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Abstract

Swarm robotics investigates groups of relatively simple robots that use decentralized control to achieve a common goal.
While the robots of many swarm systems communicate via optical links, the underlying channels and their impact on swarm
performance are poorly understood. This paper models the optical channel of a widely used robotic platform, the e-puck. It
proposes SwarmCom, a mobile ad-hoc network for mobile robots. SwarmCom has a detector that, with the help of the channel
model, was designed to adapt to the environment and nearby robots. Experiments with groups of up to 30 physical e-pucks
show that (i) SwarmCom outperforms the state-of-the-art infra-red communication software—libIrcom—in range (up to 3
times further), bit error rate (between 50 and 63% lower), or throughput (up to 8 times higher) and that (ii) the maximum
number of communication channels per robot is relatively low, which limits the load per robot even for high-density swarms.
Using channel coding, the bit error rate can be further reduced at the expense of throughput. SwarmCom could have profound
implications for swarm robotics, contributing to system understanding and reproducibility, while paving the way for novel
applications.

Keywords Swarm robotics · MANET · Infra-red communication · Channel model · e-puck · libIrcom

1 Introduction

Communication has been proven beneficial for multi-robot
systems that cooperatively perform tasks (Balch and Arkin
1994). While there are many forms of communication, this
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work focuses on explicit communication, in which arbitrary
data can be exchanged.

In swarm robotics systems, communication is often used
to enable decentralized control (Hauert et al. 2010; Schmickl
et al. 2011; Rubenstein et al. 2014; Garattoni and Birattari
2018). However, designers of such systems face a number
of challenges. On many platforms, computational resources
are severely limited. For the platform considered in this
work, for example, 8 kB of primary memory are available,
and only a small fraction of this can be dedicated to com-
munication, as the robot needs to perform other functions,
including sensing, control, and actuation. As the number of
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robots in a swarm can be large, their communication network
should be decentralized and scalable, and therefore, given
the aforementioned computational constraints, a robot may
be unable to handle more than a few communication chan-
nels. Moreover, due to the robots’ mobility, the system has
to cope with changes in the topology of the communication
network.

Mobile ad-hoc networks (MANETs) are networks of
mobile devices, called nodes, which connect wirelessly
without needing additional infrastructure. The nodes in the
network are all end-points that can exchange messages with
multi-hop routing. A wide range of MANETs have been
investigated, from some offering elementary routing to others
addressing all layers of the Internet protocol stack (Macker
and Corson 1998; Chlamtac et al. 2003; Conti and Giordano
2014).

In swarm robotics, the merits of MANETs have been rec-
ognized. Two types of MANETs are commonly deployed—
radio-based (Li et al. 2009; Tutuko and Nurmaini 2014) and
optical (Di Caro et al. 2009; Gutiérrez et al. 2009a; Ruben-
stein et al. 2012) ones. The underlying technologies have
their advantages and disadvantages:

– Radio-based communication systems are widespread and
standardized, making them accessible, inexpensive, and
compatible with other systems. In comparison, optical
communication systems are still in early development,
with a lack of standardized off-the-shelf solutions con-
tributing to increased development time. However, they
are becoming an alternative to radio-based systems,
requiring less energy per bit and offering higher through-
put (Anees and Bhatnagar 2015; Malik and Singh 2015;
Khan 2017).

– Radio waves penetrate many objects, making it possi-
ble to reach more nodes over larger distances even in
cluttered environments. Nevertheless, most radio-based
systems have an upper limit on the number of nodes that
can be connected to a single access point. For example,
a Bluetooth (Class 3) master node can be connected with
up to 7 slave nodes within a 3 m radius. The high robot
densities found in some swarm robotics systems, with
hundreds to thousands of nodes within a 3 m radius (Mon-
dada et al. 2009; Rubenstein et al. 2014), exceed the
capabilities of most wireless networks. Optical signals,
on the other hand, are line-of-sight transmissions which
are obstructed by objects, reducing the range and the
number of channels. As we will show, this makes the
communication system applicable to high-density sce-
narios, hence improving the network’s scalability.

– Radio-based communication requires an antenna, the
size of which depends on the carrier’s wavelength. This

makes miniaturization challenging.1 In comparison, opti-
cal systems offer good miniaturization potential (e.g.,
Hirschman et al. 1996), and are therefore typically found
in swarms of centimeter-scale or sub-centimeter-scale
robots (Seyfried et al. 2005; Rubenstein et al. 2012).

While the robots of many swarm systems communicate via
optical links (Seyfried et al. 2005; Caprari and Siegwart
2005; Gutiérrez et al. 2008; Arvin et al. 2009; Rubenstein
et al. 2014; McLurkin et al. 2014), the underlying chan-
nels and their impact on swarm performance are poorly
understood.

In this paper, we propose SwarmCom, an optical (infra-
red) MANET for severely constrained robots. It provides a
framework that facilitates systematic studies of swarms and
their communication channels and the design of reproducible
behavior in swarms. This paper presents two contributions:

– A channel model that describes the infra-red signals
transmitted and received on a widely used swarm robotics
platform, the e-puck. This is the first such model for any
swarm robotics platform. It informs the system designer
about the physical layer characteristics for the robot com-
munication. We explain in detail how to create such
a model for the e-puck and demonstrate its impact on
swarm communication.

– SwarmCom, a MANET for robotic swarms. SwarmCom
allows groups of robots to communicate using on–
off-modulated infra-red signals. It provides a dynamic
detector that, with the help of the channel model,
was designed to adapt to the environment and nearby
robots. Moreover, SwarmCom provides channel coding,
which reduces transmission errors, and a carrier sense
multiple access (CSMA) protocol by which multiple
robots compete for access. SwarmCom outperforms the
state-of-the-art infra-red communication software for e-
pucks—libIrcom (Gutiérrez et al. 2009a)—with respect
to communication range, bit error rate, and throughput.
These improvements lead to a communication system
that is better performing and more reliable, opening up
new possibilities for research on miniature swarms.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the e-puck platform. Section 3 presents
a channel model for the e-puck’s infra-red communi-
cation hardware and validation experiments. Section 4
describes SwarmCom, including modulation and demodula-
tion schemes, channel coding, and media access control. In
Sects. 5 and 6, SwarmCom is evaluated in a series of exper-
iments, and compared against libIrCom. We first evaluate

1 Although it is yet to be seen whether suitable for modern communi-
cation systems, it should be noted that antennas can be miniaturized to
sub-micron scale (Chen et al. 2013).
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Fig. 1 An e-puck robot from different perspectives: a front, b side, and
c top

SwarmCom on pairs of static robots, and then on groups of
up to seven mobile robots. Section 7 presents the conclusions.

2 e-puck platform

The e-puck (Mondada et al. 2009) is one of the most widely
used swarm robotics platforms (Cianci et al. 2006; Fischer
and Hickinbotham 2010; Li et al. 2014; Chen et al. 2015;
Nemec et al. 2017). It was designed at the École Polytech-
nique Fédérale de Lausanne (Switzerland) and is available
both commercially and under an open-hardware license.2

The e-puck is shown in Fig. 1. It is cylindrical, with a diam-
eter of 7 cm and a height of 5 cm. It has a differential wheel
drive, enabling motion over flat terrain.

The e-puck contains a single microcontroller unit (MCU),
a dsPIC30F6014a. This MCU offers 8 kB of RAM and is,
therefore, a severely constrained device of class 1 (Bormann
et al. 2014). The robot has a range of sensors, including
eight infra-red proximity sensors, a directional camera, three
microphones, and a three-dimensional accelerometer.

Each proximity sensor is a reflective optical sensor (Tele-
funken 1999). It has an emitter (infra-red LED) and a detector
(phototransistor). To detect the proximity of nearby objects,
first, the LED emits light. Any reflected light is then converted
by the phototransistor into a voltage, which is provided to the
MCU. A pair of proximity sensors can be used for commu-
nication.

The robot features Bluetooth capability, which it can use
to share data with an external computer.

Figure 2 details the polar coordinates (ri , θi ) of proxim-
ity sensor i ∈ {1, 2, . . . , 8} in the robot’s local coordinate
system. The emitter and detector contained on a sensor are
symmetrically arranged with an offset of ±0.127 cm from
the center. The coordinates of the emitter, ploc

e,i , and detector,

ploc
d,i , of sensor i are given by:

ploc
e,i =

(
cos θi

sin θi

)
ri +

(
− sin θi

cos θi

)
0.127, (1)

ploc
d,i =

(
cos θi

sin θi

)
ri +

(
sin θi

− cos θi

)
0.127, (2)

2 See www.e-puck.org.

(a)

i ri / cm θi / rad
1 3.25 −0.308
2 3.45 −0.860
3 3.25 −1.570
4 3.25 −2.618
5 3.25 2.618
6 3.25 1.570
7 3.45 0.860
8 3.25 0.308

(b)

Fig. 2 Proximity sensors, with a their locations and orientations illus-
trated on the e-puck. The emitting (red) and sensing (blue) directions
align with the sensor orientation. b Polar coordinates, (ri , θi ), for sensor
i (Color figure online)

Fig. 3 The e-puck communication network (left) consists of links
between pairs of neighboring robots. For each link (top right), the emit-
ters of one robot can transmit a signal that is received by the detectors of
the other robot. The signal propagates between emitter–detector pairs
(bottom right). Due to occlusion, not all emitter–detector pairs are rel-
evant

with i ∈ {1, 2, . . . , 8}.

3 e-puck channel model

This section presents a channel model that formally describes
the infra-red signals transmitted and received by a swarm
robotics system. The channel model can be used to form a
communication link between a pair of robots. Moreover, it
can be used to detect the proximity of nearby objects, where a
signal is emitted, and its reflection detected. While the imple-
mentation of the model is specific to the e-puck platform,
the underlying design process can be applied to other robots
using infra-red based communication as well.

Figure 3 shows how a group of robots can form a commu-
nication network. Each node in this network is a robot that
can have a link to other robots. As each robot emits/receives
signals with multiple emitters/detectors, a robot-to-robot link
is formed by multiple emitter–detector pairs.

The channel model characterizes:
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– how a signal is transmitted between an emitter and a
detector (emitter-to-detector model);

– how a signal is transmitted between two robots (robot-
to-robot model);

– how a signal is transformed and represented in the receiv-
ing robot (measurement model).

3.1 Emitter-to-detector model

As a first step, characterising a communication system
requires a formulation of the signal transmission and recep-
tion procedures. Consider a signal that is transmitted between
an emitter–detector pair, as shown in Fig. 3. The emitter
and detector are located at pe, pd ∈ R

2 with orientation
θe, θd ∈ (−π, π ], respectively.3 Then,

α = θe − � (pd − pe), (3)

β = � (pe − pd) − θd , (4)

ded = ‖ pd − pe ‖2, (5)

where α is the emission angle, β is the inclination angle, ded

is the Euclidean distance between the emitter and detector,
and � (v) is the angle between vectors v and [1 0]T.

Let the transmitted waveform s(t) : R → {0, 1} for sym-
bol s ∈ {s0, s1} be an on–off modulated signal. The received
signal intensity is

y(t) = hc s(t) + n(t) with 0 ≤ t < T , (6)

where T is the duration of the symbol, hc is the channel
attenuation coefficient, and n(t) is zero mean additive white
Gaussian noise (AWGN), which is a common assumption
(Carruthers and Kahn 1997). The channel attenuation coef-
ficient is the product of the signal attenuation caused by the
emitter (he), the medium (hm), and the detector (hd ):

hc = hc(α, β, ded) = he(α) hm(ded) hd(β). (7)

Coefficients he, hm , and hd depend on variables α, ded ,
and β, respectively (see Fig. 3). In particular, the emitter coef-
ficient, he(α) : (−π, π ] → [0, 1], models the attenuation
caused by the emitter’s directionality. The maximum signal
intensity is he(0) = 1 and, due to self-occlusion, he(α) = 0
for all α /∈ [−π

2 , π
2 ].

The medium coefficient, hm(ded) : R≥0 → [0, 1], mod-
els the attenuation of the signal when propagating through
free space. We assume hm(0) = 1 and limded→∞ hm(ded) =

0.
Similarly to he(α), the detector attenuation coefficient,

hd(β) : (−π, π ] → [0, 1], models the attenuation caused

3 If not mentioned otherwise, a global Cartesian coordinate system is
assumed.

by the detector’s directionality, where hd(0) = 1 and
hd(β) = 0 for all β /∈ [−π

2 , π
2 ].

In Sect. 3.4, all model coefficients are determined.

3.2 Robot-to-robot model

The second step models the transmission of the signal from
multiple emitters to multiple detectors (if present). Consider
a signal that is transmitted between a pair of robots. The
transmitting robot sends the signal with all its emitters. Each
detector of the receiving robot measures the response, which
is assumed to be instantaneous.

Let the transmitting robot be located at pt with orientation
θt . Then, its emitter i ∈ {1, 2, . . . 8} is located at

pe,i =

[
cos(θt ) − sin(θt )

sin(θt ) cos(θt )

]
ploc

e,i + pt . (8)

Similarly, let the receiving robot be located at pr with ori-
entation θr . Then, its detector j ∈ {1, 2, . . . 8} is located at

pd, j =

[
cos(θr ) − sin(θr )

sin(θr ) cos(θr )

]
ploc

d, j + pr . (9)

Based on (3)–(9), the received signal y j (t) at detector j

is given by

y j (t) = min
(
1, ỹ j (t)

)
, (10)

ỹ j (t) =

hc︷ ︸︸ ︷(
∑

i

he(αi, j ) hm(di, j ) hd(β j,i )

)
s(t) + n j (t),

(11)

αi, j = θi − � (pd, j − pe,i ), (12)

di, j = d j,i =
∥∥pd, j − pe,i

∥∥
2 , (13)

β j,i = � (pe,i − pd, j ) − θ j , (14)

where n j (t) is zero mean AWGN independent of the trans-
mitted signal.

3.3 Measurement model

The third step models the signal demodulation and decision
at the receiver. When the (optical) signal, y j (t), reaches
detector j , a measuring circuit transforms it into an electri-
cal signal, that is, a voltage.4 Figure 4 shows the measurement
circuit. The incoming signal generates a proportional collec-
tor current IC (t) at time t . This causes a voltage drop from
the supply voltage Vcc at resistor R, which results in the mea-
sured collector-emitter voltage

VC E (t) = Vcc − R IC (t). (15)

4 For simplicity, we drop index j throughout this section.
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Fig. 4 Measuring circuit for an e-puck detector. The circuit is composed
of a resistor, R, and phototransistor, which are connected in series to
the robot’s supply voltage, Vcc, and ground, GND

Therefore, VC E (t) is inversely proportional to the intensity
of the incoming optical signal, y(t).

Due to the superposition principle and saturation, the col-
lector current is

IC (t) =

⎧
⎨
⎩

IC,∞(t) ĨC (t) > IC,∞(t)

ĨC (t) otherwise
, (16)

ĨC (t) = IC,S(t) + IC,0(t), (17)

where IC,∞ is the maximum collector current (i.e., saturation
current) of the transistor. IC,S and IC,0 are the current compo-
nents proportional to the signal and ambient light intensities,
respectively. Voltage VC E,max(t) = Vcc − R IC,0(t), caused
by the ambient light component, is an upper bound. Simi-
larly, voltage VC E,min = Vcc − R IC,∞ is a lower bound, as
IC,∞ is the maximum collector current. Note that VC E,min

is the result of the circuit design and is assumed to be time-
invariant.

The collector-emitter voltage, VC E (t) ∈ [VC E,min,
VC E,max(t)], is sampled by an analog-to-digital converter
(ADC). Let MV : [0, Vcc] → M be the quantizer that maps
VC E (t) to the measurement space M = {0, 1, . . . , msup},
where msup = 2n ADC − 1 is determined by the ADC width
(n ADC bits).

Considering VC E ∈ [VC E,min, VC E,max(t)], the lower
bound (saturation value), mmin, and upper bound (ambient
light value), mmax, of the measurements are defined respec-
tively as

mmin = MV (VC E,min), (18)

mmax[k] = MV (VC E,max(t)). (19)

The analog-to-digital conversion performs a linear discretiza-
tion of time and value. Time-discrete values are indicated by

[·] and k =
⌊

t
tsample

⌋
, where tsample is the sampling period.

Since y(t) ∝ IC (t) and by applying (15)–(18), the infra-
red light conversion function M : {[0, 1] → M} maps the
inverted light intensity, 1 − y(t), linearly to [mmin, mmax] by

m[k] = M (y(t)) (20)

= ⌊(mmax[k] − mmin) (1 − y(t)) + mmin⌋ , (21)

=
⌊
(mmax[k] − mmin) (1 − y0(t)) + mmin + nm(t)

⌋
,

(22)

where y0(t) is the noise-free received signal given by (10)
when n j (t) = 0 and nm(t) is zero-mean AWGN. Note that
mmax[k] = M (0) and mmin = M (1) applies.

By combining the robot-to-robot model and the measure-
ment model, the communication between two robots is fully
described.

3.4 Model identification

The final step of modelling is to estimate the model parame-
ters. To estimate he, hm , hd , mmin, mmax, and nm(t), a series
of experiments is conducted.

3.4.1 Experiments with a single robot in ambient light

To characterize the ambient light value, mmax, and noise,
nm(t), we conduct experiments with a single robot under
different environmental conditions.5

In total, six experiments are conducted. In the first exper-
iment, measurements are taken in the absence of ambient
light—the robot is put in a closed box. In the second, third and
fourth experiments, the robot is placed in the center or one of
two corners of the experimental arena;6 the corners provide
partial and complete shade, respectively. In the fifth experi-
ment, the robot is put on a desk; in this situation, the absence
of surrounding obstacles is assessed. In the sixth experiment,
the robot is put close to a window (during daytime) to assess
the influence of natural light. For each experiment, 2000 mea-
surements per detector are taken.

Figure 5a shows the measurements’ mean (m̄ j ) for each
detector and experiment. The highest values (approx. 4095)
were obtained in the closed-box experiment. Note that
4095 = 212 − 1 is the maximum value that the 12-bit ADC
can provide. The lowest values (approx. 4075) were obtained
in the experiment near the window.

To estimate mmax, we assume that the measurements,
m[k], follow a distribution obtained by discretizing the dis-
tribution N (mmax, σ

2), that is, mmax+nm(t), where nm(t) ∼

N (0, σ 2), and calculate the mean over all experiments,
mmax = 4080. The ambient light thus causes the measure-
ments, on average, to drop by 15, from 4095 to 4080.

Figure 5b shows the sample variances of measurements
for each experiment. As the sample variances do not exceed
2.5, the noise is modeled as a (worst-case) white Gaussian
process nm(t) ∼ N (0, 2.5).

3.4.2 Experiments with a single robot and light source

To characterize the saturation value, mmin, and detector atten-
uation, hd(β), we use a single robot and a light source (10 W

5 Note that the ambient light value, mmax, and noise, nm(t), are solely
dependent on the robot’s environment.
6 The experimental arena is described in Sect. 5.1.
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(a)

(b)

Fig. 5 Experiments where a robot is placed in one of six ambient light
conditions while receiving with sensors 1, 2, . . . , 8. a Mean and b vari-
ance of 2000 measurements per condition and sensor
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Fig. 6 Experiments where a light source is placed directly in front of
the infra-red detector. Histogram of 2000 measurements per detector

LED). The light source is mounted at the height of the robot’s
detectors, and projects in parallel to the surface (floor). The
light source is a flood light, providing a homogeneous and
planar beam.

To estimate mmin, the robot is placed in front of the light
source (2 cm gap), and oriented in one of eight configurations.
In each configuration, one of the robot’s detectors is directly
oriented towards the light source. From this detector, 2000
measurements are taken.

Figure 6 shows the measurement distribution (i.e.,
N (mmin, σ

2)) for each detector. The mean over all exper-
iments is 149.80, which is rounded to 150 because the robots
can only represent integers.

To identify hd(β), the robot is placed 10 cm from the light
source with an orientation φk ∈ {0, π

2 , π, 3 π
2 } relative to it.

For each configuration, 2000 measurements per detector are
taken.
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Fig. 7 Signal attenuation a at the detector, b through the medium, and
c at the emitter. The dots show mean values derived from measure-
ments with a inclination angle β, b emitter–detector distance ded , and c

emission angle, α. The values are approximated by (24), (25), and (27),
respectively

Figure 7a shows the attenuation at the detector, hd(β).
Due to the homogeneous and planar light, we assume he(α) ·

hm(ded) = 1, and that any attenuation of the signal intensity,
y = 1, is caused by hd(β). As a result,

hd(β j,k) ≈ ȳ j,k = M−1 (m̄ j,k

)
, (23)

where m̄ j,k is the mean of the measurements taken by detec-
tor j in configuration k, β j,k = θ j − φk , and θ j is the polar
angle of detector j (see Fig. 2). The detector attenuation
coefficient is approximated by

hd(β) = | cos (β)3|. (24)

3.4.3 Experiments with two robots

To characterize the medium attenuation, hm(d), and the emit-
ter attenuation, he(α), we use two robots that are placed with
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Table 1 Model parameters

n ADC 12 Bit length for conversion

km −1.54557 Medium attenuation decay

om 1.12202 Medium attenuation offset

mmax 4080 Ambient light value

mmin 150 Saturation value

an inter-robot distance7 of {7, 7.5, 8, 8.5, 9, 10, 11, 12, 13, 14,
15, 16, 17, 19, 21, 23, 25, 27, 32, 37, 42, 47, 57, 67, 77, 87,
97, 107} cm. Both robots are oriented in such a way that their
sensors 1 are facing each other (i.e., α = β = 0 for sensor
1). One robot is sending a constant signal with the emitter
of sensor 1 while the other robot is measuring with all its
detectors. For each sensor and location, 450 measurements
were taken.

Figure 7b shows ȳ j,k for sensor 1 in relation to the emitter–
detector distance, ded . As sensors 1 of both robots are aligned,
we assume he(α) · hd(β) = 1, and that any attenuation of
the signal intensity, y = 1, is caused by hm(ded).

The medium attenuation is approximated by

hm(ded) =

⎧
⎨
⎩

1 ded ≤ o
− 1

km
m

om (ded)km otherwise
, (25)

where the parameters are km = −1.54557 and om = 1.12202
(see blue line in Fig. 7b).

To estimate the emitter attenuation, he(α), any non-
occluded detector is used (i.e.,

∣∣β j,k

∣∣ < π
2 ). As ȳ j,k

incorporates all attenuation components, it follows that

he(α j,k) ≈ y′
j,k =

ȳ j,k

hm(dk)hd(β j,k)
. (26)

Figure 7 shows the estimated light intensity obtained by
each detector j in configuration k. Note that the signal inten-
sity can differ significantly due to model inaccuracies of
hd(β) when β ≈ π

2 . We approximate the emitter attenua-
tion by

he(α) = | cos(α)7|. (27)

In summary, Table 1 lists the model parameters.

3.5 Model evaluation

While in the previous experiments a robot was transmitting
with only one emitter, an additional experiment is con-
ducted in which a pair of robots transmit/receive with all

7 Note that the inter-robot distance is measured from and to a center of
a robot. This results in a minimum of 7 cm (diameter of the robot).
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Fig. 8 Model predictions (red) and measurements (blue) from an exper-
iment where two static robots, at distance d, exchange information using
all their emitter–detector pairs: a sensor 1, b sensor 2, and c sensor 7
(see Fig. 2). Mean values based on 500 measurements. The range of
axes was chosen to highlight interesting regions (Color figure online)

emitters/detectors. This causes the superposition of multiple
signals from different angles and with different intensities.
Furthermore, sensors 1 of the robots are no longer aligned.

The experiment is performed by placing two robots, facing
each other, at a distance, d ∈ {7, 7.5, 8, 8.5, 9, 10, 11, 12, 13,
14, 15, 16, 17, 19, 21, 23, 25, 27, 32, 37, 42, 47, 57, 67, 77,
87, 97, 107} cm. While one robot is sending a constant signal
with all emitters, the other is receiving it with all detectors
and transmits the measurements to a computer via Bluetooth.
At each location, 500 measurements are taken.

Figure 8 shows the measurement means alongside the
model predictions for three detectors. As the predictions
closely match the measurements, the model parameters of
Table 1 are used in the following sections.
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4 SwarmCom: design and implementation

In this section, we describe SwarmCom, an optical MANET
for severely constrained robots. SwarmCom enables a group
of robots to establish a communication network dynamically.
Within this network, pairs of robots transmit information via
the infra-red channel, which was modelled in Sect. 3.

SwarmCom consists of:

– a modulation scheme to transmit data;
– a demodulation scheme to receive data;
– channel coding to detect and/or remove errors in the data

that were introduced by the channel; and
– medium access control to manage the resource allocation.

4.1 Modulation

To convey information between a pair of robots, a signal is
modulated onto the medium—the optical infra-red channel.
The robot’s infra-red LEDs can only be switched on or off.
Consequently, on–off-keying (OOK) is used as the modula-
tion scheme. OOK is a binary modulation scheme that maps
the information to be transmitted to symbols s0 and s1. Sym-
bols s0 and s1 are represented by the absence and presence
of a carrier (infra-red light) over a certain duration, respec-
tively. As a consequence, channels in idle state are assumed
to output a s0 symbol at each time step defined by the sam-
pling period. A prefix consisting of an s1 symbol is used to
identify the beginning of data transmission. By default, data
is divided into blocks of 15 bits in SwarmCom.

4.2 Demodulation

With the modulated signal conveying data, the demodulation
aims to extract the sufficient statistics from the received signal
and to decide the sequence of symbols that have been trans-
mitted. The algorithm that realizes this is hereafter referred
to as the detector. The maximum likelihood decision rule,
Υ (m) : M → {s0, s1}, does so optimally:

Υ (m)=

⎧
⎨
⎩

s0, if P(S = s0|M = m) ≥ P(S = s1|M = m)

s1, otherwise
,

(28)

where P(S = s|M = m) denotes the probability of symbol
s being transmitted given that measurement m is observed.

4.2.1 Assumptions

To calculate P(S = s|M = m), first, assumptions about the
signal structure and robots’ positions are formulated.

We assume that any sequence of symbols is equally likely.
Therefore, the a-priori probability of obtaining a symbol is

P (S = s0) = P (S = s1) =
1

2
. (29)

Let the receiving robot be located at the origin of the
coordinate system in an unbound environment and oriented
towards the x-axis. The relative position of the transmit-
ting robot is given in polar coordinates by random variable
L = (D,Θ). Distance D is chosen from a gamma distribu-
tion (Forbes et al. 2010), D ∼ G(k, ϕ), with shape parameter
k = 0.045 and scale parameter ϕ = 2.5. Polar angle Θ is
chosen from a uniform distribution with a probability density
function, f (θ) = 1

2 π
for all θ ∈ (−π, π ].

Whereas the receiver robot’s orientation is embedded in
Θ , the orientation of the transmitting robot, O , is chosen from
a uniform distribution with a probability density function,
f (o) = 1

2 π
for all o ∈ (−π, π ].

4.2.2 Received signal probability mass function

The signal probability mass function, referred to as P(M =

m|S = s), defines the likelihood of obtaining measurement
m given that symbol s is sent, where M ∈ M and S ∈ {s0, s1}

are random variables.
In the absence of the carrier (S = s0), only the ambi-

ent light and noise are present. Therefore, to compute
P (M = m|S = s0), we exploit that M given S = s0 follows
N (mmax, σ

2).
To estimate P (M = m | S = s1), each 1000-, 720-, and

720-quantile of the aforementioned D, Θ , and O is applied
to our channel model resulting in 5.184 × 108 synthetic
observations per sensor. From these observations, the relative
likelihood is calculated. Then, it is convolved with N (0, σ 2)

to integrate noise.
Figure 9a shows P (M = m|S = s1) for each of the eight

sensors. As most of a robot’s sensors will not point towards
the emitting source, the measurement values for s1 are sim-
ilarly distributed than the measurement values for s0 (see
Fig. 9b). To reduce the similarity, the min{·} operation is
applied to all eight sensor measurements, choosing the small-
est one, which originates from the sensor registering the
highest signal intensity. This operation improves the signal
distribution (see dotted lines in Fig. 9a and b) with small
computational overhead.

4.2.3 Decision rule

With the estimated signal probability mass functions, the
decision rule in (28) can be computed. To avoid computa-
tionally intensive probability calculations, (28) is simplified
to
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Fig. 9 Measurement statistics, produced by the channel model, for each
sensor i of a robot that receives a signal from another robot in the envi-
ronment. Symbols s0 and s1 correspond to the absence and presence
of the carrier, respectively. a Distribution of measurements for s1; b

distributions of measurements for s0 and s1, prior to (solid) and after
(dotted) applying the min operator; c decision threshold mt to discrim-
inate between s0 and s1

Υ (m) =

⎧
⎨
⎩

s0, if m ≥ mt

s1, otherwise
, (30)

where mt , the decision threshold, is defined as

mt = max
m∈M

{m | P(S = s0|M ≤ m) ≤ P(S = s1|M > m)} .

(31)

With Bayes’ theorem and (29), (31) is transformed into

mt = max
m∈M

{m | P(M ≤ m|S = s0) ≤ P(M > m|S = s1)} .

(32)

When applying (32) to the data of Sect. 4.2.2, the decision

threshold is set to mt = 4075 as shown in Fig. 9c. Further-
more, let the relative decision threshold be

mt,r = mmax − mt . (33)

For mt = 4075, we have mt,r = 5.

4.3 Channel coding

While the demodulation aims to minimize errors for each
symbol, channel coding can be used to detect and correct
further errors in a message (i.e., a group of symbols) (Glover
and Grant 2010). It relates to the noisy-channel coding the-
orem (Lapidoth 2009) that states that, for a given level of
noise, the probability of error in the data can be made arbi-
trarily small, as long as the communication rate is below the
Shannon capacity.

Whereas encoding methods are often computationally
inexpensive, the computational requirements of decoding
methods vary significantly. For instance, convolutional codes
require probabilistic decoding (e.g., Viterbi decoder) which
on severely constrained robots is not practical. In contrast,
algebraic codes, such as binary block codes, require less com-
putational expensive decoding through matrix or polynomial
multiplications.

SwarmCom uses binary [n, k] BCH codes (Glover and
Grant 2010).8 These codes organize messages into n-bit long
blocks that contain k bits of data. With an increasing number
of parity bits, n − k, more errors can be corrected, but this
reduces the effective throughput by k

n
. SwarmCom imple-

ments [15, 15], [15, 11], and [15, 1] BCH codes, which can
correct up to 0, 1, and 7 errors, respectively. Depending on
the choice of code, either the throughput (i.e., [15, 15]) or
reliability (i.e., [15, 1]) is prioritized.

The matrices and their generator polynomial are available
in the supplementary material website (Trenkwalder et al.
2018).

4.4 Medium access control

When multiple robots share the same medium and try to
communicate, their access to the medium requires control to
prevent the interference of messages (Guerroumi et al. 2014;
Hussain et al. 2017).

There are two forms of medium access control (Sesay et al.
2004)—controlled and random access. Controlled medium
access divides the medium according to its physical prop-
erties (e.g., frequency or time) (Hadded et al. 2015; Glisic
and Leppänen 2013). As every transmission has a dedicated
slot, this access control technique is efficient for high net-
work loads like streaming. However, as the number of robots
within a swarm can be large, dividing the medium into a
large number of frequency bands is often not feasible. Simi-
larly, assigning a time-interval to each robot can cause long

8 The modular design of SwarmCom allows new codes to be added.
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delays. As the delay increases with the number of robots,
this method is not scalable. Furthermore, to allow the join-
ing/leaving of robots, the assignment/removal of additional
slots is commonly done by a central managing unit.

Random medium access allows robots to compete for
access. This competition is performed through local infor-
mation. Therefore, these methods are often decentralized,
and work independently of the number of robots. Note that
at high network loads, this method can cause a large number
of collisions. Therefore, its performance would be reduced.

As many swarm robotics systems use infrequent commu-
nication, SwarmCom provides carrier sense multiple access
(CSMA) (Shi et al. 2013; Wang et al. 2017) —a random
medium access control method. A robot listens to the channel
before sending a message. If the channel is free, the message
is transmitted. Otherwise, the robot waits until the channel
is free and then repeats the process. As a result, CSMA is
decentralized as the robot uses only local information. This
method is also scalable as the sensing of the channel state
depends solely on the network load and not on how many
robots are listening.

4.5 Implementation

SwarmCom has been implemented on e-pucks running the
open-source OpenSwarm operating system (Trenkwalder
et al. 2016). It uses a time-multiplexed on-board ADC to
sample the voltages of the eight detectors, where bit detec-
tion is performed for every sample. Furthermore, the detector
determines the ambient light value, mmax , during the start-up
of the robot and adapts mmax during run-time to compensate
for ambient light changes, as detailed in the following sec-
tions.

SwarmCom will be made available under an open-source
license in the future. It is currently integrated within the
OpenSwarm operating system, which is available at https://
github.com/OpenSwarm/OpenSwarm/tree/com-experiments.

5 SwarmCom: static robots evaluation

In the following, we validate the SwarmCom implementa-
tion. This section reports on experiments involving a pair of
static robots. One robot, Rt , transmits messages with all its
emitters, while the other robot, Rr , receives them with all its
detectors. SwamCom performs modulation and demodula-
tion. Unless otherwise stated, no channel coding is used.

5.1 Experimental setup

The experiments are conducted in an indoor arena of size
400 cm × 300 cm. The arena has a grey floor that is sur-
rounded by 50 cm tall white walls. It is illuminated from

above by fluorescent light tubes; natural light is prevented
from entering the room.

To automate the experiments, we use an external computer
that is connected to each robot via a dedicated Bluetooth
link.9 The experimental process is as follows:

– The external computer generates a message containing 1
to 5 blocks of data; each block has 15 bits. The number
of blocks and their contents are chosen randomly from
uniform distributions.

– The message is transmitted to Rt using Bluetooth. If no
acknowledgment is received within 500 ms, it is retrans-
mitted without affecting the result.

– Once the message has been received, Rt echoes it back
to the computer as an acknowledgment, and, at the same
time, starts the transmission to Rr .

– Once Rr has received the message from Rt , Rr transmits
it to the computer.

– The computer marks a message as lost if its receipt
was acknowledged by Rt , but after 1 s no message was
received from Rr .

In the experiments, robots Rt and Rr are placed in the
middle of the arena, oriented towards each other. Initially,
their centers are 7 cm apart (the robots are touching each
other). Above experimental process is executed repetitively.
After obtaining 100 successful messages at a location, Rr

moves away from Rt by 1 cm. If Rr has moved by 100 cm
or 10 consecutive message transmissions have been marked
as lost, the process is aborted. In the latter case, we assume
that the end of the communication range has been reached.

The following performance measures are reported:

– The communication range is the furthest distance between
two robots in which 100 messages were received.

– The transmission time is the time difference between
receiving acknowledgments from Rt and Rr , respec-
tively.

– The bit rate is the number of transmitted bits divided by
the transmission time.

– The bit error probability, Pe, is estimated as the Ham-
ming distance (i.e., number of altered bits) between data
from Rt and Rr divided by the bit length of the message.

– The probability of error-free transmission, P f , for an n-
bit message is

9 The experiments focus on the quality of the optical infra-red commu-
nication channel between the robots. For the Bluetooth communication
with the computer, a simple checksum is used. If errors are detected,
the corresponding messages are retransmitted.
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P f (c) =

c∑

i=0

(
n

i

)
P i

e (1 − Pe)
n−i , (34)

where c is the maximum number of correctable errors
(due to channel coding). In other words, P f is the prob-
ability that no more than c bit-errors occur. As the error
correcting code can correct up to c errors, with probabil-
ity P f the transmission can be considered error-free.

– The probability of message loss, Pl , is

Pl =
Nl

N
, (35)

where Nl and N are the number of lost messages and the
number of messages, respectively.

5.2 Experiments with a fixed decision threshold

We examine the impact of using a fixed relative decision
threshold, mt,r ∈ {5, 10, 25, 50, 100, 250, 500, 750, 1000,

2000}. We test three different bit rates: 310 bps (the low-
est possible bit rate offered by the hardware), 650 bps, and
1160 bps.

Figure 10 shows that the bit error probability is high when
using a fixed decision threshold. The larger the threshold, the
lower the bit error probability gets. However, increasing the
threshold results in a reduction of sensitivity and hence, of
the communication range.

It is worth noting that the bit error probability does not
always monotonically increase with the inter-robot distance,
especially when a high bit rate is used. A possible reason
could be the measuring circuit. Short distances result in high
signal intensities that cause high charges of capacitive ele-
ments. Small discharging currents could cause slow changes
from one symbol to another and, hence, cause inter-symbol
interference.

5.3 Experiments with a dynamic decision threshold

The detection was changed to adapt the threshold depending
on the received signal intensity dynamically. In the following,
mt and mt,r refer to the default thresholds, as previously
used in Sect. 4.2.3. For a signal to be detected, its amplitude,
measurement A, has to be lower than the original threshold,
mt [see (30)]. If this is the case, amplitude A is then used to
calculate a dynamic decision threshold,10

mt,dyn =

⌊
|mt + A|

2

⌋
=

⌊
|mmax − mt,r + A|

2

⌋
. (36)

After receiving a message, the dynamic decision threshold is
reset to the default value (mt ).

10 Note that the definition ensures mt,dyn < mt .
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Fig. 10 Bit error probability, Pe, for a detector using a fixed relative
decision threshold, mt,r , for various distances among two static robots
(for details see text). Bit-rates are a 310 bps, b 650 bps, and c 1160 bps

Figure 11 shows the bit error probability for the dynamic
detector (using a default relative decision threshold of mt,r =

5). The dynamic detector greatly reduces the bit error prob-
ability, while retaining a good communication range. For
high bit-rate transmissions, high bit error probabilities are
observed when the robots are not near each other. This can
be avoided by redefining the default relative decision thresh-
old, mt,r , thereby limiting the maximum communication
range.

Additional experiments were performed to investigate the
role of the default relative decision threshold for the dynamic
detector in (36). Figure 12a shows how the choice of mt,r

impacts on the communication range. Figure 12b provides
a lower bound for the relative decision threshold to ensure,
given a bit rate, that the bit error probability does not exceed,
Pe < 0.01.
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Fig. 11 Bit error probability, Pe, for a detector using a dynamic rela-
tive decision threshold for various distances among two static robots.
a and b present the bit error probability linearly and logarithmically,
respectively
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Fig. 12 The dynamic detector can be initialized with different default
relative decision thresholds. a Shows how the choice of threshold
impacts on the communication range for 310 bps transmissions. b The
blue area (above the curve) shows the default relative decision thresh-
olds for which reliable communication (Pe < 0.01) can be achieved at
a given bit rate (Color figure online)

5.4 Channel coding

SwarmCom uses per default a [15, 15] BCH code (i.e., no
channel coding) to maximize throughput. However, the user
can select a [15, 11] BCH code (to correct up to c = 1 error)
or a [15, 1] BCH code (to correct up to c = 7 errors). To
investigate the impact of channel coding on the accuracy
and throughput, the three channel codes are compared. We
consider bit rates of 310 bps and 1800 bps.

As a starting point (c = 0), we use the experimentally
determined bit error probabilities, Pe, from the experiments
with a dynamic decision threshold (see Sect. 5.3). We then
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Fig. 13 Two static robots, at relative distance d, use channel coding
to correct c ∈ {0, 1, 7} bit errors. Shown is the actual rate (0 bit) and
predicted rates (1 bit and 7 bit) at which messages get incorrectly trans-
mitted, 1 − P f , at 310 bps and 1800 bps, respectively. Zero values are
not visible, due to the log-scale. a Full range, b zoomed range

compute, for each channel code, the probability of correctly
transmitting a 15-bit message, P f , based on the assumption
that errors are independent of each other.

As shown in Fig. 13, the probability of incorrectly trans-
mitted messages, 1 − P f , decreases by several orders of
magnitude when correcting up to 7 errors (for both bit rates).
This should make it possible to transmit messages virtually
free of error (i.e., 1−P f ≤ 10−16) over a range of up to 50 cm.
However, the increase in accuracy would come at the expense
of an effectively reduced throughput: 1800

15 = 120 bps and
310
15 ≈ 21 bps. Compared with coded 1800 bps transmis-

sions, the uncoded 310 bps transmission is less prone to
errors (for d ≥ 11 cm, that is, ≥ 4 cm gap between the
robots), allow a 4-fold communication range, while provid-
ing ca. 2.5 times higher throughput. Where throughput is not
the primary criterion, however, the application of channel
coding is recommended.

5.5 Comparison with libIrcom

To validate SwarmCom, the implementation with a dynamic
threshold is compared to the state-of-the-art communication
software for the e-puck, libIrcom, which is widely used by
the swarm robotics community (Murray et al. 2013; Prieto
et al. 2010).

For the libIrcom implementation, identical functions were
used to control the robot and exchange messages via Blue-
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Fig. 14 Comparison of libIrcom (red) with SwarmCom (other colors):
a bit error probability, Pe, and b probability of message loss, Pl (Color
figure online)

tooth with the computer. The experimental setup was the
same as described in Sect. 5.1.

Figure 14a shows the bit error probability, Pe, as a function
of the inter-robot distance. The bit rate of libIrcom was exper-
imentally determined as 220 bps. At a bit rate of 330 bps,
SwarmCom consistently outperforms libIrcom over all dis-
tances. Moreover, it provides a 3-fold higher communication
range and 50% additional throughput. At other bit rates of
up to 850 bps, SwarmCom consistently outperforms libIr-
com over all distances as well, while providing up to ca.
380% additional throughput.

Figure 14b shows the probability of message loss, Pl . As
can be seen, SwarmCom with bit rates of up to 1080 bps
provides a substantially lower probability of message loss
when compared to libIrcom with 220 bps.

We believe that the improved performance of Swarm-
Com can be attributed to a range of factors. SwarmCom
exploits knowledge of the underlying channel model, and
offers an adaptive threshold mechanism that allows a robot
to adjust its sensitivity to the strength of signals it perceives,
thereby increasing the communication range and reducing
the error probability. Moreover, it treats every measurement
as a logical 0 or 1, thereby maximizing throughput (though,
optionally, channel coding can be applied). libIrcom uses
long codewords (and rudimentary channel coding) for the
logical 0s and 1s, effectively reducing throughput.

Algorithm 1 Random Walk
Require: tm , the forward moving interval
1: procedure Move

2: loop

3: Choose a random rotation angle, θ ∈ (−π, π ]

4: Rotate by θ

5: Choose a random velocity, v ∈ [−128, 128] mm
s

6: repeat

7: Move forward with v

8: until time, tm , has elapsed

9: end loop

6 SwarmCom: mobile robots evaluation

To validate SwarmCom in more realistic situations, exper-
iments with groups of mobile robots are conducted. We
consider a relatively congested area by choosing a higher
robot density than in the static robot evaluation.

The robots communicate with each other while perform-
ing a random walk. We consider two modes of communica-
tion:

– When a robot, Rt , sends a message via local broadcast,
the message is received by the neighbors of Rt but does
not propagate further through the network. It does not
reach robots outside the communication range of Rt .
Moreover, due to occlusions, it may not reach a robot
unless located in the direct line of sight of Rt .

– When a robot, Rt , sends a message via flooding, the mes-
sage is also locally transmitted at first. However, every
robot that has received the message will locally retransmit
it too, but only once. Thereby, the message will propagate
through the network.

6.1 Experimental setup

The experiments described in this section are conducted in
a 72 cm × 72 cm arena. The arena has a grey floor and is
surrounded by 30 cm tall white walls. It is illuminated as
described in Sect. 5.1.

By default, we use groups of 2 to 7 e-pucks. Note that we
automate and monitor the experiments using Bluetooth, and
the Bluetooth protocol does not allow to establish more than
seven connections at once.

We follow a similar experimental protocol to the one used
in experiments with static robots. The robots use a dynamic
threshold [see (36)]. Changes in the level of ambient light are
compensated as described in Sect. 4.5. However, the experi-
mental protocol differs in the following points:

– The robots are initially placed in random positions and
orientations, chosen arbitrarily from within the arena;

– Each robot performs a simple random walk using Algo-
rithm 1 (with tm = 2 s);
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– For every parameter configuration (number of robots, bit
rate, communication range), 1000 messages are to be
transmitted (previously 100);

– For every message, robot Rt is randomly selected from
the group;

– Messages are declared lost after waiting for 2 s (previ-
ously 1 s).

The experiments are recorded by a camera mounted on
top of the arena. OpenCV (version 3.4) is used to calculate
the robots’ positions, potential occlusion, and inter-robot dis-
tances. This is subsequently used to calculate an estimate of
the probability of message loss, P̂l , in our static analysis.

The procedure to obtain P̂l depends on the mode of com-
munication. If the local broadcast is used, every robot, Rr ,
in the direct line of sight of Rt is considered. Once the dis-
tance between the pair of robots is established, an estimate
for the the probability of message loss is obtained from the
relation shown in Fig. 14b. If flooding is used, all non-cyclic
paths from Rt to any robot, Rr , are considered. The path of
transmission is the one candidate path, p, that provides the
largest probability of successful transmission, 1 − P̂l,p. As a
result, Pl is defined by

Pl = 1 − max
p

{
∏

i

(1 − P̂l,p,i )

}
, (37)

where P̂l,p,i is the probability of message loss for hop i of
path p between Rt and Rr .

To compare the outcome of experiments, a two-sample
Kolmogorov–Smirnov test (KS test) is performed (Young
1977). This nonparametric statistical test compares two
empirical cumulative distribution functions (CDF)11. Two
CDFs, F1,n and F2,m , are statistically significantly different
when

∆(i, j) = D
(i, j)
m,n

√
m n

m + n
≥

√
−

1

2
ln
(α

2

)
, (38)

where D
(i, j)
m,n = supx

∣∣Fi,n(x) − F j,m(x)
∣∣ is the maximum

difference of two CDFs. Here, we choose α = 0.01, hence
∆(i, j) ≥ 1.628. Note that the obtained distribution of exper-
iment i is tested to produce statistically larger values than
another distribution, j , by changing D

(i, j)
m,n to G

(i, j)
m,n =

maxx

(
Fi,n(x) − F j,m(x)

)
. If not stated otherwise, D

(i, j)
m,n is

used in a KS test (i.e., statistical equality is tested).
In this work, an experiment consists of 6 trials, where

each trial has a specific number of robots (i.e., two to seven
robots). To compare two experiments, we report KS vectors

11 An empirical cumulative distribution function, Fi,k , of experiment i

is based on a sample of k measurements.
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Fig. 15 The distribution of inter-robot distance, d, between two com-
municating robots for experiments with 2, 3, …, 7 robots

and matrices. A KS vector contains 6 KS test values, ∆(i, j).
Each value is calculated by comparing the trials with the
same number of robots. A KS matrix consists of a ∆(i, j) for
each combination of trials.

6.2 Experiments

This section reports the results of the experiments with mul-
tiple mobile robots. First, the distribution of d is analyzed—
recall, the robots perform a random walk without obstacle
avoidance. Then, the performances of the two modes of com-
munication are compared. The effects of changing either the
velocities, communication range, the bit rate, or the density
of robots are analyzed. Finally, SwarmCom is compared to
libIrcom.

6.2.1 Inter-robot distance

The communication performance of any group of robots
will ultimately depend on the spatial distribution. We deter-
mine the distribution of inter-robot distances, d, for a single
line-of-sight transmission by analyzing the video recordings.
Robots whose sight of the transmitting robot is occluded are
discarded, as they would be unable to establish a communi-
cation channel.

Figure 15 shows the distribution of distances as a violin
plot. The distances appear to be distributed similarly over
trials for any number of robots. To test whether the distribu-
tions are identical, we formulate the null hypothesis that the
distributions of d are equal. The resulting KS matrix is as
follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 16.941 16.973 7.310 13.336 18.702

16.941 0 4.281 16.420 12.791 5.135

16.973 4.281 0 16.249 10.632 2.883

7.310 16.420 16.249 0 11.587 21.165

13.336 12.791 10.632 11.587 0 11.831

18.702 5.135 2.883 21.165 11.831 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(39)
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Fig. 16 Experiments by mode of communication: local broadcast (blue)
and flooding (red). Shown are a the bit error probability, Pe, and b

probability of message loss, Pl , all grouped by the number of robots.
Dots indicate mean values and empty circles indicate P̂l , which was
estimated through computer vision analysis (Color figure online)

As all elements exceed 1.628 (i.e., α = 0.01), the null hypoth-
esis is rejected (highlighted in boldface). Consequently, the
number of robots significantly changes the distribution of d.

Note that the peak at 7 cm (see Fig. 15) indicates a collision
between Rt and Rr . In that situation, the robots’ movement
is likely to be temporarily restricted. A further restriction is
provided by the boundaries of the arena.

6.2.2 Modes of communication

We investigate both modes of communication—local broad-
cast and flooding. For each mode, an experiment is conducted
with 2–7 robots, which transmit with 310 bps over a com-
munication range of up to 45 cm (i.e., mt,r = 10).

Figure 16a shows the bit error probability, Pe, obtained
from the experiments. The experiments with and without
flooding are indicated by red and blue, respectively. The cor-
responding KS vector,

[0.466, 0.336, 1.361, 0.603, 1.452, 1.131] , (40)

shows that the mode of communication has no significant
impact on Pe for α = 0.01.

To investigate the effects of the number of robots on Pe, a
KS matrix is calculated for each experiment. When compar-
ing the values of the KS matrices,

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0.727 1.504 1.545 1.465 2.111

0.727 0 1.253 1.254 1.110 1.969

1.506 1.253 0 0.407 0.445 1.172
1.545 1.254 0.403 0 0.376 1.208
1.465 1.110 0.445 0.376 0 1.494
2.111 1.969 1.172 1.208 1.494 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(41)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0.513 1.204 0.592 1.307 1.918

0.513 0 1.021 1.076 2.166 1.775

1.204 1.021 0 1.299 0.320 0.930
0.592 1.076 1.299 0 1.426 0.976
1.307 2.166 0.320 1.426 0 0.947
1.918 1.775 0.930 0.976 0.947 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(42)

for flooding and local broadcast, respectively to (39), it is
evident that the bit error probability is less affected by the
number of robots than the inter-robot distance. In many cases,
Pe does not change significantly with the number of robots.
However, when comparing the extremes (2 and 7 robots), Pe

significantly differs. As a result, it can be expected that larger
groups of robots would increasingly impact Pe.

Note that the distribution of Pe shows two peaks across
all experiments (see Fig. 16a). The first peak, at Pe ≈ 0, is
the dominant one. Overall, 68–75% of messages are entirely
error-free. The second peak is at Pe ≈ 0.4, but far less pro-
nounced. A possible cause could be burst errors12, which
could occur when a robot enters or leaves the communica-
tion range of another robot during a transmission.

Figure 16b shows the probability of message loss, Pl . Here
we extend the definition of (35) to multiple receiving robots,
such that Pl = 0 implies that the message is received by every
robot bar the one that originally transmitted it. As the number
of robots increases, the flooding mode outperforms the local
broadcast mode, as expected. When using the flooding mode,
robots succeed in reaching occluded robots or others outside
their local neighborhood. The more robots are present, the
more likely it is that the whole group is reached. Note that the
more often a message gets retransmitted, the more likely is
that some errors get introduced. However, according to (40),
no such effect was observed in our experiments.

From Fig. 16b, it can be seen that P̂l approximates the
trend of Pl , though with a noticeable offset. The computer
vision analysis only identifies the robot that is sending and
then calculates P̂l based on the topological information over
a certain time duration. When robots enter or leave the com-
munication range during a transmission, Pl is not affected,
but the computer vision analysis, which decides frame by
frame, will be unable to capture this.

12 Burst errors involve a sequence of successive faulty bits.
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Fig. 17 Experiments with groups of mobile robots moving at 1
3 (red

disk), 2
3 (blue square) and 3

3 (green triangle) of their maximum linear
and angular velocities. a Average bit error probability, Pe; b probability
of message loss, Pl . Solid shapes indicate the means of experimentally
observed values; hollow shapes indicate the predictions, P̂l (Color figure
online)

6.2.3 Variation of the movement velocities

To investigate how the velocities of robots impact on com-
munication quality, three experiments with 2 to 7 robots are
conducted. In these experiments the linear and angular veloc-
ities of the robot are limited, respectively, to 1

3 , 2
3 , and 3

3 of the
maximum value. We refer to these three setups as v1, v2, and
v3, respectively. The robots perform a random walk (Algo-
rithm 1) and are configured as in the flooding experiment (see
Sect. 6.2.2).

Figure 17 illustrates the average values of (a) Pe and (b)
Pl . In both cases, the performance appears to improve as the
robots move slower.

The three velocity settings (v1, v2, v3) lead to three
null hypotheses—that the bit error probability, Pe, for the
respective smaller velocity is larger or equal to the bit
error probability of the respective larger velocity. A signed
Kolmogorov–Smirnov test provides the KS vectors,

[1.631, 2.530, 1.902, 2.606, 3.192, 1.325], (43)

[1.746, 1.721, 2.534, 1.704, 2.306, 1.501], and (44)

[1.715, 1.780, 0.677, 1.970, 1.108, 0.219], (45)

for testing settings v1 against v2, v1 against v3, and v2 against
v3. As evident from these vectors, the null hypotheses can be
rejected (with α = 0.01) for trials with few robots. Increas-

0.025

0.050

0.075

0.100

2 3 4 5 6 7

Number of robots

P
e

(a)

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7

Number of robots

P
l

(b)

Fig. 18 Experiments with groups of mobile robots using a restricted
communication range: a the average bit error probability, Pe for com-
munication ranges of 21 cm (red, circle), 33 cm (green, triangle), and
45 cm (blue, square); b probability of message loss, Pl . Solid shapes
indicate the means of experimentally observed values; hollow shapes
indicate the predictions, P̂l (Color figure online)

ing the velocity may also increase the likelihood that some
robots interfere with others or that a communicating robot
prematurely leaves the range of communication during a
transmission. However, as the number of robots in the swarm
increases, more communication paths are formed, and the
effect becomes less prominent.

6.2.4 Variation of the communication range

To investigate the role of the default relative decision thresh-
old (and hence the communication range) in the mobile
robot scenario, three experiments were conducted. We use
mt,r = 75, 25, and 10, which results in a communication
range of 21 cm, 33 cm, and 45 cm, respectively. The robots
transmit at a bit rate of 310 bps.

Figure 18a illustrates the average values of Pe. To inves-
tigate the difference between the distributions of Pe, we
consider all three pairs of communication ranges. This leads
to three null hypotheses—that the bit error probability, Pe, for
the respective smaller communication range is less or equal to
the bit error probability of the respective larger communica-
tion range. We use a signed Kolmogorov–Smirnov test (Press
et al. 2007), which provides KS vectors,
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[0.607, 1.027, 0.521, 1.075, 1.772, 1.799], (46)

[1.570, 2.266, 2.646, 3.151, 3.610, 4.300], and (47)

[1.108, 1.440, 1.765, 2.494, 4.271, 4.246], (48)

for testing communication range 21 cm against 33 cm, 21 cm
against 45 cm, and 33 cm against 45 cm, respectively. As
evident from these vectors, unless the number of robots is
relatively low, the null hypotheses can be rejected (with
α = 0.01). In other words, smaller communication ranges
produce significantly larger bit error probabilities. We sus-
pect that, as the communication range decreases, it becomes
increasingly unlikely for a pair of mobile robots to remain
connected for the duration of a transmission. Robots entering
or leaving the range while a transmission is in progress will
contribute to a higher bit error probability.

Figure 18b plots the probability of message loss. As
expected, the shorter the communication range, the higher the
losses. Furthermore, P̂l predicts the trend of Pl consistently,
which suggests that Pl mainly dependent on topological
information (i.e., communication range).

6.2.5 Variation of bit rate

SwarmCom can operate with various bit rates, offering a
trade-off between throughput and communication range. To
investigate the effects on Pe and Pl for groups of mobile
robots, three experiments with bit rates of 310 bps, 1080 bps,
and 1670 bps were conducted. To enable a fair comparison,
the communication range was restricted to 21 cm.

Figure 19a illustrates the average values of Pe for each bit
rate. To investigate the difference between the distributions
of Pe, we consider all three pairs of bit rates. This leads to
three null hypotheses—that the bit error probability, Pe, for
the respective larger bit rate is less or equal to the bit error
probability of the respective smaller bit rate. We use a signed
Kolmogorov–Smirnov, which provides KS vectors,

[0.609, 0.842, 1.411, 1.057, 1.352, 1.779], (49)

[0.432, 0.999, 1.013, 1.502, 1.876, 2.371], and (50)

[0.432, 0.613, 0.746, 0.898, 0.705, 1.115], (51)

for testing 310 bps against 1080 bps, 310 bps against
1670 bps, and 1080 bps against 1670 bps, respectively. As
evident from these vectors, unless the number of robots is
relatively large, the null hypotheses cannot be rejected (with
α = 0.01). In other words, the error probabilities are less
influenced by the bit rate as by the communication range
(see the previous section).

Finally, Fig. 19b indicates that the bit rate does only have
a moderate impact on Pl .
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Fig. 19 Experiments with groups of mobile robots using various bit
rates: a the average bit error probability, Pe for bit rates of 1670 bps
(red, circle), 1080 bps (green, triangle), and 310 bps (blue, square),
respectively. b Probability of message loss, Pl . Solid shapes indicate
the means of experimentally observed values; hollow shapes indicate
the predictions, P̂l (Color figure online)
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Fig. 20 Number of channels, nC , a robot can establish depending on the
density of robots in its environment. a Results from simulations in an
open environment. b Results from real-robot experiments (shown as box
plot) and simulations (shown as line graph) in a bounded environment.
For details, see text
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Fig. 21 Snapshots taken from the experiments with a 10, b 20, and c

30 e-puck robots within a 72 × 72 cm environment. The static robot
in the center (green cap) repeatitively transmits a signal. The other

robots, which perform a random walk, activate their LEDs whenever
they receive the signal. The number of channels that the central robot
establishes are nC = 4, 6, and 9, respectively (Color figure online)

6.2.6 Scalability

To investigate the scaling properties of SwarmCom, two stud-
ies were conducted—one in computer simulation, the other
using real robots.

The simulation study examines how the robot density
impacts on the connectivity of the network. One robot, placed
at the center of the environment, transmits messages within
a communication range of 61 cm (see Table 12a). The area
within the communication range is populated by randomly
placing 1, 2, …, N additional robots, where N = 272 was the
largest value for which sampling-based positioning proved
efficient.13 This results in a robot density, ρR ∈ [1, 234]
robots

m2 . All robots are static. For every tested density, 10000
trials are conducted. In every trial, we determine how many
channels, nC , are established by the central robot. We con-
sider a channel to be established if a robot can distinguish
between s0 and s1. In other words, the received signal is below
threshold mt,dyn (see Sect. 4).

Figure 20a shows the number of connections, nC , as a
function of robot density, ρR . It is evident that the number of
channels is bounded by a relatively small constant (≈ 15).
In other words, while hundreds of other robots may reside
within the communication range of the central robot, the lat-
ter can only communicate with a relatively small number of
robots, all others being occluded. This greatly reduces the
load on any node. In fact, the load is bounded by a constant
for any number of robots within the swarm. As the robot
density increases to its maximum, the number of connec-
tions decreases too, until finally settling at nC = 6. In the
most dense setting (i.e., corresponding to a near-hexagonal

13 We expect the theoretical limit to be around 285; see http://hydra.nat.
uni-magdeburg.de/packing/cci/cci285.html, for a solution to a related,
but less constrained, problem (Graham et al. 1998).

arrangement of the robots), the central robot will have 6 com-
munication channels.

The real-robot study examines how the robot density
impacts on the connectivity in practice. Three experiments
are conducted with swarms of 10, 20, and 30 physical robots
within a 72 × 72 cm space as shown in Fig. 21. This results
in the robot densities, ρR ∈ {19.3, 38.6, 57.9} robots

m2 . A static
robot, placed in the center, transmits a series of s1 symbols.
All other robots perform a random walk (Algorithm 1). When
a moving robot detects the signal, it illuminates its LEDs.
Every 30 s, the number of illuminated robots, nC , is deter-
mined using video recordings from an over-head camera. The
process is repeated 30 times per experiment. In other words,
in total 90 experimental trials were conducted.

Figure 20b shows that the real-robot experiments are over-
all in good agreement with the simulation results.14 These
findings suggest that SwarmCom’s resource allocation and
utilization is indeed scalable by design, and, discounting
delays, could be applied to swarms of any size.

6.2.7 Comparison with libIrcom

Finally, the overall performance is determined by compar-
ing SwarmCom to libIrcom in a mobile setup. To allow a
fair comparison, SwarmCom is configured to use the same
communication range (i.e., 21 cm) and a similar bit rate (i.e.,
310 bps).

Figure 22a compares the distributions of Pe of both
SwarmCom (red) and libIrcom (blue). Overall, 68–75% of
messages sent with SwarmCom are error-free, which is 3–5
times larger than the corresponding value for libIrcom (14–
20%). libIrcom produces significantly larger values of Pe

14 To improve comparability, the simulation runs were repeated with
the bounded 72 × 72 cm arena used in the experiments.
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Fig. 22 Experiments with groups of mobile robots comparing Swarm-
Com (red, circles) and libIrcom (blue, triangles). a Distribution of Pe;
b mean of Pl (solid) and P̂l (hollow) (Color figure online)

than SwarmCom, as evident from the corresponding KS vec-
tor,

[4.207, 6.397, 7.630, 9.030, 10.316, 12.382] . (52)

When comparing (46)–(51) to the KS vector, it can be seen
that changing the bit rate or communication range has a less
severe impact on the bit error probability than changing to
libIrcom.

Figure 22b plots the probability of message loss for
SwarmCom (red, circles) and libIrcom (blue, triangles). As
expected, similar communication ranges result in a compa-
rable probability of message losses.

Similar to previous sections, P̂l predicts the trend of Pl

consistently.

7 Conclusion

This paper proposed the first model to describe the infra-
red signals transmitted and received on a widely used swarm
robotics platform, the e-puck robot. The model can be used
by pairs of robots to exchange information. The model
was shown to provide a good fit to measurements obtained
from experiments that were different from those used during
parameter identification.

The second contribution of the paper is SwarmCom, an
optical MANET for computationally severely constrained
robots and its implementation on the e-puck, a robot with

only 8 kB of RAM. SwarmCom uses a dynamic detector that,
by adapting to the environment and nearby robots, achieves
orders of magnitudes of improvement in bit error probability.
In addition, SwarmCom supports various bit rates and com-
munication ranges to allow users to adapt the system to their
needs. Reliable communication is provided up to 61 cm at
310 bps, and up to 14 cm at 1800 bps.

SwarmCom supports channel coding, allowing to correct
up to 7 bits per 15-bit block. Based on experimental results
without channel coding, our analysis predicts that a pair of
robots, employing a 7-bit correction code, can exchange mes-
sages over a range of up to 50 cm with a probability of
message error of at most 10−16.

To evaluate SwarmCom in a more realistic environment,
we conducted experiments with up to seven mobile robots.
The flooding communication mode was found to dramati-
cally improve the reachability of other members in the swarm
(compared to a local broadcast mode) and did so without
significantly affecting the bit error probability. Further exper-
iments showed that shortening the communication range
increased the bit error probability as well as limited the net-
work reach.

To investigate how SwarmCom scales with the number
of robots, we conducted experiments with up to 30 mobile
e-pucks, and computer simulations that increased the robot
density until the area corresponding to a robot’s communi-
cation range was entirely populated with other robots. The
results from the experiments and simulations were in good
agreement. They showed that the maximum number of com-
munication links per node is relatively low (up to around
15) for any number of robots in the swarm. Consequently,
the network’s access and utilization operate independently of
the total number of robots and, therefore, should be scalable.
This results from the line-of-sight transmission mechanism
in optical communications: any nodes that are occluded will
not be able to establish direct links. In contrast, radio-based
signals can reach any node within a communication range.
Hence, the maximum robot density must be limited to prevent
signal/channel interference. As a result, optical communi-
cation provides benefits as offering a reasonable range for
miniature robots, and coping well with low-density to high-
density situations.

Finally, SwarmCom was compared to libIrcom—until
present, the only infra-red communication software avail-
able for the e-puck. We showed that SwarmCom has a 3–5×

larger likelihood of error-free transmissions than libIrcom
when using a similar range and bit rate. Overall, SwarmCom
can provide 0.8–3 times the range, between 1.4 and 8 times
higher bit rates, and between 50 and 63% lower bit error
rates than libIrcom, even when no channel coding is used.
This allows the user to prioritize specific parameters—for
instance, 3 times larger communication range and 63% lower
bit error rates are traded for only 1.4 times of the bit-rate.
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In comparison to the static robots experiments, mobile
robots experiments showed significant degradation of the
communication quality for both SwarmCom and libIrcom.
We showed that higher mobility impacts the system nega-
tively and this should be considered during the design of
swarming algorithms. For instance, where throughput is not
the primary criterion, channel coding is recommended. To
reliably exchange data at high bit rates, robots could tem-
porarily cease motion, or limit their speed, when within
communication range, and resume activity thereafter.

A current limitation of SwarmCom—compared to most
other MANETs—is its rudimentary routing, which forwards
any new message to all possible neighbors. Due to the low
throughput, short communication range, and high mobility
of the robots, obtaining up-to-date topological information
can present a challenge. Flooding therefore remains a valid
option. Where the robots engage in frequent, point-to-point
communication, however, the flooding protocol is not scal-
able. Further work on optical communication in swarm
robotics (hard- and software) could provide more-reliable
and higher-throughput systems as shown in Khan (2017),
Zhang et al. (2018). More advanced systems could then
extract topological information faster, making it possible to
realize more sophisticated routing protocols, as commonly
found in MANETs. A further extension could be for Swarm-
Com to provide situated communication. In other words, in
addition to obtaining the content of a message, the receiv-
ing robot would get informed about the relative position of
the emitting robot. This could prove useful, for example,
to maintain the connectivity with certain robots in the local
neighborhood.

Our channel model applies not only to the original e-puck
platform but also to the e-puck 2, which was released in
2018. The e-puck 2 uses the same proximity sensors and
measuring circuit as the original version.15 It should be noted
that SwarmCom can be outperformed, at least in bit rate (up
to 5000 bps) and communication range (up to 600 cm), by
dedicated communication hardware, such as the e-puck range
and bearing board (Gutiérrez et al. 2008, 2009a; Millard
et al. 2017). These solutions, however, add additional costs,
weight, and energy demand to the default platform.

A question that is open for future work involves the anal-
ysis of OpenSwarm in practical applications. The presented
analysis relied on the assumption that the robots did not move,
or moved at random. A more realistic scenario could involve
robots that moved according to the demands of their respec-
tive tasks.

Overall, we demonstrated that a rigorous communication
model, coupled with a well-designed communication system

15 Information obtained through mail exchange with GCtronic (http://
www.gctronic.com/); schematics of the e-puck 2 have not been released
at the time of writing this paper.

could have dramatic effects on swarm communication. Our
efforts can be replicated for other communication devices,
and our results should encourage further work along these
lines.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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