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SUMMARY

Parasitic protists belonging to the genus Leishmania

synthesize the non-canonical carbohydrate reserve,

mannogen, which is composed of b-1,2-mannan oli-

gosaccharides. Here, we identify a class of dual-

activity mannosyltransferase/phosphorylases (MTPs)

that catalyze both the sugar nucleotide-dependent

biosynthesis and phosphorolytic turnover of manno-

gen. Structural and phylogenic analysis shows that

while the MTPs are structurally related to bacterial

mannan phosphorylases, they constitute a distinct

family of glycosyltransferases (GT108) that have

likely been acquired by horizontal gene transfer

from gram-positive bacteria. The seven MTPs cata-

lyze the constitutive synthesis and turnover of man-

nogen. This metabolic rheostat protects obligate

intracellular parasite stages from nutrient excess,

and is essential for thermotolerance and parasite

infectivity in the mammalian host. Our results sug-

gest that the acquisition and expansion of the MTP

family in Leishmania increased the metabolic flexi-

bility of these protists and contributed to their capac-

ity to colonize new host niches.

INTRODUCTION

The Trypanosomatidae are parasitic protists that cause dis-

eases such as human African trypanosomiasis (Trypanosoma

brucei), Chagas disease (T. cruzi), and human leishmaniasis

(Leishmania spp) that are estimated to chronically or acutely

infect more than 100 million people worldwide (Stuart et al.,

2008; Singh et al., 2014; Burza et al., 2018; Bañuls et al.,

2011). These pathogens often have complex life cycles, occu-

pying extracellular and intracellular niches in different insect,

plant, and vertebrate hosts. Comparative analyses of the ge-

nomes of these parasites and related free-living protists indicate

that the evolution of parasitic lifestyles has been associated with

loss of metabolic pathways and genome reduction, as well as

the acquisition of lineage-specific innovations, that have

contributed to parasite survival in different host niches (Jackson

et al., 2016; Opperdoes et al., 2016). The absence of canonical

reserve poly- or oligosaccharides (e.g., glycogen, starch, su-

crose, trehalose) in the trypanosomatids constitutes a particu-

larly dramatic example of metabolic pathway loss. The dynamic

synthesis and turnover of carbohydrate reserves in other eu-

karyotes plays a key role in regulating central carbon meta-

bolism and cellular stress responses (François and Parrou,

2001; Shi et al., 2010; MacNeill et al., 2017), suggesting that

early trypanosomatids may have developed compensatory

mechanisms for dealing with variable nutrient levels and other

environmental stresses (Jackson et al., 2016). Intriguingly,

Leishmania and closely related trypanosomatids (including the

plant pathogen Phytomonas and insect parasites Leptomonas,

Crithidia, and Herpetomonas) have subsequently acquired a

new pathway of carbohydrate reserve biosynthesis (Ralton

et al., 2003; Sernee et al., 2006). These parasites synthesize

mannogen, a family of linear oligosaccharides made up of

2-60 b-1,2-linked mannose residues (Previato et al., 1984; Kee-

gan and Blum, 1992; Ralton et al., 2003). The absence of man-

nogen in the Trypanosoma suggests that this pathway evolved

following the separation of these different trypanosomatid line-

ages. How the acquisition of mannogen synthesis contributes

to the parasitic lifestyle of Leishmania remains unclear.

Mannogen accumulates to very high levels (>10 mM) in path-

ogenic stages of Leishmania (Ralton et al., 2003). These include

the non-dividing promastigote stages that develop in the foregut

of the sandfly vector and initiate infection in the mammalian host

and the obligate intracellular amastigote stages that colonize the

phagolysosome of macrophages and other phagocytic cells in

the mammalian host and perpetuate both acute and long-term

Cell Host & Microbe 26, 385–399, September 11, 2019 ª 2019 The Authors. Published by Elsevier Inc. 385
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Figure 1. Identification of a Leishmania Gene Family Required for Mannogen Synthesis

(A) Putative role of GDP-Man-dependent transferase(s) and glycan phosphorylase(s) in mannogen cycling.

(B) HPTLC separation of 3H-mannogen (DP 2–10) or octyl-3H-mannogen (DP 1–5) oligomers generated by incubation of L. mexicana Dgmp cell-free lysates with

GDP-3H-Man and purified mannogen (Mann) or the synthetic mannose acceptor OM1.

(C) HPAEC detection of 3H-Man1P released after incubation of L. mexicana Dpmm cell-free lysates (and boiled control) with 3H-mannogen (Mann).

(D) The L. mexicana MTP1-7 gene array on chromosome 10.

(legend continued on next page)

386 Cell Host & Microbe 26, 385–399, September 11, 2019



chronic infections in humans. While the enzymes involved in

mannogen synthesis and turnover have yet to be identified,

biochemical studies suggest that mannogen oligosaccharides

are initially assembled on amannose phosphate primer and sub-

sequently extended by guanosine diphosphate (GDP)-Man-

dependent mannosyltransferases (Sernee et al., 2006; van der

Peet et al., 2006). Conversely, the rapid degradation of manno-

gen under glucose-limiting conditions (Ralton et al., 2003) im-

plies the presence of putative mannosidases (which remove

neutral sugars or disaccharides from the non-reducing termini

of glycans) or glycan phosphorylases (which remove sugar-1-

phosphates that can feed directly into central carbon meta-

bolism without consumption of ATP) (Figure 1A). Significantly,

Leishmaniamutants lacking key enzymes in GDP-Man synthesis

have global defects in mannogen synthesis, as well as protein

and lipid mannosylation (Ralton et al., 2003), and are avirulent

in animal models (Garami and Ilg, 2001), suggesting that one

or more of these pathways is important for virulence.

Here, we show that mannogen synthesis and turnover is regu-

lated by a single family of glycosyltransferases that, uniquely,

exhibit dual sugar-nucleotide-dependent mannosyltransferase

and glycan phosphorylase activities. Analysis of the structure

and function of these enzymes suggests that the mannogen

pathway evolved through a process of horizontal gene transfer

(HGT), gene duplication, and expanded substrate promiscuity.

We show that the synthesis and turnover of mannogen regulates

Leishmania central carbon metabolism and cellular stress re-

sponses under both nutrient replete, as well as nutrient-limiting

conditions, and is essential for parasite infectivity in themamma-

lian host. The evolution of this pathway may therefore have

played a pivotal role in enabling these parasites to colonize

new insect and mammalian host niches.

RESULTS

Detection of Mannogen Synthase and Phosphorylase

Activities in Leishmania Extracts

In support of earlier studies (Ralton et al., 2003; van der Peet

et al., 2006, 2012), mannogen synthesis was shown to be medi-

ated by GDP-Man-dependent mannosyltransferase(s), as incu-

bation of L. mexicana cell-free extracts with GDP-3H-Man and

either native mannogen or the synthetic substrate, octyl-a-D-

mannopyranoside (OM1), resulted in the synthesis of labeled

oligosaccharides (Figure 1B) comprising linear chains of

b-1,2-linked mannose (Figures S1A and S1B). Competition ex-

periments showed that OM1was elongated by the samemanno-

syltransferases that elongate native mannogen (Figure S1C),

while short pulse-labeling of live parasites with 3H-mannose, fol-

lowed by subcellular fractionation, showed that mannogen syn-

thesis occurs primarily in the cytoplasm (Figure S1D).

To assess whether mannogen turnover is regulated by man-

nosidases (exo or endo) or a glycan phosphorylase, cell lysates

were prepared from L. mexicana Dpmm promastigotes and

incubated with 3H-mannogen. This parasite line lacks the

enzyme phosphomannnomutase, preventing the catabolism

of any mannose-1-phosphate (Man1P) generated in these as-

says. A single labeled product was generated that co-eluted

with authentic Man1P on high-pH anion exchange chromatog-

raphy (HPAEC) (Figure 1C). Free [3H]-mannose or manno-

oligosaccharides were not generated in these assays, indi-

cating that mannogen turnover is primarily mediated by a

glycan phosphorylase.

Identification of a Gene Family in Leishmania encoding

Putative Mannoside Phosphorylases

Bioinformatic searches of the Leishmania genomes revealed a

tandem array of seven genes on chromosome 10 (Figure 1D)

that shared 45%–68% sequence identity with each other and

distant sequence homology (5%–12% identity) to b-1,2-,

b-1,3-, and b-1,4-mannosidases or phosphorylases belonging

to the carbohydrate active enzyme (CAZy) family 130 glycoside

hydrolases (Cuskin et al., 2015; Senoura et al., 2011; Lombard

et al., 2014; Ye et al., 2016; Saburi, 2016) (Figures S2A and

S3). Related gene arrays, containing between 2 and 12 genes,

were also present in closely related trypanosomatids (e.g.,

Phytomonas spp, C. fasciculata, Leptomonas spp) that synthe-

size mannogen, but not in more distantly related trypanosoma-

tids (e.g., T. cruzi, T. brucei) that lack any storage carbohydrates

(Figure 1E). Interestingly, the crystal structure of one of the pro-

teins encoded by the L. major gene array (hypothetical L. major

protein encoded by LmjF.10.1260; PDB: 2B4W) has been

deposited and shown to have the same five-bladed b-propeller

fold as the bacterial GH130 proteins. To assess the function of

this gene family and its role in mannogen catabolism, a

L. mexicana null mutant lacking the entire seven gene array

was generated by replacement of the diploid chromosomal loci

with bleomycin drug-resistance cassettes. Unexpectedly, the

mutant promastigotes, which grew normally in rich medium,

were found to be completely deficient in mannogen (Figure 1F),

indicating that the encoded proteins may have a role in manno-

gen biosynthesis in addition to, or instead of, their predicted

catabolic role. Based on the genetic and biochemical studies

described below, the encoded Leishmania proteins have been

termed mannosyltransferase/phosphorylases (MTPs) and as-

signed to a new CAZy family of glycosyltransferases, GT108.

Phylogenetic Analysis of Family GT108

Phylogenetic analysis indicated that the Leishmania MTP gene

array was acquired after the split that gave rise to the Trypanoso-

matidae (Typanosoma spp) and the subfamily Leishmaniinae

(comprising the genera Leishmania, Phytomonas, Leptomonas,

Crithidia, and Blechomonas) (Figures 1E and S2). The absence

of GT108 homologs in free-living Bodo saltans and

Paratrypanosoma confusum indicates that the lack of GT108 ho-

mologs in Trypanosoma spp is not due to recent loss in these lin-

eages. The earliest branches of the Leishmaniinae, B. ayalai and

(E) Distribution of MTP homologs and paralogs in different kinetoplastid lineages. Homologs and paralogs are defined based upon their distribution within the

phylogenetic tree. B. ayalai contains two paralogs of MTP2.

(F) HPAEC analysis of mannogen levels in L. mexicana wild-type (WT) and Dmtp1-7 promastigotes. The DP of mannogen oligomers are indicated.

(G) Distribution of GT108 members in different gram-positive bacterial and trypanosomatid taxa (GT108 gene copy number is indicated in the side bar).

See also Figures S1–S3 and Tables S4 and S5.
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Phytomonas spp, contain two and five GT108 homologs or pa-

ralogs, respectively, suggesting that the primordial mannogen

pathwaymay have required just twoGT108 genes and that these

loci have subsequently undergone several rounds of duplication

in other members of this subfamily (Figure 1E).

tBLASTN searches of the non-redundant protein sequence

and TriTrypDB databases using the Leishmania GT108 se-

quences as a query led to the identification of >100 sequences

of bacterial origin filtered based on e-value (<1e�50) (Figures

1G, S2A, and S2B). No eukaryotic sequences were identified

outside the trypanosomatids (Figures 1G and S2B). Most of the

bacterial GT108 family members were associated with

sequenced and annotated genomes of gram-positive bacteria

belonging to the phylum Firmicutes and are annotated as hypo-

thetical proteins with unknown function (Figure 1G). Several

of these genera are present in the gut microbiota (e.g.,

Paenibacillus) of trypanosomatid insect vectors (Dey et al.,

2018), suggesting that the GT108 genes may have been ac-

quired by horizontal gene transfer in this host niche.

Several Leishmania MTPs Exhibit b-1,2-Mannoside

Phosphorylase Activity

The seven L. mexicana proteins were expressed in E. coli and re-

combinant proteins incubated with the b-1,2-mannan acceptor,

OM4, together with either 1 mM phosphate (Pi) or Man1P, to

assess their phosphorolytic and reverse phosphorolytic (biosyn-

thetic) activities, respectively (Figure 2A) (Kitaoka, 2015). MTP3,

4, 6, and 7 exhibited strong phosphorolytic activity, catalyzing

the degradation ofOM4 toOM1–3 in the presenceof Pi (Figure 2B)

with production ofMan1P (Figure 2C). No activity was observed in

the absence of Pi, indicating that the MTPs lack b-mannosidase

activity. Conversely, incubation of MTP3, 4, 6, and 7 with Man1P

instead of Pi resulted in elongation of OM4 (Figure 2B) and release

of Pi (Figure S1E). The forward and reverse phosphorolytic activity

of these enzymes did not require the divalent cations, Mn2+ or

Mg2+ (Figure S1F). MTP3 and MTP6 could generate long manno-

gen chains (degree of polymerization [DP] >16) by reverse

phosphorolysis, whileMTP4and 7 generated shortermannooligo-

saccharides (DP 1–12) at equilibrium (Figure 2B). In contrast,

recombinant MTP1, 2, and 5 proteins lacked detectable forward

or reverse phosphorolytic activity in these assays (Figure 2B).

The Leishmania MTPs Exhibit Dual Phosphorolytic and

Mannosyltransferase Activities

To investigate whether the MTPs are also responsible for the

GDP-Man-dependent mannosyltransferase activity detected in

cell lysates (Figure 1B), recombinant MTP proteins were incu-

bated with OM4 (or OM1) and GDP-Man (Figures 2D, 2E, S1G,

and S1H). Strikingly, both MTP1 and MTP2 extended these

primers in the presence of GDP-Man, generating either highly

extended octyl-mannogen chains (DP 5 to >30) or a family of

shorter octyl-mannogen oligomers (DP 2–8) (Figures 2D and

S1H). The GDP-Man-dependent mannosyltransferase activities

of MTP1 and 2 are reversible, as indicated by the trimming of

the OM4 substrate in the presence of GDP-Man or GDP (Figures

2D and 2F) and detection of GDP-Man synthesis in the presence

of GDP (Figure S1I).

MTP3, 4, 6, and 7 could also elongate the synthetic acceptor,

OM1, with a single b-1,2-mannose residue in the presence of

GDP-Man (Figure S4A). However, they could not elongate

OM4 but instead generated new products that co-migrated

with mannose (Man1), Manb1-2Man (Man2), and Manb1-

2Manb1-2Man (Man3) (Figure 2D). These observations suggest

that GDP-Man is cleaved by these MTPs in the absence of

suitable acceptor to generate freemannose that acts as an alter-

native primer of b-1,2-mannose oligosaccharide synthesis. Inter-

estingly, MTP4 and 6 (but not MTP3, 5, and 7) generated a mixed

series of octyl-mannogen oligomers when incubated with OM4

and GDP (Figure 2D), consistent with the finding that they can

catalyze synthesis of GDP-Man (Figure S1I). The fact that GDP

was more effective than GDP-Man in promoting MTP4- and

MTP6-dependent elongation of OM4 indicates that the newly

synthesizedGDP-Man remains bound to the catalytic –1 subsite,

while an acceptor glycan enters the +1 subsite, allowing net

elongation of the oligomannoside pool.

Co-incubation of MTP3, 4, and 6 with both GDP-Man and

Man1P enhanced OM1 elongation, indicating that both donors

are accommodated within the same active site. Consistent

with this conclusion, incubation of MTP4 with OM1 (1 mM),

GDP-3H-Man (50 mM) and increasing concentrations of

a-Man1P (50 mM to 5 mM) competitively inhibited GDP-3H-Man

incorporation (Figure 2G). In contrast, b-Man1P only competed

with GDP-3H-Man when added at 100-fold excess (reflecting

the fact that this sugar can also act as an acceptor). a-Man1P

and GDP-Man may therefore compete for the same mannose

donor (–1) subsite in these enzymes.

These data show that MTP1 and 2 function primarily as GDP-

Man-dependent b-1,2-mannosyltransferases, while MTP3, 4, 6,

and 7 act as b-1,2-mannooligosaccharide phosphorylases with

dual transferase activity. MTP5 lacks detectable activity in all

of these assays, and the function of this protein remains un-

known (Figures 2B and 2D).

Identification of Catalytic Site Residues Responsible for

Phosphorolytic and Mannosyltransferase Activities

To better understand the dual transferase and phosphorylase ac-

tivities of this enzyme family, the 3D structures of MTP1, MTP2,

and MTP4 containing different substrates were determined (Fig-

ures 3A–3C, S5, and S6; Tables S1 and S2). Like the deposited

structure of the L. majorMTP4 protein (PDB: 2B4W), all three pro-

teins adopt a five-bladed b-propeller fold, with each blade

composed of a b sheet with three or four antiparallel strands sur-

rounding an extended central pocket comprising the active site

(Figures 3A–3C). The catalytic pockets of these proteins have

similar architecture to those of the sequence-divergent bacterial

CAZy family GH130 proteins, such as the Listeria innocua

b-1,2-mannobiose phosphorylase (PDB: 5B0R) (Tsuda et al.,

2015) (Figure 3E). In particular, overlay of the catalytic pocket of

MTP4 and the L. innocua protein revealed equivalent Pi coordi-

nating residues (Arg150, His208, Asp134, and Tyr224; numbering

for L. mexicana MTP4) arranged identically in space (Figure 3E;

Table S2). Similarly, the identity, spatial arrangement, and interac-

tions of residues in the –1 mannosyl transfer site are identical.

These include the Phe265 aromatic platform and residues that

interact with different hydroxyls of the �1 mannose, such as

Lys133 with mannose C(O)2, Asp83 with mannose C(O)3 (pro-

posed catalytic acid/base in the reaction mechanism; see below),

Asn32 with mannose C(O)4, and Asp285 with mannose C(O)6

388 Cell Host & Microbe 26, 385–399, September 11, 2019



(Figures 3E and S5E). The catalytic pockets of MTP4 and the

bacterial GH130 proteins also have a very similar mannose

acceptor +1 subsite, where the mannose C(O)3 interacts with

Arg48, C(O)4/(O)6 interacts with Glu82, and C(O)5/(O)6 interacts

with Lys133 (Figures 3E, 3H, and 4A; Table S2).

TheMTP1 and 2 proteins have 3D structures that are similar to

MTP4 but form dimers rather thanmonomers in the crystal lattice

and in solution (data and structure statistics in Table S1; Figures

S4D, S5A, and S5B). The structure of the catalytically inactive

MTP2 mutant lacking the proposed aspartate acid/base

(D94N), containing b-1,2-mannobiose in the –1/+1 subsites

(Figure 3D), showed that amino acid side chains in the MTPs

are spatially conserved and partake in identical interactions as

the equivalent residues in the bacterial GH130 enzymes (Table

S2). Neither MTP1 nor MTP2 contained canonical nucleotide

binding domains despite utilizing GDP-Man as primary donor,

confirming that the MTP enzymes represent a new paradigm in

nucleotidyl sugar glycosyltransferases.

We were unable to obtain complexes of MTP1 and 2 with GDP

or GDP-Man through co-crystallization and crystal-soaking ex-

periments, suggesting that GDP-Man binding only occurs after

binding of the mannan acceptor and/or that structural changes

Figure 2. The Leishmania MTPs Exhibit Dual Mannosyltransferase and Phosphorylase Activities

(A) Enzyme assays used to measure MTP mannosyltransferase and reverse phosphorolytic activity.

(B) HPTLC separation of octyl-mannogen oligosaccharides (DP 1–16) generated by incubation of MTP proteins with OM4 and either Pi or Man1P.

(C) HPAEC separation of Man1P and phosphooligosaccharides (*) synthesized by MTP proteins incubated with mannogen and Pi. MTP4 synthesized Man-

b-1,2-Mana-P (*1) and [Manb-1,2]2-Mana-P (*2), in addition to Man1P.

(D) High-performance thin-layer chromatography (HPTLC) separation of octyl-mannogen oligosaccharides generated by incubation of MTP proteins with OM4

and either GDP-Man or GDP. Products indicated with open triangle correspond to mannose, Manb-1,2-Mana-P (Man2), and [Manb-1,2]2-Man (Man3).

(E) Time-dependent synthesis of high-DP octyl-mannogen following incubation of MTP1 with OM4 and GDP-Man.

(F) Liquid chromatography-mass spectrometry (LC-MS) detection of GDP-Man synthesized by MTP1 (black squares) and MTP2 (gray dots) in the presence of

octyl-mannogen (DP 1–16) and GDP.

(G) HPTLC separation of octyl-3H-mannogen species synthesized by MTP4 in the presence of OM1 (1 mM) and GDP-3H-Man (50 mM) and increasing con-

centrations of a-Man1P and b-Man1P.

See also Figures S1 and S4.
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Figure 3. MTP Crystal Structures and Modeled Interactions

(A) The five-bladed b-propeller fold of MTP1 (top view). The b sheets containing three to four antiparallel strands are color coded.

(B) MTP2 (side view) with b-1,2-mannobiose (yellow stick and molecular surface representation) in the +1/�1 catalytic position. The complex was captured using

the MTP2 D94N mutant and the crystal structure overlaid on native MTP2.

(C) MTP4 (side view) with the observed Pi shown in magenta. The b-1,2-mannobiose of the overlaid D94NMTP2 variant crystal complex is included for reference

(D94N MTP2 protein not shown).

(D) The b-1,2-mannobiose ligand in complex with the MTP2 D94N protein.

(legend continued on next page)
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may be required for nucleotide binding. Nonetheless, we could

identify structural differences in the catalytic pocket of

MTP1 and 2 and MTP4 that likely contribute to the different

donor and acceptor specificities of these enzymes (Figures 3F,

4A, and 4C). In particular, MTP4 (and other bacterial GH130

phosphorylases) contain an Arg residue (Arg150 in MTP4) in

the Pi-binding pocket, while MTP1 and 2 contain a His residue

(His168 and His161, respectively) in the same position (Figures

3F, 4A, 4C, S2C, S3, and S5C–S5F; Table S2). Sequence anal-

ysis confirmed that the Arg/His switch is diagnostic for enzymes

that primarily exhibit phosphorolytic versus mannosyltransfer-

ase activities, supporting the conclusion that these residues

mediate critical interactions with the phosphate or GDP leaving

groups, respectively (Figures S2C and S3).

Our data suggest that theMTPs have the same reactionmech-

anism as the bacterial GH130 phosphorylases (Nakae et al.,

2013). During phosphorolysis or the reverse transferase reac-

tions, the conserved Asp (Asp83 in MTP4, Asp94 in MTP2,

Asp101 in MTP1) acts as a general acid, protonating the glyco-

sidic leaving group via a proton relay through C(O)3, allowing

phosphate to displace the anomeric glycoside leaving group

(Figure 3I). Conversely, during reverse-phosphorolysis or for-

ward-mannosyltransferase reactions, Asp83 acts as general

base, deprotonating C(O)2 of a sugar nucleophile and promoting

glycosidic bond formation with displacement of phosphate (or

GDP) leaving group. Consistent with this mechanism, the –1

subsite mannoside is distorted into an unusual 1S5 skew confor-

mation (Figure 3I), facilitating unhindered phosphate attack and

departure without steric clashes with C(O)2 (Cuskin et al., 2015).

Mutagenesis studies confirmed the importance of the active

center residues in the dual phosphorolytic and mannosyltrans-

ferase activities of MTP4 (Figures 4A and 4B). Mutation of the

catalytic Asp83 acid/base (D83N) resulted in complete loss of

both phosphorylase and transferase activities (Figures 4A and

4B). Mutation of Lys133 (K133A, K133R) predicted to bind the

OM1 acceptor in the +1 subsite of the pocket also resulted in

loss of both activities. In contrast, mutations of Asp285

(D285N), which forms hydrogen bonds with C(O)4/(O)6 of the

–1 subsite mannose; Asp134 (D134N), which binds the Man1P

phosphate group; and Glu82 (E82A), which hydrogen bonds

with C(O)4/(O)6 of the +1 sugar, led to loss of phosphorylase ac-

tivity but only had minimal effect on the transferase activity. Mu-

tation of MTP4 His208 (H208A) also had a modest effect on

phosphorolysis but no effect on transferase activity. Selective

retention of transferase activity indicates that the amino acid res-

idues that interact with the GMPmoiety of this donor likely assist

leaving group departure.

Mutation of the conserved active center aspartate at position

94 inMTP2 (D94N) resulted in complete loss of transferase activ-

ity (Figures 4C and 4D). The active site pocket of the MTP1 and

MTP2 enzymes is larger than in MTP4 and contained a His res-

idue (His168 in MTP1 and His161 in MTP2) in place of the Arg

residue in MTP4 (Arg150), which establishes hydrogen bonds

with the guanine moiety of GDP-Man (Figures 4C, 4D, and

S5F). The importance of the Arg/His switch was confirmed by

mutating MTP2 His161 to Arg, which resulted in reduced trans-

ferase activity (Figure 4D). In contrast, mutation of MTP2

Asp145 (D145N) had little effect on transferase activity, consis-

tent with this residue having a primary role in coordination to

Man1P phosphate during phosphorolysis (Figures 4B and 4D).

These data suggest that all of the MTP proteins contain a single

catalytic site that preferentially accommodates either Man1P or

GDP-Man as donors, together with a b-1,2-mannooligosacchar-

ide acceptor.

Modeling of the bacterial GT108 proteins provided further sup-

port for the hypothesis that the LeishmaniaMTPs were acquired

by HGT. Structural predictions of eleven bacterial GT108 pro-

teins (Table S3) indicated that they all share the same five-bladed

b-propeller fold (Figures S6A and S6B) and retain key residues in

the catalytic pocket. Notably, all of the modeled bacterial pro-

teins retained an Arg residue at the position of the Arg/His switch,

indicating that they are primarily glycan phosphorylases/hydro-

lases (Figures S2C and S6D). B. ayalai, the most divergent mem-

ber of the Leishmaniinae, contains three MTP genes: a homolog

of MTP1with a His residue in the Arg/His switch position and two

paralogs of MTP2, which both contain Arg in the same position

(Figures 1E and S2C). A functional mannogen cycle may there-

fore have arisen in ancestral members of the Leishmaniinae

following HGT of a bacterial phosphorolytic GT108 gene and

subsequent gene duplication and mutation around the Arg/His

switch position to allow use of GDP-Man as donor.

Leishmania MTPs Have Non-redundant Functions

In Vivo

To investigate the function of the MTPs in vivo, the L. mexicana

Dmtp1-7 mutant was complemented with individual MTP genes

using episome or integration vectors. Expression of MTP1 alone

resulted in production of hyper-elongated mannogen oligomers

(DP >60), while expression of MTP2 resulted in synthesis of a

restricted pool of short mannogen oligomers (DP 2–10), consis-

tent with the in vitro activities and products of each of these en-

zymes (Figure 5A). Co-expression of both MTP1 and 2 in the

complemented L. mexicana Dmtp1–7 mutant, or targeted dele-

tion of MTP3–7, resulted in an intermediate mannogen profile

containing both short and long mannogen oligomers (DP 4 to

>60) (Figure 5A). MTP1 and MTP2 thus appear to act coopera-

tively in vivo to regulate the synthesis of high- and low-DP pools

of mannogen, respectively.

(E) Overlay of the active sites of the Pi complex of MTP4 (green) and the b-1,2-mannobiose-sulfate complex of L. innocua GH130 b-1,2-mannobiose phos-

phorylase (pink) (PDB: 5B0R) (Tsuda et al., 2015). Sulfate (yellow and red sticks) and Pi (magenta and red sticks) are co-localized; b-1,2-mannobiose in gray and

red sticks.

(F) Overlay of D94N MTP2 (blue) and MTP4 (green) reveals minor changes (His or Arg residues) in the Pi site of these MTPs (Pi in magenta and red sticks and

b-1,2-mannobiose in yellow and red sticks).

(G) Man8 (beige molecular surface) docked into the catalytic site of MTP4 (semi-transparent cartoon). Residues in the Pi site and +1/�1 acceptor and donor

subsites shown as sticks (colored according to their location as defined in Figure S3 and Table S2); Pi depicted as spheres.

(H) View is a 90� rotation about the y axis to that shown in (G). Man8 depicted as thin sticks (beige and red).

(I) Canonical catalytic mechanism for GH130 and MTP enzymes.

See also Figures S2–S6 and Tables S1–S3.
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Mannogen levels were elevated in parasite lines lacking the

phosphorolytic MTPs, indicating that they are primarily

involved in mannogen turnover (Figure 5B). In support of this

notion, expression of MTP4 in the Dmtp3–7 mutant resulted

in a modest decrease in mannogen levels (Figure 5B).

Complementation of the L. mexicana Dmtp1–7 null mutant

with MTP3, 4, 6, or 7, individually or in combination, did not

restore mannogen synthesis (Figure S4B), even though the ex-

pressed proteins were active in cell lysates (Figure S4C).

These data suggest that the phosphorolytic MTPs cannot

prime mannogen synthesis in vivo either because of limited

availability of suitable mannose primers and/or because of

high intracellular Pi levels that drive the reaction in the phos-

phorolytic direction.

RegulatedMannogenSynthesis Is Required for Infection

in the Mammalian Host

Despite growing normally in rich medium at 27�C, Dmtp1–7 par-

asites did not induce lesions or proliferate in highly susceptible

BALB/c mice (Figures 6A and 6C). Strikingly, expression of

MTP1 alone orMTP1/MTP2 together in the absence of phospho-

rolytic MTPs (Dmtp1-7::pX-MTP1 and Dmtp3–7 lines, respec-

tively) exacerbated the loss of virulence phenotype, with no

recovery of parasites from tissue biopsies (Figures 6A and 6C).

Figure 4. Identification of Key Residues in the L. mexicana MTP Catalytic Pocket Required for Phosphorolytic or Mannosyltransferase

Activity

(A) 2D interactionmap showing hydrogen bonds and electrostatic interactions (black dashed lines) betweenMTP4 amino acid residues and theMan1P donor and

mannogen acceptor combination.

(B) Mutant MTP4 proteins were incubated with OM1 and either Man1P (upper panel) or GDP-Man (lower panel) and the products analyzed by HPTLC.

(C) 2D interaction map of MTP1 active site showing side-chain interactions with GDP-Man and mannogen acceptors. Equivalent MTP2 residues are shown in

brackets.

(D) MTP2 mutant proteins were incubated with OM1 and GDP-Man and products analyzed by HPTLC.

See also Figures S3, S5, and S6.
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Complementation of Dmtp1–7 with MTP2 and MTP4 also failed

to restore virulence (Figure 6A), suggesting that Leishmania viru-

lence in animals is highly sensitive to loss of one or more MTPs.

As MTP2 plays a key role in regulating mannogen DP in vivo, we

generated a knockout line lacking onlyMTP2. TheDmtp2mutant

did not induce lesions in BALB/c mice even when a high

inoculum (107 parasites) was used (Figures 6B and S7B).

Genetic complementation of this mutant (Dmtp2::pX-MTP2 or

Dmtp2::pRib-MTP2), restored synthesis of low DP mannogen

(Figure S7A) as well as virulence in mice (Figures 6B and S7B),

suggesting that mannogen synthesis and/or cycling is critical

for survival of mammalian infective stages.

Defects in mannogen synthesis or cycling were also associ-

ated with attenuated growth in macrophages (Figure S7C)

which, in the case of Dmtp2, could be restored by complemen-

tation with MTP2 (Figure S7C). Mannogen synthesis and

Figure 5. Leishmania MTPs Have Non-redundant Functions In Vivo

(A) HPAEC-PAD analysis of the mannogen profiles of L. mexicana Dmtp1–7 and Dmtp3–7 and complemented lines expressing MTP genes on an episomal

plasmid (pX) or inserted into the ribosomal loci (pRib). Expression (green and orange) or absence (no color) of individualMTP genes in each line is indicated. The

insert shows the hyperextended mannogen chains in Dmtp1–7::pRib-MTP1 parasites.

(B) Mannogen levels in the different transgenic parasite lines (n = 3 biological replicates). Data presented are mean ± SEM.

See also Figures S4 and S7.
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turnover also appeared to be required for amastigote differenti-

ation as Dmtp1–7 and Dmtp3–7 promastigotes lost viability

when incubated at elevated temperature (33�C) and low pH

(5.5), conditions that normally induce amastigote differentiation

(Figures 6D and S7D). Viability was partly rescued if parasites

were induced to differentiate in low-glucose medium (Figure 6D),

suggesting that mannogen cycling may protect parasites from

glucose toxicity. Dmtp1–7::pRibMTP1 promastigotes were also

acutely sensitive to glucose toxicity (Figure 6D), which likely re-

flects the hyper-accumulation of high-DP mannogen in these

parasites and disruption of the cytoplasm (Figure 6E).

To further assess the role of mannogen synthesis and cycling

in regulating glucose homeostasis, L. mexicana promastigotes

and amastigotes were labeled with 13C6-glucose and mannogen

Figure 6. Loss of Single or Multiple Leishmania MTPs Leads to Loss of Virulence

(A) Induction of lesions by L. mexicana WT, Dmtp1–7, Dmtp3–7 and selected complemented parasite lines in BALB/c mice (n = 5 animals per treatment).

(B) Induction of lesions by Dmtp2 and corresponding pX- or pRib-MTP2 complemented lines (n = 5 animals per treatment).

(C) Parasite burden in proximal lymph nodes 23 weeks post infection (n = 5 tissue samples). n.d., no parasites were detected.

(D) WT and Dmtp mutant promastigotes were cultivated in medium, pH 5.5, containing either 12 mM or 0.6 mM glucose (33�C for 3 days) and parasite viability

determined by propidium iodide staining (n = 3 biological replicates).

(E) TEM ultrastructure of Dmtp1–7, Dmtp1–7::pRib-MTP1 and Dmtp3–7 promastigotes.

Data presented for (A)–(D) are mean ± SEM.

See also Figure S7.
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Figure 7. Mannogen is Constitutively Cycled under Nutrient-Replete Growth Conditions In Vitro and in Murine Lesions

(A) Incorporation of 13C6-glucose into mannogen (M+0 to M+6) in L. mexicana promastigotes and axenic amastigotes.

(B) L. mexicana infected BALB/c mice were labeled with 9% 2H2O and the level of deuterium incorporation into parasite DNA (deoxyribosemoiety) andmannogen

determined by gas chromatography-mass spectrometry (GC-MS). The t1/2 for DNA and mannogen turnover was 11.7 and 2.3 days, respectively.

(C) Proposed evolution of the mannogen cycle in Trypanosomatids by HGT, gene duplication, and changes in MTP donor and/or acceptor specificity.

(legend continued on next page)
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turnover under glucose-replete conditions measured. Constitu-

tive mannogen turnover was observed in both promastigote

(t1/2 4 h) and amastigote stages (t1/2 5 h) (Figure 7A). The high

turnover rate of mannogen in amastigotes is notable, as these

stages have a 10-fold lower rate of glucose uptake compared

to promastigotes (Saunders et al., 2014). Interestingly, most of

the mannose in the mannogen pool was fully labeled (M+6), indi-

cating that a significant proportion of exogenous glucose is

channeled directly into mannogen synthesis. The accumulation

of additional mannose isotopomers (M+3, M+4, and M+5) re-

flects the recycling of hexose-phosphates (and derived triose-,

tetraose-, and pentose-phosphates) through the oxidative and

non-oxidative arms of the pentose phosphate pathway (Fig-

ure 7A). The complexity of these labeling patterns suggests

that mannogen cycling regulates glucose homeostasis and car-

bon fluxes under glucose-replete conditions.

To investigate whether constitutivemannogen cycling also oc-

curs in metabolically quiescent amastigote stages in tissue gran-

ulomas, infected BALB/c mice were labeled with 9% deuterium

oxide (2H2O) and turnover of parasite DNA andmannogen deter-

mined from 2H-incorporation into the deoxyribose and mannose

constituents of these molecules, respectively (Figure 7B). Man-

nogen turnover was approximately five times faster than DNA

(t1/2 of 2.3 days versus 11.7 days, respectively) (Kloehn et al.,

2015). As mannogen comprises a significant fraction of amasti-

gote biomass (Ralton et al., 2003), mannogen cycling represents

a major metabolic flux in these stages.

DISCUSSION

The absence of canonical carbohydrate reserves in all of the Try-

panosomatidae suggest that these pathways were lost early in

the evolution of the parasitic lifestyles of these protists (Opper-

does et al., 2016). Here, we show that an important subgroup

of the Trypanosomatidae, the Leishmaniinae, have subse-

quently evolved a non-canonical pathway of carbohydrate

reserve biosynthesis through the acquisition and functional

repurposing of bacterial genes involved in carbohydrate degra-

dation. As a result of gene duplication and donor and/or

acceptor diversification, the MTP enzymes catalyze a cycle of

mannogen synthesis and turnover that contributes to the regula-

tion of key pathways in central carbon metabolism and is essen-

tial for virulence. We propose that the evolution of this pathway

has facilitated the colonization of both extracellular and intracel-

lular niches in the insect vectors and mammalian hosts of these

parasites.

In most organisms, the biosynthesis and turnover of intracel-

lular carbohydrate reserves is regulated by distinct families of

sugar-nucleotide glycosyltransferases and glycan phosphory-

lases or glycosidases. In contrast, the biosynthesis and cycling

of Leishmania mannogen is regulated by a single family of gly-

cosyltransferases that contain both GDP-Man-dependent man-

nosyltransferase and b-1,2-mannogen phosphorylase activities

(Figure 7D). The Leishmania MTPs are founding members of

the CAZy GT108 family, which includes a large number of bac-

terial proteins of unknown function. GT108 family members

share limited sequence identity but a high degree of structural

similarity to the CAZy GH130 family of bacterial b-mannan

phosphorylase or mannosidases. The six enzymatically active

Leishmania MTP proteins share overlapping but non-redundant

roles in mannogen biosynthesis and cycling. In particular, MTP1

and MTP2 are responsible for priming mannogen synthesis

in vitro and in vivo and for generating distinct pools of manno-

gen with high DP (>12) and low DP (2–10), respectively. In

contrast, MTP3, 4, 6, and 7 primarily act as phosphorylases

in vitro and in vivo and only exhibit transferase activity on small

acceptors (Figure 7D). While these enzymes catalyze the

reverse phosphorolytic elongation of mannogen in vitro, they

cannot prime mannogen synthesis in vivo under normal growth

conditions. Finally, MTP5 contains key catalytic residues repre-

sentative of both the transferase and phosphorylase MTPs but

lacks detectable enzymatic activity. The function of this protein

is unknown.

Phylogenetic analysis showed that the Leishmania MTPs are

sequence related to a large family of proteins from gram-positive

bacteria. Intriguingly, genes encoding proteins in theGT108 family

are found in bacteria that are commonly present in the midgut of

the modern insect vectors colonized by Leishmania and other

members of the Leishmaniinae subfamily (Dey et al., 2018). The

trypanosomatid MTP genes may thus have been acquired

by HGT within a similar insect niche, most likely after the split

of this group from the trypanosomes (T. brucei, T. cruzi)

(Figure 7C). While the bacterial GT108 genes have yet to be char-

acterized, they contain signature residues of glycan phosphory-

lases, suggesting a role in the degradation of complex plant

glycans in the insect gut or other niches (Nakae et al., 2013).

Phylogenetic analysis indicates that acquisition of a GT108 gene

in the common Leishmaniinae ancestor was followed by gene

duplication and changes in the donor specificity of the primordial

MTP proteins. In particular, B. ayalai, the most divergent member

of the Leishmaniinae, contains three MTP homologs or paralogs,

one of which is predicted to be a transferase. The acquisition of

MTPs with efficient mannosyltransferase activity is likely to have

been the key step in the establishment of a functional mannogen

cycle, while the further amplification of this gene family in other

members of the Leishmaniinae may have been critical in regu-

lating the overall capacity and flux through this cycle and its

responsiveness to different nutrient or growth conditions.

The Leishmania MTPs have the same five-bladed b-propeller

fold and similar reaction mechanism as bacterial GH130

mannan phosphorylases or hydrolases, although they differ at

the sequence level. The MTPs have acquired their dual manno-

syltransferase and phosphorylase activities though the acquisi-

tion of amino acid changes that expanded the Man1P binding

pocket to enhance binding of sugar nucleotides. In particular,

the introduction of specific amino acid side chains into the

(D) Schematic of the Leishmaniamannogen cycle. The synthesis of low- and high-DP mannogen is mediated by MTP2 and MTP1, respectively, while turnover is

regulated by MTP3, 4, 6, and 7. Constitutive mannogen cycling may regulate intracellular levels of sugar phosphates ATP and Pi/PPi. PMI, phosphomannose

isomerase; PMM, phosphomannomutase; GMP, GDP-Man pyrophosphorylase; NDK, nucleotide diphosphate kinase.

See also Figure S7.
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phosphate-binding pocket (such as His168/161 in MTP1/MTP2)

to bind the guanine moiety demonstrates that GDP is not

simply a surrogate for Pi. Interestingly, a number of fungal path-

ogens, including Candida albicans, also synthesize linear b-1,2-

mannans, which are incorporated into cell wall and surface

glycoconjugates. These glycans are synthesized by family

GT91 GDP-Man-dependent b-1,2-mannosyltransferases ex-

pressed in the secretory pathway (Sfihi-Loualia et al., 2016).

The C. albicans mannosyltransferases also share low sequence

identity to bacterial GH130 glycan hydrolases and phosphory-

lases and appear to have independently evolved a similar active

site geometry to the Leishmania MTPs (Figures S6C and S6E;

Table S3). Whether other glycan phosphorylases have also

evolved sugar-nucleotide-dependent transferase activities is

worthy of further investigation.

Leishmania promastigotes characteristically accumulate

high-DP mannogen as they enter stationary phase growth and

can rapidly utilize these oligomers under glucose-limiting condi-

tions, suggesting that they primarily function as a canonical en-

ergy and carbon reserve in these stages (Ralton et al., 2003). In

contrast, the obligate intracellular amastigotes constitutively

accumulate high levels (�10 mM) of low-DP mannogen, sug-

gesting a distinct role in mammalian infective stages (Ralton

et al., 2003). We have shown that amastigotes enter a slow

growing, metabolically quiescent state associated with reduced

rates of utilization of glucose and other carbon sources, as well

as repression of energy-intensive processes such as transcrip-

tion and protein translation (Saunders et al., 2014; Kloehn et al.,

2015; McConville et al., 2015). In contrast, we show here that

low-DP mannogen is constitutively cycled in both cultured and

lesion amastigotes. Mannogen cycling may therefore function

as a metabolic rheostat, buffering changes in sugar uptake

and down-stream fluxes into glycolysis, the pentose phosphate

pathway and nucleotide/sugar nucleotide biosynthesis (Fig-

ure 7). Mannogen cycling may also have a direct role in modu-

lating intracellular levels of ATP and Pi, which are utilized in

the cycle (Figure 7). Importantly, we show that mannogen

cycling confers resistance to glucose toxicity and elevated tem-

peratures and is essential for virulence in the mammalian host.

Leishmania are also exposed to transient and potentially toxic

pulses of sucrose (up to 30%) when the sandfly periodically

feeds on plant saps and honeydews (Louradour et al., 2017;

Dey et al., 2018). Under these conditions, mannogen cycling

may prevent catastrophic imbalance in fluxes in upper and

lower glycolysis and cell death, as has been proposed for the

Pi and nucleotide-triphosphate-consuming trehalose cycle in

yeast (van Heerden et al., 2014). The evolution of the mannogen

cycle in monogenic trypanosomatid ancestors may thus have

allowed these parasites to colonize new insect hosts, as well

as to survive and proliferate within the phagolysosomes of mac-

rophages. The central role of mannogen cycling in Leishmania

central carbon metabolism in the mammalian host suggests

that the Leishmania MTPs, and in particular MTP2, are potential

targets for new therapeutics.
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Potocki-Véronèse, G., and Lowe, E.C. (2015). The GH130 Family of

Mannoside Phosphorylases Contains Glycoside Hydrolases That Targetb-

1,2-Mannosidic Linkages in Candida Mannan. J. Biol. Chem. 290,

25023–25033.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F.,

Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., et al. (2008).

Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic

Acids Res. 36, W465–W469.

Dey, R., Joshi, A.B., Oliveira, F., Pereira, L., Guimarães-Costa, A.B., Serafim,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

XL10-Gold Agilent Cat#210515

XL-1-Blue Agilent Cat#200249

BL21(DE3)pLysS Agilent Cat#200132

Biological Samples

Canavalia ensiformis (jack bean)

a-mannosidase

Sigma Cat#M7257

Helix pomatia (snail) b-mannosidase Sigma Cat#M9400

Chemicals, Peptides, and Recombinant Proteins

OM1 Williams laboratory van der Peet et al., 2012

OM4 This study N/A

GDP-[2-3H]-Man McConville laboratory N/A

GDP-Man (guanosine 50-diphospho-D-

mannose sodium salt)

Sigma Cat#G5131-50 mg

GDP (Guanosine 50-diphosphate

sodium salt)

Sigma Cat#G7127-100 mg

a-Man1P Sapphire Bioscience Cat#M185010

b-Man1P Williams laboratory N/A

D-Glucose-U-13C Sigma Cat#297046
2H2O Cambridge isotope laboratories Cat#DLM-4-99-1000

Critical Commercial Assays

PiColorLock Gold phosphate assay Innova Biosciences Cat#303-0030

Deposited Data

L. mexicana LmxM.10.1230 no

ligand (MTP1)

This study PDB: 6Q4W

L. mexicana LmxM.10.1240 no

ligand (MTP2)

This study PDB: 6Q4X

L. mexicana LmxM.10.1240 + Man

(MTP2 + Man)

This study PDB: 6Q4Y

L. mexicana LmxM.10.1240 D94N + b-1,2-

mannobiose (MTP2 D94N + b-1,2-

mannobiose)

This study PDB: 6Q4Z

L. mexicana LmxM.10.1260 + Pi (MTP4 +Pi) This study PDB: 6Q50

Experimental Models: Cell Lines

Dgmp T. Ilg Garami and Ilg, 2001

Dpmi T. Ilg Garami and Ilg, 2001

Dpmm T. Ilg Garami and Ilg, 2001

Dmtp1-7 This study N/A

Dmtp3-7 This study N/A

Dmtp2 This study N/A

pRib-MTP1 This study N/A

Dmtp1-7::pRib-MTP1 This study N/A

Dmtp1-7::pRib-MTP2 This study N/A

Dmtp1-7::pX-MTP2 This study N/A

Dmtp1-7::pRib-MTP-1/pX-MTP2 This study N/A

Dmtp1-7::pRib-MTP1/pX-MTP4 This study N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Dmtp1-7::pRib-MTP4 This study N/A

Dmtp1-7::pX-MTP4 This study N/A

Dmtp1-7::pX-MTP2 + pRib-MTP4 This study N/A

Dmtp1-7::pX-MTP3+4 This study N/A

Dmtp-1-7::pX-MTP3+4/ pRib-MTP5+6 This study N/A

Dmtp-1-7::pX-MTP4+7 This study N/A

Dmtp1-7::pX-MTP4+7/ pRib-MTP5+6 This study N/A

Dmtp3-7::pRib-MTP4 This study N/A

Dmtp3-7::pX-MTP2/ pRib-MTP4 This study N/A

Dmtp2::pX-MTP2 This study N/A

Dmtp2::pRib-MTP2 This study N/A

Experimental Models: Organisms/Strains

L. mexicana (MNYC/ BZ/ 62/M379) ATCC Cat#50156

BALB/c mice Animal Resources Centre, Canning Vale,

WA, Australia

Cat#BC

Oligonucleotides

Primers for MTP knockout constructs and

confirmation, see Table S4

This study N/A

Primers for MTP expression, see Table S4 This study N/A

Primers for deletion mutants, see Table S4 This study N/A

Recombinant DNA

pET-28a(+) Novagen Cat#69864-3

pGEX-6p-3 GE Healthcare Cat#28-9546-51

pGEX-4T-2 GE Healthcare Cat#28-9545-50

pRIBII JC Mottram laboratory Misslitz et al., 2000

pX-Neo SM Beverley laboratory LeBowitz et al., 1990

pX-Hyg This study N/A

pBluescript II SK+ Statagene GenBank Acc#X52328

pXG-BLEO (PHLEO) SM Beverley laboratory http://beverleylab.

wustl.edu/plasmids_vectors.html

B3324

pXG-SAT SM Beverley laboratory http://beverleylab.

wustl.edu/plasmids_vectors.html

B2352

pXG-‘GFP+ SM Beverley laboratory http://beverleylab.

wustl.edu/plasmids_vectors.html

B2863

Knockout constructs (pBluescript-SKII(+))

made, Table S5

This study N/A

Expression (including deletion) constructs

(pGEX-4T-2, pGEX-6p-3 and pET28a(+)),

Table S5

This study N/A

Software and Algorithms

Prism 5 GraphPad https://www.graphpad.com/

AXIOVISION 4.8 Zeiss N/A

Modeler v9.20 Sali et al., 1995 https://salilab.org/modeller/9.20/

release.html

SYBYL-X 2.1.1 Certara https://www.certara.com/

PROCHECK Laskowski et al., 1996 https://www.ebi.ac.uk/thornton-srv/

software/PROCHECK/

PyMOL Molecular graphics system,

version 1.8.2.2

Schrodinger https://pymol.org/2/

MUSTANG v3.2.3 Konagurthu et al., 2006 http://lcb.infotech.monash.edu.au/

mustang/
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Malcolm J.

McConville (malcolmm@unimelb.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Parasites

L. mexicana (MNYC/BZ/62/M379) promastigotes were grown in Roswell Park Memorial Institute (RPMI)-1640 medium (Invitrogen)

containing 10% heat inactivated fetal bovine serum (FBS, Invitrogen), pH 7.4 at 27�C. Mutant and complemented parasite lines

were cultivated in the presence of appropriate antibiotics: Geneticin (100 mg/mL, GIBCO), Puromycin (20 mg/mL, Sigma), Hygromycin

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ETE3 v3.1.1 Huerta-Cepas et al., 2016 http://etetoolkit.org/

PhyML v3.12 Guindon et al., 2010 http://www.atgc-montpellier.fr/phyml/

versions.php/

TreeDyn v198.3 Dereeper et al., 2008 http://www.phylogeny.fr/one_task.cgi?

task_type=treedyn

ESPript3.0 Robert and Gouet, 2014 http://espript.ibcp.fr/ESPript/ESPript/

index.php

ClustalW N/A http://www.mybiosoftware.com/bioedit-7-

0-9-biological-sequence-alignment-

editor.html

ClustalU Zimmermann et al., 2018 https://toolkit.tuebingen.mpg.de/

RaptorX Peng and Xu, 2011 http://raptorX.uchicago.edu/

StructurePrediction/predict/

MAFFT v7.0 Katoh and Standley, 2013 https://mafft.cbrc.jp/alignment/server/

Evolview He et al., 2016 https://www.evolgenius.info//evolview/

MISTIC Simonetti et al., 2013 N/A

Arpeggio Jubb et al., 2017 http://biosig.unimelb.edu.au/arpeggioweb/

WebLogo 3 Crooks et al., 2004 N/A

DIALS https://dials.diamond.ac.uk/

Xia2 Winter et al., 2013 https://xia2.github.io/

Aimless Potterton et al., 2018 http://www.ccp4.ac.uk/html/aimless.html

Phaser McCoy et al., 2007 https://www.phaser.cimr.cam.ac.ukindex.

php/Phaser_Crystallographic_Software;

http://www.ccp4.ac.uk/

CCP4mg McNicholas et al., 2011 http://www.ccp4.ac.uk/MG/

Chainsaw Stein, 2008 http://www.ccp4.ac.uk/html/

chainsaw.html

Refmac5 Murshudov et al., 2011 https://www2.mrc-lmb.cam.ac.uk/groups/

murshudov/content/refmac/refmac.html

Coot Emsley et al., 2010 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

Ccp4i2 GUI Potterton et al., 2018 https://www.ccp4.ac.uk/ccp4i_main.php

Privateer Agirre et al., 2015 http://www.ccp4.ac.uk/html/privateer.html

ASTRA software https://www.wyatt.com/products/

software/astra.html

MSD-ChemStation Agilent Technologies N/A

MassHunter Agilent Technologies N/A

MS convert Chambers et al., 2012 http://proteowizard.sourceforge.net/

tools.shtml

Maven Melamud et al., 2010 http://genomics-pubs.princeton.edu/

mzroll/index.php
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B (50 mg/mL, InvivoGen), Bleomycin (10 mg/mL, Calbiochem), Nourseothricin (100 mg/mL, JenaBioscience). Stationary phase pro-

mastigotes were induced to differentiate to amastigotes by cultivation in RPMI, 20% FBS, pH 5.5 at 33�C (Saunders et al., 2014).

For 13C-glucose labeling experiments, L.mexicana promastigotes or amastigotes were suspended in RPMI-1640medium containing
13C-U-glucose (6mM) and harvestedwith rapid chilling to quenchmetabolism at indicated time points (Saunders et al., 2014). For 3H-

mannose labeling experiments, L. mexicanawild type promastigotes (33 108) were pulse labeled in glucose-free RPMI-1%BSAme-

dium containing D-[2-3H]-mannose (50mCi/mL) for 5 min, harvested by rapid centrifugation (1,000 x g, 30 s) and washed in ice cold

phosphate buffered saline (x 3), prior to hypotonic lysis.

Bone Marrow Derived Macrophages

Bonemarrowmacrophages (BMDM)were isolated fromBALB/cmice. Cells were flushed from tibia of hind-legs ofmice seeded in TC

Petri dishes at 1x107 cells/plate in 10 mL RPMI containing 15% FBS, 20% L929-cell medium (containing macrophage colony stim-

ulating factor; MCSF) and incubated at 37�C, 5% CO2. After 24 h non-adherent progenitor cells from each dish were transferred to

two non-TC Petri dishes. Progenitor cells converted to macrophages within 3-4 days. At day 3 after differentiation, 1 mL extra L929-

cell mediumwas added to the plate. At day 5, cells were removed from the plates and plated onto coverslips in 24 well plates at 1x105

cells/well in RPMI containing 15% FBS, 10% L929-cell medium.

Mice

Mice usage was approved by the Institutional Animal Care and Use Committee of the University of Melbourne (ethics number

1212647.1). All animal experiments were performed in accordance with the Australian National Health Medical Research Council

(NHMRC) (Australian code of practice for the care and use of animals for scientific purposes, 8th edition, 2013, ISBN:

1864965975). Mice used in this study were maintained in the biological research facility of the Bio21Molecular Science and Biotech-

nology Institute under specific pathogen free (SPF) conditions according to institutional guidelines. BALB/c mice were gender (fe-

male) and age matched (6-8 weeks) within individual experiments. Mice were bred in house or purchased from Animal Resources

Centre, Canning Vale, WA, Australia (product code: BC; SPF status in health report). Animals were not subject to water or food re-

strictions and monitored daily by facility staff.

Bacteria

The strain and source of all the bacteria used in this study are detailed in Key Resources Table.

METHOD DETAILS

Generation of L. mexicana Mutants and Complemented Strains

The L. mexicana Dmtp1-7 null mutant was generated by homologous replacement of the entire LmxM.10.1230-LmxM.10.1290 gene

locus with bleomycin and nourseothricin resistant cassettes. The bleomycin and nourseothricin resistance cassettes were digested

from pXG-BLEO and pXG-SAT, respectively, using the EcoRI and BamHI restriction sites, and cloned into the pBluescript II SK+ vec-

tor. The 745 bp 50UTR region of LmxM.10.1230 was amplified using forward and reverse primers (Table S4) and cloned into

pBluescriptII SK+ vector already containing the resistance cassettes using the HindIII and BstBI restriction sites. The 952 bp

30UTR region of LmxM.10.1290 was cloned into these plasmids after amplification and digest using the BamHI and XbaI restriction

sites. The resulting bleomycin and nourseothricin knock-out constructs were verified by sequencing. L. mexicana was transfected

with 2-5 mg HindIII and XbaI digested and gel-purified linearized DNA fragments. Drug resistant clones were screened by PCR for

the presence of the resistance cassettes using a forward primer in the 50UTR outside the cloned region and a reverse primer for

the resistance bleomycin and nourseothricin cassettes and the absence of the genes using 50and 30primers of each gene (Table S4).

The L. mexicana Dmtp3-7 null mutant was generated using the above constructs, but with the 50UTR region of LmxM.10.1230 re-

placed with the 50UTR 896 bp region of LmxM.10.1250 amplified from wild type cDNA using forward and reverse primers (Table S4)

and was cloned using the HindIII and BstBI restriction sites. L. mexicana was transfected as described below and null mutants were

screened as described above, with its specific primers (Table S4)

The L. mexicana Dmtp2 null mutant was generated by sequential deletion of both LmxM.10.1240 genes using a linearized con-

structs of plasmids that were constructed as follows: The 740 bp 50 UTR region of LmxM.10.1240 was amplified using primers indi-

cated in Table S4 and cloned using HindIII and BstBI restriction sites into a pBluescript II SK+ vector already containing the either a

bleomycin or nourseothricin resistance gene and the 896 bp 30 UTR region of LmxM.10.1240was amplified using primers indicated in

Table S4 and cloned using BamHI and XbaI restriction sites. Positive clones were verified as described above (specific primers indi-

cated in Table S4)

Complementation of the Dmtp1-7, Dmtp3-7 and Dmtp2 mutants was achieved by expression of individual genes from the pXG

episome or by stable insertion into the ribosomal RNA loci as described below (Misslitz et al., 2000; Benzel et al., 2000).

LmxM.10.1260 was expressed in the Dmtp1-7 mutant as a C-terminal GFP fusion protein using pXG-‘GFP+ (B2863) (Ha et al.,

1996), using the primers from Table S4with the XmaI and EcoRV restriction sites. For stable integration into the ribosomal RNA locus,

LxmM.10.1260 and LmxM.10.1230 genes were amplified using BlgII and NotI containing primers and both were cloned into the

pRIBII plasmid using BlgII and NotI restriction sites (Benzel et al., 2000; Misslitz et al., 2000).
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LmxM.10.1240 was expressed using an episomal expression construct without tag under the selection of hygromycin.

LmxM.10.1240 was amplified using primers from Table S4 and cloned using BamHI and NotI restriction sites in pX-Hyg derived

from pX-Neo vector by replacing the neo/DHFR between SpeI sites of pX with the hygromycin gene using splice overlap PCR.

LmxM.10.1270 and LmxM.10.1280 were amplified with the intergenic region and cloned in pRIBII plasmid (Benzel et al., 2000; Mis-

slitz et al., 2000) for stable integration into the ribosomal RNA locus for constitutive expression. The LxmM.10.1270-80 region was

amplified with the forward primers of LmxM.10.1270 and reverse primer of LmxM.10.1280 (see Table S4).

pX-Hyg constructs with LmxM.10.1250 and LmxM10.1290 were made by inserting BglII and NotI amplified material in BamHI and

NotI digested plasmid using primers listed in Table S4.

For transfection, promastigotes (mid-log phase, 4x107 cells/transfection) were suspended in chilled electroporation buffer (EPB;

21mMHEPES, 137mMNaCl, 5mMKCl, 6mMglucose, 0.7mMNa2PO4 pH 7.4), in a 4mmcuvette and electroporated with 3-5 mg of

linearized DNA or 5-10 mg of circular (uncut) plasmid DNA and pulsed twice at 1,700 V and 25 mF with a 10 s interval in a BioRad Gene

Pulser. Cells were transferred to SDM-79 media containing 10% FBS and 100 units/mL penicillin/streptomycin. After 24 h the

medium was supplemented with selection drugs.

Bacterial Gene Expression and Protein Purification

L.mexicanaMTPswere expressed in E. coli using pGEX-6p-3, pGEX-4T-2 or pET-28a(+) plasmids resulting in N-terminal GST-tag for

pGEX or His-tag for pET plasmid (Table S5). TheMTP encoding genewas amplified from cDNAwith either a BglII orBamHI restriction

site and NotI and was cloned into pGEX vectors using BamHI and NotI sites or into pET-28a(+) using NdeI and NotI restriction sites.

MTP constructs in the pGEX-6p-3 expression vector were used as templates for mutagenesis. Mutations were introduced with

QuickChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent Technologies) according to the manufacturer’s instructions.

Once sequences were confirmed, the DNA was subsequently amplified with primers containing NdeI and NotI restriction sites for

cloning into pET-28(a)+.

Recombinant proteins were expressed in BL21(DE3)-pLysS at 37�C at 220 rpm until OD600 reached approximately 0.8 (Table S5).

The culture was allowed to adapt to 16�C for 2 h (240 rpm), before being induced with 0.1 mM IPTG for > 16 h at 16�C at 240 rpm.

Protein was extracted from cell pellets in 4 mL Bugbuster (Merck Millipore) containing protease inhibitors without EDTA (Roche) per

50 mL culture pellet for 10 min.

GST-tagged protein was purified from 25,000 x g supernatants using Glutathione Sepharose 4B (GE-healthcare) washed with

10 volumes of PBS before being eluted with 10 mM glutathione in 50 mM Tris pH 8.0. His-tagged protein was purified from

25,000 x g supernatants using Complete His-Tag Purification resin (Roche) (1 ml) equilibrated with 5 mM imidazole, 500 mM

NaCl, 20 mM Tris-HCl, pH 7.9. The resin was washed with increased imidazole concentrations from 5, 20, 45 to 60 mM in

500 mM NaCl, 20 mM Tris-HCl, pH 7.9 and protein was eluted with 250 mM imidazole in 500 mM NaCl, 20 mM Tris-HCl, pH 7.9.

Amicon Ultra-15 (10K) centrifugal filters (Merck Millipore) were used to exchange buffers to low ionic strength assay buffer (5 mM

NaHEPES-NaOH buffer, pH 7.4 with 5 mM MgCl2, 1 mM MnCl2, 2 mM EGTA and 2 mM DTT) or with 20 mM MES, 2 mM EGTA,

pH 5.5.

GDP-Man-Dependent Mannosyltransferase Assays

Mannosyltransferase activities in parasite lysates or of recombinant proteins were measured using octyl-a-mannosides (OM1) or oc-

tyl-mannogen (DP 4 (OM4), or DP 1-16 (OM1-16)) as acceptors and either unlabeled GDP-Man or GDP-[2-3H]-Man as donors. The

use of OMn acceptors facilitated the recovery of products by solvent phase partitioning and analysis by HPTLC and were used with

similar affinity as corresponding native mannogen oIigomers. In brief, cell lysates were prepared by hypotonic lysis of L. mexicana

wild type or Dgmp promastigotes harvested at late log growth phase (van der Peet et al., 2012). Promastigotes (4 x107 /assay)

were washed in cold PBS then suspended in 50 ml of cold hypotonic lysis buffer (1 mM HEPES-NaOH buffer, pH 7.4, containing

2 mM EGTA, 2 mM DTT and protease inhibitors without EDTA (Roche)) and incubated for 10 min on ice. Cell lysis was monitored

by microscopy and facilitated by brief bath sonication (3-5 s) if required. Lysed cells were centrifuged (2000 x g, 4�C, 4 min) and

the supernatant removed. The pellet was washed with 10 vol of low ionic strength assay buffer (5 mM NaHEPES-NaOH buffer,

pH 7.4 with 2 mM EGTA, 2 mM DTT and protease inhibitors without EDTA (Roche)). The supernatant was adjusted to 5 mM HEPES

buffer, pH 7.4 with 2 mM EGTA, 2 mM DTT and protease inhibitors without EDTA (Roche) and the pellet fractions suspended in the

same buffer containing 0.1%TX-100, to achieve the same cell equivalents. Assayswere initiated by addition of acceptor (nativeman-

nogen or OM1), and GDP-[2-3H]-Man (50 mM) /unlabeled GDP-Man (0.05-10 mM), and incubated at 27�C for indicated times. Reac-

tions were stopped by addition of chloroform/methanol (1:2 v/v) to give a final ratio of chloroform/ methanol/ aqueous 1:2:0.8 (v/v),

centrifuged (15,000 rpm, 5 min), and the supernatant dried under nitrogen. OMn products were recovered by phase partitioning be-

tween water-saturated 1-butanol (200 ml) and water (150 ml), the 1-butanol phase dried and analyzed by high performance TLC

(HPTLC). For analysis of longer OM products, extracts were desalted by passage down a small column (400 ml) of Ag 50-X12(H+)

over Ag 4-X4(OH-) (Bio-Rad) and freeze-dried prior to HPTLC analysis. For assay of recombinant proteins, final reaction mixtures

contained 50 ml of 20 mMMES-NaOH, pH 5.5, 5-10 mg purified recombinant protein, 0.05-5 mMOM1, OM4 or OM1-16 as acceptor,

and 0.05-10 mMGDP-Man or GDP as donor. Reactions were initiated by addition of protein and reactions (27�C, 5-90 min) stopped

and processed as described above. OM4 was generated by incubating L. mexicanaMTP2 with OM1 (5 mM) and GDP-Man (10 mM)

at 27�C for 90 min, and purified by preparative HPTLC on Silica Gel 60 coated aluminum backed HPTLC sheets (Merck), developed
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twice in 1-butanol: ethanol: water (4:3:3 v/v). Silica bands containing individual octyl-mannogen species were scraped from the

HPTLC plates and extracted in water-saturated 1-butanol (2 3 200 ml).

Mannogen Phosphorylase Assays

L. mexicana promastigote lysates prepared from wild type or the Dpmmmutant line (lacking the enzyme phosphomannosemutase)

as described above were incubated with 3H-mannogen. Hypotonic lysates were adjusted to contain 5 mM HEPES buffer, pH 7.4,

protease inhibitors without EDTA (Roche), EDTA, and 106 cell equivalents/mL. 3H-mannogen was prepared by metabolically labeling

stationary phase promastigotes of L. mexicana Dpmi in glucose-free RPMI-1%BSA medium containing D-[2-3H]-mannose for 4 h at

27�C (Sernee et al., 2006). The absence of phosphomannose isomerase in this mutant line maximizes efficiency of labeling. Labeled

parasites were extracted in hot water (100�C, 10 min) and mannogen oligomers desalted over a small ion exchange column of AG

50W-X12(H+) over AG 4-X4(OH-) (Bio-Rad) (100 ml each) and freeze-dried. Phosphorylase assays were initiated by incubating

100 ml lysate and 3H-mannogen (10,000 dpm) at 27�C for 2 h. Assays were stopped by addition of chloroform/methanol (1:2 v/v)

as described above and neutral and phosphorylated sugar products analyzed by HPAEC. For analysis of recombinant MTP proteins,

assays contained 50 ml 20 mMMES-NaOH, pH 5.5, 5-10 mg recombinant protein and either NaHPO4 (0.5-5 mM) or Man1P (1 mM) in

the case of reverse phosphorolysis, and OM4 (200 mMmannose equivalent) or unlabeled mannogen (2 mM mannose equivalent) as

substrate. After incubation at 27�C for 90 min, reactions were stopped by heating at 100�C for 2 min and either the C8Manx products

were analyzed by HPTLC after desalting as described above, or release of phosphate was measured using the PiColorLock Gold

phosphate assay (Innova Biosciences).

HPTLC Analysis of Enzyme Products

Desalted reaction products were analyzed by HPTLC on Silica Gel 60 aluminum-backed HPTLC sheets (Merck), developed twice in

1-butanol: ethanol: water (4:3:3 v/v) for neutral glycans or polar samples, or once in chloroform:methanol: 13Mammonia: 1M ammo-

nium acetate: water (180:140:9:9:23 v/v) for apolar samples (Ralton et al., 2003). Unlabeled glycans were visualized by staining with

0.2% orcinol (Sigma-Aldrich) in 10% H2SO4, 80% ethanol and developed at 100�C. Labeled species were detected by fluorography

after spraying the HPTLC sheets with EN3HANCE spray (PerkinElmer Life Sciences) and exposing them to Biomax MR film (Kodak)

at �80�C.

Mannogen Profiling in Wild Type and Mutant Parasite Lines

Parasites weremetabolically quenched by transferring aliquots of culture suspension into 15mL plastic tube and immersion into a dry

ice-ethanol bath for 20 s (until suspension reached 5�C). The chilled suspension (83 107 parasites) was centrifuged (4,000 rpm, 0�C,

10 min), washed three times with ice-cold PBS, then suspended in 200 ml ice-cold water and immersed in a boiling water bath for

20 min. The extracts were centrifuged (16,000 x g, 15 min) and the supernatant containing mannogen desalted over a small ion ex-

change column of AG 50W-X12(H+) over AG 4-X4(OH-) (Bio-Rad). In some cases, extracts were hydrolyzed in 80 mM TFA (100�C,

10 min) to cleave acid labile phosphate mono-esters, prior to desalting. Sugar-phosphates, neutral sugars and mannogen oligosac-

charides were analyzed by HPAEC, using a Dionex GP-50 gradient pump, a CarboPac PA-1 column (43 250mm), with a PA-1 guard

column and an ED50 integrated pulsed amperometric detector (PAD). The system was controlled and data analyzed by Chromeleon

version 6.50 software. Sugar phosphates were resolved on a gradient of 1 mM sodium hydroxide (E1) and 1 mM sodium hydroxide

containing 1M sodium acetate (E2) at a flow rate of 1mL/min: T0 = 98% (v/v) E1; T15 = 98% (v/v) E1; T30 = 90% (v/v) E1; T40 = 80% (v/v)

E1; T55 = 100% (v/v) E2; T65 = 100% (v/v) E2. Neutral sugars/oligosaccharides were resolved on a gradient of 75 mM NaOH (E1) and

75mMNaOH containing 250mMsodium acetate (E2) at a flow rate of 0.6mL/min: T0 = 100% (v/v) E1; T5 = 100% (v/v) E1; T40 = 100%

(v/v) E2, T60 = 100% (v/v) E2.

GC-MS and LC-MS Analysis of Unlabeled and 13C-/2H-Labeled Mannogen

Mannogen was extracted from promastigotes in hot water as described above, desalted and resuspended in 20% 1-propanol. For

analysis of mannose isotopomers in the mannogen pool, an aliquot of the mannogen extract was subjected to solvolysis in 0.5 M

methanolic HCl (50 ml, Supelco) in sealed glass capillaries under vacuum or in deactivated GC-MS glass vial inserts (Agilent part

no: 5181-8872) (80�C, 16 h). Samples were neutralized by addition of pyridine (10 ml), dried under nitrogen, and derivitized with

N,O-Bis (trimethylsilyl) trifluoroacetamide containing 1% TMCS (40 ml; Thermo Scientific) prior to being analyzed on either an Agilent

6890/5973 GC-MS system in electron impact mode or an Agilent 7890/5975 system in chemical ionization mode. Separation was

achieved on a 30 m DB-5ms GC capillary column (J&W scientific; 250 mm i.d., 0.25 mm film thickness), incorporating a 10 m inert

duraguard section. The levels of mannogen-derived mannose were quantified by GC-MS in EI mode by determining the total area

under the curve for its specific peak (an authentic standard was used to confirm the retention time and ion fragmentation of mannose

following methanolysis and silylation). Equal cell equivalents (1x107 cells) were analyzed for each genotype and the mannose levels

were normalized to an internal standard added during the hot water extraction. Selected ion monitoring was used to quantify the la-

beling in mannose and its mass isotopologs (M0-M6; 467-473 m/z; a fragment of the mannose derivative associated with loss of CH4

[M+1-16]+). The 2H-labeling in mannogen-derived mannose was determined as the excess molar enrichment in the M1 mass isoto-

polog (468 m/z) over the molecular ion M0 (467 m/z). GC-MS data was analyzed using MSD ChemStation and MassHunter (Agilent

technologies). For LC-MS analysis detection of GDP and GDP-Man, reaction mixtures were separated on a Merck ZIC-pHILIC col-

umn (5 mM, 150 3 4.6 mm, Millipore) (Cobbold et al., 2016). A gradient of water with 20 mM ammonium carbonate (solvent A) and
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acetonitrile (solvent B) ran from 80%–20% solvent B from 0.5 to 15 min, then 20%–5% between 15 and 20 min, before returning to

80% at 20.5 min and held until 29.5 min. MS detection was performed on an Agilent QTOF mass spectrometer 6545 operating in

negative ESI mode and data analyzed using the MAVEN software package (Melamud et al., 2010). Following alignment, metabolites

were assigned using exact mass (< 10 ppm) and retention time (compared to standards of GDP and GDP-Man). The area top for each

positively assigned metabolite was integrated and the concentration of each metabolite in each sample was determined from stan-

dard curves that were acquired for both GDP and GDP-Man.

Chemical and Enzymatic Analyses

Glycan products of recombinant enzyme reactions as well as native mannogen were desalted and subjected to methylation linkage

analysis as previously described (McConville et al., 1990). Neutral glycans were digested with Canavalia ensiformis (jack bean)

a-mannosidase or Helix pomatia (snail) b-mannosidase (both Sigma-Aldrich) in 0.1 M sodium acetate, pH 5.0 (2 Units/20 ml) or in

0.1 M citric acid phosphate buffer, pH 4.5 (0.5 Units/20 ml), respectively. Reactions were stopped by incubation at 100�C for

2 min, then desalted over a small column of AG 50W-X12(H+) over AG 4-X4(OH-) (Bio-Rad) (as described above) prior to HPTLC

analysis.

Macrophage Infection

BALB/c bone marrow derived macrophages were seeded on 10 mm glass coverslips (1 3 105 macrophages/well in 24-well plates)

and incubated in RPMI containing 15% FBS and 10% L929-cell conditioned medium at 33�C, 5%CO2 for 24 h prior to infection with

L. mexicana wild type and mutant promastigotes (1x106 cells/well) to give a final MOI of 1:10. Non-internalized parasites were

removed after 4 h by washing the monolayer three times with PBS, and infected macrophages incubated as described above. Cov-

erslips were washed with PBS (x3) at different time points after infection, fixed in 4% paraformaldehyde in PBS and stained with

Hoechst 33342 (20 mg/mL, Molecular Probes). Slides weremounted inMoWiol and images acquired using a Zeiss Axioplan2 imaging

microscope, equipped with AxioCam MRm camera and the AXIOVISION 4.8 software (Zeiss) (Naderer et al., 2010)

Mouse Infections

BALB/c mice (female, 6-8 weeks old) were injected subcutaneously in the hind-rump and lesion size scored weekly as previously

described (Naderer et al., 2008). Parasite burden was also monitored at time of death by removal of the right draining inguinal

lymph-nodes and limiting dilution cloning of homogenized tissues (Oliveira et al., 2012). For in vivo labeling studies, infected mice

were injected intra-peritoneal with 2H2O (99%, 35 ml/g body weight), then provided with 9% 2H2O in the drinking water to maintain

a level of labeling of 5% in the body (Kloehn et al., 2015). Levels of 2H2O in the body water was regularly checked by GC-MS analysis

of blood samples (Kloehn et al., 2015). Mice were culled at indicated time after initiation of labeling and lesion amastigotes isolated

from granulomatous lesions as previously described (Kloehn et al., 2015). Purified parasites were washed three times with ice cold

PBS, then extracted in hot water (100�C, 20min). Extractedmannogenwas desalted on a small ion exchange column and 2H-labeling

in incorporated mannose residues measured by GC-MS.

Microscopy

For fluorescence microscopy, live Leishmania promastigotes were incubated with propidium iodide (final 20 mg/mL) for 5 min before

being immobilized on L-lysine (Sigma) coated coverslips. Images were acquired by using a Zeiss Axioplan2 imaging microscope,

equipped with AxioCam MRm camera and the AXIOVISION 4.8 software (Zeiss). For transmission microscopy, parasites were fixed

in 0.1 M sodium cacodylate containing 2.5% glutaraldehyde overnight at 4�C and further processed using the ROTO technique

(Hanssen et al., 2013). Sections (70 nm) were visualized on a Tecnai F30 (FEI, Eindhoven) and images captured on a Ceta CMOS

4k x 4k camera (FEI, Eindhoven).

Protein Production for Crystallization and SECMALS

Genes encoding N-terminally His-tagged variants of MTP1, 2, and 4 were expressed in E. coli BL21 (DE3) cells. An overnight starter

culture was used to inoculate (at 1% v/v) liter-scale TB expression media containing 35mg/l of kanamycin. The cultures were shaken

in 2 L plastic flasks at 37�C at 220 rpm until the OD600 was above 1.5. Gene expression was induced by adding a sterile-filtered so-

lution of IPTG to the culture up to a concentration of 1mM. The temperature was subsequently reduced to 16�C and the cultures were

shaken overnight at 220 rpm. The cells were harvested by centrifugation at > 5000 x g for 20min, after which a pellet was formed. The

pellet was stored at�80�Cuntil further use. Pellet thawingwas done by adding 10 xw/v of 50mM sodium phosphate pH 6.2, 200mM

NaCl, 1 mM DTT, 30 mM imidazole buffer and gently mixing at RT until fully thawed. Subsequently, the volume was adjusted to

100 mL with the same buffer and the cells were lysed by sonication. The resulting solution was centrifuged at > 30,000 x g for

30 min; only the supernatant was collected for further use and loaded onto a 5 mL nickel affinity column (HisTrap FF (GE)). After

washing with the abovementioned buffer, the protein was eluted in an imidazole gradient (up to 400 mM). Any precipitated protein

was removed by centrifugation and the solution was concentrated to 1-2ml. The concentrated sample was loaded onto a size-exclu-

sion column (Superdex S75 or S200 (GE)) pre-equilibrated in 50 mM sodium phosphate pH 6.2, 200 mM NaCl, 1 mM DTT buffer.

Protein-bearing fractions were collected and the protein was concentrated up to 12 mg/mL (MTP1), 60 mg/mL (MTP2) and

18 mg/mL (MTP4).
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Crystallization of MTP1, MTP2 and MTP4

All proteins were crystallized using either sitting drop or hanging drop methods. In the former, the droplet sits on a plastic plate sur-

face and the plates sealed using adhesive film. In the latter, the droplet hangs above the reservoir solution on a siliconized coverslip

and the well is sealed with vacuum grease. MTP1 crystals were obtained in 12% w/v PEG 20K, 100 mM MES pH 6.5. The droplet

contained 50 nL crystal seed stock solution obtained from previous experiments, 250 nL 5.5 mg/mL protein solution and 200 nL

reservoir solution. MTP2 and MTP2 D94N variant crystals were obtained in either 200 mM trisodium citrate, 18%–22% w/v PEG

3350 or in 200mM triammonium citrate pH 7.0, 18%–22%PEG 3350. The droplet contained a 1:1 ratio of protein (12mg/mL) to reser-

voir solution (a total volume of 1 ml for sitting drop and 2 ml for hanging drop). MTP4was crystallized in 100mMPCTP pH 7.0, 25%w/v

PEG 1500. The droplet contained 150 nL 7 mg/mL protein solution and 150 nL reservoir solution.

X-ray Data Collection and Crystal Structure Solution

Diffraction data were collected at Diamond Light Source synchrotron at beamlines I03, I04 and I24. Crystallographic data were in-

dexed and integrated using Diamond Light Source autoprocessing pipelines that incorporate DIALS software into Xia2 (Winter,

2010). Data truncation, merging and scaling was performed in Aimless. The structures of MTP2 and 4 were solved using molecular

replacement (MR) in Phaser (McCoy et al., 2007) with the initial model being 2B4W (PDB code) truncated in Chainsaw (Stein, 2008).

The structure of MTP1 was solved using MR in Phaser as well, and the starting model was the polypeptide chain of MTP2. Subse-

quently, the structures were refined in Refmac5 (Murshudov et al., 2011) and real-space refinement was done using Coot (Emsley

et al., 2010). In case of isomorphous crystals in complex with different ligands, the HKL index of the complex was matched to the

first obtained solution, the Rfree set was copied and a model containing the protein only was directly refined to the observed data

using Refmac5.Waters were added after the refinement of the polypeptide chain was complete and the ligandmolecules were added

in the last steps of the refinement. The model geometry and the correspondence of the model to experimental data were validated

using Coot validation tools and the PDB validation pipeline. Sugar geometry was validated using Privateer. The process of model

building, refinement and validation was performed using the CCP4i2 GUI (Potterton et al., 2018). Data and refinement statistics

are shown in Table S1.

SECMALS

Size Exclusion Chromatography Multiangle Light Scattering (SECMALS) was used to investigate the protein assembly molecular

weight in solution. The pump used was a Shimadzu HPLC system (CBM-20A Controller, LC-20AD Pump with degasser, SIL-20A Au-

tosampler and SPD-20A detector) and Wyatt detectors: HELEOS-II (light scattering) and Optilab rEx (refractive index). The proteins

were kept in 50 mM sodium phosphate pH 6.2, 200 mM NaCl, 1 mM DTT buffer at 3 mg/mL. A standard solution of bovine serum

albumin (BSA) was used to calibrate the instrument, as its exact molecular weight and amount used was known. The flow through

a Superdex S75 column was kept at a constant 0.5 mL/min. Data were analyzed using ASTRA software (Wyatt Technology).

Phylogenetic Analysis

Sequences of the sevenMTP proteins were queried against the NCBI non-redundant sequence database (NR) and TritrypDB release

40 using blastp and hits filtered based on e-value (< 1e-50). Multiple sequence alignments for 21 NR and 148 TritrypDB sequences

were generated usingMAFFT v7.310 (Katoh and Standley, 2013). Phylogenetic treeswere generated based on themultiple sequence

alignments with PhyML, with initial tree generation done with BIONJ and the LG substitution model employed with branch support

with bootstrap analyses (100). Tree diagramswere generatedwith Evolview (He et al., 2016) and annotated based on taxonomymap-

ped using the ETE3 Toolkit (Huerta-Cepas et al., 2016).

Co-evolution analysis was performed using theMISTIC platform (Simonetti et al., 2013), which usesMutual Information (MI) to infer

coevolution between residue pairs, using aMI Z-score threshold of > 6.5, leading to a specificity of 95%. Residue pairings with strong

coevolution signals were assessed, and their interactions analyzed using Arpeggio (Jubb et al., 2017). Sequence conservation of pro-

tein active site and co-evolving residues was visualized using WebLogo 3 (Crooks et al., 2004).

Homology Modeling and Molecular Docking

Models for L. mexicana MTP3, MTP5, MTP6 and MTP7 were constructed using the crystal structure of L. mexicana MTP4 as the

template. The amino acid sequence identity of these MTPs with L. mexicana MTP4 is: MTP3 = 57%, MTP5 = 53%, MTP6 = 60%

and MTP7 = 68% (ClustalW as implemented in BioEdit v7.2.5). The four L. mexicana MTP homology models were generated using

Modeler v9.20 (Sali et al., 1995). Steric clashes between amino acid side chains that may have arisen duringmodel construction were

removed by replacing the clashing side chains with an alternative low energy side chain conformation from a conformer library within

the Biopolymer module of the modeling program SYBYL-X 2.1.1 (Certara; https://www.certara.com/). Each model was then geom-

etry optimized for 1000 iterations (or until the gradient of successive iterations was < 0.05 kcal/mol , Å) using the molecular me-

chanics MMFF94s force field and partial atomic charges and conjugate gradient minimization method (all other parameters were

at default values) within SYBYL-X 2.1.1. The resulting four L. mexicana MTP models were deemed to be good quality models using

PROCHECK, with > 99.6% of residues in the allowed regions of the Ramachandran plot (Laskowski et al., 1996).

The amino acid sequence identity between the seven L. mexicana MTPs and GH130 family members is very low (5%–12%,

ClustalW). To compare the 3-D structures, the four L. mexicana MTP models, along with the crystal structures of L. mexicana

MTP1, MTP2 and MTP4, L. major MTP4 and members of the GH130 family, were aligned via the Ca atoms of the five-bladed
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b-propeller structural motif using the structural alignment program MUSTANG v3.2.3 (Konagurthu et al., 2006). The structural align-

ment was used to compare the amino acids located in the Pi site, the �1 subsite and the +1 subsite (Table S2).

Man1Pwasmanually docked into its putative binding site in the L.mexicanaMTP4 crystal structure, using its location in the aligned

GH130 family crystal complexes as a guide. GDP-Man and Man8 were manually docked into their putative binding sites in the

L. mexicana MTP1, MTP2 and MTP4 crystal structures so that the a-mannose portion of the molecules were in a similar location

to that observed in the b-1,2-mannobiose:MTP2 (D94N mutant) crystal complex. Rotatable ligand torsion angles were adjusted

manually as required to optimize the ligand interaction with nearby amino acid side chains. All manual manipulations were conducted

using SYBYL-X 2.1.1. Each ligand, and any residues within a 6 Å radius of the ligand in the protein complex, was then geometrically

optimized within SYBYL-X 2.1.1 using the same optimization protocol described above.

Models of eleven bacterial GT108 proteins identified in the evolutionary phylogenetic analysis of the MTPs (Figure S2; Table S3)

and the nine characterized GT91 family members listed in the CAZy database (accessed on the 20th December 2018, http://

www.cazy.org; Figure S5; Table S3) were constructed in an unbiased manner using the RaptorX structure prediction web server

(http://raptorx.uchicago.edu/StructurePrediction/predict/) (Peng and Xu, 2011). For the bacterial GT108 proteins (Table S3), the

optimal structural template selected by the RaptorX algorithm was L. major MTP4 (PDB: 2B4W). The GT91 proteins are predicted

to be single pass type II membrane proteins comprising a short cytoplasmic domain, a helical transmembrane domain and a large

extracellular domain. For eight of the characterized GT91 family members (BMT1_CANAL, BMT2_CANAL, BMT3_CANAL,

BMT4_CANAL, BMT5_CANAL, BMT6_CANAL, BMT2_KOMPG andBMT3_KOMPG; Table S3), the largest region within the extracel-

lular domain was predicted to be a five-bladed b-propeller. GT91 protein models were constructed using single, and also multiple,

structural templates. The crystal structure of the GH130_1 family member MGP (PDB: 3WAS) was consistently selected as the single

structural template for the highest rankedGT91 proteinmodels, whereas lower rankedmodels used the crystal structures of Lin0857,

RaMP1, RaMP2, BT3780 and L.majorMTP4 (PDBs: 5B0P, 5YA9, 5AYD, 5A7V and 2B4W, respectively; Figures S2 and S5; Tables S2

and S3). The GT91 protein models constructed using multiple templates (all five-bladed b-propeller GH130 proteins) often had one

slightly distorted or displaced blade, therefore structural comparisons with the L. mexicana MTPs were carried out using the GT91

protein models constructed from only the MGP template. Interestingly, one of the characterized GT91 proteins, BMT1_KOMPG, was

predicted to be a six-bladed b-propeller and was excluded from the structural comparison with the L. mexicana MTPs. The PyMOL

Molecular Graphics System, Version 2.1.0 (Schrodinger; https://pymol.org/2/), was used to visualize and analyze the protein struc-

tures and generate figure images.

Multiple Sequence Alignments and Phylogenetic Tree Building for the GT108 MTPs, and GH130 Proteins

The amino acid sequences of the seven L. mexicana MTPs and the homolog L. major MTP4 were aligned using ClustalU (as imple-

mented in the MPI Bioinformatics Toolkit, https://toolkit.tuebingen.mpg.de/) (Zimmermann et al., 2018). The resulting multiple

sequence alignment was then used as input to ESPript3.0 (http://espript.ibcp.fr/ESPript/ESPript/index.php) (Robert and Gouet,

2014; Edgar, 2004) to generate an annotated alignment (Figure S3).

For the phylogenetic analysis of the seven L. mexicana MTPs, ten bacterial GT108 proteins and eighteen characterized GH130

proteins, the amino acid sequences were aligned using MAFFT v7.0 (Katoh and Standley, 2013). The resulting multiple sequence

alignment was used as input to ETE3 v3.0.0b32 (as implemented at GenomeNet, https://www.genome.jp/tools-bin/ete) (Huerta-

Cepas et al., 2016) to construct the phylogenic trees. The ETE3 methodology used in the tree construction was PhyML

v20160115 with model JTT (parameters: -f m–pinv e -o tlr–nclasses 4–bootstrap 100–alpha e) (Guindon et al., 2010). The branch sup-

ports were computed out of 100 bootstrapped trees. TreeDyn v198.3 (http://www.treedyn.org) as implemented on the Méthodes et

Algorithms pour la Bio-informatique LIRMMweb server (http://www.phylogeny.fr/one_task.cgi?task_type=treedyn) (Dereeper et al.,

2008) was used to draw the unrooted tree (Figure S2A).

QUANTIFICATION AND STATISTICAL ANALYSIS

All values are themean ± standard error using Excel and GraphPad Prism. All experiments were repeated at least twice and numbers

of replicates, including the value of n in each experiment are indicated in the figure legends.

DATA AND CODE AVAILABILITY

The PDB accession codes for unliganded MTP1, unliganded MTP2, MTP2 in complex with mannose, MTP2 in complex with

b-1,2-mannobiose and MTP4 in complex with phosphate anion, are PDB: 6Q4W, PDB: 6Q4X, PDB: 6Q4Y, PDB: 6Q4Z and PDB:

6Q50, respectively.
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