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a b s t r a c t

For any class C of bipartite graphs, we define quasi-C to be the class of all graphs G such
that every bipartition of G belongs to C. This definition is motivated by a generalisation
of the switch Markov chain on perfect matchings from bipartite graphs to nonbipartite
graphs. The monotone graphs, also known as bipartite permutation graphs and proper
interval bigraphs, are such a class of bipartite graphs. We investigate the structure of
quasi-monotone graphs and hence construct a polynomial time recognition algorithm
for graphs in this class.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In [6] (with Jerrum) and [7] we considered the switch Markov chain on perfect matchings in bipartite and nonbipartite
graphs. This chain repeatedly replaces two matching edges with two non-matching edges involving the same four vertices,
if possible. (See [6,7] for details.) We considered the ergodicity and mixing properties of the chain.

In particular, we proved in [6] that the chain is rapidly mixing (i.e. converges in polynomial time) on the class of
monotone graphs. This class of bipartite graphs was defined by Diaconis, Graham and Holmes in [5], motivated by statistical
applications of perfect matchings. The biadjacency matrices of graphs in the class have a ‘‘staircase’’ structure. Diaconis
et al. conjectured the rapid mixing property shown in [6]. We also showed in [6] that this class is, in fact, identical to
the known class of bipartite permutation graphs [15], which is itself known to be identical to the class of proper interval
bigraphs [10], see also [4].

In extending the work of [6] to nonbipartite graphs in [7], we showed that the rapid mixing proof for monotone graphs
extends easily to a class of graphs which includes, besides the monotone graphs themselves, all proper, or unit, interval
graphs [1]. In this class the bipartite graph given by the cut between any bipartition of the vertices of the graph must be
a monotone graph. We called these graphs quasimonotone.

In fact, ‘‘quasi-’’ is an operator on bipartite graph classes, and can be applied more generally. In this view, quasimono-
tone graphs are quasi-monotone graphs, as formally defined in Section 2, and discussed in Section 2.1.

For any class of bipartite graphs that is recognisable in polynomial time, the definition of its quasi-class implies
membership in co-NP and deterministically only an exponential time recognition algorithm. Thus an immediate question
is whether we can recognise the quasi-class in polynomial time. The main contribution of this paper is a proof that
quasimonotone graphs have a polynomial time recognition algorithm.

✩ A preliminary version of this paper appeared in the Proceedings of WG 2018 (Dyer and Müller 2018). Research supported by EPSRC grant
EP/S016562/1.
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1.1. Definitions and notation

If G is a graph, we will denote its vertex set by V [G], and its edge set by E[G]. If U ⊆ V [G], then G[U] will denote the
subgraph induced by U . To ease the notation we do not distinguish between U and the subgraph it induces in G where
this does not cause ambiguity. So a cycle in G is either a subgraph or the set of its vertices. Similarly, we will write G = H
when G is isomorphic to H .

A subgraph of G = (V , E) is a cycle in G if it is connected and 2-regular. The length or size of a cycle is the number of
its edges (or vertices). A chord of a cycle (U, F ) in (V , E) is an edge in U (2)

∩ E \ F . A chord in a cycle of even length is
odd if the distance between its endpoints on the cycle is odd. That is, an odd chord splits an even cycle into two smaller
cycles of even length. An even chord splits an even cycle into two smaller cycles of odd length.

A hole in a graph is a chordless cycle of length at least five. A cycle of length three is a triangle, and a cycle of length
four a quadrangle. A hole is odd if it has an odd number of vertices, otherwise even. Let HoleFree be the class of graphs
without a hole, and EvenHoleFree the class of graphs without even holes. For the purposes of this paper, a long hole will
be defined as an odd hole of size at least 7.

A bipartition L, R of a set V is such that L ⊆ V and R = V \ L. Then, if G = (V , E) is any graph, the graph G[L:R] is the
bipartite graph with vertex bipartition L, R, and edge set the cut L:R = {xy ∈ E : x ∈ L, y ∈ R}. We refer to G[L:R] as a
bipartition of G.

The distance dist(u, v) between two vertices u and v is the length of a shortest (u, . . . , v) path in G. If H is an induced
subgraph of G, and x, y ∈ H , we denote the distance from x to y in H by distH (x, y). If v ∈ V , dist(v,H) is the minimum
distance dist(v, w) from v to any vertex w ∈ H . The maximum distance between two vertices in G is the diameter of G.

If G = (V , E) and v ∈ V , we denote the neighbourhood of v by N(v), and N(v) ∪ {v} by N[v].

1.2. Structure of the paper

The focus of the paper, of which [8] is an extended abstract, is on the class of quasimonotone graphs. In Section 2
we discuss a generalisation of the construction of the class and some immediate properties. In Section 2.1 we give some
examples.

Section 3 shows that quasimonotone graphs can be recognised in polynomial time. We begin, in Section 3.1, by proving
some properties of quasimonotone graphs for later use, using the characterisation of monotone graphs by forbidden
induced subgraphs. The anticipated recognition algorithm first looks for flaws (defined in 3.1) and then branches into
different procedures depending on the length of a short hole (defined in 3.3) in the input graph. We describe how to find
such a hole in 3.3. The remaining forbidden subgraphs are pre-holes, also defined in 3.1.

Sections 4 and 5 deal with graphs containing a long hole. Again we start with some technical lemmas showing that
the long hole enforces an annular structure in the absence of flaws. The structure is determined by splitting, described in
5.1. Possible pre-holes must wind round this annulus once or twice. We complete the process by checking for pre-holes,
using a procedure given in 5.2.

If there is no long hole we can list all the triangles and 5-holes in the input graph. In this case a shortest pre-hole
consists of two of these odd cycles and two vertex-disjoint paths between them. We describe this in more detail in
Section 6.

Section 7 summarises the algorithm with a formal description, and discusses its running time.
In Section 8, we give a short discussion of a central question raised in the paper, recognising a pre-hole in an arbitrary

graph. Though we do not settle this question, we show that a related question is NP-complete. That is, given a graph, is
it a pre-hole?

Finally, Section 9 concludes the paper.

2. Quasi-classes and pre-graphs

A hereditary class of graphs is closed under taking induced subgraphs. Let Bipartite denote the class of bipartite graphs,
and let C ⊆ Bipartite. Then we will say that the graph G is quasi-C if G[L:R] ∈ C for all bipartitions L, R of V .

Lemma 1. If C ⊆ Bipartite is a hereditary class that is closed under disjoint union then C = Bipartite ∩ quasi-C.

Proof. First let G = (L ∪ R, E) be any bipartite graph that does not belong to C. Since G = G[L:R] the graph G does not
belong to quasi-C. Hence C ⊇ Bipartite ∩ quasi-C.

Next we show C ⊆ Bipartite ∩ quasi-C. Let G = (X ∪ Y , E) be a graph in C and let L:R be a bipartition of X ∪ Y . Now
G[L:R] is the disjoint union of G1 = G[(X ∩ L) ∪ (Y ∩ R)] and G2 = G[(X ∩ R) ∪ (Y ∩ L)]. The graphs G1 and G2 belong to C
since the class is hereditary, and hence G[L:R] is in C because C is closed under disjoint union. Thus G ∈ quasi-C. □

A hereditary graph class can be characterised by a set F of forbidden subgraphs. The set F is minimal if no graph in
F contains any other as an induced subgraph.

For a bipartite graph H , a graph G = (V , E) is a pre-H if there is a bipartition L, R of V such that G[L:R] = H . In this
case H is a spanning subgraph of G. Clearly any bipartite H is itself a pre-H .
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Fig. 1. The pre-P4 ’s: the path P4 , the paw and the diamond.

Lemma 2. If C ⊆ Bipartite is characterised by a set F of forbidden induced subgraphs, let pre-F = {pre-H | H ∈ F}. Then
quasi-C is characterised by the set of forbidden induced subgraphs pre-F .

Proof. Suppose G = (V , E) contains H ′ = (V ′, E ′), a pre-H for some H ∈ F . Then V ′ has a bipartition L′, R′ such that
H ′[L′: R′] = H . Extending L′, R′ to a bipartition L, R of V , G[L:R] contains H . Then G[L:R] /∈ C, so G /∈ quasi-C. Conversely, if
G ∈ quasi-C, every G[L:R] ∈ C, so no G[L:R] contains H , for any H ∈ F . Thus G contains no pre-H , for any H ∈ F , that is,
no H ′ ∈ pre-F . □

Note, however, that pre-F may not be minimal for quasi-C when F is minimal for C.

2.1. Examples

The class quasi-Bipartite is clearly the set of all graphs.
If C is the class of complete bipartite graphs, it is easy to see that quasi-C is the class of complete graphs. Note however,

that this class is not closed under disjoint union. Now, if C becomes the class of graphs for which every component is
complete bipartite, then quasi-C is the class of graphs without P4, paw or diamond. These three graphs are the pre-P4’s,
see Fig. 1. To see this we observe the following:

• If a graph G contains a pre-P4 then there is a bipartition G[L:R] that contains a P4 as induced subgraph. A connected
component of G[L:R] containing such a P4 is not complete bipartite.
• Now G does not contain a pre-P4. If a connected component H of a bipartition of G is not complete bipartite, then

H contains a P4, contradicting the fact that G does not contain a pre-P4.

Bounded-degree graphs give another example. If Cd is the class of bipartite graphs with degree at most d, for a fixed
integer d > 0, then quasi-Cd is the class of all graphs with degree at most d. To see this note that, if v has degree at most d
in G, then v has degree at most d in any G[L:R]. Conversely, if v has degree d′ > d, then v also has degree d′ in any G[L:R]
such that v ∈ L, N(v) ⊆ R. The unique forbidden subgraph for Cd is clearly the star K1,d+1. Therefore, the class quasi-Cd is
characterised by forbidding pre-K1,d+1’s, a set with size O(d2). Hence quasi-Cd can be recognised in polynomial time, for
fixed d.

A less obvious example is for the class C of linear forests, which are disjoint unions of paths. Its quasi-class contains all
graphs with connected components that are either a path or an odd cycle.

ChordalBipartite is the class of bipartite graphs in which every cycle of length at least six has a chord. OddChordal
is the class of graphs in which every even cycle of length six or more has an odd chord. We show in [7] that quasi-
ChordalBipartite = OddChordal. However, the complexity of the recognition problem for the class OddChordal is
open, even though the class ChordalBipartite can be recognised in almost linear time [13]. More generally, polynomial
time recognition of C does not directly imply the same property for quasi-C. All we can assert is membership in co-NP,
by guessing a bipartition L, R and showing in polynomial time that G[L:R] /∈ C.

Finally, as remarked above, if Monotone is the class of monotone graphs and Quasimonotone is the class of
quasimonotone graphs, then quasi-Monotone = Quasimonotone, by definition. Most of this paper examines the structure
and polynomial time recognition of graphs in this class. As we have remarked, the linear-time recognition of Monotone
has little relevance to this issue.

A further example, Quasichains, is discussed in [7]. It is the quasi-class arising from unions of chain graphs (defined
in 5.1), so Quasichains ⊂ Quasimonotone.

Note that quasi-C does not necessarily inherit the properties as C. For example, consider perfection. Since C ⊆ Bipartite,
C ⊂ Perfect, the class of perfect graphs. But every bipartition of an odd hole is a linear forest. Thus, for any bipartite
superclass of linear forests, the quasi-class contains odd holes, which are imperfect. In particular, this holds for the class
Quasimonotone. However, if C is hereditary, closed under disjoint union, since C ⊆ quasi-C and fails to have some
property, then clearly quasi-C cannot have the property. Thus Quasimonotone is not closed under edge deletions, since
Monotone is not.

However, if C is closed under edge deletions, so is quasi-C. To see this note that, for G′ = G \ e, either G′[L:R] = G[L:R]
or G′[L:R] = G[L:R] \ e holds, so G′[L:R] ∈ C, and hence G′ ∈ quasi-C.

On the other hand, if C is closed under edge contraction, quasi-C is unlikely to have this property. Any class which
includes the cycle of length ℓ, but excludes the cycle of length ℓ′ < ℓ, is clearly not closed under edge contraction. Thus
quasi-LinearForests is not closed under edge contraction, even though LinearForests is, since it includes all odd cycles,
but no even cycle. In particular, quasi-C is unlikely to be minor-closed, even when C has this property, since this requires
closure under edge contractions.
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Fig. 2. The tripod, the stirrer and the armchair.

Fig. 3. Two quasimonotone graphs.

3. The structure of quasimonotone graphs

3.1. Flaws and pre-holes

A bipartite graph is monotone if and only if the rows and columns of its biadjacency matrix can be permuted such that
the ones appear consecutively and the boundaries of these intervals are monotonic functions of the row or column index.
That is, all the ones are in a staircase-shaped region in the biadjacency matrix. Equivalent characterisations exist, see [12]
(Lemma 1.46 on page 52) or [2] (Proposition 6.2.1 on page 93):

• A graph is monotone if and only if it is AT-free bipartite.
• A bipartite graph is monotone if and only if it does not contain a hole, tripod, stirrer or armchair as induced subgraph.

The tripod, stirrer and armchair are depicted in Fig. 2.

For references to further characterisations see [4]. Monotone graphs are also called bipartite permutation graphs [15] and
proper interval bigraphs [10].

We let Monotone denote the class of monotone graphs, and then we let Quasimonotone denote the class
quasi-Monotone. Two example graphs are shown in Fig. 3.

Let Flaw be the class containing all pre-tripods, pre-stirrers and pre-armchairs. We will say that any graph in Flaw is
a flaw. A flawless graph G will be one which contains no flaw as an induced subgraph. Since all flaws have seven vertices,
we can test in O(n7) time whether an input graph G on n vertices is flawless. Let Flawless denote the class of flawless
graphs.

Therefore, quasimonotone graphs are characterised by the absence of pre-holes, pre-tripods, pre-stirrers and pre-
armchairs. Let Quasimonotone be the class of quasimonotone graphs.

Clearly Quasimonotone ⊆ EvenHoleFree ∩ Flawless, but equality does not hold, as we now discuss.
Let P = (p1, p2, . . . , pℓ) be a path in G. The alternating bipartition L, R of P assigns L = {p1, p3, . . .} and R = {p2, p4, . . .}.

We will say that P is pre-chordless if it is an induced path in G[L:R]. In particular, any induced path in G is pre-chordless.
Similarly, let C = (p1, p2, . . . , pℓ) be an even cycle in G. Then C is a pre-hole if it is a hole in G[L:R]. Thus C must be an
even cycle, and all chords must run between L and L or R and R in an alternating bipartition L, R of C . This is equivalent
to requiring that C has no odd chord. The alternating partition is inconsistent for an odd cycle, so an odd cycle C cannot
be a pre-hole.

From this discussion, it is clear that G contains no pre-hole if and only if it is odd-chordal, as defined in Section 2.1.
Hence Quasimonotone = Flawless ∩ OddChordal. Given an input graph G, we wish to test whether or not G ∈
Quasimonotone. We can test whether G ∈ Flawless in polynomial time, but we do not know how to determine whether
G ∈ OddChordal. Thus it is not clear that this Quasimonotone can be recognised in polynomial time, since pre-holes can
be of arbitrary size in Flawless. See Fig. 4 for a family of such pre-holes.

The main contribution of this paper will be to show that the recognition problem for Quasimonotone is indeed in
polynomial time. We will not be too concerned with the efficiency of our algorithm beyond polynomiality, so the bounds
we prove will often be far from optimal.
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Fig. 4. An infinite family of pre-holes.

Fig. 5. Cases in the proof of Lemma 3.

Fig. 6. Cases in the proof of Lemma 5.

3.2. Properties of flawless graphs

First we prove a useful lemma about graphs in Flawless.

Lemma 3. Let G ∈ Flawless. Let P = (p1, p2, p3, p4, p5, p6, p7) be a pre-chordless path in G, (p2, p3, p4, p5, p6) be a hole in
G, or (p1, p2, p3, p4, p5, p6) be a pre-hole in G. If v /∈ P is such that dist(v, P) = dist(v, p4), then dist(v, p4) = 1.

Proof. Since dist(v, P) = dist(v, p4) the shortest path from v to p4 cannot use any edge of P . Therefore, suppose, without
loss of generality, that dist(v, P) = 2, and (v, u, p4) is the shortest path from v to P . Consider the alternating bipartition
of P extended to u ∈ R and v ∈ L, as shown by the black (L) and white (R) vertices in Fig. 5. There are no edges from v to
P , since dist(v, P) > 1, and there are no edges between vertices of P in G[L:R], since P is pre-chordless.

Thus the only possible edges in G[L:R], other than in P and the 2-path (v, u, p3), are those joining u to a vertex in L.
There are three cases, where none, one or both of these edges are present, as shown in Fig. 5. Note that the ‘‘one’’ case
has a symmetric version, where the vertices in P are p1, p2, p3, p4, p5, and the edge up2 is present. But these graphs are
the tripod, armchair and stirrer, respectively, contradicting G being flawless.

If (p2, p3, p4, p5, p6) is a hole, or (p1, p2, p3, p4, p5, p6) is a pre-hole, we need only observe that the configurations in
Fig. 5 exist, if P is allowed to ‘‘wrap around’’ the (pre-)hole. That is, if p1, p7 are interpreted as p6, p2 respectively. □

Note that any subpath of a pre-hole or odd hole C is pre-chordless.

Lemma 4. Every odd hole or pre-hole in a connected flawless graph is dominating.

Proof. Let C be an odd hole or pre-hole in the connected flawless graph G. We show dist(v, C) ≤ 1 for every vertex v of
G.

If v ∈ C , this is obvious. Otherwise, let w be a vertex such that dist(v, C) = dist(v, w). Consider the subpath
P = (p1, p2, . . . , p7) of C such that w = p4, where this path wraps around C if |C | < 7. Since C is a hole or a pre-hole, P
is pre-chordless. The result then follows from Lemma 3. □

If C is an odd hole we will call n(C) = {v ∈ V : dist(v, C) ≤ 1}, the neighbourhood of C . Thus, if G is connected, then
G = N(C) for any odd hole C ⊆ G.

Lemma 5. Suppose G ∈ Flawless∩ EvenHoleFree, and that C is an odd hole in G, of length at least seven. Then every vertex
v ∈ V has at most three neighbours in C. If there are two neighbours, w, x, then distC (w, x) = 2. If there are three neighbours,
w, x, y, then distC (w, x) = distC (x, y) = 2. If C is a short odd hole in G, then v has at most two neighbours on C.

Proof. If v ∈ C , v has exactly two neighbours in C , so the lemma is true. Thus suppose v /∈ C . If w is the only neighbour
of v ∈ C , then G[{v} ∪ C] is the graph shown in Fig. 6. Note that w may have several such neighbours v1, v2, . . ., but no
two can be connected by an edge, since otherwise there is a bipartition containing a tripod, see Fig. 6. If v1, v2 are leaves
in G, then they are false twin.
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Fig. 7. Cases in the proof of Lemma 5.

Fig. 8. Cases in the proof of Lemma 5.

Fig. 9. Cases in the proof of Lemma 5.

Now suppose v has two neighbours w, x on C . Since ℓ = |C | ≥ 7 is odd, we may assume ν = distC (w, x) ≤ (ℓ− 1)/2.
Suppose first that ν is odd. Then we obtain an even cycle C ′ by omitting ν − 1 vertices of C and adding v. Consider the
alternating bipartition L:R of C ′. See Fig. 7, with black nodes L, and white nodes R. Now C ′ has even length ℓ′ = ℓ−ν+2 ≥
(ℓ+5)/2 ≥ 6. Then, since C is chordless, there is an even hole in G[L:R], unless v is adjacent to every vertex of L. However,
since ℓ ≥ 7, G[L:R] contains a stirrer, as shown in Fig. 7, contradicting G ∈ Flawless. Thus distC (w, x) cannot be odd.

Thus suppose distC (w, x) = ν ≤ (ℓ − 1)/2 is even and ν > 2, so ν ≥ 4. Then v, w, x lie on a chordless cycle in G of
even length ν + 2 ≥ 6. This is an even hole, contradicting G ∈ EvenHoleFree, so we must have distC (w, x) = 2. Then
G[{v} ∪ C] is the graph shown in Fig. 8, and G has another odd hole of length ℓ, passing through v.

There can be several vertices v1, v2, . . . with neighbours w and x, but there can be no edge between any pair of these
vertices. Otherwise there is a bipartition containing an armchair, see Fig. 8. If these vertices have neighbours only in C ,
then they are all false twins.

Now suppose v has at least three neighbours w, x, y on C , where w, y are such that distC (w, y) is maximised. Consider
the alternating bipartition L:R of the (w, . . . , y) path in C , extended to v ∈ R. Then v must be adjacent to every vertex in
R between w and y, since otherwise there is an even hole in G[L:R]. If v has exactly three neighbours, G[L:R] contains the
subgraph shown in Fig. 9, with L, R the white and black vertices, respectively. Now v cannot have a fourth neighbour z
on C . Otherwise, G has a stirrer, involving v, the (w, . . . , z) path, and y, as shown in Fig. 9.

Finally, if v has three neighbours in C , as shown in Fig. 9, then dist(w, y) = 2, and distC (w, y) = 4. Thus C is not a
short odd hole, a contradiction. □

The following is similar to Lemma 5, but the details of the proof are slightly different.

Lemma 6. Let C be a pre-hole in G ∈ Flawless. Then every vertex v ∈ C has at most five neighbours in C. Two of these are
via edges of C, so v is incident to at most three chords. If there are two chords, vw, vx, then distC (w, x) = 2. If there are three
chords, vw, vx, vy, then distC (w, x) = distC (x, y) = 2.

Proof. Otherwise, v must have at least four chords. These must be even chords to c0, c2, c4, c6, where P = (c0, c1, . . . , c6,
c7) is a subpath of C , since C is a pre-hole and G has no even holes. We now move v from L to R. The only new edges
which appear in G[L:R] are those adjacent to v. But now c0, v, c3, c4, c5, c6, c7 induce an armchair in G[L:R], contradicting
G ∈ Flawless. See Fig. 10. □
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Fig. 10. An armchair.

Fig. 11. A pre-hole with a vertex of degree 5.

Fig. 12. Cases in the proof of Lemma 6.

The degree bound of Lemma 6 is tight. See Fig. 11.

Lemma 7. Let C be an odd hole in G ∈ Flawless. Suppose that v /∈ C has a neighbour x /∈ C. Then there are vertices w, y ∈ C
such that (vxyw) is a quadrangle.

Proof. From Lemmas 4 and 5, v and x have at least one, and at most three, neighbours on C . If either has two neighbours
then these are at distance 2 on C . Observe that it suffices to prove that w, y exist so that vxyw is simply a 4-cycle. If it is
not a quadrangle, either v or x has two adjacent neighbours on C , contradicting Lemma 5.

Suppose v has exactly one neighbour c on C . Then we have the first configuration shown in Fig. 12, with the bipartition
indicated by the black and white vertices on G[S], where S = {a, b, c, d, e, v, x}. This contains a tripod, unless x is adjacent
to b or d or both. If is adjacent to b, then the Lemma follows with w = c and y = b. If is adjacent to d, then the Lemma
follows with w = c and y = d.

Now suppose v has two neighbours b, d on C . Then, by Lemma 5, we have the second configuration in Fig. 12, with
the bipartition on G[S] shown in black and white. If v has a third neighbour z on C , then z /∈ S so we may ignore it. Then
G[S] contains an armchair, unless x is adjacent to at least one of the black vertices a, c, e. If xa ∈ E, we take w = b, y = a,
if xc ∈ E, we take w = b, y = c , and if xe ∈ E, we take w = d, y = e. □

3.3. Determining a short odd hole

We can test whether G contains a hole in time O(|E|2), using the algorithm of [14]. Moreover, the algorithm returns a
hole if one exists. If the hole is even, we can conclude G /∈ Quasimonotone. If G ∈ Flawless, we will show that it has a
well-defined structure, so it is possible that there is a faster algorithm than [14] for detecting a hole. However, we will
not pursue this here.

We begin with a simple result.

Lemma 8. If C is an odd cycle in a graph G, there is a triangle or an odd hole C ′ in G.

Proof. The claim is clearly true if |C | ≤ 3. Otherwise, assume by induction that it is true for all cycles shorter than C . If
C is not already a hole, it has a chord that divides it into a smaller odd cycle C1, and an even cycle C ′1. The lemma now
follows by induction on C1. □

The proof of Lemma 8 can easily be turned into an efficient algorithm to find C ′. Let C be an odd hole in a graph G.
Then C will be called a short odd hole in G if dist(v, w) = distC (v, w) for all pairs v, w ∈ C .

Lemma 9. If G is a triangle-free graph containing an odd hole C, then G contains a short odd hole.
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Fig. 13. Odd hole C with a shorter vw path.

Fig. 14. Short odd holes of unequal size.

Proof. Clearly dist(v, w) ≤ distC (v, w) for all pairs v, w ∈ C . Thus, suppose that C is an odd hole in G, but there is a pair
v, w such that dist(v, w) = d < ℓ = distC (v, w), and let ℓ′ = |C | − ℓ ≥ ℓ > d. Thus one of ℓ, ℓ′ is odd and the other even.
See Fig. 13.

We may assume that the shortest vw path P has no internal vertex in common with C . Otherwise, we may choose a
different pair v, w for which this is true. Thus we can form two cycles C1, C2 of lengths ℓ+d, ℓ′+d. Now one of ℓ+d, ℓ′+d
is odd and the other even. Also max{ℓ + d, ℓ′ + d} = ℓ′ + d = |C | − ℓ + d < |C |. Thus we have an odd cycle, C1 say,
with |C1| < |C |. Now, by Lemmas 11 and 8, C1 contains an odd hole H , and we have |H| ≤ |C1| < |C |. We can now check
whether H is a short hole. This process must clearly terminate with a short hole, since the hole becomes progressively
shorter. □

Note that the proof of Lemma 9 gives an efficient algorithm for finding a short odd hole H , given any odd hole C . Clearly
the shortest hole in G is a short hole, but the converse need not be true in general, even for quasimonotone graphs. See
Fig. 14, which has a short 5-hole and a short 7-hole.

We will also use the following simple corollary.

Corollary 10. If C is a short odd hole in a graph G, diam(G) ≥ diam(C) = (|C | − 1)/2. □

We can make similar definitions for pre-holes. Thus, if C is a pre-hole, G′ = G[C], and L:R is the alternating bipartition
of C , then G′[L:R] contains no edge other than those of C . A minimal pre-hole C is such that G[C] contains no pre-hole
with fewer than |C | vertices. Clearly, any graph which contains a pre-hole contains a minimal pre-hole.

4. Flawless graphs containing a long hole

4.1. Triangles

Lemma 11. Let G be a quasimonotone graph containing an odd hole C of size at least 7. Then G contains no triangle that has
a vertex in C.

Proof. Since C is an odd hole, there are only two cases.

(i) If the triangle has two vertices on C , then we have the situation of Fig. 7 on page 11, which cannot occur.
(ii) If the triangle T = (v, w, x) has one vertex v on C , then consider the graph G′ induced by C ∪ T , so C is the shortest

hole in G′. There are two subcases.

(a) If neither w nor x has another neighbour on v, we have the situation of Fig. 6, which cannot occur.
(b) If w has another neighbour z on C , but x does not, we have the situation in Fig. 15. This is a pre-armchair,

since the edge xv is not in the bipartition shown. If x has another neighbour on C , this must be either y or z.
Neither appears in the bipartition shown in Fig. 15. □
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Fig. 15. Case (ii-b) in the proof of Lemma 11.

Fig. 16. Cases in the proof of Lemma 12.

Fig. 17. Cases in the proof of Lemma 12.

However, if C is a 5-hole, there are quasimonotone graphs which contain a triangle with one vertex in C . See Fig. 16.

Lemma 12. Let G be a quasimonotone graph containing an odd hole C of size at least 7. Then G contains no triangle which
is vertex-disjoint from C.

Proof. Suppose T = (vwx) is such a triangle, and consider the subgraph G′ induced by C ∪ T . By Lemma 7, C is a shortest
hole in G′, so the vertices of T have degree at least one and at most two in C . Now T is the only triangle in G′, since any
other triangle would have a vertex in C , contradicting Lemma 11. Thus all vertices of C have degree at most one in T ,
since a vertex of degree two or more would induce a triangle, using an edge of T . Now suppose some vertex of T , v say,
has two neighbours a, b in C , see Fig. 17. Then G′ has a hole with |C ′| = |C | through a, v and b, with v ∈ C ′. Since |C ′| ≥ 7,
this contradicts Lemma 11.

Thus T has at most three neighbours in C . Hence there are at least four vertices in C which have no neighbour in T .
Let ν ≥ 2 be the maximum number of consecutive vertices in C with no neighbour in T . Suppose these are bordered by
vertices a, b ∈ C , where wa, xb ∈ E. See Fig. 17. Thus, if ν is odd, there is a pre-hole through a, w, v, x and b, and, if ν is
even, there is an even hole through a, w, x and b. See Fig. 17. □

Again, If |C | = 5, it is possible to have a triangle which is vertex-disjoint from C . Again Fig. 16 shows an example, but
note that this also contains triangles which share an edge with the 5-cycle. It is not difficult to show that, if G contains a
5-cycle and a vertex-disjoint triangle, then G must contain a triangle which shares at least one vertex with the 5-cycle.
However, we will not prove this because we make no use of it here.

4.2. Long odd holes

Lemma 13. Let C, C ′ be odd holes in a quasimonotone graph G such that C ′ ∩ C ̸= ∅, and |C |, |C ′| ≥ 7. Let G′ =
G[(C ′ ∪ C) \ (C ′ ∩ C)], Then G′ has no odd hole or pre-hole.

Proof. Without loss of generality, we will assume |C | ≤ |C ′|.
If G′ has a pre-hole, G is not quasimonotone. So suppose there is an odd hole H in G′. Clearly H must contain edges

from both C and C ′. Let P be the path H ∩ C , and P ′ the path H ∩ C ′. We choose H so that |P ′| is minimised. See Fig. 18,
where H is bounded by the edges 3′ 3 and 5′ 6, and |P ′| = 2.

Suppose any vertex in v the interior of path P ′ has an edge to a vertex w ∈ C . Clearly w /∈ P , or H is not a hole. Let v
and w be chosen so that distC (w, P) is minimised. Then there is either an odd hole H ′ with |C ′ ∩ H ′| < |P ′|, contradicting
the choice of H , or an even hole, contradicting quasimonotonicity. For example, consider v = 4′ in Fig. 18. If w = 2,
then H ′ is (4′, 5′, 6, 5, 4, 3, 2, 4′) and |C ′ ∩ H ′| = 1. If w = 1, then (4′, 5′, 6, 5, 4, 3, 2, 1, 4′) is an even hole, and G is not
quasimonotone.
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Fig. 18. Odd hole in the proof of Lemma 13.

Fig. 19. Cycle in the proof of Lemma 13.

Fig. 20. A 9-prism.

Thus we may assume that no vertex in P ′ has an edge to C , excepting possible extreme vertices of P ′. Now (C∪H)\(C∩H)
is an even hole, with length |C |+ |H|−2|C ∩ H|, unless the extreme vertices of P ′ have edges to C \P . If not, G′ cannot be
quasimonotone. So suppose one of the two extreme vertices vi has an edge to wi ∈ C \ P (i = 1, 2). Then, by Lemma 5, wi
is unique and dist(wi, P) = 2 (i = 1, 2). Now we can construct an even hole in G′. For example, consider v1 = 3′, v2 = 5′
in Fig. 19. The only possibilities for viwi are 3′ 1 and/or 5′ 8. Then we can use 3′ 1 in place of 3′ 3 and/or 5′ 8 in place
of 5′ 6 to form an odd cycle H ′, as shown in Fig. 19. Since H ′ has no edge to a vertex in C \ H ′, we have an even hole
(C ∪ H ′) \ (C ∩ H ′). So G is not quasimonotone, a contradiction. □

Corollary 14. Let C, C ′ be odd holes in a quasimonotone graph G, such that C ′ ∩ C ̸= ∅. Let G′ = G[(C ′ ∪ C) \ (C ′ ∩ C)]. Then
G′ is a monotone graph.

Proof. G′ is flawless, and has no holes or pre-holes from Lemma 13, so it is monotone. □

Note that the holes C, C ′ in Corollary 14 can have different size. See Fig. 14, where G′ is a ladder (see [6]) with two
pendant edges. However, if we have vertex-disjoint odd holes they cannot have different lengths.

A prism is the graph given by joining corresponding vertices in two cycles of the same length. It is an n-prism if the
cycles have length n [11]. See Fig. 20 for an example.

Lemma 15. Let G be a quasimonotone graph containing an odd hole C. Then G contains no vertex-disjoint hole C ′ with
|C ′| ̸= |C |. Moreover, if |C | ≥ 7, any two vertex-disjoint holes with |C ′| = |C | induce a prism in G.

Proof. Let G′ = G[C ∪ C ′], and suppose |C ′| ̸= |C |. Let C1 denote the shorter of C, C ′, and C2 the longer, so |C1| ≥ 5
and |C2| ≥ 7. Then every vertex of C1 has degree in {1, 2, 3} in C2 and every vertex of C2 has degree in {1, 2} in C1. Since
|C2| > |C1|, there must be a vertex v ∈ C1 with degree 2 or 3 in C2, by simple counting. Let a, b be two of these neighbours,
such that acb is a subpath of C2. See Fig. 21. Since G′ is flawless, by Lemma 7 every edge of C1 is in a quadrangle with some
edge of C2, and vice versa. Thus c must be adjacent to a neighbour w of v on C1, and G′ must contain the configuration of
Fig. 21. Now G′ must contain either ax or dw or both. Otherwise (d, a, v, w, x) is a chordless path of length 4, and must
be a subpath of a hole, since d has some edge to C1, contradicting Lemma 13. Note that dx /∈ E, since otherwise (d, x, a)
or (d, x, w) would be a triangle, contradicting Lemma 11. Whether ax or dv is an edge, this argument can be repeated for
the vertices to the left of d and x, or to the right of c and v. Thus there cannot be any more edges than those indicated in
Fig. 21, since every vertex of C2 has degree at most 2 in C1.
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Fig. 21. Crossover.

Fig. 22. Matching between C1 and C2 .

Fig. 23. Preholes with odd holes C1 , C2 .

Fig. 24. A possible pre-hole.

We give C1 the alternating bipartition except, since |C1| is odd, both w, v ∈ L. Similarly we give C1 the alternating
bipartition with both a, c ∈ R. This is the alternating partition of an even cycle C1 \ wv, wc , C2 \ ac , av. We call av, wc
a crossover, and a pre-hole formed in this way a crossover pre-hole. Now we observe that all possible edges other than
av, cw have both endpoints in L or both endpoints in R. Thus G′ is a pre-hole.

Thus all vertices in C1 must have only one edge to C2. (See Fig. 22.) Since these edges form a matching between C1 and
C2, we must have |C1| = |C2|, and G[C ∪ C ′] must be a prism. □

5. Preholes in flawless graphs

Lemma 16. If G ∈ Flawless and has an odd hole of size ℓ ≥ 7, any minimal pre-hole C in G is either an even hole or

(a) two odd holes intersecting in an edge or
(b) two disjoint odd holes connected by a quadrangle.

See Fig. 23.

Proof. We may assume that G has no triangles, from Lemmas 11 and 12. Clearly C has at least one even chord e which
divides it into two smaller odd cycles C1 and C2. By Lemma 8, C1 and C2 contain odd holes C ′1, C

′

2. If C
′

1 = C1, C ′2 = C2,
then we are in case (a). Otherwise, we can use Lemma 8 to arrive at two odd holes A in C1 and B in C2. Now A and B can
have only one chord of C in their boundaries, since C has only even chords. Thus the structure of C is either as shown in
Fig. 23, or as shown in Fig. 24. We must show that C cannot be a minimal pre-hole in the latter case.

In Fig. 24, A and B are odd holes and S joins them, and is not a single edge or quadrangle. Thus A and B both have
size ℓ, and A, B must induce a prism. Otherwise G[A ∪ B] contains a smaller crossover pre-hole, by Lemma 15. Thus, in
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Fig. 25. A possible pre-hole.

Fig. 26. Smaller pre-hole.

Fig. 27. Preholes with odd holes C1 , C2 .

particular, the edge a′b′ must be present, and b′ has no other edge to A. Also, we must have a, b, a′, b′ ∈ L, or we would
have a smaller case (b) pre-hole using ab, a′b′.

Let c be the vertex nearest a on the path from a to b such that b′c is an even chord of C , as shown in Fig. 25. Note that
c is well determined, since c = b is possible.

Consider the cycle C ′ in G shown in Fig. 26. It is easy to see that C ′ is a pre-hole, where the certifying bipartition simply
moves b′ from L to R from that of Fig. 25, as shown.

Thus C ′ is a pre-hole with size |C ′| < |C |, so C was not a minimal pre-hole. Thus any minimal pre-hole involving two
vertex-disjoint holes of size at least 7 must be as in case (b).

Finally suppose C ′1, C
′

2 are edge- but not vertex-disjoint, so they intersect in a single vertex c. Since |C ′1 ∪ C ′2| is odd,
there must be a vertex v ∈ C \ (C ′1 ∪ C ′2). Since C is minimal, and v is adjacent to both C ′1, C

′

2, by Lemma 7, v must be
unique. Since G has no even hole, c, v are the opposite vertices of a quadrangle (c, x, v, w), with v ∈ L, c, x, w ∈ R. Thus
we have the configuration shown in Fig. 27.

The vertices such that distC (c) ≤ 3 form a pre-chordless path P = (1, 2, 3, c, 5, 6, 7), as shown in Fig. 27. Since
|C ′1|, |C

′

2| ≥ 5, distC (v, P) ≥ 2. Suppose v is not adjacent to any vertex of P . Then dist(v, P) = dist(v, c) = 2, so vc ∈ E by
Lemma 3. This is a contradiction, since C is a pre-hole. Thus v has an edge to P , thus to 1, 3, 5 or 7. By symmetry, suppose
either v1 ∈ E or v3 ∈ E. If v1 ∈ E, v3 /∈ E, the cycle (v, 1, 2, 3, c, w) is a 6-hole in G, contradicting the minimality of C .
Thus v3 ∈ E. But now the quadrangle (v, 3, c, x) separates C into two vertex-disjoint odd cycles H1 = (v, 3, 2, 1, . . . , w)
and H2 = (c, 5, 6, 7, . . . , x). Thus C contains two vertex-disjoint odd holes H ′1 ⊆ H1, H ′2 ⊆ H2, by Lemma 8. By the
minimality of C , we must have H ′1 = H1, H ′2 = H2, and we are in case (b) again. □

Thus. if G contains an odd hole of size at least 7, minimal pre-holes have only two types, case (a) and case (b). From
Lemma 15, case (b) are crossover pre-holes. Examples are shown in Fig. 28.

So let us consider the case (a) pre-holes. We will call these Möbius pre-holes, since we will show that such a pre-hole
must be a Möbius ladder [9,11]. See Fig. 29 for two different drawings of a Möbius ladder. As the name suggests, this is a
ladder with a crossover.

Lemma 17. If C is a Möbius pre-hole in a flawless graph G, then C is a Möbius ladder.

Proof. Let C have the alternating bipartition such that a, b ∈ R and ab divides C into odd holes C1, C2, with |C1| ≤ |C2|.
Note, since |C1|, |C2| ≥ 5, that |C | ≥ 8. See Fig. 30. If a is incident to more than one chord, then one of C1, C2 is not a hole,
so C is not a case (a) pre-hole. So ab is the only chord incident to a and, similarly, b.

Let v ∈ R∩ C1 have distance 2 from a. Then v must have an edge to some w ∈ C2. Since C is a pre-hole, we must have
w ∈ R. Then (a, x, v, w, b, a) is an even cycle, so must have a chord. The only possible chords are from x to the vertices on
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Fig. 28. Crossover pre-holes.

Fig. 29. A Möbius ladder.

Fig. 30. Implied diameter.

C2∩ L between w and b. Thus, in particular, xy must be an edge, where y is adjacent to b on C2. Now xy divides C into odd
holes C ′1, C

′

2, so we can repeat the argument to show that vw is an edge, where w is adjacent to y on C2. We can iterate
the argument for all vertices between a and b on C . If |C1| < |C2|, we will be left with an even hole on |C2| − |C1| + 4
vertices. So we must have |C1| = |C2|, and all edges between diametral pairs on C , as in Fig. 29. □

5.1. Splitting

Let G be a flawless graph with a hole C of length |C | ≥ 6. If |C | is even, we conclude G /∈ Quasimonotone, so |C | ≥ 7
is odd. Thus G does not contain a triangle, from Lemmas 11 and 12. We will assume that this has been tested. We will
now show that G must have the annular structure referred to in Section 1.2, rather like a monotone graph with its ends
identified.

Now suppose G has a short odd hole C with C ≥ 7, determined by the procedure of Lemma 9. Thus, by Corollary 10,
diam(G) ≥ 1

2 (|C | − 1) ≥ 3. Choose any v ∈ C , and consider the graph Gv = G[V \ N[v]]. Then Gv contains no holes, since
any hole H in Gv must be a hole in G. But any hole H in G either contains v, or has a vertex w adjacent to v, by Lemma 4.
Since v, w /∈ Gv , H ⊈ Gv . Neither can Gv contain a pre-hole, since any pre-hole must contain two holes. Thus Gv is flawless
and contains no holes or pre-holes, so is a monotone graph. Now diam(G) is at least diam(C) = (|C | − 1)/2 ≥ 3. Thus
there exists a w ∈ C such that N(v) ∩ N(w) = ∅.

By definition [6], a graph is monotone if and only if it is bipartite, and its biadjacency matrix has an ordering of rows
(L) and columns (R) so that it has the ‘‘staircase’’ structure indicated in Fig. 32. This is symmetrical with respect to rows
and columns [6]. That is, the transpose of the biadjacency matrix represents the same monotone graph with L and R
interchanged.

A chain graph is a monotone graph in which each vertex in L (resp. R) has an edge to the first vertex in R (resp. L), in
this ordering. Thus the biadjacency matrix has the form indicated in Fig. 31. (See [6] for details.)
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Fig. 31. Chain graph structure.

Fig. 32. Decomposition of a monotone graph.

Fig. 33. Neighbourhood of w in Gv .

In the monotone representation, it is an easy observation that the graph has a decomposition into chain graphs, as
indicated in Fig. 32, where L is partitioned in D1,D3, . . . and R into D2,D4, . . .. This partition was given previously by
Brandstädt and Lozin [3], though their proof is based on the representation of a monotone graph as a bipartite permutation
graph, and is nontrivial.

Now we have shown that Gv is monotone, and there is a w such that N(v) ∩ N(w) = ∅. Thus N(w) and its
neighbours induce a monotone subgraph Nw of G, as indicated in Fig. 33. It is easy to see that the vertex set of Nw

is {x ∈ L ∪ R : dist(w, x) ≤ 2}. Clearly Nw is the union of two chain graphs Cw, C ′w , with Cw lying in the rows below and
including w, and C ′w in the rows above.

We can determine this split using the monotone representation of Gv , with the algorithm of [15]. Then we can construct
a representation of the adjacency matrix A(G) of G as indicated in the first diagram in Fig. 34, where D2 = N(w), C1 = Cw

(transposed), and C7 = C′w . The chain graphs C2, . . . , C6 are a decomposition of the monotone graph Gw . Note that the
ordering of the chain graphs in the decomposition is circular, and the second diagram in Fig. 34 gives an equivalent
representation to the first, where C1 (transposed) is moved from the first to the last position.

Suppose there are k chain graphs in the decomposition. In our illustration, Fig. 34, k = 7.

Lemma 18. A flawless graph G which has an odd hole of size at least 7 is quasimonotone if and only if it has such a
decomposition and does not contain a pre-hole. If there are k chain graphs in the decomposition, then k is odd, and the shortest
hole in G has k vertices.

Proof. It is clear that k must be odd, since D1,D3, . . . ,Dk are the sets of rows.
The only reason that G could fail to be quasimonotone is that it has an even hole or a pre-hole. But any hole H must

have at least one edge in each of the chain graphs C1, C2, . . . , Ck. Otherwise, suppose H has no edge in Ci. If i = 1,
then H is entirely contained in a monotone graph with decomposition C2, . . . , Ck. If i = k, then H is entirely contained
in a monotone graph with decomposition C1, . . . , Ck−1. Otherwise, H is entirely contained in a monotone graph with
decomposition Ci+1, . . . , Ck, C1, . . . , Ci−1. This contradicts monotonicity.

Now we observe that H must have an odd number of edges in each chain graph C. This is because the path through
C comprises alternating horizontal and vertices line segments, representing vertices, which meet at nodes representing
edges. See Fig. 35. The path must be monotonic within C, or H would have a chord (see Fig. 35), a contradiction. For the
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Fig. 34. Decomposition of A(G) for a quasimonotone graph G.

Fig. 35. Path through a chain graph.

same reason, the path cannot pass through C more than once. So the path must enter C through a horizontal segment
and leave through a vertical segment, or vice versa. Therefore, there must be an odd number of edges of H in C. Hence H
has an odd number (k) of odd numbers of edges, and so the total number of edges of H must be odd. Thus any hole H in
G must be an odd hole.

Now we observe that the number k of chain graphs in the decomposition of G is the length of a shortest hole. We take
exactly one edge in each of the Ci (i = 1, 2, . . . , k), connected by a zig-zag path of vertices, as indicated in Fig. 34. □

However, it is still possible that G contains a pre-hole. However, the decomposition of Lemma 18 implies that any
pre-hole must wind around the annular structure of G. We consider the question of detecting such pre-holes in Section 5.2.

The decomposition of G can clearly be carried out in polynomial time. We check that G is flawless, and has no triangle,
or hole of size smaller than 7. We check that G is not a pre-hole. If so, we determine a short odd hole. Then we use the
algorithm of [15] to determine the monotone structure of Gv , the monotone structure of Gw , and the split of Nw . If any of
these steps fails, G is not quasimonotone. If all succeed, G is quasimonotone, unless it contains a pre-hole. As an example,
consider the graph G shown in Fig. 36.

Observe that this procedure really only requires that G be triangle-free, and have diameter at least 3. Thus it can be
applied to test quasimonotonicity of some graphs with 5-holes, for example that in Fig. 14.

5.2. Recognising pre-holes

Let G = (V , E) be a flawless graph with a hole of size ℓ ≥ 7. Lemma 18 can determine whether or not G is
quasimonotone provided it does not contain a pre-hole. We now consider recognition of a pre-hole in such a graph.
We use the partition of V from Section 5.1 into independent sets D1, . . . ,Dℓ, where Dℓ+1 ≡ D1. All edges in E run between
Di and Di+1 (i ∈ [ℓ]). Let Gi = G[Di ∪ Di+1], with edge set Ei, and let Gi = (V , E \ Ei). Note that Gi is a chain graph and Gi
is a monotone graph. Thus Gi is bipartite, with bipartition L:R, say, with Di,Di+1 ∈ L.

We search for possible crossovers in Gi. These are pairs a, b ∈ Di+1, c, d ∈ Di, such that ac, ad, bc, bd ∈ E. We list all
such quadruples a, b, c, d, O(n4) in total, see Fig. 37. Given any quadruple, we attempt to determine vertex disjoint paths
Pac, Pbd in Gi between a, c and b, d or between a, d and b, c. See Fig. 38, cases (a) and (b). We can do this in O(n|E|) = O(n3)
time by network flow. Both paths are even length, since Gi is bipartite and a, b, c, d ∈ L.

If these paths do not exist, we discard this quadruple and consider the next in the list. If these paths do exist, in case
(a) we have found a crossover pre-hole Pac, ad, Pbd, bc , in case (b) we have found a Möbius pre-hole Pad, bd, Pbc , ac. This
is clearly a cycle with even length. That it is a pre-hole is certified by reversing the bipartition on Pac in case(a), Pad in
case (b), as shown in Fig. 39.

Thus we can detect a pre-hole, or show that none exists, in O(n4
× n3) = O(n7) time. If a pre-hole exists, we may stop.

We have shown that G is not quasimonotone.
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Fig. 36. G, G1 , N1 and the derived A(G).

Fig. 37. Possible crossover.

Fig. 38. Vertex-disjoint paths.

Fig. 39. Preholes.
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Fig. 40. An internal triangle.

Fig. 41. A pre-hole and its Hamilton subgraph.

6. Flawless graphs without long holes

6.1. Minimal pre-holes in hole-free graphs

The main problem here is to recognise pre-holes. Let C be any minimal pre-hole in a flawless hole-free graph G. A
triangle in G[C] will be called an interior triangle of C if it has no edge in common with C , a crossing triangle if it has one
edge in common with C , and a cap of C if it has two edges in common with C .

Lemma 19. If C is a minimal pre-hole in a flawless graph with |C | > 12, then G[C] has no interior or crossing triangles, and
C is determined by two edge-disjoint caps.

Proof. Suppose C has an interior triangle, as shown in Fig. 40. The vertices v, w, x partition C into three segments. From
Lemma 6, we must have distC (v, w) ≤ 4, distC (w, x) ≤ 4 and distC (x, v) ≤ 4, and hence |C | ≤ 12.

If G[C] has a crossing triangle, then C has an odd chord, a contradiction. Now, since C is a pre-hole, there must be an
even chord u0v0 which partitions C into two odd cycles C1, C2 with common edge u0v0. Suppose that C1 is not a triangle.
Since G ∈ HoleFree, C1 must have a chord u1v1 partitioning it into an odd cycle C ′1 and an even cycle C ′2, with |C ′1| < |C |. If
C ′1 is not a triangle we repeat the process until we reach a triangle T1, which must be a cap, and must be unique. Otherwise
we have discovered a crossing or internal triangle of C , a contradiction. This must occur after at most |C1| repetitions.
We then apply the same procedure to C2, obtaining the second cap T2. Clearly T1 and T2 are edge-disjoint, since they are
separated by the chord u0v0. Then |C | ≥ 6 implies that they can share at most one of the vertices u0, v0. □

Note that pre-holes with fewer than 12 vertices may contain an interior triangle. See Fig. 46 for an example with 6
vertices. However, the bound 12 is probably far from tight.

Let T1, T2 be caps of C , such that vi ∈ Ti is adjacent to two edges of C (i = 1, 2). Then there are two edge-disjoint
(v1, . . . , v2) paths P1, P2 in C . See Fig. 41.

Lemma 20. Let C, with |C | > 12, be a minimal pre-hole in a flawless hole-free graph determined by v1, v2, and let
C ′ = C \ {v1, v2}. Then G[C ′] is a Hamilton monotone graph, and all chords of C ′ connect P1 to P2.

Proof. Clearly G[C ′] is Hamilton, since G[C] is Hamilton. Now C ′ cannot be a pre-hole, since it is strictly smaller than
C . So G[C ′] cannot contain a triangle, by Lemma 19. It cannot contain a larger odd cycle, since then it would contain a
triangle, by the argument of Lemma 19. Therefore, G[C ′] is bipartite and, since G ∈ HoleFree, contains no hole. So, since
G ∈ Flawless, G[C ′] is a monotone graph. Suppose uv is an edge of G[C ′] with u, v ∈ P1. Then, since G[C] has only even
chords, the even chord uv and the segment of P1 between u and v forms an odd cycle, giving a contradiction. □

Thus any minimal pre-hole C comprises a Hamilton monotone graph G[C ′], to which we add two caps T1, T2. We may
also add edges from v1 and v2 to C ′, as long as they are even chords in C .

Lemma 21. Let C be a minimal pre-hole with a cap at v ∈ {v1, v2}. Then there are at most two chords from v, and both must
be connected to either P1 or P2.
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Fig. 42. Cases in the proof of Lemma 21.

Fig. 43. Cases in the proof of Lemma 22.

Fig. 44. Cases in the proof of Lemma 22.

Proof. The chords must be as shown in Fig. 42(a), since otherwise there is an even hole or a pre-armchair, similarly to
Lemma 5. Note that vb must be present if vd is in G. If there is a chord to both P1 and P2, we can find a smaller pre-hole
by moving v from L to R and using the longer chords from v. See Fig. 42(b). □

Lemma 22. Let C be a minimal pre-hole with |C | ≥ 8. Then all vertices in P1 have a chord to P2 and vice versa.

Proof. Suppose first that there are no chords from v1 or v2 in G = (V , E).
Let u ∈ P1 have no edge to P2. Since G[C ′] is monotone, u must be in a quadrangle with its neighbours in P1 and a

vertex w ∈ P2. See Fig. 43(a). Now u is a distance at least 2 from v1 and v2, since otherwise it has an edge of T1 or T2 to
P2. Thus u is at distance at least 2 from P2. Now if w is a distance at least 3 from both v1 and v2, Lemma 3 implies that u
must have an edge to P1, a contradiction.

Otherwise, we have the situations shown in Fig. 43(b), where the edge bx is absent. Thus ay or cw, or both, must be
in G. Suppose that only one is in G and, without loss of generality, that it is ay, as shown in Fig. 43(b). Now either bz or
cy, or both, must be present in G. If bz ∈ E, v, a, b, z, y, x, w give a pre-stirrer, a contradiction. So suppose only cy is in E.
Then v, w, x, y, z, a, b give a pre-stirrer, again a contradiction. Thus the edge bx ∈ E unless both ay, cw ∈ E, as shown in
Fig. 43(c). In this case we have a shorter pre-hole (. . . , d, c, w, v, a, y, z, . . .), after interchanging v, a, w between L and R.
Thus we must have bx ∈ E, giving the conclusion. Observe that the configuration of case (a) requires at least 10 vertices,
and those of cases (b) and (c) require at least 8. Therefore the conclusion holds only if |C | ≥ 8.

Now we must consider the effect of chords from v1 or v2. These do not affect case (a), since P2 remains pre-chordless.
Also u must remain at distance 2 from P2, since otherwise we are in case (b) or (c).

In case (b), the only chord from v that can break the flaws in Fig. 43(b) is the edge vx, as shown in Fig. 44(a). In this
case, we simply give w the role of v, as shown in Fig. 44(b). Note that the chord vz, if it exists, will now connect P1 to P2.

Finally, consider the configuration of Fig. 43(c). By symmetry, we can assume that the chords from v are vb, vd, as
shown in Fig. 45(a). The edge vb is absent from the shorter pre-hole in Fig. 45(b), so we have only to consider the edge
vd. However, if vd ∈ E, it now connects L to R. Thus there is a shorter pre-hole (. . . , z, y, a, v, d, . . .), a contradiction. □

Corollary 23. Let C be a pre-hole with |C | ≥ 8. Then, for v ∈ C, 3 ≤ degG[C](v) ≤ 5 (v /∈ {v1, v2}), 2 ≤ degG[C](v) ≤ 4
(v ∈ {v1, v2}).
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Fig. 45. Cases in the proof of Lemma 22.

Fig. 46. Prehole with 3 vertices of degree 2.

Fig. 47. |T ∩ C ′| = 3.

Fig. 48. |T ∩ C ′| = 1.

Proof. Follows directly from Lemmas 6 and 22. □

Note that there is a pre-hole with six vertices and three vertices of degree 2, and an interior triangle.
Let T1 = {v1, u1, w1}, T2 = {v2, u2, w2} be any two edge-disjoint triangles in a flawless graph G. LetM be the component

of G \ {v1, v2} containing u1w1, u2w2, if such a component exists. If M does not exist then v1, v2 clearly do not determine
a pre-hole. However, if it does

Lemma 24. C = (v1, u1, . . . , u2, v2, w2, . . . , w1, v1) determines a minimal pre-hole if and only if M is a monotone graph
containing two vertex-disjoint paths between u1, u2 and v1, v2.

Proof. Since C ′ ⊆ M , the condition is certainly sufficient. Now, if there are not vertex-disjoint paths P1 = (u1, . . . , u2),
P1 = (v1, . . . , v2), then C cannot be a pre-hole. So suppose that M is not monotone, and hence must contain a triangle
T = {u, v, w}. There are four cases depending on the number of vertices in T ∩ C ′.

(i) |T ∩ C ′| = 3. Then C ′ is not monotone, so this cannot occur, by Lemma 20.
(ii) |T ∩ C ′| = 2. There are two subcases:

(a) |T ∩ P1| = 2. See Fig. 47(a). In this case, with v to the left of u, let x be the neighbour of u in P2 furthest to
the left of w2. Then, on moving u from R to L, (v1, u1, . . . , w, v, w, x, . . . , w1, v1) is a shorter pre-hole.

(b) |T ∩ P1| = |T ∩ P2| = 1. See Fig. 47(b). In this case, one edge of the triangle is a chord of C ′. Then
(v, u, . . . , u2, v2, w2, . . . , w, v) is a shorter pre-hole.

(iii) |T ∩ C ′| = 1. Then, using the arguments of Lemma 11, the situation is as shown in Fig. 48. Here x is the
neighbour of u in P2 furthest to the left of w2. Then, on moving v from R to L, there is a shorter pre-hole
(v1, u1, . . . , y, w, v, u, x, . . . , w1, v1).
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Fig. 49. |T ∩ C ′| = 0.

Fig. 50. A pre-hole determined by a 5-hole and a triangle.

Fig. 51. A pre-hole determined by two 5-holes.

(iv) |T ∩ C ′| = 0. Then, again using the arguments of Lemma 11, the situation is as in Fig. 49. Here x is the
neighbour of z in P2 furthest to the left of w2. Then, on moving z from R to L, there is a shorter pre-hole
(v1, u1, . . . , y, w, v, u, z, x, . . . , w1, v1).

In all cases, we have a contradiction to the minimality of C , and hence M can have no triangle, and so is monotone. Note
also, in all cases, that if there are edges other than those shown, they are either irrelevant, if they are L: L or R: R, or can
be used to shorten the pre-hole further, if they are L:R. See Fig. 45, for example. □

Lemma 24 implies a polynomial time algorithm for detecting a minimal pre-hole, in a similar way to the algorithm of
Section 5.2.

6.2. Preholes containing 5-holes and triangles

It remains to consider pre-holes in graphs which contain 5-holes, and may also contain triangles. Preholes determined
by two triangles will be dealt with as in Section 6.1.

Lemma 25. Let C be a minimal pre-hole in a flawless graph G which contains no odd hole of size greater than five. If C
connects a 5-hole and a triangle, or if C connects two 5-holes, then |C | ≤ 12.

Proof. The situation is as shown in Fig. 50. The pre-hole C connects a hole H and a triangle T , though the argument
applies equally if T is replaced by a 5-hole H ′, as indicated in Fig. 51.

Now H and T are joined by two paths P1, P2, as shown. We will not assume that these paths are of equal length. Let v

be the unique vertex in T ∩ P1, and w the unique vertex in T ∩ P2. From Lemma 6, v is incident to at most three chords in
C , which must be at distance 2 on C . However, by Lemma 3, v must be adjacent to u ∈ H . Since dist(u, w) ≤ 4, |P2| ≤ 4.
The same argument applied to w gives |P1| ≤ 4. Thus |C | ≤ 12.

If T is replaced by H ′, let us assume that P2 is the shorter path, and is as short as possible. Then using the argument
above, |P1|, |P2| ≤ 4. If |P2| ≥ 3, v must have three edges to P2 ∪ H . (In Fig. 51(a), |P2| = 4.) Then {u, . . . , w, v, a} form a
stirrer, unless ab is an edge. If so, C has a representation with |P ′1| > 4, as shown in Fig. 51(b), so C cannot be a minimal
pre-hole. It follows that |P1|, |P2| ≤ 2, and hence |C | ≤ 12. □

It follows that there is an O(n12) time algorithm for detecting all minimal pre-holes in a graph with no holes of length
greater than 5, using simple enumeration.
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7. Recognition algorithm

Algorithm 1 is a summary as pseudocode.

input : a connected graph G = (V , E)
output: accept if G is quasi-monotone, reject otherwise

1 begin
2 if G contains a flaw or a pre-hole of length 12 or less then reject;
3 if G contains a hole then
4 find a hole C in G;
5 if |C | is even or G contains a triangle then reject; /* Lemma 19 */
6 reduce it to a short hole C ′; /* Lemma 9 */
7 if |C ′| is even then reject;
8 if C ′ is defined and |C ′|≥ 7 then
9 choose vertices v, w ∈ V with dist(v, w) ≥ 3;

10 if Gv and Gw are monotone then
11 partition V into independent sets D1,D2, . . . ,Dℓ; /* Section 5.1 */
12 for i← 1 to ℓ do
13 for every 4-cycle (a, c, b, d) in Gi do
14 if disjoint paths Pad and Pbc in Gi exist then reject; /* Section 5.2 */

15 accept
16 else
17 reject
18 else
19 T ← the set of all triangles in G; /* Lemma 25 */
20 for every pair of vertex-disjoint triangles T1 ∈ T and T2 ∈ T do
21 U1 ← the vertex set of the component of G \ T2 containing T1;
22 U2 ← the vertex set of the component of G \ T1 containing T2;
23 U3 ← U1 ∩ U2; U4 ← T1 ∪ T2 ∪ U3;
24 if G[U3] is bipartite and |U4|> 12 and G[U4] contains two disjoint T1–T2-paths then reject;
25 accept

Algorithm 1: Algorithm recognising quasi-monotone graphs

For the run-time analysis we assume a connected graph G = (V , E) as input with |V | = n and |E| = m. Line 2 can be
executed in time O(n12). In line 3 the algorithm can find a hole in G if there is one in time O(m2), see [14]. In line 5 we
shorten a long hole, O(nm). The tests in lines 5, 7 and 8 require time O(n). In the same time we choose v and w in line
8. The graphs Gv and Gw can be constructed and recognised as monotone graphs in linear time [15]. This also gives the
partition into chain graphs in line 10. In lines 12 and 13 we consider O(n4) quadrangles. The body of the for-loops in line
14 can be implemented by max flow in time O(n3). That is, the then-branch of the conditional statement starting at line
8, which deals with holes of length seven or more, requires time O(n7) in total.

In the else-branch we only consider triangles, since every pre-hole containing a five-hole has length at most twelve
by Lemma 25, and was therefore detected in line 2. The set T in line 18 can be constructed in time O(n3), and n3 also a
bound on its size. Therefore the for-loop starting in line 20 is executed at most n6 times. In lines 13–24 we construct U1,
U2, G[U3] and G[U4] in linear time. The disjoint paths in line 24 can be found in time O(n3), which gives a total time of
O(n9) for the else-branch. Consequently line 2 determines the overall running time of O(n12).

8. Recognising a pre-hole

The recognition algorithm finds a pre-hole in a flawless graph, if there is one. However, it relies heavily on the absence
of flaws. Therefore it is quite natural to ask whether we can find a pre-hole in any graph in polynomial time. This is exactly
the recognition problem for the class OddChordal.

Here we consider a related problem: Given a graph, is it a pre-hole? This is the question of whether the graph is a
cycle with only even chords. We will show that this is an NP-complete problem. Of course, this does not mean that the
recognition of odd-chordal graphs is NP-complete, since that is the problem of determining whether the graph contains
a pre-hole. To illustrate the difference, consider the question of whether a graph is a cycle, having either odd or even
chords. This is NP-complete, since it is the Hamilton cycle problem. By contrast, the question of whether a graph contains
a cycle is easy. It simply involves determining whether the graph is a forest.
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Fig. 52. Three certifying bipartitions of a graph G. For the fourth bipartition L, R the graph G[L:R] is 2-regular but disconnected.

Fig. 53. The truth assignment component for xi , on the left in full and on the right symbolically.

A graph G = (V , E) is a pre-hole if there is a bipartition L, R of V such that G[L:R] is a hole. That is, G[L:R] is a Hamilton
cycle of G and every other edge in E has both endpoints in L or both in R. If G is a pre-hole then such an L, R is called
certifying bipartition. For example, the graph G depicted in Fig. 52 is a pre-hole. Three certifying bipartitions are shown. G
has no more certifying bipartitions. To see this, start from a bipartition of one of the triangles, and observe that it uniquely
extends to a bipartition of the whole graph.

The decision problem PH asks, given a graph G, whether G is a pre-hole. Clearly PH is a problem in NP. We show it is
NP-complete by a reduction from NAE3SAT.

An instance of NAE3SAT is a boolean formula ϕ =
⋀m

j=1 cj in CNF. Each clause cj = ℓj,1 ∨ ℓj,2 ∨ ℓj,3 consists of exactly
three literals. If X = {x1, x2, . . . , xn} is the set of variables occurring in ϕ then every literal ℓj,k is either a variable xi or
its negation ¬xi. For a truth assignment a : X → {0, 1} let a : X → {0, 1} be defined by a(x) = a(¬x) for all x ∈ X . The
instance ϕ of NAE3SAT is accepted if there is a truth assignment a such that a(ϕ) = 1 and a(ϕ) = 1. That is, for each
clause cj not all literals receive equal truth value.

Given an instance ϕ of NAE3SAT we construct a graph G = (V , E) as follows:

(a) For each variable we create a truth assignment component (tac) as shown in Fig. 53, which also defines the vertices
x+i and x−i .

(b) For each clause we create a satisfaction test component (stc) as shown in Fig. 54, which also defines the vertices bj,k
and dj,k. The stc is obtained from the graph G shown in Fig. 52 by cutting an edge that connects two vertices of
degree two into two half-edges.

(c) We link these components in a circular way as shown in Fig. 55.
(d) We add the edges in the set F which is

{{x+i , bj,k}, {x−i , dj,k} | ℓj,k = xi}} ∪ {{x+i , dj,k}, {x−i , bj,k} | ℓj,k = ¬xi}}

where 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ 3.

This completes the construction of G.
Next we assume a is a truth assignment such that a(ϕ) = 1 and a(ϕ) = 1. We construct a bipartition (L, R) of G that

certifies that G is a pre-hole. Inside each tac for xi we put x+i ∈ R and x−i ∈ L if a(xi) = 1 and the other way around if
a(xi) = 0, see Fig. 56. The vertices bj,k and dj,k are put in the L or R such that all edges in F have both endpoints in the
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Fig. 54. The satisfaction test component for cj , on the left in full and on the right symbolically.

Fig. 55. The components linked.

Fig. 56. The bipartition for a(xi) = 1 on the left, and for a(xi) = 0 on the right.

same partite set. Now the triangles in the stc’s are partitioned into two nonempty sets because now all literals in one
clause have the same truth value. The bipartition of the triangles extends to the whole stc as shown in Fig. 52.

Finally we assume a certifying bipartition (L, R) of the vertices of G. We define a truth assignment a by a(xi) = 1 if and
only if x+i ∈ R. To see a(ϕ) = 1 and a(ϕ) = 1 observe:

(a) Every edge of G that is incident to a vertex of degree 2 is contained in every Hamilton cycle of G. That is, its endpoints
belong to different sides of the bipartition.

(b) Every edge in F is contained in no Hamilton cycle of G. That is, its endpoints belong to the same side of the
bipartition.

(c) Consequently, the bipartition of each component is one of the cases depicted in Fig. 52 (for stc) or 56 (for tac).

Now assume there is a clause cj such that a assigns the same truth value to all three literals. Then one of the triangles in
the corresponding stc has all vertices in L and the other one all vertices in R, see the bottom-right bipartition in Fig. 52.
This contradicts the connectedness of G[L:R]. Hence a(ϕ) = 1 and a(ϕ) = 1.

9. Conclusion and discussion

In [7] we considered the problem of ergodicity and rapid mixing of the switch chain in hereditary graph classes.
We gave a complete answer to the ergodicity question, and showed rapid mixing for the new class of quasimonotone
graphs. This led us to introduce a new ‘‘quasi-’’ operator on bipartite graph classes, which is of independent interest.
Quasimonotone graphs are a particular case of this construction. Another interesting class is the class of odd-chordal
graphs, which are the quasi-chordal bipartite graphs. This is close to the largest class for which the switch chain is ergodic.

In this paper, we have investigated recognition of the quasimonotone graphs, and shown that this is in P. This is
intended only to be a proof-of-concept. Our algorithms are far from optimal, and can certainly be improved. However,
we do not believe that this class can be recognised in linear time, as for monotone graphs.

A more straightforward approach to recognising quasimonotone graphs would be provided by a polynomial time
recognition algorithm for odd-chordal graphs. This is equivalent to the detection of pre-holes in a graph. We have
considered this question, but we leave it as an open problem. The only evidence we can provide is that it is NP-complete
to determine if a graph is a pre-hole, which may be a harder question, Nonetheless, the NP-completeness proof suggests
that an efficient algorithm for recognising odd-chordal graphs may be elusive.
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