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Key Points: 12 

• We calculate the subglacial hydraulic potential for the Martian south polar ice cap from 13 

measured surface topography and ice thickness. 14 

• The recently-observed area of inferred basal melt does not occupy a predicted depression 15 

in the subglacial hydraulic potential surface. 16 

• We argue this supports the hypothesis that local geothermal heating could be responsible 17 

for this area of liquid. 18 

  19 



 

 

Abstract 20 

The discovery of a ~20 km wide area of bright subsurface radar reflections, interpreted as liquid 21 

water, beneath the Martian south polar layered deposits (SPLD) in data from the Mars Advanced 22 

Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument, and the discovery of two 23 

geologically recent potential eskers (landforms produced by subglacial melt) associated with 24 

viscous flow features in Martian mid-latitudes, has suggested recent basal melting of Martian ice 25 

deposits may be feasible, possibly due to locally elevated geothermal heating. Locations of 26 

terrestrial subglacial lakes and major drainage axes have been successfully predicted from 27 

subglacial hydraulic potential surfaces calculated from surface topography and ice thickness. 28 

Here, we use surface topography from the Mars Orbiter Laser Altimeter and SPLD bed 29 

elevations derived from MARSIS data to calculate the subglacial hydraulic potential surface 30 

beneath the SPLD and determine whether the observed high reflectance area coincides with 31 

predicted subglacial lake locations. Given the sensitivity of terrestrial predictions of lake 32 

locations to basal topography, we derive over 1000 perturbed topographies (using noise statistics 33 

from the MARSIS data) to infer the most likely locations of possible subglacial water bodies and 34 

drainage axes. Our results show that the high reflectance area does not coincide with any 35 

substantial predicted lake locations; three nearby lake locations are robustly predicted however. 36 

We interpret this result as suggesting that the high reflectance area (assuming the interpretation 37 

as liquid is correct) is most likely a hydraulically-isolated patch of liquid confined by the 38 

surrounding cold-based ice, rather than a topographically-constrained subglacial lake. 39 

 40 

Plain Language Summary 41 

Mars’ present-day ice deposits are generally assumed to be frozen throughout given its cold 42 

climate. However, new evidence from orbital radar data suggests a possible present-day ~20 km 43 

wide area of liquid water beneath Mars’ south polar ice cap. Recently-discovered landforms in 44 

Mars’ mid-latitudes have been interpreted as eskers (landforms produced by flowing meltwater 45 

beneath glaciers on Earth) and also suggest that subglacial melt may be feasible in Mars’ recent 46 

past. Subglacial lakes are common on Earth, and their locations have been successfully predicted 47 

from ice surface topography and ice thickness, in conjunction with theories for subglacial water 48 

flow. In this paper we use the surface topography and ice thickness data for Mars’ south polar ice 49 

cap to calculate the theoretical locations of possible subglacial lakes, and compare these with the 50 

location of the possible present-day area of liquid water. The observed patch of possible liquid 51 

water does not coincide with the lake locations we predict. We interpret this result as implying 52 

that the liquid water is most likely to be an isolated patch of liquid, possibly caused by locally-53 

raised geothermal heating, and which is fixed in position by the surrounding frozen ice, rather 54 

than the liquid forming a topographically-constrained subglacial lake.  55 



 

 

1 Introduction 56 

Ice sheets, glaciers and ground ice distributed between Mars’ poles and mid-latitudes 57 

[e.g. Plaut et al., 2007; Levy et al., 2014; Souness and Hubbard, 2012; Head et al., 2003] contain 58 

a total volume of water ice (estimated as ~3.5 x 10
6
 km

3
), comparable to that of all glaciers on 59 

Earth excluding the East Antarctic Ice Sheet [Levy et al., 2014], Mars’ existing ice deposits are 60 

thought to have formed ~100s to Myrs ago [e.g. Head et al., 2003; Arfstrom and Hartmann, 61 

2005; Butcher et al., 2017; Conway et al., 2018], with landforms and models also indicating 62 

episodic glaciation of different regions of Mars’ surface over billions of years [e.g. Fastook et 63 

al., 2008; Wordsworth et al., 2013; Butcher et al., 2016]. Glaciers and ice sheets insulate a 64 

planet’s surface, trapping geothermal heat from the planetary interior and frictional heat 65 

produced by ice flow, typically making their beds warmer than their surfaces. However, it is 66 

commonly thought that Mars’ climate has been cold and dry for ~2–3 Gyr, and hence that the 67 

existing glaciers and ice caps have most probably been frozen throughout
 
[e.g. Levy et al., 2016], 68 

although there is some evidence for spatially-limited, ephemeral supraglacial melt [e.g. Fassett et 69 

al., 2010]. The migration of ice between different reservoirs at different locations on Mars over 70 

this period is thought to have taken place via sublimation and (solid) precipitation, rather than 71 

melt [Bramson et al. 2017]. 72 

In contrast, recent geomorphological studies found evidence for localized melting 73 

beneath two existing mid-latitude glaciers around 110–150 Myr ago (Ma), in the form of 74 

subglacially-deposited eskers in Phlegra Montes and Tempe Terra [Gallagher and Balme, 2015, 75 

Butcher et al., 2017]. Furthermore, that present day glaciers and ice caps are frozen throughout 76 

has also been challenged by the discovery of possible present-day liquid water beneath Mars’ 77 

South Polar Layered Deposits [SPLD; Orosei et al., 2018], based on anomalously bright 78 

subsurface reflections recorded by the MARSIS (Mars Advanced Radar for Subsurface and 79 

Ionospheric Sounding) instrument in a well-defined, 20 kilometer wide zone centered at 193°E, 80 

81°S. In all three locations, elevated geothermal heating (e.g. due to localized magmatic 81 

intrusions) has been proposed as a possible source of the heat needed to melt the basal ice under 82 

cold current and recent Martian climate conditions [Sori and Bramson, 2019, Butcher et al., 83 

2017, Gallagher and Balme, 2015]. In addition, perchlorate salts, which substantially lower the 84 

melting point of ice to around ~200 to 230K depending on the concentration and species of 85 

perchlorate, may be highly enriched in the basal layers of the Martian polar ice caps [Fisher et 86 

al., 2010; Sori and Bramson, 2019]. 87 

Subglacial water is far more common on Earth, occurring beneath the bulk of terrestrial 88 

valley glaciers, and both the Greenland and Antarctic Ice Sheets. In the case of Antarctica, large 89 

numbers of subglacial lakes, including Lake Vostok, the 6
th

 largest (by volume) lake on Earth, 90 

have been detected by observing bright reflectances from numerous ground penetrating radar 91 

systems. Movement of water between subglacial lakes in large episodic drainage events has also 92 

been observed using localized changes in surface topography as lakes drain and fill. There is also 93 

a great deal of evidence for widespread subglacial meltwater in the landscapes occupied by ice 94 

during the Quaternary (and earlier) glaciations on Earth [e.g. Shreve, 1985; Storrar et al., 2013, 95 

Stroeven et al., 2016; Clark et al., 2017]. 96 

The physics of subglacial water flow are well known. Flowers [2015] provides a 97 

comprehensive review, but briefly, the overall pattern of subglacial water flow is governed by 98 

the subglacial potential surface (calculated from the subglacial topography and ice thickness 99 

distribution; Shreve, [1972]). Local depressions in the potential surface form the nuclei for 100 



 

 

possible subglacial lakes, as water cannot escape from such depressions until it fills to the 101 

elevation of the local ‘spill point’, the elevation of the lowest point in the constraining potential 102 

surface. Calculations of subglacial potential using digital elevation models (DEMs) of ice 103 

surfaces and ice thickness (or bed elevations) have proved very successful at predicting 104 

subglacial lake locations and volumes for terrestrial ice sheets. In a study of Antarctic lake 105 

locations, Willis et al., [2016] show that the centers of lake locations predicted using the 106 

calculated subglacial potential surface were a mean distance of 6.3 km from the centers of the 107 

379 known (in 2016) lakes. Willis et al., [2016] predict around 100 times as many possible lake 108 

locations as the number of known lakes however. Some of this mis-match will be due to the size 109 

and remoteness of Antarctica, meaning that the current lake inventory will be incomplete. 110 

However, some of the mis-match will be due to errors of commission, where the potential 111 

surface predicts a lake where no lake exists. Such errors may be caused by inaccuracies in the 112 

surface or bed DEMs due to inaccuracies and/or resolution effects in the sensors, or the 113 

interpolation of relatively sparse point data onto a regular grid.  114 

Several studies have shown that quite small changes in the bed and particularly the 115 

surface elevation can cause substantial changes in predicted subglacial water flow directions and 116 

lake locations. Wright et al., [2008] found that raising three grid cells in the surface DEM by 117 

10 m led to water flow switching between two major outlets from East Antarctica, and 118 

subsequently lowering another four surface DEM cells by 10 m led to another switch between 119 

two other large outlet glaciers. Le Brocq et al., [2009] report similar sensitivity to small (~10 m) 120 

changes in surface elevation that divert flow between two major ice streams draining the Siple 121 

Coast of West Antarctica.  122 

Uncertainties in data will also affect the predicted location of subglacial lakes. 123 

Livingstone et al., [2013a] used current bed topography and modeled ice thickness distributions 124 

and isostatic effects from a suite of ice-dynamic reconstructions of the geometry of the North 125 

American Ice Sheets during the last glaciation on Earth to predict possible subglacial palaeo-lake 126 

locations. They found that lake locations (and inferred water flow directions) were highly 127 

sensitive to the configuration of the ice sheet at particular stages during ice sheet growth and 128 

decay, and depended in some instances on the choice of model and the predicted ice thickness 129 

distribution. They found that some predicted lakes were persistent through time, and were also 130 

predicted by many of the modeled ice sheet configurations, whereas other predicted lakes were 131 

present in fewer simulations, or were more transient features through time. Overall, deeper 132 

predicted lakes in areas of more pronounced topography (e.g. beneath the Cordilleran Ice Sheet 133 

in western North America) were more persistent. In another study, Livingstone et al., [2013b] 134 

investigated the impact of errors or uncertainty in the basal topography of Antarctica on 135 

predicted subglacial lake locations by perturbing the bed topography using random noise with a 136 

standard deviation equal to the uncertainty in the bed elevation. They performed 50 such 137 

perturbations to produce a ‘persistence map’ of lakes, in which the most persistent lakes were 138 

those which were predicted in the majority of the perturbed-bed experiments. 139 

In this paper we use gridded surface and ice thickness maps for the Martian South Polar 140 

Layered Deposit [SPLD; Plaut et al., 2007] to calculate the subglacial hydraulic potential. From 141 

this, we infer the locations of depressions in the potential surface that would be expected to 142 

confine possible subglacial water bodies were basal meltwater available beneath the SPLD. We 143 

also predict the main drainage axes that any possible flowing water would be expected to follow. 144 

In order to address uncertainties in the bed elevation data (due to the limited resolution of the ice 145 



 

 

thickness data from the MARSIS sensor, in particular) we adopt a similar approach to 146 

Livingstone et al., [2013b] and perform a suite of lake location calculations using DEMs derived 147 

from the raw MARSIS data, the mean and median of all radar footprints crossing each point (cf. 148 

Orosei et al., [2018]), and a set of 1000 DEMs interpolated from randomly perturbed bed 149 

elevation data, with perturbations calculated using the statistical properties of the elevation 150 

differences within the MARSIS data. We use different assumptions of the density of the inferred 151 

subglacial liquid, from pure water to saturated perchlorate brine, and we also investigate the 152 

impact of the spatial resolution of the interpolated DEMs. From this set of calculations we 153 

determine the most persistent predicted lake locations and predicted water flow paths. We then 154 

consider the implications of these predictions by comparing the predicted lake locations and 155 

persistence values with the high reflectance area (HRA) reported by Orosei et al., [2018]. We 156 

use these predictions to consider the likelihood (or otherwise) of a well-connected subglacial 157 

drainage system beneath the Martian SPLD, or whether the possible water body inferred from 158 

radar reflectance [Orosei et al., 2018] is more likely to be a hydraulically-isolated feature. 159 

2 Methods 160 

2.1 Modeling lake locations 161 

We calculate subglacial hydraulic potential (φ) from the bed and surface elevation 162 

[Shreve, 1972]: 163 

 φ = ρw g Z + k ρi g H        [1] 164 

where g is gravity (3.711 m s
-2

); ρw is the density of the subglacial liquid, ranging from 165 

1000 kg m
-3

 for pure water to 1980 kg m
-3

 for saturated perchlorate brine [Fisher et al., 2010]; Z 166 

is the bed elevation (m), ρi is the ice density (here taken to be 910 kg m
-3

, given the uncertainty 167 

concerning the overall density of the Martian SPLD; [e.g. Zuber et al., 2007; Plaut et al., 2007; 168 

Wieczorek, 2008]) and H is the ice thickness (m). k is a dimensionless factor which represents the 169 

influence of ice overburden pressure on the local subglacial water pressure, with k = 1 implying 170 

the water pressure is at the ice overburden pressure, and k = 0 implying the subglacial water is at 171 

atmospheric pressure. In terrestrial systems, k is variable in time and space, especially in 172 

situations closer to the ice margin where the ice is thinner and/or heavily affected by seasonal 173 

meltwater. In the interiors of ice sheets, where the ice is thicker, and especially for Antarctica, 174 

measured water pressures are typically very close to ice overburden. Given the location of the 175 

HRA in the interior of the SPLD, and the ~1500 m inferred ice thickness, we assume k = 1 in our 176 

simulations.  177 

Equation 1 can usefully be re-cast into an alternative formulation which uses Z as before, 178 

and also the ice surface elevation, S, where S = Z + H: 179 

φ = (ρw – k ρi) g Z + k ρi g S       [2]  180 

This alternative formulation highlights the typical dominance (for high k values) of the 181 

ice surface elevation on the subglacial hydraulic potential due to the small difference in the 182 

density of ice and water. For the SPLD, however, if the liquid layer is a high solute-183 

concentration brine, ρw will be higher, increasing the importance of the basal topography in 184 



 

 

determining the subglacial hydraulic potential. Given this, we use ρw = 1980 kg m
-3

 in the bulk 185 

of our calculations, but we also perform a set of runs in which ρw is varied in 11 equal steps 186 

between 1000 and 1980 kg m
-3

. Uncertainty in the ice density [e.g. Zuber et al., 2007; Plaut et 187 

al., 2007; Wieczorek, 2008] will have an opposing effect. A higher ice density will increase the 188 

dominance of the ice surface elevation, reducing the role played by basal topography on the 189 

subglacial potential, and reducing the impact of possible higher liquid density. If the ice density 190 

exceeds the liquid density, this will reverse the sign of the first term in Eq. 2 (although this 191 

negative value will be compensated to some extent by the increased value of the second term, 192 

depending on the relative values of the ice and liquid densities, and the surface and bed 193 

elevations). To assess the likely maximum impact of this effect, we also perform a run using an 194 

ice density of 1200 kg m
-3

 [Zuber et al., 2007; Wieczorek, 2008] and a liquid density of 1000 kg 195 

m
-3

. 196 

We calculate lake locations using the flow accumulation algorithm developed by Arnold 197 

[2010], as applied by Willis et al., [2016] for Antarctica, using gridded φ values calculated from 198 

the surface topography, inferred bed topography, and ρw value for each experiment. The 199 

calculated hydraulic potential (hereafter shortened to potential) gradient allows inferred water 200 

flow directions to be calculated for each DEM cell; the algorithm assigns each DEM cell an area, 201 

based on its own area plus the total area upstream of the cell for which water flow-lines pass 202 

through the cell. The algorithm also identifies all cells in the potential surface that are at a lower 203 

potential than all their neighbours (and which therefore act as ‘dead end’ in the flow 204 

accumulation algorithm) and defines them as ‘sink’ cells. Together, the water flow directions and 205 

sink cells allow local subglacial catchments (a group of contiguous cells which all drain toward 206 

the sink) to be determined. Sink cells also form the nucleus for possible subglacial lakes; the 207 

algorithm ‘floods’ each sink cell to find the elevation of the lowest cell in the catchment 208 

surrounding the sink cell over which water would spill into a lower potential downstream cell 209 

(and hence, into an adjacent catchment). This spill point cell defines the maximum depth 210 

(relative to the elevation of the sink cell), area, and volume of each predicted possible lake, and 211 

also allows the routing algorithm to pass the total catchment area from catchment to catchment 212 

downstream until the model reaches the edge of the ice cap. In this way, the algorithm builds up 213 

the topology of possible subglacial water flow, linking the individual catchments and lakes 214 

together into arborescent structures analogous to typical stream networks. Major drainage axes 215 

appear as distinct ‘threads’ across the potential surface with large upstream area values, meaning 216 

a large number of upstream cells ultimately feed their area through such cells. Upstream source 217 

areas, or more isolated areas, show much lower upstream area values. Cells within a lake are 218 

assigned an area equal to the total upstream area above the spill point for that lake. Lakes on the 219 

main drainage axes appear therefore as ‘beads’ of high upstream area, but even lakes in upstream 220 

or more isolated areas are easily identified as areas of uniform, locally-high upstream area 221 

values. 222 

2.2 Ice surface and bed topography 223 

For the ice surface elevation, we use the south polar MOLA gridded topographic map for 224 

Mars at 128 pixels per degree (460 m per pixel) resolution (Figure 1a; Smith et al., [2001]) in all 225 

experiments. For the bed topography, we use the MARSIS sub-spacecraft latitude and longitude, 226 

and the inferred elevation of the basal reflector (used to produce the ice thickness and hence bed 227 

elevation datasets from Plaut et al., [2007]), supplemented with the additional data reported in 228 



 

 

Orosei et al., [2018], to provide the x,y,z point-cloud data needed for interpolation of the bed 229 

DEMs. We perform our experiments for the 200 × 200 km area centered around 193°E, 81°S that 230 

contains the high-reflectance signal reported by Orosei et al., [2018]; Figure 1b. In order to 231 

facilitate direct comparison with the results reported in Orosei et al. 2018, we also adopt a north-232 

down orientation in Figure 1b and subsequent figures. 86 points from Plaut et al. [2007] fall in 233 

our study area, and allow interpolation outside the area covered by the point cloud data presented 234 

in Orosei et al. [2018]. In order to compare our results directly with those from Orosei et al., 235 

[2018], we perform the bulk of our experiments at the 200 m resolution used by Orosei et al., 236 

[2018], but we also derive DEMs at 500 m, 1000 m, 2500 m and 5000 m resolution to test the 237 

impact of DEM resolution. Following Plaut et al., [2007], we use natural neighbour 238 

interpolation, and apply noise to the MARSIS data from Orosei et al. [2018] as detailed below 239 

for our perturbation analysis. We pin the edge of the study area to the elevation taken from the 240 

overall SPLD gridded bed elevation map [Plaut et al., 2007]. 241 

The vertical resolution of the MARSIS sensor is around 100–150 m [e.g. Plaut et al., 242 

2007], controlled ultimately by the frequency and time resolution of the sensor. Inferring bed 243 

elevation from the radar returns also requires knowledge of the dielectric constant of the 244 

material; we use the values (and hence elevations) reported by Orosei et al. [2018]. The noise we 245 

apply to the data (detailed below) effectively allows us to simulate the impact of uncertainty in 246 

the dielectric constant however. The Fresnel radius (ground footprint) is ~3–5 km [Orosei et al., 247 

2018] and varies along-track and across-track. 76,800 individual data points are available within 248 

the study area, from 27 individual satellite tracks (Figure 2a). As can be seen in Figure 2a, 249 

however, the inferred SPLD thickness along the tracks varies considerably over quite short 250 

distances (well within the sensor footprint), which suggests that possible local variations in the 251 

dielectric, sensor resolution effects, or other noise sources strongly affect the inferred elevation. 252 

The along-track spacing of the points varies from ~30 to ~90 m, meaning that there is 253 

considerable footprint overlap along the tracks, and several sets of tracks are also close together, 254 

running nearly parallel to each other, or cross. This overlap between the footprints of the 255 

individual measurement points gives us information on the local variability or uncertainty in the 256 

inferred SPLD thickness in the MARSIS data. In order to estimate the statistical properties of 257 

this uncertainty, and provide a measure of the noise within the data, we identify all the points 258 

within the Fresnel radius of the sensor for each point, and use these to calculate the mean (Figure 259 

2b) and median (Figure 2c) height differences, and the standard deviation (Figure 2d) of the 260 

height differences, between each original point and the other points within the Fresnel radius. 261 

Figure 3a shows the overall distribution of in-radius elevation differences, with the 262 

calculated mean and standard deviation of height difference. It approximates a normal 263 

distribution, though with a more marked central peak. However, some individual points deviate 264 

quite markedly from their neighbours; Figure 3b-d shows the distribution for the points with the 265 

maximum (Figure 3b) and minimum (Figure 3c) mean in-radius elevation difference, and the 266 

point with the largest standard deviation (Figure 3d) of in-radius elevation difference. Of the 267 

76,800 points, 64,496 have a standard deviation of the in-radius elevation difference smaller than 268 

± 1 standard deviation for the total set. The number of in-radius points varies between 108 and 269 

2362, with a mean value of 665 in-radius points per point. 270 

We create a set of bed DEMs (shown in Figure 4 at 200 m resolution) for the hydraulic 271 

potential and flow routing calculations using the raw MARSIS points from Orosei et al., [2018], 272 



 

 

(Figure 4a); and the mean (Figure 4b), median (Figure 4c), minimum, and maximum of the 273 

elevation differences within the Fresnel radius as above. The minimum and maximum 274 

topographies were judged to be implausible due to the very large height differences produced in 275 

some areas, and are not used further. We then use a form of Monte-Carlo analysis to create a set 276 

of 1000 perturbed bed topographies by applying a random elevation change to each data point 277 

drawn from a normal distribution with the calculated mean and standard deviation of the in-278 

radius elevation differences for that point. We apply the flow accumulation algorithm to each 279 

perturbed DEM, which then allows us to calculate a probability value that any given pixel is 280 

within a lake for the set of 1000 model runs. We also create a DEM (dubbed the mean-perturbed 281 

DEM) using the mean elevation of each cell calculated from the set of individual perturbed 282 

topographies (Figure 4d). We also apply the flow accumulation algorithm to the same set of 283 

DEMs at reduced resolution, but focus mainly on the 200 m resolution results for direct 284 

comparison with Orosei et al., [2018]. 285 

Figure 4 shows that the mean, median and mean-perturbed 200 m resolution topographies 286 

are considerably smoother than that produced by the raw data. For all four, however, the impact 287 

of some of the individual satellite tracks can still be seen, such as the straight, deep trough 288 

running NNW from the S (top) edge of the area. This effect is reduced most in the mean-289 

perturbed topography, which we therefore use in the series of experiments to investigate the 290 

possible impact of variable ρw values. 291 

3 Results 292 

Figure 5 shows the common logarithm of the flow accumulation results for the four 200 293 

m resolution topographies shown in Figure 4, using ρw of 1980 kg m
-3

. 294 

Possible lake locations are seen as the broad patches with high, uniform flow 295 

accumulation values (yellows in Figure 5). The overall drainage trend across the majority of the 296 

area is towards the east-north-east (left/bottom left) in all four simulations, driven by the effect of 297 

the overall slope of the SPLD surface topography in the area (Figure 1b) on the subglacial 298 

hydraulic potential (Eq. 2). The effect of the surface scarps in the north-west (bottom right) of 299 

the area (Figure 1b) can also be clearly seen as the thinner ice downstream of the scarps leads to 300 

local low subglacial potential values which act as large possible lake locations. Away from the 301 

scarps, however, where the SPLD surface topography is much flatter, the basal topography acts 302 

as the major control on predicted possible lake locations. Depressions in the bed form the foci for 303 

numerous possible lakes, especially in the rougher raw topography DEM (Figure 5a). However, 304 

what is clear is that the area of high basal reflectance does not coincide with a substantial 305 

predicted possible lake location in any reconstruction.  306 

Figure 6 shows the 2500 km
2
 central area around the HRA in more detail. Consistently, 307 

three substantial possible lake locations are predicted nearly adjacent to the HRA; an irregularly 308 

shaped lake to the south-west (upper right) of the HRA; a rounder lake to the east (left), and a 309 

lake with a more variable extent to the south-east (upper left). For the raw topography DEM, 310 

several smaller lake locations are predicted within the HRA. These have lower flow 311 

accumulation values than the three larger adjacent lakes, however, and are topologically more 312 

isolated. In topological terms, the SW lake is linked to the E lake via a drainage axis running 313 

through the HRA from W to E in the mean and mean perturbed topographies (Figures 6b and d). 314 



 

 

For the raw topography DEM (Figure 6a), the SW lake flows into the SE lake, and then to the E 315 

lake, with the predicted drainage axis touching the southern tip of the HRA. For the median 316 

topography DEM (Figure 6c), the routing is different again. The SW lake extends beyond the 317 

southern (top) edge of the study area, and flow is directed into the southern edge of the SE lake 318 

(outside the area shown in the figure), and then to the E lake; no substantial drainage axis crosses 319 

the HRA. 320 

Figure 7a shows the probability values (P) for whether any given pixel is part of a 321 

possible lake from the set of 1000 perturbed topography runs. P is calculated by dividing the 322 

number of runs in which a pixel is calculated to be within a lake by the total number of runs. 323 

Thus, P = 0 for a pixel which was never calculated to be in a lake and P = 1 for a pixel which 324 

was calculated to be in a lake in all simulations. Here, the overall position of the three large 325 

adjacent predicted possible lakes is robust to perturbation using the calculated elevation variation 326 

statistics, although their exact extents vary (with the edges of the lakes having lower pixel 327 

probabilities), particularly for the southern extent of the SW lake. A small but persistent lake also 328 

appears in the southern part of the HRA that is less apparent in the single topography 329 

calculations (Figures 5 and 6). The individual satellite tracks are visible, as small predicted 330 

possible lakes will form in some topographies when an individual point is randomly moved 331 

downwards by a large amount, producing a deep, small depression, or when nearby points are 332 

moved upwards producing a depression between them. Figure 7b shows the mean flow 333 

accumulation values for the 1000 perturbed-topography runs. This again shows the persistence of 334 

the main predicted possible lakes; the lake edges are less sharp than for the single-topography 335 

runs, as pixels nearer the margins which are only calculated to be in lakes in some perturbed 336 

topographies will have lower mean flow accumulation values. There is also some blurring of the 337 

main drainage axes as calculated routing between the lakes will vary between the different 338 

perturbed topographies, but again, a drainage axis running W-E across the southern part of the 339 

HRA is visible, as occurs in the mean and mean-perturbed topographies (Figures 5 and 6b and 340 

d). 341 

Figures 7c–f show the results for the variable liquid and ice density experiments. Figure 342 

7c shows the probability that any given pixel is part of a lake and Figure 7d shows the mean flow 343 

accumulation values for the 11 variable liquid density runs. Figure 7e shows the results for the rw 344 

= 1000 kg m
-3

 run, and Figure 7f the results for the ri = 1200 kg m
-3

 and rw =1000 kg m
-3

 run. As 345 

implied by Eq. 2, for lower-density liquid the impact of bed topography is heavily reduced, and 346 

the surface slope dominates. For rw = 1000 kg m
-3

, calculated lake occurrence in the vicinity of 347 

the HRA is virtually eliminated (Figure 7e). As liquid density increases, the SE lake begins to 348 

form at the lowest liquid density, and increases in extent most rapidly, as shown by the largest 349 

area of high probability (Figure 7c) and the largest area of high (bright yellow) mean flow 350 

accumulation values (Figure 7d). The SW and E lakes only become more extensive for inferred 351 

density > ~1600 kg m
-3

, with smaller areas of high probability (Figure 7c) and high mean flow 352 

accumulation values (Figure 7d). The drainage axis from the SW to E lake through the HRA is 353 

present in all variable-density runs (Figure 7d). For the run with ri = 1200 kg m-3 and rw =1000 354 

kg m-3 (Figure 7f), the overall pattern of flow is similar to the rw = 1000 kg m
-3

 run (Figure 7e) 355 

particularly within the HRA, which shows no predicted lake occurrence. The small predicted 356 

lake upstream of the location of the SE lake is caused by the increased impact of the thicker ice 357 

over the deep bed depression in this area preventing water from being routed through the 358 

depression, forcing water to flow around the bed depression. 359 



 

 

Figure 8 shows the mean flow accumulation values from the set of 1000 reduced 360 

resolution perturbed-topography runs (the equivalent to the 200 m resolution results shown in 361 

Figure 7b). These clearly show that resolution does not affect the location of the predicted 362 

possible lakes, nor the route of the drainage axis from the SW to E lake through the HRA. Only 363 

at the coarsest resolution (5000 m, Figure 8d) does the pattern start to break down somewhat, 364 

with the SW and E lakes remaining as separate entities, but linked by a much broader drainage 365 

axis through the HRA. 366 

4 Discussion 367 

Mapping the locations of depressions in subglacial hydraulic potential surfaces has 368 

proved very successful in terms of predicting the location of subglacial lakes and drainage axes 369 

on Earth. The robust results reported here, which show that the HRA beneath the SPLD does not 370 

occupy such a depression, but occurs within 10 to 20 km of three such possible depressions 371 

which do not show high radar reflectances [Orosei et al. 2018], therefore seems anomalous. 372 

However, there are critical differences between the vast majority of terrestrial subglacial lakes 373 

and a hypothesized lake (or area of basal liquid) beneath the SPLD. Almost all known subglacial 374 

lakes on Earth are fed by meltwater which flows into the lake basin from upstream, delivered by 375 

an active subglacial drainage system that covers the ice sheet bed, which is at the pressure 376 

melting point, over wide areas. For Antarctica, where large numbers of subglacial lakes are 377 

known to exist, the main water source is basal melt. Numerical modeling suggests mean 378 

subglacial melt rates around 2–5 mm yr
-1

 beneath Antarctica, with some fast flowing areas 379 

reaching several hundred mm per year [e.g. Willis et al., 2016; Pattyn 2010, Llubes et al., 2006]. 380 

Basal melt is generated by a combination of strain heating and geothermal heat flux; West 381 

Antarctica in particular exhibits some of the highest melt rates, as it is thought to have relatively 382 

high geothermal heat flux of over 120 mW m
-2

 in places (versus a continent-wide average value 383 

of 30-60 mW m
-2

) [Martos et al., 2017], and contains areas of very fast-moving ice which 384 

generate large amounts of strain heating. These high basal melt rates lead to sometimes very 385 

substantial water fluxes [over 1 km
3
 yr

-1
, Willis et al., 2016] into some active lakes near the 386 

margins of Antarctica, which can trigger cyclic drainage events which have been observed 387 

through their impact on the surface topography of the ice sheet [e.g. Wingham et al., 2006, 388 

Fricker et al., 2007]. Such conditions are therefore very different from those at the base of the 389 

SPLD. 390 

As well as subglacial lakes with large catchments fed by near-ubiquitous basal melt (such 391 

as beneath Antarctica), subglacial lakes directly fed by localized high geothermal heat fluxes are 392 

known to exist on Earth. The most widely studied is Grimsvötn, a subglacial lake beneath 393 

Vatnajökull, a large ice cap in SW Iceland. This lake is known to fill due to subglacial melt 394 

driven by very high geothermal heating [estimated at 35–40 W m
-2

, Björnsson and 395 

Guðmundsson, 1993], and then drain catastrophically when the lake volume exceeds a threshold. 396 

Subglacial hydrological theory has proved rather successful at predicting the discharge 397 

hydrographs of these drainage events [e.g. Nye, 1976; Spring and Hutter, 1981, Fowler, 1999], 398 

and even (though with less certainty) the triggers of the drainage events [Fowler, 1999]. The key 399 

finding from Grimsvötn is that the lake forms in a topographic depression beneath the ice, which 400 

causes a low in the subglacial hydraulic potential. The lake surface, however, can reach a higher 401 

elevation than the top of the topographic lip of the basin as the subglacial potential increases in 402 

front of the lake due to thicker ice downstream. This reversed potential slope impounds the lake, 403 



 

 

not the bed topography in itself. At some critical water level, however, the potential gradient 404 

reverses and the lake drains catastrophically, as the large water discharge enables rapid growth of 405 

an efficient subglacial drainage system. These drainage events result in catastrophic floods 406 

(jökulhlaups) beyond the ice cap margin, and result in the formation of pronounced cauldrons on 407 

the ice cap surface. 408 

Figure 9 shows the surface and basal topography, and subglacial hydraulic potential, for a 409 

transect through the HRA located on the drainage axis between the SW and E depressions 410 

beneath the SPLD (shown in Figure 7b). The reverse gradient in subglacial potential that 411 

impounds the two predicted lakes can be clearly seen, but no such reverse gradient exists for the 412 

region occupied by the HRA. 413 

In addition to local melt, Grimsvötn is thought to also receive melt from upstream [e.g. 414 

Fowler, 1999]; the ice cap is also at the pressure melting point, so once discharge from the lake 415 

is underway, no thermal barrier exists to prevent drainage. This also contrasts strongly with the 416 

situation beneath the SPLD. If locally-raised geothermal heating is necessary to raise the basal 417 

ice to the melting point [Sori and Bramson, 2019], the rate of filling of any putative lake would 418 

be far slower. This is because of the lower likely geothermal heating, more rapid loss of heat 419 

through the much colder ice within the SPLD, and the lack of any upstream catchment to feed 420 

additional melt into the hypothesized lake. The inferred liquid beneath the SPLD therefore seems 421 

to be trapped by a thermal ‘dam’, rather than by variations in the potential surface. This perhaps 422 

makes it less likely that the HRA is a true subglacial lake, in the sense of being constrained by 423 

topography. 424 

The geophysical model results presented by Sori and Bramson [2019] show geothermal 425 

heating rising rapidly (over ~0.5 Myr) after the intrusion of a magma chamber beneath the HRA, 426 

and then falling more slowly (over the subsequent 1–2 Myr). If the HRA is indeed geothermally-427 

heated liquid, it could therefore currently be on the ‘rising limb’ of heating, and getting larger; at 428 

its peak extent (though perhaps this is the least likely scenario due to the shorter duration of peak 429 

heating); or on the ‘falling limb’, and shrinking. If the former is the case, and the extent of basal 430 

melt increases in the future such that the area expands to encompass our predicted depressions in 431 

the potential surface, then we can speculate whether such an occurrence would allow a ‘true’ 432 

subglacial lake, pinned by the topography, to form. We can also speculate if a rapid drainage 433 

event of this lake would occur if it reached some critical volume threshold. In the latter case, and 434 

especially if a drainage event had occurred in the past, it could be the case that some topographic 435 

signature on the surface of the SPLD might be manifest. Whilst Icelandic subglacial volcanism 436 

can produce cauldrons several hundred meters deep for ice typically up to ~500 m thick, 437 

numerical modeling [e.g. Evatt and Fowler, 2007] and observations [e.g. Wingham et al., 2006, 438 

Fricker et al., 2007, 2009] suggest changes in surface topography of a few metres for lakes of 439 

similar size to the HRA for the thicker ice, and pressure-driven drainage events, known to occur 440 

for Antarctic subglacial lakes. Such topographic signatures would be difficult to detect on the 441 

SPLD, but could perhaps be detected in derivatives of the highest resolution MOLA elevation 442 

data. Currently no such anomalous topography can be discerned on the ice surface over the 443 

HRA. 444 

Our results do not suggest that the explanation of the HRA being caused by the presence 445 

of liquid water [Orosei et al., 2018] is any more or less likely due to it not being in a depression 446 



 

 

within the calculated subglacial potential surface. Our results also suggest that spatially-limited 447 

geothermal heating seems unlikely to produce an active subglacial drainage system capable of 448 

sustaining flow across parts of the bed, but rather that spatially-limited heating may produce melt 449 

which is pinned in-situ by the surrounding frozen base. This suggests that more extensive basal 450 

melting, driven by a combination of a larger area of higher geothermal heating, thicker ice and 451 

warmer surface temperatures (all of which were more probable earlier in Mars’ history, and in 452 

agreement with previous palaeo-environmental reconstructions [e.g. Fastook et al., 2012; 453 

Scanlon et al., 2018]), would be required for the occurrence of an active subglacial drainage 454 

system capable of moving large quantities of sediment, and therefore of forming the ancient 455 

[~3.5–3.6 Ga; Kress and Head 2015; Bernhardt et al., 2013] putative eskers in the south polar 456 

Dorsa Argentea Formation and Argyre Planitia [e.g., Butcher et al., 2016; Bernhardt et al., 457 

2013]. In the case of the younger (110–150 Ma) esker systems observed in Mars’ mid-latitudes 458 

[Gallagher and Balme, 2015, Butcher et al., 2017], however, widespread subglacial melt seems 459 

less likely given the colder Martian climate in the Amazonian. Mid-latitude glaciers are thought 460 

to have been more extensive during periods of high obliquity, however [e.g. Baker and Head 461 

2015], which would tend to warm the basal ice directly, and could lead to higher strain heating 462 

due to larger basal shear stress [Butcher et al., 2017]. Coupled with locally elevated geothermal 463 

heat, this would make it more likely for the basal ice to reach the melting point in the area above 464 

the geothermal anomaly, especially if salts lowered the melting point of the basal ice. Were the 465 

melting to occur over a large enough area, this liquid might begin to flow down the potential 466 

surface or become impounded in depressions in the subglacial hydraulic potential surface as 467 

topographically-constrained subglacial lakes. The number and extent of such depressions in the 468 

potential surface would be increased if the basal liquid consisted of high-density brine. The 469 

possible growth of any such lakes during the onset-to-peak phase of heating could lead to them 470 

filling the depressions in the potential surface, possibly reaching the threshold size needed for 471 

catastrophic drainage to occur. This would seem likely to mobilise large quantities of sediment, 472 

leading to possible esker formation in a transient subglacial drainage system. Such a mechanism 473 

could help explain the occurrence, size, and also the rarity, of modern mid-latitude Martian 474 

eskers. 475 

5 Conclusions 476 

Our results show that the HRA reported by Orosei et al., [2108] beneath the Martian 477 

SPLD does not occupy a depression in the subglacial hydraulic potential surface as calculated 478 

using subglacial hydraulic theory and the surface and basal topographies. This finding is robust 479 

to random perturbations of the bed DEM using the mean and standard deviation of elevation 480 

difference (calculated from the set of points within the Fresnel radius for each point), to different 481 

interpolation resolutions, and to different assumed densities for the inferred liquid layer. For the 482 

latter case, a higher assumed density increases the effect of the bed topography on the subglacial 483 

potential surface, as expected from subglacial hydraulic potential theory (Eq. 2, Shreve, [1972]), 484 

and makes predicted lake locations both larger in extent, and more numerous. Three substantial 485 

depressions in the potential surface, with areas between one-third and three-quarters of the area 486 

of HRA, are predicted to occur within ~20 km of the HRA, and a major drainage axis in the 487 

potential surface crosses the HRA in over 90% of the perturbed topographies, a topography 488 

calculated using the mean in-radius elevation, and a topography calculated from the mean 489 

elevation of the set of 1000 perturbed topographies. The areas occupied by these depressions do 490 



 

 

not show high radar reflectance in the MARSIS data, and therefore show no sign of liquid water 491 

[Orosei et al. 2018]. 492 

The methodology we develop here to acknowledge the uncertainty in radar-derived bed 493 

elevation data adds confidence to our findings. Flow accumulation calculations require the 494 

gradient in the bed elevation to be calculated, and as such are very sensitive to noise in the point-495 

cloud data used to produce interpolated DEMs. Assessing the local variation in the inferred 496 

topography using the inherent spatial overlap between the individual sensor measurements 497 

(given the large footprint on the MARSIS instrument relative to the measurement frequency) 498 

allows us to calculate the statistical properties of the bed elevation estimates around each original 499 

point, and hence of the uncertainties in the estimated bed elevation. These statistics then allow 500 

realistic random noise values to be added to the point-cloud data in a form of Monte-Carlo 501 

analysis, which allows the calculation of both the mean elevation of pixels in the individual 502 

perturbed topographies, and the mean values from any analysis using the individual perturbed 503 

topographies. For analyses that require the gradient of the topography to be calculated, this 504 

procedure adds valuable robustness to the calculated values. 505 

We suggest that if the HRA is due to the presence of liquid water, or at least water-506 

saturated basal sediments, the location of the HRA seems likely to be due to locally-forced in-507 

situ basal melting, rather than the melt occurring elsewhere and the resulting liquid then 508 

collecting in an area of low hydraulic potential as is typical for terrestrial subglacial lakes. This 509 

supports the argument made by Sori and Bramson [2019] that localized geothermal heating is the 510 

heat source required for melt to occur. Given that the subglacial potential surface in the HRA 511 

does not show any substantial depressions, but instead seems to include a major predicted 512 

drainage axis, the area of inferred basal melt seems to be pinned in-situ, presumably by the 513 

surrounding cold-based ice which acts as an effective aquiclude and prevents movement of the 514 

liquid down the subglacial potential surface. We suggest that the HRA does not represent a ‘true’ 515 

subglacial lake, pinned by topography, but that if it does represent liquid water, it is more likely 516 

to be a brine-enriched sludge, or to consist of shallow (but spatially extensive) brine pools as 517 

suggested by Orosei et al. [2018]. 518 
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Figure Captions 688 

Figure 1. a. Map of the SPLD, showing the region containing the HRA argued to be subglacial 689 

liquid by Orosei et al., [2018]. The surface topography is taken from the MOLA topographic 690 

dataset [Smith et al., 2001]. The black contour shows the outline of the late Amazonian polar cap 691 

(lApc) unit [Tanaka et al., 2014]; the black square delineates the area investigated in Orosei et 692 

al., [2018], and which we investigate in this study. b. MOLA surface topography of the study 693 

area highlighted by the black square in a. The red contour shows the location of the HRA 694 

reported by Orosei et al., [2018]. Color scale for both maps shows MOLA elevation in m; X and 695 

Y axes in B are distances in km from the center of the study area. 696 

Figure 2. MARSIS points for the 200 × 200 km area containing the HRA (red contour) reported 697 

by Orosei et al., [2018], shown in Figure 1. a. Unadjusted (raw) bed elevation (m). b-d. Mean 698 

(b), median (c) and standard deviation (d) of elevation difference (m) between each point and the 699 

set of points within the sensor Fresnel radius. X and Y axis units are km from the center of the 700 

area; color scale units are meters. Dots are scaled to the Fresnel radius of ~4 km. 701 

Figure 3. Frequency distributions of the elevation differences for each point and its neighbours 702 

within the Fresnel radius for that point. a. Overall distribution for all points. b. The point with 703 

the maximum mean elevation difference. c. The point with the minimum mean elevation 704 

difference. d. The point with the maximum standard deviation of elevation difference. X axis 705 

units are meters of elevation difference; Y axis units are point counts. Red line shows the best-fit 706 

normal distribution. 707 

Figure 4. Gridded 200 m topography of study area sub-ice bed based on: a. raw MARSIS radar 708 

data (Figure 2a, Orosei et al., [2018]; b-c: mean (b) and median (c) elevation of all points in the 709 

Fresnel radius of each original point (Figure 2b-c); d. mean elevation of the 1000 perturbed 710 

topographies (see text). X and Y axis units are km from the center of the area; color scale shows 711 

elevation in meters. The red contour shows the HRA reported by Orosei et al., [2018]. 712 

Figure 5. Calculated flow accumulation values at 200 m resolution for: a. Interpolated raw 713 

topography. b. Mean in-radius topography. c. Median in-radius topography. d. Mean-perturbed 714 

topography (see text). X and Y axis units are km from the center of the area; color scale units are 715 

the common logarithm of the upstream area flowing into each cell in km
2
. The red contour shows 716 

the HRA reported by Orosei et al., [2018]. 717 

Figure 6. Calculated flow accumulation grids at 200 m resolution for the central region around 718 

the HRA: a. Interpolated raw topography. b. Mean in-radius topography. c. Median in-radius 719 

topography. d. Mean-perturbed topography (see text). X and Y axis units are km from the center 720 

of the area; color scale units are the common logarithm of the upstream area flowing into each 721 

cell in km
2
. The red contour shows the HRA reported by Orosei et al., [2018]. 722 

Figure 7. a-b. Results of the 1000 perturbed-topography experiments at 200 m resolution a. 723 

Probability value that any given DEM cell is within a lake for the set of 1000 perturbed-724 

topography runs. b. Mean upstream area for the flow accumulation algorithm results. c-f. Results 725 

of the variable liquid and ice density experiments using the 200 m mean-perturbed topography 726 

(shown in Figure 4d). c. Probability value that any given DEM cell is within a lake for the 727 



 

 

variable liquid density experiments. d. Mean upstream area for the flow accumulation algorithm 728 

runs. e. Calculated flow accumulation grid for the ρw = 1000 kg m
-3

 experiment with standard ρi. 729 

f. Calculated flow accumulation grid for the ρi = 1200 kg m
-3

, ρw = 1000 kg m
-3

 experiment. 730 

Color scale units for a and c are probability values; P = 0 shows a pixel was never calculated to 731 

be in a lake; P = 1 shows a pixel was calculated to be in a lake in all simulations. Color scale 732 

units for b, d, e and f are the common logarithm of the upstream area flowing into each cell in 733 

km
2
. X and Y axis units are km from the center of the area. The red contour shows the HRA 734 

reported by Orosei et al., [2018]. Black line labeled X–Y in Panel B shows the location of the 735 

transect shown in Figure 9. 736 

Figure 8. Mean upstream area for the set of 1000 reduced resolution perturbed topography runs. 737 

a. 500 m resolution. b. 1000 m resolution. c. 2500 m resolution. d. 5000 m resolution. Color 738 

scale units are the common logarithm of the upstream area flowing into each cell in km
2
. X and 739 

Y axis units are km from the center of the area. The red contour shows the HRA reported by 740 

Orosei et al., [2018]. 741 

Figure 9. Cross-section through the HRA along transect X–Y shown in Figure 7b. Basal 742 

topography is from the 200 m mean-perturbed DEM. The black arrow shows the extent of the 743 

HRA. Note the discontinuity in the left-hand Yaxis to improve visibility of the basal topography. 744 
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Figure 9. 778 
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