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Dynamic allostery of protein alpha

helical coiled-coils

Rhoda J. Hawkins† and Tom C. B. McLeish

IRC in Polymer Science and Technology, School of Physics and Astronomy, and Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein
molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for
transmitting the information of ligand binding to a distant site across an allosteric protein, an
alternative to conformational change in the mean static structure is an induced change in the
pattern of the internal dynamics of the protein. We explore how ligand binding may change
the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-
grained models, treating the case of dynein in detail. The models predict that coupling of
slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of w2kBT,
consistent with experimental results. A further prediction is a quantitative increase in the
effective stiffness of the coiled-coil without any change in inherent flexibility of the individual
helices. The model provides a possible and experimentally testable mechanism for
transmission of information through the alpha helical coiled-coil of dynein.

Keywords: physics; biophysics; allostery; coiled-coil; protein dynamics; theory

1. INTRODUCTION

Coiled-coils of alpha helices are a common structural
motif in molecular biology found in several allosteric
proteins as diverse as transmembrane chemotaxis
receptors and the molecular motor dynein. Under-
standing allostery in a general coiled-coil may help
explain the allosteric mechanisms of such systems. It is,
therefore, of great interest to investigate how this
structural motif may transmit allosteric signals in
proteins. Such simple tertiary structures offer limited
scope for large static conformational change. It has
been suggested that information may be transmitted
across a protein by changes in the internal vibrational
dynamics of the protein (Cooper & Dryden 1984; Jusuf
et al. 2003; Hawkins & McLeish 2004). Kern &
Zuiderweg (2003) gave a recent review of evidence for
such dynamic mechanisms of allostery. In the case of
the DNA-binding lac repressor, a coarse-grained model
gave analytically calculable changes in the lowest
frequency vibrational modes on ligand binding (Haw-
kins & McLeish 2004). The parameters of the model
were set by an atomistic simulation using optimized
force-fields. The resulting changes in vibrational free
energy give the dynamic part of the allosteric free
energy.

In this paper we take the coiled-coil domain of the
molecular motor dynein as an example system and
apply the multi-scale approach outlined above to it.

dynein is a molecular motor with a coiled-coil motif
which transmits an allosteric signal for microtubule
binding. Cytoplasmic dynein transports vesicles along
microtubules and axonemal dynein is responsible for
the beating of cilia and flagella. dynein is made up of
one to three ‘head(s)’ with a ‘stalk’ (or ‘B-link’) which
binds the (‘B’) microtubule and a ‘stem’ (or ‘tail’)
which binds the cargo (or the ‘A’ microtubules in the
case of flagella). The head is the central circular region
made up of a ring 6 ‘AAA’ subunits. The stalk is a
15.5 nm coiled-coil which binds a microtubule at its
end. The coiled-coil region is structurally conserved in
all-known dynein sequences (Gee et al. 1997).

The mechanism for force generation is not entirely
understood but it is thought that a conformational
change due to ATP binding and hydrolysis causes a
‘power stroke’ associated with release of ADP and
phosphate (Pi). The pre-power stroke is the ADP$Pi
bound state and the post-power stoke state is the free
(apo) one. Sliding of microtubules in flagella is also
thought to be due to coordinated activity of dynein
heads along the microtubules with several dynein
molecules working together (Gee & Vallee 1998). The
ATP binding site in the head is w20 nm away from the
microtubule binding site at the end of the stalk, yet the
binding of the microtubule is ATP sensitive. This raises
the allosteric question of how the ATP binding site and
the microtubule binding site communicate (Gee et al.
1997; Gee & Vallee 1998; Lindemann & Hunt 2003;
Burgess et al. 2004a).

Electron microscopy images of dynein-c by Burgess
et al. (2003) show differences in the conformations of the
two states. They suggest an origin for the power stroke
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and, significantly for the present work, suggest that the
stem and stalk are flexible and that the stiffness of the
stalk changes depending on the nucleotide binding
state. Figure 1 shows the two states of dynein with and
without ADP$Vi (thought to mimic the ADP.Pi bound
state pre-power stroke). Alignment of the stems in the
images suggests a mean static displacement of 15 nm of
the tip of the stalk. As well as this static conformational
change the apparent flexibility of the stem and stalk was
investigated. The stalk chord angle standard deviation
in the ADP$Vi bound state is 20 8 compared with 11 8 in
the apo (without ADP$Vi) state. This apo state is the
state that has a higher affinity for the microtubule. One
interpretation of these observed changes in standard
deviation is a change in flexibility of the stalk (though
there may be contributions to the scatter from artefacts
of the adsorption onto the carbon surface).

Such suggested changes in flexibility support our
hypothesis that the allostery is dominated by changes
in the vibrational free energy of the coiled-coil. We
develop coarse-grained models, which we solve analyti-
cally to calculate these changes in vibrational free
energy. We consider the relative slide of the helices,
their bend and twist modes and the coupling between
them. We model the binding of a ligand by a local
attractive interaction between the two helices, or
‘clamping’ which restricts the degree of mutual sliding
motion. The calculation shows that this increases the
effective stiffness of the whole coiled-coil. In this way a
small local conformational change is communicated
across the long coiled-coil structure. Recent evidence
supporting the idea of such a sliding mode communi-
cation has emerged from studies of the alignment of the
two strands of the stalk (Gibbons et al. 2005). We use

known geometrical parameters for dynein, and employ
the AMBER package (Case et al. 2004) to perform
computational normal mode analysis (NMA) on alpha
helices to calculate values for the elastic moduli in our
models.

We treat the elastic dynamics of the model in
increasing detail, calculating the allosteric free energy
DDG in terms of the strengths of local substrate
binding and the elastic properties of the helices.
Section 2 introduces the overall method. Each of
§§3–6 introduces another level of complexity to the
problem. In §§3 and 4 we consider the simple model
of two parallel rods and in the subsequent sections we
consider the two rods coiled round each other. Section 3
considers sliding motion only. In §§4 and 5 we
consider bending and sliding modes of vibration and
in §6 we add a twisting mode. Details of parameter-
ization are given in appendix E. At the end of the
discussion (§7) we conclude by drawing out predictions
and consequences of this type of modelling for
experimental research programs without referring to
the detailed mathematics.

2. METHOD

We follow the method of calculating the vibrational free
energy of the lowest frequency modes of a coarse-
grained model as we performed (Hawkins & McLeish
2004) for the lac repressor.

We require the elastic internal energy induced in the
rods due to the strain imposed on the system by thermal
fluctuations.Wewrite this energy asHZð1=2ÞxT

$K$x,
where x is a vector of all the fluctuation variables in the
problem and K is a generalized elasticity matrix.
Standard equations of statistical mechanics give the
partition function of the fluctuating coiled-coil as

Z Z

ð

N

KN

eKxT
,K,x=ð2kBTÞddx Z ð2pkBTÞd=2jK jK1=2;

ð2:1Þ

where d is the number of degrees of freedom (fluctuation
variables) in the model. Note that since we are
interested in free energy changes DG, any ‘phase-
space density of states’ will cancel so they are omitted in
the calculations here. The free energy is then given by

G ZKkBT ln Z Z
1

2
kBT lnjK jK

d

2
kBT lnð2pkBTÞ:

ð2:2Þ

Note the second term is constant in isothermal
changes so also cancels in DG. By comparing this free
energy in different liganded states of the protein we
are able to calculate the allosteric free energy
communicated across the coiled-coil via the long
wavelength vibrational modes. This allosteric free
energy is described by DDG, which we therefore
calculate as

DDG ZDGCKðbindÞKDGKKðbindÞ

Z
1

2
kBT ln

jK jCCjK jKK

jK jKCjK jCK

� �

; ð2:3Þ

where the subscripts refer to the different liganded
states as defined in §2.1.

ADP.Vi

Apo

(a) (b)

Figure 1. (a) Mean conformations of ADP$Vi and apo dynein-
c molecules. (b) Distribution of stalk tip positions. Figure
reprinted from Burgess et al. (2004a) with permission from
Elsevier.
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2.1. A coarse-grained elastic model of

coiled-coils

We use a coarse-grained model for a coiled-coil
consisting of two alpha helices coiled round each
other, which treats each alpha helix as a classical
flexible rod as shown in the diagram in figure 2.

Much work has been done on the geometry and
writhe of helical DNA (for example see Jülicher 1994;
Marko 1998; Moroz & Nelson 1998; Rossetto & Maggs
2003) and there are clear parallels here.

In each of the following sections we write the paths of
the two rods, rG1(s), as a function of the path length s
along the central axis of the coiled-coil. Each rod has a
Young’s modulus Y and a shear modulus m and we take
the mean perpendicular separation of the centres of the
helices to be 2r. We model the adhesive resistance to
mutual sliding of the two helices with a distributed
localizing harmonic potential of strength kslide(s). We
restrict the form of kslide(s) to a general background
constant interaction, k0 plus extra interactions at the
two ligand binding sites si whose changes model ATP
binding and hydrolysis at one end or microtubule
binding at the other. So the force constant per unit
length is given by

k slideðsÞZ k 0=l 0 C
X

iZK1;1

kidðsKsiÞ: ð2:4Þ

The force constants ki change depending on the
ligand binding state in the following way:

CC kK1 Z kK1k 0; k1 Z k1k 0;

CK kK1 Z kK1k 0; k1 Z 0;

KC kK1 Z 0; k1 Z k1k 0;

KK kK1 Z 0; k1 Z 0:

9

>

>

>

>

=

>

>

>

>

;

ð2:5Þ

For simplicity we set kK1Zk1Zk. The ligand binding
states are defined such that ‘CC’ means both ends are
‘clamped’ (tightened) with kG1s0 corresponding in our
case to microtubule bound at the tip and ATP unbound
at the other end. ‘CK’ means only the tip is clamped
k1s0 (microtubules bound) and kK1Z0 due to ATP-
bound. ‘KC’ means only the end attached to the head is
clamped kK1s0 (ATP unbound) but k1Z0 (micro-
tubules unbound). Finally ‘KK’ means neither end is
clamped (microtubules unbound, ATP-bound). Note a
ligand binding may provide the clamping or it may
release the clamp depending on the details of the protein
and ligand interaction in question. In the case of dynein
two ligand binding sites at Kl0/2 and Cl0/2 give

k slideðsÞZ k 0=l 0 CkK1dðsC l 0=2ÞCk1dðsKl 0=2Þ:

ð2:6Þ

2.2. Parameterization

We parameterize the model using values for the
geometry known from electron microscopy (Burgess
et al. 2003, 2004a). We estimate the Young’s modulus
and shear modulus from a normal mode analysis of a
simple polyalanine alpha helix using the Nmode
program in AMBER (Case et al. 2004; see appendix E
for details). We estimate the adhesive resistance to
mutual sliding k0 as being of the order typical of the
hydrophobic effect. To estimate the order of magnitude
of kG1 we enhance the background hydrophobic
interaction by an additional electrostatic attraction at
the binding sites. The parameterization is meant to be
realistic, if not necessarily exact for dynein, since
details of the local interactions between the coils are
not known. The goal is to calculate in principle
attainable values for the allosteric free energy DDG.

3. PARALLEL RIGID RODS: SLIDE ONLY

3.1. Model

We start very simply by considering two inextensible,
rigid rods, which lie parallel side by side and are not
coiled round each other. Each rod is rigid (possessing
infinite bending modulus), but we allow a finite
localizing potential kslide(s) between the two rods to
account for adhesive resistance to relative sliding. The
only fluctuation variable in this problem is the relative
slide between the rods, which we call z. The paths of the
rods are

rG1ðsÞZGrx̂C G
z

2
Cs

� �

ẑ: ð3:1Þ

Assuming a linear stress–strain relationship the
general classical elastic internal energy of the two
rods is

H Z
1

2

ð l 0=2

Kl 0=2
k slideðsÞðDsÞ

2ds; ð3:2Þ

describing the energy due to relative displacement
Ds(s) between attractive patches. The integral is over s
along the path length of the coiled-coil axis. The
potential due to mutual sliding is modelled by kslide(s)
described in §2 (equation (2.6)). The relative local
displacement between the contingent sites is in this case
everywhere Ds(s)Zz.

We then calculate the allosteric free energy from
equation (2.3), giving

DDG Z
1

2
kBT ln

1C2k

ð1CkÞ2

� �

: ð3:3Þ

Calculation details are given in appendix A.

3.2. Results

DDG for parallel rigid rods (equation (3.3)) is drawn as
a function of k in figure 3 keeping all other parameters
fixed for dynein from appendix E. Providing that
substrate binding affects the mutual sliding potential
by introducing a delta function of kZ100, significant
allosteric free energies can be generated by the sliding

r+1(s)_
r–1(s)_

s

2r

0

Figure 2. Model of coiled-coil alpha helices as two classical
flexible rods with paths rG1(s) and radii r.
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mode alone. The electrostatic estimation of binding site
attraction gives kw100 and DDGzK2.0kBT.

4. PARALLEL RODS: SLIDE AND BEND

4.1. Model

Now, as well as the finite potential between the rods, we
allow them to bend. Each rod has a bending Young’s
modulus, Y. We now have two fluctuation variables c
and z. We impose a bend fluctuation of curvature c in
the positive x direction such that the rod paths become

rG1ðsÞZ GrC
1

2
cs2

� �

x̂C G
z

2
Cð1HrcÞs

� �

ẑ; ð4:1Þ

to linear order in the fluctuation variables (see
appendix B for details). Note in general there is also a
bending mode in the y direction. However in this case,
since it is not coupled to the sliding, it does not affect
DG so we omit it here. Note this is not true in the coiled
geometry case treated in §5.

The general classical elastic internal energy of the
two rods is

H Z
1

2

ðl 0=2

Kl 0=2
ð2YI jr 00j2 Ck slideðsÞðDsÞ

2Þds; ð4:2Þ

where the first term describes the energy due to bending
and the second terms describes the energy due to
relative sliding of the two rods as in §3.Y is the Young’s
modulus of the rod and I is the moment of inertia about
the y-axis which for circular cross-section radius r is
IZ 1

4 pr
4. jr 00

ijZv2r i=vs
2 is the curvature of the rod of

path ri(s). The factor of two accounts for the bending of
the two rods. The integral is over s along the path
length of the coiled-coil axis.

We calculate the curvature (to linear order in c) from
the paths given in equation (4.1), as jr 00

G1jZc. The slide
parallel to the rods is now the sum of the relative slide
between the rods induced by the bend and that due to
the slide mode itself z giving DsZzK2rcs.

After calculating the Hamiltonian we write it in the
form HZð1=2ÞxT

$K$x, where K is a 2!2 elasticity
matrix. We then calculate the allosteric free energy
from equation (2.3), giving

DDG Z
kBT

2
ln

l 0ð1C4ðk1 CkK1ÞC12k1kK1Þ

l 0ð1C4k1ÞC
3
2 pr

2 Y
k 0
ð1Ck1Þ

 (

C

3
2 pr

2 Y
k 0
ð1Ck1 CkK1Þ

l 0ð1C4k1ÞC
3
2 pr

2 Y
k 0
ð1Ck1Þ

!

Kln
l 0ð1C4kK1ÞC

3
2 pr

2 Y
k 0
ð1CkK1Þ

l 0 C
3
2 pr

2 Y
k 0

 !)

:

ð4:3Þ

Calculation details are given in appendix B.

4.2. Results

The dependence of DDG on the Young’s modulus Y is
given in figure 4. The functional form (equation (4.3))
interpolates between the limit of DDG/kBT for very
floppy rods (Y/0) and the parallel rigid rods result
from §3 (DDGZK2kBT ) for very stiff rods (Y/N).
These limits themselves are independent of the
geometrical parameters and depend only on the ratio
of the clamping potentials which we have taken as
kZkG1/k0Z100. We find that, for this non-coiled
structure, a significant value of DDGwKkBT is
achieved if Y is greater than w105 MPa. The small
curvature approximation of equation (4.1) breaks
down for Y!103 MPa in this parallel rod model (the
persistence length of the dimerized parallel helices
becomes of order 10 nm!l0). So significance should not
be read into the maximum at Yz103 MPa in figure 4.
Interestingly the value for the Young’s modulus we
estimate for alpha helices (see appendix E) of YZ2.5!
109 J mK3

Z2500 MPa is right at the top of the steep
slope. This implies that if biology is able to shift this
value slightly large changes in allosteric free energy
may result. By allowing the rods to bend the allosteric
free energy has been reduced to a negligible value due to
the value of Y w4l 0k 0=3pr

2.
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Figure 3. Allosteric free energy DDG against clamping
kZk1/k0ZkK1/k0 showing the effect of the clamping on the
allosteric free energy for the model of rigid parallel rods. The
values of the parameters used are those given for dynein in
appendix E.
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Figure 4. Allosteric free energy DDG against the Young’s
modulus of each rod Y showing the effect of bending on the
allosteric free energy for the model of parallel flexible rods free
to slide and bend. The values of the parameters used are those
given for dynein in appendix E.
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FiniteY also means thatDDG saturates as a function
of k (figure 5) in contrast to the stiff result (equation
(3.3), figure 3). For the parallel rigid rods the binding of
the first ligand restricts the slide mode. The vibrations
are already restricted when the second ligand binds
leading to the observed divergence in DDG (figure 3).
However, for the flexible parallel rods though the first
ligand binding restricts the slide mode the second ligand
restricts the bend mode leading to the saturation
behaviour for DDG seen in figure 5. Figure 5 shows the
effect of different values for the clamping potentials
kG1ZkG1/k0, where we have set k1ZkK1. kK1 is
switched on by binding to microtubules and off by

unbinding and k1 is switched on when there is no ATP-
bound and switched off by ATP binding. Trivially for
k/0 the allosteric free energy DDG/0. For large
values of kG1/N the small DDGZK0.03kBT is
approached for physical values of Y. The value of
kZ100 is in this saturation region. Clearly to move
beyond the poor allosteric properties of the simple
parallel helices we need to account for the fully coiled-
coil geometry.

5. COILED GEOMETRY: SLIDE AND BEND

5.1. Model

We now introduce the geometry of the two rods coiled
round each other, as shown in figure 6. We consider the
deformation to these paths under bending and relative
slide z. We include the two perpendicular bending
modes as curvature cx in the x direction and curvature
cy in the y direction. These modes will be nearly but not
perfectly degenerate due to the coiled geometry, so we
include them explicitly. The paths become

rG1ðsÞZ Gr cos g0sC
cx
2
s2

� �

x̂

C Gr sin g0sC
cy
2
s2

� �

ŷ

C G
z

2
Cð1Hrcx cos g0sHrcy sin g0sÞs

� �

ẑ:

ð5:1Þ

We generalize the bending energy for a non-zero
equilibrium curvature. We also include twist energy of
each rod since there will be a twist induced by bend due
to the coiled geometry. This gives us the internal elastic
energy:

H Z
1

2

ð l 0=2

Kl 0=2
ð2YI ðjr 00jKjr 00

0jÞ
2
Ck slideðsÞðDsÞ

2

C2ktðg0KtKwÞ2Þds; ð5:2Þ

where t is the geometrical torsion and w is the change
in writhe (see appendix C for details). The factor
(g0KtKw) is the local elastic energy-storing twist of
the helices. For a rod of circular cross-section, radius r,
we can write ktZð1=2Þmpr4, where m is the shear
modulus. The factor of two is to account for the twisting
of the two rods. We minimize the total Hamiltonian
with respect to the writhe w to allow the system to
choose the minimizing balance between slide and twist
energies (see appendix C for details).

Substituting the calculatedminimizingwrithewZwmin

wewrite the Hamiltonian in the formHZð1=2ÞxT
$K$x,

where K is a 3!3 elasticity matrix. We then calculate
the allosteric free energy from equation (2.3).

Calculation details and results for the elements of K
are given in appendix C.

5.2. Results

The dependence of DDG for slide and bend modes with
coiled geometry on the shear modulus m and Young’s
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Figure 5. Allosteric free energy DDG against clamping
kZk1/k0ZkK1/k0 showing the effect of the clamping on the
allosteric free energy for the model of flexible parallel rods free
to slide and bend. The values of the parameters used are those
given for dynein in appendix E.
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a

Figure 6. Diagram showing the geometry of two rods coiled
round each other. a is the angle between the central axis and
the path length along an individual rod. h is the helical pitch
of the two rods coiled round each other. The distance between
the centres of the rods is 2r.
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Figure 7. Allosteric free energy DDG against the shear
modulus of each rod m showing the effect on the allosteric
free energy for coiled geometry for slide and bend fluctuations.
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modulus Y is given in figures 7 and 8, respectively. For
rotationally stiff rods (m/N) the parallel rigid rods
result (equation (3.3)) is approached. Similarly rods
stiff to bending (Y/N) approach this same result. The
small curvature approximation of equation (5.1) breaks
down forY!103 MPa and m!103 MPa (the persistence

length becomes of order 10 nm!l0). So significance
should not be read into the maxima at small m and Y in
figures 7 and 8.

Figure 9 shows for coiled, flexible, inextensible rods
with slide and bend fluctuations, using the parameters
of appendix E, kZ100 is in the saturation region giving
a free energy of

DDG ZKkBT lnðZholo=ZapoÞZK0:7kBT : ð5:3Þ

From this it is clear that the coiled geometry
partially restores the allosteric communication seen
for rigid rods. This may be understood from the effective
increase in the bending modulus achieved by coupling
bending to twist of the helices by the coiled geometry.

6. COILED GEOMETRY: SLIDE, BEND AND

TWIST

6.1. Model

We now also include a twisting mode. To introduce a
fluctuation, t, in the twist, made up of some mechanical
twist and some torsion, the writhe w is reduced by t due
to conservation of linking number (see appendix D).
We, therefore, repeat the calculation as in §5 but after
we have minimized with respect to w we substitute in,
not wZwmin, but wZwminKt. Then we obtain a
Hamiltonian of the form HZð1=2ÞxT

$K$x, where
xZ(z, cx , cy , t) and K is a 4!4 matrix We then
calculate the allosteric free energy from equation (2.3).

Calculation details and results for the elements of K
are given in appendix C.

6.2. Results

The dependence of DDG for slide, bend and twist modes
for coiled geometry on the shear modulus m and
Young’s modulus Y is given in figures 10 and 11,
respectively. For rotationally stiff rods (m/N) the
parallel rigid rods result (equation (3.3)) is approached.
For rods stiff to bending (Y/N), however, the limit
approached is this parallel rigid rods result plus an
additional term which is non-zero for finite m. Figure 12
shows that including this twist mode restores the

Y (MPa)
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Figure 8. Allosteric free energy DDG against the Young’s
modulus of each rod Y showing the effect on the allosteric free
energy for coiled geometry for slide and bend fluctuations.
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non-saturation at high k behaviour seen for the parallel
rigid rods. This is due to the absence of slide twist
coupling so twisting is allowed without sliding. The
second ligand binding, therefore, does not restrict the
twisting so has amuch smaller effect than the first ligand
binding thereby increasing the allosteric effect. Figure 10
shows themdependence ofDDG for three different values
of kZ100, 500, 1000 showing the increased allosteric
signal for increased values of k. Figure 13 shows the m

dependence of DDG for two different values of Yw103,
104 MPa. The low m behaviour is altered but the high m

saturation is unaffected by Y.
For our physically relevant parameters (appendixE),

including the twisting mode for coiled flexible
rods restores the allosteric communication to the same
as the rigid rods result to two significant figures
(DDGZK2.0kBT ).

7. DISCUSSION

We compare our calculated values for DDG with
experimental values for dynein affinity for microtu-
bules. Kon et al. (2004) measure the kinetics of single

headed cytoplasmic dynein binding microtubules in
ATP. The wild type gives an association constant of
KZ3!104 MK1. From DGZKRT ln K we obtain
DGwK10kBT. A mutated form which prevents ATP
binding to the ‘P1’ site gives KZ5!106 MK1 (giving
DGwK15kBT ). Assuming the wild type is the ATP-
bound form and the mutant is the free form of dynein
we obtain DDGðfreeKATP� boundÞwK5kBT .

Earlier less direct work by Porter & Johnson
(1983a,b) and Omoto & Johnson (1986) on a three-
headed dynein under the simple assumption that the
heads are independent lead to a similar but lower value
than Kon et al. (2004) for the allosteric free energy.
This value is consistent with the expectation that the
successive binding of the three heads will actually be
cooperative. Porter & Johnson (1983a) obtain a lower
limit for the association constant, Kw107 MK1, from
titrations of free three-headed tetrahymena dynein
binding to bovine brain microtubules. This gives
DGwK16kBT and assuming the heads are indepen-
dent we expect DGwK5.4kBT for a single headed
dynein. The same authors, Porter & Johnson (1983b)
estimate the lower limit of the dissociation rate
constant of the dynein with ATP-bound from the
microtubules to be kdw1000 sK1, from stopped flow
light scattering methods. Omoto & Johnson (1986)
give an association constant for ADP-bound dynein of
kaZ1.2!104 MK1 sK1. Combining these values gives
an equilibrium constant of KZðka=kdÞw12 MK1. Since
dynein binding to microtubules is unfavourable in this
state, we assume this value corresponds to the affinity
of one head. (Porter & Johnson (1983b) say that the
kinetics they measure is not that expected for more
than one ATP needed to dissociate the dynein.) This
gives DGwK2.5kBT. Combining these gives us a value
of DDGðfreeKADP:ViÞwK2:9kBT which is lower but
of the same order as that obtained from Kon et al.
(2004) of DDGðfreeKATP� boundÞwK5kBT .

Comparing this with our calculations we note that if
the ATP unclamps the end so that kK1Z0 for the
bound form compared to kK1/k0ZkK1 for the free form
this corresponds to our value of DDGwK2.0kBT. This
value uses an estimate of kZ100. If we use kZ1000 we
obtain DDGwK3.1kBT. Our calculated values are
sufficiently close to the experimental values, when a
physical range of binding forces is assumed, for us to
take this as quantitative evidence for our hypothesis:
that dynein allostery is dominated by changes in the
vibrational dynamics of the coiled-coil.

There exists static contributions to binding affinities
unaffected by changes in the flexibility of the coiled-coil
investigated by Mizuno et al. (2004) who measure the
dissociation constant of themicrotubule binding domain
at the tip of the stalk (the dynein stalk head DSH)
binding tomicrotubule giving an association constant of
KZ6!105 MK1. This gives an indication of the static
(mainly enthalpic) contribution DGwK13kBT to the
binding of each state. This value is consistent with the
lower wild type ATP-bound association due to the large
entropic cost of binding this flexible form.

Interestingly biochemical studies have also shown
that there is allosteric communication in the other
direction in dynein. Namely, as well as the presence of
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ATP determining microtubule release, after ATP
hydrolysis the binding of microtubules accelerates the
release of products ADP and Pi from dynein completing
the ATPase cycle (Johnson 1985). This product release
is thought to be coupled to the net movement of the
motor (Porter & Johnson 1989). ADP release is thought
to be the rate-limiting step in the dynein ATPase cycle
(Holzbaur & Johnson 1989a). ADP release in the
absence of microtubules has KdZ0.085 mM from
Holzbaur & Johnson (1989a). ADP release from
microtubule bound dynein has an equilibrium constant
of KdZ0.37 mM (Holzbaur & Johnson 1989b). This
gives us a value for the allosteric free energy of ADP
release of DDGðmicrotubulesKfreeÞwK1:5kBT . The
microtubule bound dynein in our model has k1 on
(clamped) making the decrease in vibrational free
energy required for the kK1 clamped (free from ATP)
state easier. Thus by tuning the values of k1 and kK1 our
model can explain this back communication too.

To illustrate how our model can account for this
‘reverse allostery’ quantitatively, we can allow ADP to
partially unclamp kK1 to a small value kADP rather
than zero compared to the effect of ATP fully
unclamping kK1Z0. If we use k1ZkK1Z1000 we
reproduce the allostery from the microtubules to
the ADP (back communication) DDGZK1.5kBT if
kADPZkADP/k0Z1.2.

To further test our hypothesis of this vibrational
allosteric mechanism we compare calculations of the
effective Young’s modulus of the composite coiled-coil
bendingmodeswith that obtained from the observations
of the changes in distribution of stalk tip positions from
electronmicroscopy images of dynein-c by Burgess et al.
(2003, 2004b). We calculate the effective Young’s
modulus of the composite coiled-coil for the bending
mode in one plane from theKcxcx element of our elasticity
tensor, YeffZKcxcx=l 0I giving Yeff(ADP)Z3.8!

1010 J mK3 and Yeff(apo)Z3.3!1011 J mK3. The effec-
tive Young’s modulus due to the bending mode in the
plane perpendicular to this is given by YeffZKcycy=l 0I
giving Yeff(ADP)Z3.0!1010 J mK3 and Yeff(apo)Z1.6!

1011 J mK3. From the standard deviations of the angles

(variance hDq2i) quoted by Burgess et al. (2003),
Lindemann & Hunt (2003) calculated effective spring
constants for each state from the equipartition theorem
keffZkBT/hDx

2iwhere they took hDx2iZ l 20hDq
2i. Alter-

natively the distribution of curvatures of the stalk can be
calculated hc2iZ4hDq2i=l 20 and used to obtain an
effective Young’s modulus of the composite coiled-coil
structure for each state YeffZkBT=l 0I hc

2i giving
Yeff(ADP)Z2.7!109 J mK3 and Yeff(apo)Z8.9!109 J mK3.
These values are lower than our calculated values and
show slightly less contrast between the different states.
This is consistent with our parameterization of the
Young’s modulus for a single helix from the polyalanine
calculation (appendix E) which may provide an upper
bound for the less regular dynein helices, and also with
the expectation that some of the apparent flexibility
observed in both states is due to artefacts of the
experimental method. Note the observed two dimen-
sional images do show some information about the out
of plane bending since scatter along the length of the
stalk is seen in figure 1 which may be interpreted as out-
of-plane bending.

Wealso note that the allosteric signal has a significant
dependence on the number of turns i.e. the ratio of the
length to the pitch (hZ2p/g0). As figure 14 shows, the
phase of the coil controls the degree of coupling between
twist and bend. This appears in the oscillatory nature of
DDGwhen plotted as a function of number of turns l0/h.
Integral number of turns give the minimum allosteric
effectwith themaximumeffect at half integral number of
turns. This is since for integral number of turns the
allosteric effect due to the bend-slide coupling cancels
but is maximum for half turns. The parameters we have
used (appendix E) in our calculations give the number of
turns l0/hZ1.2 which interestingly does not correspond
to amaximum in jDDGj (figure 14). It may turn out that
the length of the stalk is different from previously
assumed since the precise boundaries of the coiled-coil
are hard to predict (Gibbons et al. 2005). Mutant forms
of dynein might be used to explore this prediction by
varying the length of the coiled-coil.

The predictions of this work suggest a number of
possible biochemical investigative experiments. The
predicted allosteric free energy of w2kBT may be
investigated by calorimetry which would show the
entropic and enthalpic contributions. The predicted
changes in effective Young’s modulus of the dynein
stalk could be investigated more accurately using cryo-
electron microscopy which would avoid artefacts of
absorbing to a surface. Such flexibility could also be
studied by molecular dynamics simulations subject to
the availability of suitable crystal structures.
Mutations which alter the interactions between the
helices in the coiled-coil are predicted to affect the
allosteric communication due to their modulation of the
slide mode. The dependence of the allosteric free energy
on the number of turns suggests that coiled-coil
mutants of varied lengths would show different
allosteric free energies. In particular mutants adding
25% to the stalk length are predicted to substantially
increase the allostery.

The slide mode may cause a rotation of the binding
site at the tip of the stalk further reducing its affinity for
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microtubules. This would lead to an enthalpic contri-
bution to DDG emerging at this level of modelling.

In the present model the binding of ATP releases the
clamp at the base of the stalk. From observing a model
structure based on homologous AAA domains (Mocz &
Gibbons 2001) it is conceivable that the binding of ATP
could pull one helix away from the other reducing the
interaction between them present in the absence of
ATP. However the primary ATP binding site in the
dynein head (the P1 site) is not the ATP binding site
closest to the base of the stalk (Kon et al. 2004). The
exact mechanism of the AAA ring is not known but it
has been suggested that the AAA domains are
cooperative causing ATP induced conformational and
dynamics changes at the interface between the first two
domains to propagate round the ring to the site of the
base of the stalk (Vale 2000). The recent biochemical
results on the role of the different ATP sites support the
idea that the P2, P3 and P4 sites work cooperatively
with the primary site (maybe with regulatory roles;
Kon et al. 2004). A more sophisticated model would
combine the allostery intrinsic to the coiled-coil
developed here with a similar treatment of these
allosteric effects within the AAA ring.

In conclusion, we find that a dynamic model of
allosteric response is able to account for observed
structural and thermodynamic data of the microtubule
binding stalk of dynein. Furthermore, it suggests that
significant allosteric free energy of w2kBT can be
achieved quite generally by coiled-coils of 10–20 nm in
length. Significantly, the coiled rather than simply
parallel configuration of the helices proves essential for
their allosteric function.

We thank Stan Burgess and Peter Knight for helpful
discussion on dynein, Tanniemola Liverpool for discussions
on the mathematical aspects and the EPSRC for finding.

APPENDIX A. PARALLEL RODS: SLIDE ONLY

We start with a simple case by considering two
inextensible, rigid rods, which lie parallel side by side
and are not coiled round each other. The equilibrium
paths of the upper rod, r1(s) and the lower rod, rK1(s),
for two parallel rods are

rG1ðsÞZGrx̂Csẑ: ðA 1Þ

Each rod is rigid (infinite bending Young’s modulus),
but we allow a finite potential between the two rods to
account for resistance to sliding. The only fluctuation
variable in this problem; is the relative slide between
the rods which we call z. On sliding (equation (A 1))
deform to

rG1ðsÞZGrx̂C G
z

2
Cs

� �

ẑ: ðA 2Þ

The general classical elastic internal energy of the
two rods is

H Z
1

2

ð l 0=2

Kl 0=2
k slideðsÞðDsÞ

2ds; ðA 3Þ

describing the energy due to relative sliding of the two
rods. The integral is over s along the path length of the

coiled-coil axis. The resistance to sliding kslide(s) is
modelled by equation (2.6).

We calculate the slide parallel to the rods by taking
the difference between the paths for each rod. This gives
us DsZDrz(s)Zz.

We substitute equation (2.6) and DsZz into equa-
tion (A 3) and integrate over the path length Kl0/2!
s!l0/2. After performing the integration we obtain

H Z
1

2
ðk 0 Ck1 CkK1Þz

2:

The free energy is given by equation (2.2), where in
this case of just one degree of freedom
jK jZk 0Ck1CkK1,

G Z
kBT

2
ðlnðk 0 Ck1 CkK1ÞKlnð2pkBTÞÞ:

We calculate the allosteric free energy from equation
(2.3) and using the liganded conditions (equation
(2.5)),

DDG Z
1

2
kBT ln

1C2k

ð1CkÞ2

� �

: ðA 4Þ

APPENDIX B. PARALLEL RODS: SLIDE

AND BEND

We impose a relative slide z of the two rods parallel
to the central axis by introducing the additional term
Gz/2 in the z direction. We now also impose a bend of
curvature c in the positive x direction. This adds an
additional term of cs2/2, in the x direction. Bending
also induces a relative slide (K2rcs) between the rods.
We include this slide induced by bend by adding Hrcs
to the z component, giving

rG1ðsÞZ GrC
1

2
cs2

� �

x̂C G
z

2
Cð1HrcÞs

� �

ẑ; ðB 1Þ

to linear order in the fluctuation variables c and z. In
general there is also a bending mode in the y direction
However in this case, since it is not coupled to the
sliding, it ends up not affecting DG so we omit it in this
simple case. Bending in the y direction is not coupled to
the sliding since the two rods are at the same position in
y (one is above the other in x).

The classical elastic internal energy of the rods will
be made up of the energy due to bending of each rod and
the energy of relative slide between the rods. We
combine these energies to give

H Z
1

2

ðl 0=2

Kl 0=2
ð2YI jr 00j2 Ck slideðsÞðDsÞ

2Þds; ðB 2Þ

where Y is the Young’s modulus of the rod and I is the
moment of inertia about the y-axis which for circular
cross-section radius r is IZð1=4Þpr4. The factor of two
accounts for the bending energy of the two rods. kslide(s)
is given by equation (2.6).We take the origin of bending
at the centre of mass of the rod, so the rod path runs
Kl0/2!s!l0/2.

We can calculate the curvature from the deformed
paths (equation (B 1)). We calculate the relative slide
of the rods by taking the difference between the path
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lengths for each rod, DsZDrzZr1zKrK1z . We thus
obtain

jr 00
G1jZ j

v2rG1

vs2
jZ c; ðB 3Þ

DsZDrz Z zK2rcs; ðB 4Þ

to linear order in c and z. The slide Ds is made up of the
slide mode itself z and the slide between the rods
induced by bend K2rcs. This bend-slide term accounts
for the coupling between bending and sliding motion.

We substitute equations (2.6), (B 3) and (B 4) into
equation (B 2) and integrate over the path length
Kl0/2!s!l0/2.

H Z
1

2

�

ðk 0 CkK1 Ck1Þz
2
C2rl 0ðkK1Kk1Þzc

C
1

4
pr

4Y l 0c
2
Cr

2l 20ðk 0=3Ck1 CkK1Þc
2

�

:

We can write this Hamiltonian as HZ
1
2 x

T
$K$x

where xZ(z, c) and

KZ

ðk 0CkK1Ck1Þ rl 0ðkK1Kk1Þ

rl 0ðkK1Kk1Þ r2l 20
k 0

3
Ck1CkK1

0

@

1

AC
pr4l 0Y

2

0

B

B

B

B

@

1

C

C

C

C

A

:

We then obtain the free energy from equation (2.2)

G Z
kBT

2
ln

r2l 20
k 0

3 ðk 0 C4ðk1 CkK1ÞÞC4k1kK1

� �

ð2pkBTÞ2

0

@

C

1
2 pr

4l 0Y ðk 0 Ck1 CkK1Þ

ð2pkBTÞ2

!

:

Therefore, the allosteric free energy is given by

DDGZ
kBT

2
ln

l 0ð1C4ðk1CkK1ÞC12k1kK1Þ

l 0ð1C4k1ÞC
3
2pr

2 Y
k 0
ð1Ck1Þ

 (

C

3
2pr

2 Y
k 0
ð1Ck1CkK1Þ

l 0ð1C4k1ÞC
3
2pr

2 Y
k 0
ð1Ck1Þ

!

Kln
l 0ð1C4kK1ÞC

3
2pr

2 Y
k 0
ð1CkK1Þ

l 0C
3
2pr

2 Y
k 0

 !)

:

APPENDIX C. COILED GEOMETRY: SLIDE

AND BEND

We now use helical geometry of two rods coiled round
each other. In order to work out the position vector of
the individual rods rG1 in the new geometry it is helpful
to refer to figures 6 and 15. The x, y and z components of
the position vector of an individual rod rG1(s) can be
calculated from figure 15a,b, where s is the path length
along the central axis of the coiled-coil (the neutral
line):

rG10ðsÞZGr cos gsx̂Gr sin gsŷCsẑ; ðC 1Þ

where gZ2p/h and h is the helical pitch. The subscripts
0 refer to these being the equilibrium paths with zero
bend fluctuation. Setting gZ0 reproduces the paths for
the parallel geometry in §4.

We consider the deformation to these paths under
bending and relative slide z. Due to the helical
geometry the relative slide induced by bend is now
(Hrc cos g0s)s. We include the two perpendicular
bending modes as curvature cx in the x direction and
curvature cy in the y direction. These modes will be
nearly but not perfectly degenerate due to the coiled
geometry so we include them explicitly. Therefore we
obtain rG1zZsð1H rcx cos g0sHrcy sin g0sÞ. Including
the relative slide z (z cos a along z) gives the z
component in the deformed path (equation (C 2)):

rG1ðsÞZ Grcosg0sC
cx
2
s2

� �

x̂C Grsing0sC
cy
2
s2

� �

ŷ

C G
zcosa

2
Cð1Hrcx cosg0sHrcy sing0sÞs

�

ẑ:

�

ðC 2Þ

We generalize the bending energy for a non-zero
equilibrium curvature and include twist energy since
there will be a twist induced by bend due to the
coiled geometry. This gives us the internal elastic
energy:

HZ
1

2

ðl 0=2

Kl 0=2
ð2YI ðjr 00jKjr 00

0jÞ
2
Ck slideðsÞðDsÞ

2

C2ktðg0KtKwÞ2Þds;

ðC 3Þ

where t is the geometrical torsion and w is the change
in writhe (see equations (C 4) and (C 5)). For a rod
of circular cross-section, radius r, ktZð1=2Þmpr4

where m is the modulus of rigidity. The factor of
two is to account for the twisting of the two rods.

a

2pr
s1

h

s

r
y

x

s1sina

f

(a) (b)

Figure 15. (a) Diagram showing the coil in figure 6 unrolled. r
is the radius of the circle that the centre of one rod travels in
the coil structure. Therefore the circumference is 2pr which
makes the vertical side. The horizontal side is in the direction
of the arc length of the centre of the coil s (ẑ if there is no
bend) and the pitch h. The individual rod arc length, s1 is
along the diagonal in the unrolled geometry. (b) Diagram
showing the coil of the two rods in figure 6 end on. Again r is
the radius the centre of one rod travels. The arc length s1 sin a

marked is the component of individual rod arc length s1 along
the vertical side of the unrolled geometry in (b). f is the global
twist angle defined as the angle between the line joining the
centres of the two rods and the x-axis.
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To obtain the mechanical twist energy we calculate
ðkt=2Þ

Ð

ðaKtÞ2ds, where a is the rate of change of
angle of a groove marked along an untwisted rod
(helicity). Part of this change in angle is due to the
geometrical torsion of the geometry and part from
the mechanical twist of the rod. The part due to the
mechanical twist (aKt) costs energy. The torsion can
be calculated from the geometry of the paths. For two
rods which can slide relative to each other a is made
up of the twist of the individual rod and relative slide
perpendicular to the neutral axis. We allow the
system freedom to choose how much to twist and
how much to slide depending on the relative energy
costs of each. This balance is governed by the
conservation of linking number (theorem White
1969), Lk which is made up of the writhe Wr and
the twist Tw :

Lk ZWr CTw: ðC 4Þ

The linking number is conserved (DLkZ0) for a
particular topology. The microtubule binding tip is a
closed loop forming the antiparallel coiled-coil and
the other end is attached to the dynein head which is
large in comparison with the stalk and we therefore
argue will preserve the coiled-coil topology due to its
large rotational diffusion constant. We therefore take
DLkZ0 for the fluctuations we consider for the
dynein coiled-coil. This conserved Lk leads to the
calculation

DLk Z 0Z
Ð

w dsC
Ð

ðaKa0Þds;

aZg0Kw:

�

; ðC 5Þ

where w is the change in writhe and aKa0 is the
change in helicity. a0Zg0 therefore aZg0Kw. We
allow the system to choose the optimal writhe twist
balance by minimizing the total elastic energy with
respect to w (equation (C 13)).

To obtain the curvature of the deformed and
equilibrium paths we calculate

r 0
G1ðsÞZðHrg0sing0sCcxsÞx̂

CðGrg0cosg0sCcysÞŷC1ẑ;

r 00
G1ðsÞZðHrg2

0cosg0sCcxÞx̂CðHrg2
0sing0sCcyÞŷ;

r 000
G1ðsÞZGrg3

0sing0sx̂Hrg3
0cosg0sŷ;

9

>

>

>

>

>

=

>

>

>

>

>

;

ðC 6Þ

where we have taken the approximation rcxcosg0sC
rcysing0s/1 simplifying the z component of equation
(C 2). We then obtain the curvature:

jr 00G1jZðr2g4
0H2rg2

0ðcxcosg0sCcysing0sÞCc2xCc2yÞ
1=2;

jr 00G10 jZrg2
0;

jr 00G1jKjr 00
G10 jzHðcxcosg0sCcysing0sÞ:

9

>

>

=

>

>

;

:

ðC 7Þ

We have expanded jr 00
G1j to linear order in cx and cy

only, so that the Hamiltonian is in the harmonic
approximation. The curvature induced by bending the

coiled-coil is dependent on cos g0s. This means at points
where rx is maximum the bending decreases the
curvature. However at points where rx is minimum
the bend induces an increase in curvature at this point,
as expected intuitively.

The slide parallel to the neutral axis is given by
calculating DsZDrz/cos a, where cos aZð1Cg2

0r
2ÞK1=2.

The slide perpendicular to the neutral axis is given by
the writhe angle multiplied by the radius giving
r
Ð

w ds; therefore,

DsZ ðzK2rð1Cg
2
0r

2Þ1=2ðcx cos g0sCcy sin g0sÞsÞŝs

Crws ^st : (C 8)

The torsion can be calculated from

tZ
r 0
$ðr 00

!r 000Þ

jr 00j2
: ðC 9Þ

We use equation (C 6) to obtain

tZ
g0H

1
rg0

ðcx cos g0sCcy sin g0sÞ

1H 2
rg2

0

ðcx cos g0sCcy sin g0sÞC
c2xCc2y
r2g4

0

: ðC 10Þ

We take up to quadratic order only, obtaining

tzg0G
1

rg0

ðcx cos g0sCcy sin g0sÞ; ðC 11Þ

t0 Zg0;

tKt0z
G1

rg0

ðcx cos g0sCcy sin g0sÞ: ðC 12Þ

We substitute the curvature (equation (C 7)), slide
(equation (C 8)) and twist (equation (C 12)) into
equation (C 3), to obtain the elastic energy to quadratic
order. We then minimize this with respect to w allowing
the system to choose its optimal writhe, twist balance
giving

wmin Z
K24mprcx sinðl 0g0=2Þ

g2
0l 0ðk 0l 0 C3l 0ðk1 CkK1ÞC12mpr2Þ

: ðC 13Þ

Substituting this value back into the Hamiltonian
gives HZð1=2ÞxT

$K$x, where xZ(z, cx, cy) and the
components of K are given as

Kzz Z ðk 0 CkK1 Ck1Þ;

Kzcx ZKcxz Z a1ðk1KkK1Þ;

Kzcy ZKcyz Z a2ðk1 CkK1ÞCa3k 0;

Kcxcx Z a4Y Ca5mCa21ðk1 CkK1ÞCa6k 0

C
a7m

2

a8ð3ðk1 CkK1ÞCk 0ÞCa9m
;

Kcxcy ZKcycx Z a1a2ðk1KkK1Þ;

Kcycy Z aK4Y CaK5mCa22ðk1 CkK1ÞCaK6k 0;
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;

ðC 14Þ
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where

a1 ZKrl 0ð1Cg2
0r

2Þ1=2cos
g0l 0
2

0

@

1

A;

a2 ZKrl 0ð1Cg2
0r

2Þ1=2sin
g0l 0
2

0

@

1

A;

a3 Z 2rl 0ð1Cg2
0r

2Þ1=2
1

l 0g0

cos
g0l 0
2

0

@

1

A

0

@

K
2

l 20g
2
0

sin
g0l 0
2

0

@

1

A

1

A;

aG4 Z
pr4

4
l 0G

1

g0

sinðg0l 0Þ

0

@

1

A;

aG5 Z
pr2

2g2
0

l 0G
1

g0

sinðg0l 0Þ

0

@

1

A;

aG6 Z r2l 20ð1Cg2
0r

2Þ

1

6
G

sinðg0l 0Þ

2g0l 0
C

cos g0l 0
l 20g

2
0

K
sin g0l 0
l30g

3
0

0

@

1

A

0

@

1

A;

a7 ZK48p2r4 sin2
g0l 0
2

0

@

1

A;

a8 Zg4
0l

2
0;

a9 Z 12pr2g4
0l 0:
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=

>
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;

ðC 15Þ

We then obtain the free energy and allosteric free
energy from equations (2.2) and (2.3).

APPENDIX D. COILED GEOMETRY: SLIDE,

BEND AND TWIST

We now also include a twisting mode. To introduce a
fluctuation, t, in the twist, what we mean is a
fluctuation in the helicity, a, which is made up of
some mechanical twist and some torsion and is
governed by the conservation of linking number.

DLk Z 0Z
Ð

w dsC
Ð

ðaCatKa0Þds;

0ZwCaC tKa0;

shows us that the writhe w must decrease by t. We,
therefore, repeat the calculation as in appendix C
but after we have minimized with respect to w we
substitute in, not wZwmin but, wZwminKt. Then
we obtain a Hamiltonian of the form HZ

1
2 x

T
$K$x,

where xZ(z, cx , cy , t) and K is a 4!4 matrix with

components

Kzz Z ðk 0 CkK1 Ck1Þ;

Kzcx ZKcxz Z a1ðk1KkK1Þ;

Kzcy ZKcyz Z a2ðk1 CkK1ÞCa3k 0;

Kzt Z 0;

Kcxcx Z a4Y Ca5mCa21ðk1 CkK1ÞCa6k 0

C
a7m

2

a8ð3ðk1 CkK1ÞCk 0ÞCa9m
;

Kcxcy ZKcycx Z a1a2ðk1KkK1Þ;

Kcx t Z 0;

Kcycy Z aK4Y CaK5mCa22ðk1 CkK1ÞCaK6k 0;

Kcyt Z 0;

Ktt Z a10ð3ðk1 CkK1ÞCk 0ÞCa11m;
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;

ðD 1Þ

where a1–a9 are given by equations (C 15) and

a10 Z
r2l 20
12

;

a11 Zpr4l 0:

9

>

=

>

;

ðD 2Þ

We then obtain the free energy and allosteric free
energy from equations (2.2) and (2.3).

APPENDIX E. PARAMETERIZATION

The geometry of the dynein is known from electron
microscopy imaging by Burgess et al. (2003, 2004a)
giving the values in equations (E 1) and (E 2). We take
the pitch to be 13 nm from Offer & Sessions (1995)
giving the value in equation (E 3).

The bulk elasticity Young’s modulus (the ratio of
stress to strain for deformation along a single axis) has
typical values of Yw109 J mK3 for non-crystalline soft
matter (Boal 2002). The persistence length of a rod of
isotropic elasticity and transverse moment of inertia I is
lpZYI/kBT. For long alkanes lpw0.5 nm, F-actin
lpw10 mm, and microtubules lpw1–6 mm (Boal 2002).
Therefore Yw109 J mK3 for most filaments (Boal
2002). We expect lp and Y of an alpha helix to be less
than that for microtubules and actin but more than
long alkanes.

We investigated an estimate of the persistence
length of an alpha helix by considering the normal
modes of a simple polyalanine alpha helix with 100
residues (since the coil–coil helices in dynein are about
this long). We used the Nmode program in AMBER
(Case et al. 2004). We used a distance dependent
dielectric constant to model solvent implicitly. We set
the mass matrix to the identity to calculate the non-
mass weighted eigenvalues. This gave a frequency of
n0Z1.56 amu1/2 cmK1 for the lowest mode (bend). The
eigenvalue is, therefore, l0Z2pðn0Þ2Z2:3!10K5 kg sK2,
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which is equal to the effective spring constant for the
mode kspZ2.3!10K5 J mK2. Reading off the amplitude
of displacement of the end atom from the eigenvector
calculated by Nmode we find deZ0.066 Å, and the
displacement of the middle atom is dmZ0.037 Å. From
geometry (see figure 16) the radius of maximally
excited curvature Rzl2=8ðdeCdmÞ. We use this to
find RZ2.9 mm. UsingHZð1=2Þl0x2

Zð1=2ÞYI ð1=RÞ2,
where jxj2Z1 Å2 (the unit eigenvector of the force
constant matrix in AMBER has units of Å) we obtain
YZ2.5!109 J mK3, in line with our expectations. This
corresponds to persistence length lpZYI=kBTZ30 nm.
A regular polyalanine helix may provide an upper
bound to Y for the less regular dynein helix.

We expect the shearmodulusm to be the sameorder of
magnitude as Y. We used the polyalanine normal mode
analysis to estimate m from the lowest twisting mode.
The non-mass normalized constant gave us a frequency
of n 0Z6.5 cmK1 amu1/2. The end atom is found to be
displaced by dZ0.066 Å for the lowest twisting mode.
From geometrical considerations (see figure 17)
vf=vsz2d=rlZ1:7!106 mK1. From HZð1=2Þl0jxj2Z
ð1=4Þmpr4lðvf=vsÞ2 we obtain mZl0jxj2l=2pd2r2Z

9:1!108 J mK3.
The adhesive resistance to mutual sliding k0 will be

due to the hydrophobic effect which holds the two alpha
helices together in a coiled-coil. To estimate the
magnitude of this we take the surface tension of an oil
water interface giving typically TZ5!10K2 J mK2

(Boal 2002). The change in energy due to sliding Ds is
then DEZTwDsZð1=2Þk 0Ds

2, where w is the width of
the hydrophobic stripe which we take to be of the order
of Ds so k0w0.1 J mK2 (equation (E 6)).

To estimate the order of magnitude of kG1 we
calculate the effect of introducing charges which cause
the clamping by the Coulomb interaction energy
q2/4pe0r, where q is the charge. We take the separation
between charges r to be r. We equate the change in
coulomb interaction energy to the energy of sliding Ds
to obtain

1

2
k1ðDsÞ

2
Z

q2

4pe0

1

ðr2 CðDsÞ2Þ1=2
K

1

r

0

@

1

A;

k1z
q2

4pe0r
3
:

9

>

>

>

>

>

=

>

>

>

>

>

;

:

Koonce & Tikhonenko (2000) investigate the effect
of alanine substitutions of conserved charge residues in
the microtubule binding region of dynein. They find
there are four charged residues, which affect the ATP-
stimulated release of dynein from microtubules. It may
be that these charges are the ones which form our k1.
We, therefore, take qZ4e. This gives us an estimate
of k1Zk1/k0Z590. As a conservative estimate we take
kG1Z100 so kG1 is two orders of magnitude larger
than k0.

We write here, for convenience, all the parameters
used:

l 0 Z 15:5 nmZ 1:55!10K8 m; ðE 1Þ

rZ 0:5 nmZ 5:00!10K10 m; ðE 2Þ

g0 Z
2p

h0
Z

2p

13 nm
Z 4:8!108 mK1; ðE 3Þ

Y w2:5!109 J mK3; ðE 4Þ

mw9:1!108 J mK3; ðE 5Þ

k 0w0:1 J mK2; ðE 6Þ

kG1 Z
k1
k 0

Z 100: ðE 7Þ
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