMO system, DOAs are

essential for beamforming and downlink precoding [10] at the

base station equipped with massive antenna arrays. Therefore,

the performance of wireless communication systems is sensi-

tive to the DOA estimation performance [11], and obviously

high computational complexity is one fundamental challenge

related to large antenna arrays [9], [11].
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Traditionally, multiple signal classification (MUSIC) [12]

and estimation of signal parameters via rotational invariance

techniques (ESPRIT) [13] are two classic subspace based

methods for DOA estimation. Under the compressive sensing

(CS) framework, the sparse signal reconstruction method is

introduced for DOA estimation with the ability of dealing both

coherent and uncorrelated sources, and good performance can

still be achieved for a low input signal to noise ratio (SNR) and

a small number of snapshots [14]. In [15], after presenting the

CS-based DOA estimation method for a single snapshot, the

ℓ1-SVD method based on singular value decomposition (SVD)

is proposed for multiple snapshots. Then in [16], a method

based on a sparse representation of array covariance vectors

(referred to as ℓ1-SRACV) is proposed, while the Bayesian

compressive sensing strategies are studied in [17].

It is well known that N − 1 sources can be detected

based on a uniform linear array (ULA) with N sensors by

employing the aforementioned estimation methods, and sparse

spatial sampling (sparse array) is one solution to resolve more

sources than the sensor number in the underdetermined case.

The minimum redundant array (MRA) [18] and the minimum

hole array (MHA) [19] are two representative examples, but

there is no closed-form expressions for their geometries and

it is still a challenge for designing MRA and MHA for a

large number of sensors. Based on the difference co-array

concept, simple array configurations including nested arrays

[20] and co-prime arrays [21], [22], and their extensions

against mutual coupling [23]–[27] and extensions based on

high order statistics [28]–[32], have been proposed with

increased degrees of freedom (DOFs) for DOA estimation.

Compared with the spatial smoothing based MUSIC (SS-

MUSIC) method for underdetermined narrowband DOA es-

timation [20], [21], [33], the CS-based method [22], [34]

achieves a higher number of DOFs and better DOA results

due to exploitation of all the unique co-array lags in lieu

of only the consecutive part [14], [22], [29], [32]. In [35],

[36], the group sparsity (GS) based underdetermined wideband

DOA estimation method is developed, and the computational

complexity can be reduced by combining redundant difference

co-arrays together without sacrificing the performance. Then

in [37], the focused compressive sensing method for direction

finding in the underdetermined wideband case is presented

with significant complexity reduction achieved.

Although the CS-based methods bring benefits in DOA

estimation especially for the underdetermined case where

higher DOFs and better performance can be achieved, the



2

dictionary mismatch problem caused by off-grid sources is

one major issue associated with the CS framework, which

compromises the performance [38], [39]. A straightforward

solution to avoid the off-grid effect is to construct a large

overcomplete sensing matrix/dictionary with a dense search

grid based on which the underlying sources can be considered

as approximately on-grid, thus leading to high computational

complexity which is also a challenge to be tackled in massive

MIMO systems. It is suggested that the search grids should

not be too dense in case the adjacent bases (steering vectors)

become strongly correlated [40]. Instead of the iterative grid

refining approach [15], several off-grid estimation methods

are proposed to alleviate the dictionary mismatch effect by

transforming the non-convex off-grid optimization into joint

sparse signal and parameter estimation problem based on finite

grids [41]–[44], and then gridless methods motivated by the

atomic norm are studied in [40], [45], [46]. For the und-

edetermined off-grid case, a joint sparse recovery method is

presented for narrowband DOA estimation in [47], [48], while

wideband solutions are given in [49]. However, the group

sparsity involved for solving wideband problems indicates that

the complexity is much higher than that of the narrowband

case.

Although sparse arrays can be adopted for cost and com-

plexity reduction, the number of sensors employed in massive

MIMO system is still large with resultant heavy workload.

For the wideband DOA estimation probelm, how to reduce

the computational complexity without compromising the esti-

mation performance is still a major challenge.

In this paper, the underdetermined DOA estimation problem

for wideband off-grid sources is studied, and we will show

that significant complexity reduction can be achieved without

sacrificing the performance with an initial coarse search grid.

For the two-step off-grid wideband DOA estimation (TS-OG)

method in [49], the most time-consuming process is to jointly

recover the DOAs across all frequencies of interest based on

the group sparsity constraint given their same spatial support.

We first apply focusing on the virtual array corresponding

to the difference co-arrays instead of the physical array, and

then the virtual signal model can be combined simply and the

focused off-grid signal model can be established employing the

Taylor expansion. A focusing based off-grid (F-OG) wideband

method is then formed by estimating the DOAs over a pre-

defined coarse search grid and the off-grid terms separately

with its complexity close to a single frequency based DOA

estimation problem.

Then, we further investigate the focusing errors as well

as the Taylor expansion approximation errors for the off-

grid case. For the focused model: 1) only the predefined

coarse grids are involved for DOA estimation and therefore

focusing with even the actual DOAs may not lead to a good

performance due to the focusing errors at those predefined

grids; 2) Taylor expansions of the steering matrix at all

frequencies of interest are not ensured to be close to that at the

reference frequency after focusing, and therefore the focusing

errors are essential to this dictionary mismatch effect; 3) off-

grid approximation errors based on Taylor expansions are

associated with the off-grid biases, and thus the focusing errors

at those expansions lead to further accumulated approximation

errors, which will definitely result in significant performance

degradation.

To tackle these challenges, an iterative re-focused wide-

band off-grid DOA estimation method based on a dynamic

dictionary (DD-F-OG) is proposed. The coarse grid is used

for focusing to obtain the DOA results based on the focused

off-grid model in the first iteration. Then in following itera-

tions, the updated DOA estimation results are chosen as the

extremely sparse grids for dictionary generation to alleviate

the off-grid effect, while a grid refining strategy also based

on the DOA results is used for re-focusing. In this way,

the complexity introduced by iterations is quite limited since

the number of grids involved in estimation is reduced to the

number of sources detected, and the total approximation errors

reaches the lowest by eliminating the off-grid effect gradually

compared with those methods with a fixed dictionary.

This paper is structured as follows. The wideband signal

model and a review of the GS-based method for direction

finding is presented in Section II. The focusing based off-grid

wideband DOA estimation method with significantly reduced

complexity is proposed in Section III, and the developed

dynamic dictionary based re-focused off-grid wideband DOA

estimation method with improved performance is given in

Section IV. Simulation results are provided in Section V, and

conclusions are drawn in Section VI.

II. WIDEBAND SIGNAL MODEL AND GROUP SPARSITY

BASED DOA ESTIMATION

A. Wideband Signal Model

Consider an arbitrary N -sensor linear array with its sensor

position set denoted as

S = {~nd | n = 0, 1, . . . , N − 1} , (1)

where ~nd represents the position of the n-th sensor with d
being the unit inter-element spacing.

Assume that there are K wideband source signals, and these

wideband signals are mutually uncorrelated. Denote sk(t) as

the k-th signal with incident angle θk, k = 1, 2, . . . ,K. Then

for the n-th sensor, the observed signal xn(t) can be expressed

as

xn(t) =

K∑

k=1

sk [t− τn(θk)] + n̄n(t) , (2)

where n̄n(t) is the additive white Gaussian noise, and τn(θk)
represents the time delay of the k-th source signal arriving at

the n-th sensor with the position 0d as the reference.

After sampling with a frequency fs, where fs is larger than

the bandwidth of the source signals, the discrete version of

xn(t) is denoted by xn[i], and the received signal vector is

stacked as

x[i] =
[
x0[i], x1[i], . . . , xN−1[i]

]T
, (3)

where {·}T denotes the transpose operation.

We divide the received signals into several non-overlapping

groups with the length L, and the array output model in
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the frequency domain after applying L-point discrete Fourier

transform (DFT) to the p-th group is given by

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (4)

where the signal model at each frequency bin is as-

sumed to fulfill the narrowband assumption. X[l, p] =[
X0[l, p], X1[l, p], . . . , XN−1[l, p]

]T
, l = 0, 1, . . . , L − 1, is

the N × 1 column signal vector at the l-th frequency bin and

the p-th DFT group with

Xn[l, p] =

L−1∑

i=0

xn[L · (p− 1) + i] · e−j 2π
L

il . (5)

Similarly, S[l, p] and N[l, p] represent the source signal vector

and the noise vector in the frequency domain, respectively.

A(l,θ) =
[
a(l, θ1),a(l, θ2), . . . ,a(l, θK)

]
is the N×K steer-

ing matrix associated with frequency fl at the l-th frequency

bin, and its column vector a(l, θk) is expressed as

a(l, θk) = [e
−j

2π~0d

λl
sin(θk), . . . , e

−j
2π~N−1d

λl
sin(θk)]T , (6)

where λl = c/fl, and c is the signal propagation speed.

B. Group Sparsity Based Underdetermined Wideband DOA

Estimation

Definition 1: The set of the second-order difference co-

array (also known as difference co-array) C of the given array

structure in (1) is defined as [20]

C = {c1 − c2 | c1, c2 ∈ S}

= {(~n1
− ~n2

)d | n1, n2 = 0, 1, . . . N − 1} .
(7)

The correlation matrix at the l-th frequency bin can be

calculated by

Rxx[l] = E
{
X[l, p] ·XH [l, p]

}

=
K∑

k=1

σ2
k[l]a(l, θk)a

H(l, θk) + σ2
n̄[l]IN ,

(8)

where E{·} is the expectation operator and {·}H denotes

the Hermitian transpose operation. σ2
k[l] and σ2

n̄[l] are the k-

th impinging signal power and the noise power at the l-th
frequency bin, respectively, and IN is the N × N identity

matrix.

Vectorizing Rxx[l] in (8), we obtain an array model with

the second order difference co-arrays in C as its virtual sensor

positions, shown as

z[l] = vec {Rxx[l]} = B(l,θ)u[l] + σ2
n̄[l]̃IN2 , (9)

where B(l,θ) =
[
b(l, θ1),b(l, θ2), . . . ,b(l, θK)

]
with the

equivalent steering vector b(l, θk) = a∗(l, θk)⊗a(l, θk), while

⊗ represents the Kronecker product. ĨN2 = vec(IN ) returns

an N2×1 column vector, and u[l] =
[
σ2
1 [l], σ

2
2 [l], . . . , σ

2
K [l]

]T
is the equivalent source signal vector of the virtual array.

Then, a predefined search grid θg consisting of Kg po-

tential incident angles, i.e., θg,0, . . . , θg,Kg−1, is employed to

generate an overcomplete representation of the steering matrix

B(l,θ), given as B(l,θg) =
[
b(l, θg,0), . . . ,b(l, θg,Kg−1)

]
,

and a block diagonal matrix is constructed by

B̃(θg) = blkdiag
{
B(l0,θg),B(l1,θg), . . . ,B(lQ−1,θg)

}
,

(10)

where we assume that there are Q frequency bins occupied

by the wideband signals of interest with indexes lq , q =
0, 1, . . . , Q− 1 and Q ≤ L.

Denote ug[l] as a Kg × 1 column vector holding potential

source signals over the the search grid θg . The group sparsity

based wideband DOA estimation method is formulated as [35],

[36]

min
ũg,v

∥∥û◦

g

∥∥
1

subject to

∥∥∥z̃− B̃(θg)ũg −Wv

∥∥∥
2
≤ ε ,

(11)

where ‖·‖1 returns the ℓ1 norm, while ‖·‖2 the ℓ2 norm.

W = blkdiag
{
ĨN2 , ĨN2 , . . . , ĨN2

}
is a QN2 × Q block

diagonal matrix, and ε is the allowable error bound. It

is noted that ũg =
[
uT
g [l0],u

T
g [l1], . . . ,u

T
g [lQ−1]

]T
and

v =
[
σ2
n̄[l0], σ

2
n̄[l1], . . . , σ

2
n̄[lQ−1]

]T
are considered as ma-

trix/vector holding unknown variables to be estimated, and

û◦

g =
[∥∥ũg,0

∥∥
2
,
∥∥ũg,1

∥∥
2
, . . . ,

∥∥ũg,Kg−1

∥∥
2
,
∥∥v

∥∥
2

]T
, (12)

with ũg,kg
being the kg-th row vector of the matrix Ũg =[

ug[l0],ug[l1], . . . ,ug[lQ−1]
]
.

Remark 1: The first Kg elements in û◦

g represent the

estimated DOA results over the Kg search grids. For each

frequency bin, the variables to be estimated is reduced to

(Kg+1)×1 after vectorization based on the co-array concept,

leading significant complexity reduction compared with the

ℓ1-SVD proposed in [15] where only the narrowband case

(Q = 1) is considered. Furthermore, more sources than the

number of physical sensors can be resolved by the GS method

when sparse arrays such as nested array and co-prime array are

employed, and therefore it is possible to reduce the physical

sensors (less complexity) or, in other words, increase the

number of users for a certain communication network.

III. FOCUSING BASED WIDEBAND DOA ESTIMATION FOR

OFF-GRID SOURCES

For the wideband off-grid case, the group sparsity based off-

grid (GS-OG) method is proposed to jointly recover the DOA

results based on the predefined search grid and the off-grid

bias vector [49], while the two-step off-grid (TS-OG) method

[49] estimates them one by one with improved performance

as well as reduced complexity. However, extremely high

computational complexity is still the main drawback for all the

GS associated methods, where ug[lq], ∀q = 0, 1, . . . , Q−1, are

estimated simultaneously to achieve better DOA results under

the GS constraint. The complexity increases sharply with the

number of co-arrays in C (equal to the number of rows in

B(lq,θg)), which is related to the number of physical sensors.

Therefore, it is important to develop low complexity off-grid

wideband DOA estimation method under the CS framework,

especially for applications where a large array is employed.

In this section, a focusing based off-grid wideband DOA
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estimation method under the CS framework is proposed, and

its complexity is close to the co-array based DOA estimation

problem for a single frequency.

A. Focusing on the Virtual Array

By applying the focusing algorithm, the signal sub-spaces

across the frequencies of interest are aligned to a reference

frequency with the generated focusing matrices [50], and then

those signal models within the frequency bins of interest can

be simply combined due to having nearly the same steering

matrix, leading to less complexity required for the direction

finding problem.

Denote fr associated with the lr-th frequency bin as the

reference frequency, and the relationship d ≤
λlr

2 = c
2fr

should be satisfied to ensure the focused model is aliasing-

free. fr is commonly chosen as the center frequency within the

bandwidth of interest to ensure good estimation performance.

By applying the focusing algorithm of rotational signal-

subspace (RSS) [51] on the virtual array with θF , we can

obtain the N2 ×N2 RSS focusing matrix T[l] by solving the

optimization problem as follows:

min ‖B(lr,θF )−T[l]B(l,θF )‖F

subject to TH [l]T[l] = IN2 ,
(13)

and its solution is [37], [51]

T[l] = V[l]UH [l] , (14)

where B(l,θF ) is constructed using θF , and ‖·‖F is the

Frobenius norm. The column vectors in U[l] and V[l] are

the left and right singular vectors of B(l,θF )B
H(lr,θF ),

respectively.

Then the virtual array model in (9) at the l-th frequency can

be transformed as

y[l] = T[l]z[l]

= T[l]B(l,θ)u[l] + σ2
n̄[l]T[l]̃IN2

≈ B(lr,θ)u[l] + σ2
n̄[l]T[l]̃IN2 .

(15)

Remark 2: As illustrated in [37], better performance can

be achieved by applying focusing on the virtual array model

described in (9) directly in lieu of the physical array model

in (4) since the accumulated model mismatch error in virtual

array generation is avoided. The focusing performance is sen-

sitive to θF , a short discussion about the selection of θF will

be given in Remark 3-(2), and further analysis together with

improvement on the wideband DOA estimation performance

via dynamic dictionary based re-focused off-grid algorithm

will be presented in Section IV.

B. Focused Off-Grid Compressive Sensing Solution

After focusing, a single wideband model can be obtained

by averaging the signals at all frequency bins of interest given

their shared equivalent steering matrix as follows

ȳ =
1

Q

Q−1∑

q=0

y[lq] . (16)

For on-grid sources where their DOAs fall exactly on the

predefined grids, this single wideband model under the CS

framework with θg can be rewritten as

ȳ =
1

Q

Q−1∑

q=0

y[lq]

= B(lr,θg)ūg +
1

Q

Q−1∑

q=0

σ2
n̄[lq]T[lq]ĨN2

= B(lr,θg)ūg +TĨN2 ,

(17)

where ūg = 1
Q

∑Q−1
q=0 ug[lq] is the Kg × 1 column vector

consisting of the potential equivalent signals to be estimated.

For the Gaussian white noise assumption where σ2
n̄[lq] = σ2

n̄,

∀q = 0, 1, . . . , Q− 1, we have T = 1
Q

∑Q−1
q=0 {T[lq]σ

2
n̄[lq]} =

1
Q

∑Q−1
q=0 T[lq]σ

2
n̄.

Ideally ūg has the following form

ūg,kg
=

{
1
Q

∑Q−1
q=0 σ2

k[lq], θg,kg
= θk ,

0, others ,
(18)

where k = 1, 2, . . . ,K, and ūg,kg
is the kg-th entry in ūg.

In reality, the focused virtual signal model cannot be rep-

resented accurately with a finite number of grids. Instead of

employing a very dense search grid which leads to extremely

high computational complexity, we study the general case of

off-grid sources and show that accurate DOA results can still

be obtained via focused off-grid solutions based on a coarse

grid, with significantly reduced complexity.

Denote θg,mk
as the nearest angle in the finite grid of the

actual DOA θk, and then the steering vector at θk can be

approximated by applying the Taylor expansion to θg,mk
by

b(l, θk) ≈

∞∑

µ=0

∂(µ)b(l, θg,mk
)

µ! · ∂θ
(µ)
g,mk

(θk − θg,mk
)µ , (19)

where
∂(µ)b(l,θg,mk

)

∂θ
(µ)
g,mk

denotes the µ-th derivative of b(l, θg,mk
),

µ! represents the factorial of µ, and − r
2 ≤ θk − θg,mk

≤ r
2

with r = θg,kg+1 − θg,kg
being the step size of the adjacent

search grid.

The focused wideband off-grid model exploiting the first-

order Taylor expansion of the steering matrix B(lr,θg) can

be approximated by

ȳ ≈
(
B(lr,θg) +B(1)(lr,θg)∆g

)
ūg +TĨN2 , (20)

where B(1)(lr,θg) =
[∂b(lr,θg,0)

∂θg,0
, . . . ,

∂b(lr,θg,Kg−1)

∂θg,Kg−1

]
, and

∆g = diag{αg} is a diagonal matrix with the perfect solution

of the column bias vector αg given by

αkg
=

{
θk − θg,kg

, kg = mk ,
0, others ,

(21)

for kg = 0, 1, . . . ,Kg − 1, and αkg
is the kg-th entry of αg .

The off-grid problem after focusing returns to a single

frequency case at the reference frequency fr, and therefore

its complexity is significantly reduced without imposing the

GS constraint. The wideband TS-OG method [49] with low

complexity can be modified for DOA estimation based on
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the focused model. Note that it is a non-convex optimization

problem to recover ūg and ∆g jointly. As a result, a column

vector βg = ∆gūg = αg ⊙ ūg with ⊙ representing the

elementwise multiplication is defined, and we estimate ūg and

αg in lieu of ∆g separately for convexity permission and

also complexity reduction, leading to the following proposed

focusing based wideband off-grid DOA estimation (referred to

as F-OG) method

Step 1: min
ūg,σ

2
n̄

∥∥ū◦

g

∥∥
1

subject to

∥∥∥ȳ −B(lr,θg)ūg − T̃σ2
n̄ĨN2

∥∥∥
2
≤ ε,

Step 2: min
αg

∥∥∥∆ȳ −B(1)(lr,θg)(αg ⊙ ūg)
∥∥∥
2

subject to −
r

2
1Kg

� αg �
r

2
1Kg

,

(22)

where T̃ = 1
Q

∑Q−1
q=0 T[lq], ∆ȳ = ȳ−B(lr,θg)ūg−T̃σ2

n̄ĨN2 ,

and 1Kg
= [1, 1, . . . , 1]

T
is an Kg×1 column vector consisting

of all ones. � represents ≤ elementwise, and ū◦

g =
[
ūT
g , σ

2
n̄

]T
.

Remark 3-(1): The CS-based formulation in the first step

recovers the coarse DOAs ūg over the predefined search

grid θg for the focused wideband model, followed by a

minimization problem with a bounded constraint in the second

step to estimate the off-grid bias vector αg using the recovered

ū◦

g. Denote θ̃K as the DOAs estimated in the first step and

α̃K is the estimated bias vector corresponding to θ̃K . The

final DOA results are obtained by θ̂K = α̃K + θ̃K .

Remark 3-(2): Note that for the off-grid case, the exact

grids corresponding to the actual DOAs may not be involved

in θg for DOA estimation. In this way, focusing with even

the actual DOAs may not lead to a good performance in

(22). Towards this end, the search grid θg can be simply

chosen for focusing to obtain a good estimation of ūg over

the predefined grids, and further approximation errors will be

analyzed and a dynamic dictionary based re-focusing solution

will be proposed in Section IV.

IV. RE-FOCUSED WIDEBAND OFF-GRID DOA

ESTIMATION BASED ON DYNAMIC DICTIONARY

The focusing error is sensitive to the initial DOAs θF . The

predefined search grid can be utilized as the initial DOAs

to avoid the preliminary estimation of the DOAs. However,

the model mismatch errors caused by focusing become worse

for the off-grid case which is accumulated based on the off-

grid approximation errors. In this section, we first reduce

the number of grids involved in the second step of the F-

OG method, and then a dynamic dictionary based re-focused

wideband off-grid DOA estimation method (DD-F-OG) is

proposed for performance improvement by alleviating both the

focusing errors and off-grid model approximation errors.

A. Grids Reduction for the Focused Off-Grid Solution

In the second step of the proposed F-OG method, we can

simply use a reduced grids with less number of potential inci-

dent angles instead of the full grids θg , and lower complexity

is achieved by the resultant minimization problem.

As a result, the focused wideband off-gird DOA estimation

with reduced grids can be formulated as

Step 1: min
ūg,σ

2
n̄

∥∥ū◦

g

∥∥
1

subject to

∥∥∥ȳ −B(lr,θg)ūg − T̃σ2
n̄ĨN2

∥∥∥
2
≤ ε,

Step 2: min
α̃1

K

∥∥∥∆ȳ −B(1)(lr, θ̃
1

K)(α̃1
K ⊙ ũ1

K)
∥∥∥
2

subject to −
r

2
1K � α̃1

K �
r

2
1K ,

(23)

where θ̃
1

K with the size K × 1 denotes the estimated DOA

results in the first step, α̃1
K is the bias vector related to θ̃

1

K ,

and ũ1
K represents the values in ūg over the angles θ̃

1

K .

Obviously, the estimated DOA results are θ̂
1

K = α̃1
K + θ̃

1

K .

The dimension of the variables to be estimated is reduced

from Kg to the detected number of sources K, resulting in

less complexity since Kg ≫ K.

We can introduce an iteration strategy by adding the esti-

mated α̃K related term into the first step in the next iteration.

However, the focusing errors remain the same, and thus the

DOA mismatches caused by the focusing part cannot be

improved. To tackle this problem, dynamic dictionary based

re-focused wideband off-grid estimation method is proposed

as a solution.

B. Dynamic Dictionary Based Re-Focused Wideband Off-Grid

DOA Estimation

For the off-grid case under the CS framework, the approx-

imation of the signal model at the l-th frequency is expressed

as

z ≈
(
B(l,θg) +B(1)(l,θg)∆g

)
ug[l] + σ2

n̄[l]ĨN2 . (24)

Note that ∆g consisting of the bias vector is shared among

all frequencies of interest.

After focusing, we have

y[l] = T[l]z[l]

≈
[
B(lr,θ) +T[l]B(1)(l,θg)∆g

]
ug[l] + σ2

n̄[l]T[l]̃IN2 .

(25)

The focusing algorithm in (13) minimizes the focusing

errors at angles θF (θF = θg can be selected to avoid finding

the DOAs in advance and to maintain a good estimation of ūg

in step 1). However, T[l]B(1)(l,θg) ≈ B(1)(lr,θg) cannot

be satisfied, and it is difficult to ensure the relationship by

imposing constraints due to the existence of unknown ∆g .

As a result, for the focused model: 1) only the coarse grids

θg are involved for DOA estimation, and therefore focusing

with even the actual DOAs may not lead to a good perfor-

mance due to the focusing errors at those predefined grids;

2) Taylor expansions of the steering matrix after focusing

T[l]B(1)(l,θg) are not ensured to be close to B(1)(lr,θg)
at the reference frequency, and therefore the focusing errors

are essential to this dictionary mismatch effect; 3) off-grid

approximation errors in (20) are associated with the off-grid
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biases, and thus the focusing errors at T[l]B(1)(l,θg) will

definitely cause significant performance degradation due to

further accumulated approximation errors.

An alternative solution is to modify the dictionary (search

grid) iteratively based on the estimated DOA results, and

the term T[l]B(1)(l,θg)∆g can be ignored when ∆g → 0.

Another advantage brought by this dynamic dictionary strategy

is that, the off-grid model can be more accurately represented

based on the first order Taylor expansion when ∆g → 0, and

therefore better DOA results can be obtained.

Denote θ̂
m−1

K as the DOA estimates at the (m − 1)-th

iteration, and θ̂
m−1

K is considered as the search grid at the m-

th iteration to generate the steering matrix B(l, θ̂
m−1

K ) (also

known as the sensing matrix or the dictionary) at the l-th
frequency bin. Then, we set the focusing angles at the m-th

iteration as

θ̂
m

F =
[{

θ̂
m−1

K − rm
}T

,
{
θ̂
m−1

K

}T
,
{
θ̂
m−1

K + rm
}T

]T
,

(26)

where the focusing step size at the m-th iteration rm = rm−1

η

with η ≥ 1 being a parameter for refining, and the focusing

matrices are obtained by solving

min
∥∥∥B(lr, θ̂

m

F )−Tm[l]B(l, θ̂
m

F )
∥∥∥
F

subject to TH
m[l]Tm[l] = IN2 ,

(27)

with

Tm[l] = V[l]UH [l] . (28)

Remark 4: It is noted that better performance can be

achieved by focusing at two adjacent angles around the es-

timated ones [51], and the angle interval rm is refined in each

iteration for performance improvement. Please also note that

the number of entries in θ̂
m

F for focusing is 3K, while only

K sparse grids in θ̂
m−1

K are involved for DOA estimation.

Then, dictionaries at frequency bins of interest are re-

focused to the reference frequency with the re-focused wide-

band virtual array model updated to

ym[l] = Tm[l]z[l]

≈ B(lr, θ̂
m−1

K )u[l] + σ2
n̄[l]Tm[l]̃IN2 ,

(29)

and for the off-grid case, we have

ȳm =
1

Q

Q−1∑

lq=0

ym[lq]

≈
(
B(lr, θ̂

m−1

K ) +B(1)(lr, θ̂
m−1

K )∆m
K

)
ũm
K + T̃mσ2

n̄ĨN2 ,
(30)

where T̃m = 1
Q

∑Q−1
q=0 Tm[lq]. ũ

m
K is the vector to be esti-

mated, reflecting the equivalent signals over the refined search

grid θ̂
m−1

K , and ∆m
K = diag{αm

K} with αm
K representing the

corresponding bias vector.

After re-focusing, the wideband off-grid model is updated

with the refined dictionary, and the dynamic dictionary based

re-focused wideband off-grid (DD-F-OG) DOA estimation

method at the m-th iteration (m ≥ 2) is formulated as

Step 1: min
ũm

K
,σ2

n̄

‖ũm◦

K ‖1

subject to

∥∥∥ȳm −B(lr, θ̂
m−1

K )ũm
K − T̃mσ2

n̄ĨN2

∥∥∥
2
≤ ε,

Step 2: min
α̃m

K

∥∥∥∆ȳm −B(1)(lr, θ̂
m−1

K )(α̃m
K ⊙ ũm

K)
∥∥∥
2

subject to −
rm

2
1K � α̃m

K �
rm

2
1K ,

(31)

where ũm
K is the estimated DOA results in the first step,

α̃m
K is the bias vector related to θ̂

m−1

K , ∆ȳm = ȳm −

B(lr, θ̂
m−1

K )ũm
K − T̃mσ2

n̄ĨN2 , and ũm◦

K =
[
{ũm

K}T , σ2
n̄

]T
.

Finally, the DOA results estimated at the m-th iteration is

θ̂
m

K = α̃m
K + θ̃

m−1

K .

Remark 5-(1): The DOA estimates θ̂
m−1

K at the (m − 1)-
th iteration is utilized as the search grid at the m-th iteration

for dictionary generation, and therefore the off-grid biases in

α̃m
K decreases with the increase of m. The smaller the α̃m

K ,

the more accurate focusing approximation and also the off-

grid approximation based on the first order Taylor expansion

can be achieved, leading to better estimates of θ̂
m

K , which

is again translated to a smaller α̃m+1
K in the next iteration.

Furthermore, the focusing mismatch error decreases with less

number of entries in θ̂
m

F (reduced from Kg to 3K with more

accurate grids) involved in the focusing process (27), which

also leads to improved performance.

Remark 5-(2): The number of sources is not required for

DOA estimation under the CS framework. Based on successful

detections, the dimension of the sensing matrix (dictionary)

reduces from N2 × Kg to N2 × K for the m-th (m ≥ 2)

iteration and also the second step in the first iteration, while the

number of parameters to be estimated decreases from Kg to K.

Therefore, the complexity associated with the m-th iteration

is extremely low compared with that of the first iteration since

Kg ≫ K.

Remark 5-(3): An extremely dense search grid θF can be

employed for focusing in the first iteration to construct a

frequency invariant transformation, where the focused model

would be globally (at nearly all potential angles) close to the

model at the reference frequency in the Frobenius manner

and therefore the focusing matrices T1[l] can be used for the

following iterations to avoid the re-focusing process. In this

way, although the complexity is further reduced due to absence

of the re-focusing process, the DOA estimation performance

may not be better since the model errors at those source-

related angles are not guaranteed to be smaller and on the

contrary, they turn out to be larger due to the limited degrees

of freedom of the system for minimising the focusing error in

(13), which leads to worse performance, as will be shown in

our simulations.

The procedure of the proposed DD-F-OG method with M
iterations is summarized as follows:

1) Initialize m = 1 and generate a coarse search grid θg
within the entire incident angles of interest with a large

step size r.
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2) Apply the focusing algorithm based on θ̂
1

F = θg as in

(13), and then estimate the wideband DOA results θ̂
1

K

by applying the proposed DD-F-OG method with the

first iteration in (23).

3) Set m = m+1, and an updated dictionary is generated

with θ̂
m−1

K employed as the refined search grid, while

the updated θ̂
m

F is used for re-focusing.

4) Based on the re-focused wideband off-grid model in

(29), solve the DOA estimation problem by applying

the DD-F-OG method for the m-th (m ≥ 2) iteration in

(31) to obtain the estimates θ̂
m

K .

5) Repeat steps 3) and 4) until m = M , and θ̂
M

K are the

final estimation results of the wideband DOAs.

V. SIMULATION RESULTS

A. Simulation Settings

In this section, an example of co-prime array with N1 = 3
and N2 = 4 is considered, where the inter-element spac-

ing for the N2-sensor sub-array is N1d, while N2d is the

spacing between adjacent sensors of the other sub-array with

2N1 − 1 sensors. The set of sensor positions is given by

S = {0, 3, 4, 6, 8, 9, 12, 16, 20} d with the total number of

physical sensors as N = 2N1+N2−1 = 9. In the initialization

step, a search grid θg is generated within the full angle range

from −90◦ to 90◦ with the step size of r, and the number of

grids Kg = 180
r

+ 1.

Assume that there are K = 12 wideband source signals

(more than the number of physical sensors) whose incident

angles are uniformly distributed between −59.25◦ and 58.75◦.

The bandwidth of the impinging signals occupies Q = 15
frequency bins indexed from 17 to 31 after applying DFT

with L = 64 points, and therefore the normalized frequency

range is [0.5π, π]. The center frequency within the bandwidth

of interest, i.e., normalized frequency 0.75π at the lr = 24-

th frequency bin with fr = lr
L
fs, is chosen as the reference

frequency, and the unit spacing d is set as d =
λlr

2 = c
2fr

.

The software package CVX [52], [53] is used to solve the op-

timization problems for off-grid sources of the F-OG method

in (22) and the DD-F-OG method (31), and the allowable error

bound ε is chosen to give the best estimation results through

trial-and-error in every experiment.

B. Complexity Comparison

In some applications such as massive MIMO communica-

tions, although sparse arrays can be employed for resolving

more sources than the number of sensors, a large array is

usually equipped and complexity reduction is always a big

priority.

For further comparison with the well-known SS-MUSIC

(also known as co-array MUSIC) [20], [21], [23], [33], [54]

which is commonly used to deal with the underdetermined

narrowband DOA estimation problem, we apply SS-MUSIC

based on the focused wideband signal model in (17) to

form its wideband extension, referred to as F-SS-MUSIC.

Furthermore, the joint sparse recovery method [47], [48] for

the underdetermined narrowband off-grid case can also be

applied to the focused wideband signal model (17), leading

to its straight forward wideband extension referred to as F-JS-

OG.

We first compare the computational complexity of different

wideband DOA estimation methods, and the number of param-

eters to be estimated are listed in Table I. Clearly, the number

of parameters to be estimated in the GS method [36] and the

TS-OG method [49] is nearly Q times larger than that of the

proposed focusing based off-grid solutions, while the TS-OG

method has the largest number of parameters. Furthermore,

although the proposed DD-F-OG method at each iteration

has the lowest complexity, more iterations are required for

performance improvement.

The combination algorithm in [36] is utilized to merge the

redundant co-arrays together for further complexity reduc-

tion, and the computation time, calculated by the MATLAB

profiler under the environment of Intel CPU I5-4570S with

the processor frequency 2.90 GHz and 8 GB RAM, is also

listed in Table I. As expected, the computation time required

by the GS method and the TS-OG method increases sharply

with the number of grids Kg involved due to the group

sparsity constraint across all frequencies of interest, while the

complexities of the proposed F-OG method and the DD-F-

OG method with the same iterations remain nearly the same

for all step sizes employed. It is noted that for the subspace

method F-SS-MUSIC, due to its extreme fast computation

speed compared with those CS-based methods, a dense search

grid with small step size can be employed to avoid the off-

grid effect. It is also noted that for the F-JS-OG method, the

computation time is larger than that of the F-OG method due

to joint sparse recovery of the DOA results and the bias vector

simultaneously, and its complexity increases significantly with

the number of grids Kg .

C. Wideband DOA Estimation Results

For the first set of simulations, we set the input signal to

noise ratio (SNR) as 0 dB, the number of snapshots at each

frequency bin is 1000, and the step size r of the initial coarse

grid is 3◦ for those CS-based methods. It is noted that the

actual DOAs are used for focusing in F-SS-MUSIC and F-JS-

OG to obtain a good estimation result, and a small step size

r = 0.05◦ is employed for the subspace method F-SS-MUSIC

to ensure good performance without the off-grid effect. The

DOA estimation results obtained by different underdetermined

wideband methods for the off-grid case are shown in Fig. 1,

where the solid lines in the figure represent the DOA estimates

obtained, while the dotted lines are the actual incident angles

of the off-grid sources. We can see clearly that all the 12

sources have been resolved successfully by all methods based

on the 9-sensor co-prime array.

For the second set of simulations, we study the influence

of the θF for focusing application on the performance of the

F-OG method. The root mean square error (RMSE) results

versus the input SNRs and the number of snapshots are shown

in Figs. 2 and 3, respectively, where the step size is r = 3◦, and

each point is based on 500 Menter Carlo simulation trials. The

F-OG represents the proposed method with the coarse search
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Number of parameters to be estimated

Steps GS [36] TS-OG [49] F-SS-MUSIC F-JS-OG F-OG
DD-F-OG: the
1-st iteration

DD-F-OG: the m-th
iteration (m ≥ 2)

Step 1 (Kg + 1)Q (Kg + 1)Q Kg 2Kg + 1 Kg + 1 Kg + 1 K + 1

Step 2 0† Kg 0† 0† Kg K K

Computation Time

Step sizes Kg GS [36] TS-OG [49] F-SS-MUSIC F-JS-OG F-OG
DD-F-OG (2

iterations)
DD-F-OG (3

iterations)
DD-F-OG (4

iterations)

r = 5◦ 37 1.7522 s 2.1253 s 0.0315 s 1.4509 s 1.0538 s 1.4431 s 1.7756 s 2.1416 s

r = 3◦ 61 3.2160 s 3.6217 s 0.0380 s 1.8923 s 1.0641 s 1.4596 s 1.7881 s 2.1654 s

r = 2◦ 91 4.2184 s 4.7818 s 0.0408 s 2.2028 s 1.0925 s 1.4730 s 1.8228 s 2.1914 s

r = 1◦ 181 6.9508 s 8.4275 s 0.0571 s 3.4728 s 1.1270 s 1.5073 s 1.9063 s 2.2113 s

r = 0.5◦ 361 14.9298 s 18.1965 s 0.0856 s 6.2890 s 1.1391 s 1.4910 s 1.8868 s 2.2539 s

† The GS, F-SS-MUSIC, and F-JS-OG methods estimate the DOA results directly without Step 2.

(a) DOA estimation results of F-SS-MUSIC. (b) DOA estimation results of the F-JS-OG method. (c) DOA estimation results of the GS method.

(d) DOA estimation results of the TS-OG method. (e) DOA estimation results of the F-OG method.

(f) DOA estimation results of the DD-F-OG method
with 2 iterations.

(g) DOA estimation results of the DD-F-OG method
with 3 iterations.

Fig. 1. DOA estimation results obtained by different underdetermined wideband methods for the off-grid case.
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Fig. 2. RMSE results versus input SNRs for different θF involved.

Fig. 3. RMSE results versus number of snapshots for different θF involved.

grid θg utilized as the focusing angles with θF = θg , the

F-OG (v1) represent the method employing θF = θ with θ

being the actual DOAs, while an extremely dense search grid

within the full range of −90◦ to 90◦ based on a small step

size 0.05◦ is used as θF in F-OG (v2). Different from focusing

on the virtual array in the aforementioned methods, we apply

focusing on the physical array with actual DOAs in F-OG (v3).

Obviously, the performance of those off-grid solutions is better

than that of the GS method due to the off-grid calibration, and

the performance of the F-OG (v3) with focusing on physical

array based on actual DOAs is the worst among all off-grid

solutions due to the accumulated system errors in generating

a virtual array with more sensors. It is clear that the F-OG

method outperforms the F-OG (v2) as discussed in Remark

5-(3). Although the F-OG (v1) performs better than the F-OG

method, it is still worse than the TS-OG method due to the

accumulated system mismatch error by applying focusing to

the off-grid approximation model as illustrated before, and in

practice the actual DOAs are unknown parameters. That is

why the DD-F-OG method is developed.

For the third set of simulations, we compare the RMSE

results of different methods, and the RMSE results versus

input SNRs are shown in Fig. 4, where the step size is fixed

at r = 3◦. Similarly, we can see that the GS method suffers a

severe off-grid effect and has the largest estimation errors. Due

Fig. 4. RMSE results versus input SNRs for a fixed r = 3◦.

Fig. 5. RMSE results versus number of snapshots for a fixed r = 3◦.

to the focusing errors, although the F-OG method performs

better than the GS method, its RMSE is still worse than that

of the TS-OG method but with significant reduced complexity.

The performance of the DD-F-OG method improves with

iterations, and both DD-F-OG (2 iterations) and DD-F-OG

(3 iterations) outperform other methods with low complexity

achieved as verified in Table I, while DD-F-OG (3 iterations)

is the best.

Fig. 5 gives the RMSE results with respect to the number

of snapshots at each frequency bin, which again verifies the

superior performance of the proposed DD-F-OG method.

For the fourth set of simulations, we further compare the

proposed solution DD-F-OG with the F-SS-MUSIC and the

F-JS-OG methods, and the RMSE results with respect to the

input SNR and the number of snapshots are shown in Figs. 6

and 7, respectively, where r = 3◦ is used for the DD-F-OG

and F-JS-OG methods, while r = 0.05◦ is employed for F-SS-

MUSIC. For F-SS-MUSIC and F-JS-OG, it is worth nothing

that the actual DOAs are used for focusing to ensure good

performance, while refined focusing angles are adopted in the

DD-F-OG method. Obviously, although the complexity of the

F-SS-MUSIC is less than that of the DD-F-OG, the proposed

DD-F-OG outperforms the F-SS-MUSIC consistently since

all the unique co-array lags can be exploited by DD-F-OG,

while F-SS-MUSIC method can only utilize the consecutive
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Fig. 6. RMSE results versus input SNRs of different methods.

Fig. 7. RMSE results versus number of snapshots of different methods.

co-array lags for DOA estimation. This explains why the

CS-based methods are presented and the low-complexity off-

gird problems are studied in the underdetermined case [22],

[29], [32]. Then for the F-JS-OG method, although the actual

DOAs are employed for focusing, its performance as well as

computational complexity is still the worst since the required

joint recovery results in a more difficult optimization problem,

and the focusing errors accumulated with the off-grid approx-

imation error cannot be alleviated effectively with a fixed

dictionary. Furthermore, for the narrowband underdetermined

case, the Cramér-Rao Bound (CRB) converges to a constant

value when the input SNR is sufficiently large (Theorem

4 in [55]), and this property is definitely inherited by the

wideband underdetermined case. Moreover, there still exists

focusing error (although it becomes extremely small in our

proposed solution and the F-SS-MUSIC method) by applying

the focusing algorithm, and when the SNR and the number of

snapshots are large enough, the estimation performance will

be mainly affected by the focusing approximation errors and

therefore remain similar.

For the next set of simulations, we compare the RMSE

results obtained by different wideband DOA estimation meth-

ods with different initial step sizes. The TS-OG method with

r = 3◦ is redrawn as a benchmark, and the RMSEs versus

the input SNR are shown in Fig. 8, while the RMSEs with

Fig. 8. RMSE results versus input SNRs for different step sizes.

Fig. 9. RMSE results versus number of snapshots for different step sizes.

respect to the number of snapshots are presented in Fig. 9.

It can be concluded from the figures that GS with a smaller

r = 1◦ is the worst among all methods considered, while the

TS-OG method with a smaller r = 1◦ is better than TS-OG

with r = 3◦ due to the reduced off-grid effect for a denser

grid employed.

Furthermore, DD-F-OG (3 iterations) with a large r = 3◦,

and DD-F-OG (4 iterations) with an even larger r = 5◦ share

a similar good performance as the TS-OG with the smaller

step size r = 1◦, verifying that the performance of the DD-

F-OG method is relatively independent of the initial step size

due to the iteratively refined dictionary and definitely more

iterations are required for a larger step size to achieve a similar

performance. As compared in Table I, it is worth nothing

that without compromising the performance, only 1.7881s is

required by the DD-F-OG (3 iterations) with r = 3◦ and

2.1416s for the DD-F-OG (4 iterations) with r = 5◦, both

of which are quite smaller than the demand of the TS-OG

method with r = 1◦ (8.4275 s). Therefore, the proposed DD-

F-OG method is capable of achieving good performance with

a significantly reduced complexity.

Finally, we set the step size r = 5◦, the SNR as 20 dB, and

the number of snapshots as 1000. The RMSE results obtained

by the proposed DD-F-OG method with respect to iteration

number are given in Fig. 10, where clearly the performance
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Fig. 10. RMSE results of the DD-F-OG method with respect to iteration
number.

improves with iterations, and a similar performance is achieved

for m ≥ 4.

VI. CONCLUSIONS

In this paper, the DOA estimation problem with low com-

plexity for wideband off-grid sources has been studied. The

focusing based off-grid solution for the underdetermined case

was first presented, where the focusing algorithm was applied

to the difference co-arrays instead of the physical array, and its

complexity was significantly reduced by removing the group

sparsity constraint across all frequencies of interest due to

their shared common spatial support. Then, after analyzing

the focusing errors and the off-grid approximation errors, a

re-focused wideband off-grid method based on a dynamic

dictionary (DD-F-OG) was proposed to alleviate the system

mismatch errors with its improved performance relatively

independent of the initial coarse search grid employed, and

the extra complexity associated with the iterative process is

extremely low due to the lower number of refined sparse

grids (equal to the number of detected sources) involved

for both re-focusing and estimation. It has been shown by

simulations that the proposed DD-F-OG method achieves

the best performance with significantly reduced complexity

compared with other wideband solutions with the same initial

dictionary. It has also been shown by simulations that the

performance of the proposed DD-F-OG method under a coarse

dictionary is similar to the TS-OG method with dense grids

(corresponding to an extremely heavy workload), and therefore

less computation time is required.
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