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Abstract 12 

Catalytic transesterification of triglycerides and esterification of free fatty acids underpins sustainable 13 

biodiesel production, wherein efficient heterogeneous catalysts are sought to replace mineral acids. A 14 

robust, magnetic core-shell SO4/Mg-Al -Fe3O4 catalyst was synthesised by stepwise co-precipitation, 15 

encapsulation, and surface functionalisation. The resulting magnetically-separable catalyst has a surface 16 

area of 123 m2 g-1, uniform 6.5 nm mesopores, and a high total acid site loading of 2.35 mmol g-1. Optimum 17 

conditions for the (trans)esterification of waste cooking oil (WCO) over the sulfated solid acid catalyst 18 

were 95 °C, a methanol:WCO molar ratio of 9:1, and 300 min reaction to achieve 98.5 % FAME yield. 19 

Esterification of oleic acid to methyl oleate resulted in an 88 % yield after 150 min under the same reaction 20 

conditions. The magnetic solid acid catalyst exhibited good thermal and chemical stability and enabled 21 

facile catalyst separation post-reaction and the production of high quality biodiesel. 22 

 23 
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Graphical abstract 28 

 29 

 30 

 31 

Research highlights 32 

1. A novel magnetic solid acid catalyst was synthesised and characterised. 33 

2. The catalyst was active for the (trans)esterification of WCO and oleic acid esterification. 34 

3. Efficient biodiesel production from WCO is demonstrated at a low methanol:oil ratio and 35 

mild temperature. 36 

4. Excellent catalytic stability was observed over multiple recycles.  37 
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1. Introduction 38 

Energy is a key driving force for transportation, technological advancement, and industrialisation and 39 

underpins global socioeconomic development [1-3]. Biodiesel, comprising fatty acid methyl esters 40 

(FAME), is widely recognised as a potential low carbon alternative to fossil fuel derived diesel [4], owing 41 

to its low toxicity, eco-friendliness [5, 6] and sourcing from non-edible plant and algal oils and animal 42 

fats [7-9]. Oils from (micro)algae, jatropha seeds, and waste cooking oil (WCO) feedstocks have been 43 

used to reduce biodiesel production costs [9-14]. For example, the amount of WCO generated in the United 44 

Kingdom is estimated at 65,000 to 80,000 tons per annum while in China this figure reaches 1,000,000 to 45 

2,500,000 per annum from commercial and food processing industries [15]. Such sources could provide 46 

an economic alternative to virgin plant oils for biodiesel production, and valorise an otherwise problematic 47 

waste stream [2]. However, untreated WCO contains high amounts of free fatty acids (FFAs) and water 48 

which renders it an unsuitable feedstock for homogenous base catalysed transesterification with alkaline 49 

hydroxides and methoxides due to catalyst neutralisation, hydrolysis of the FAME product, and 50 

saponification and attendant separation issues due to the formation of stable emulsions. Homogeneous 51 

(acid or base) catalysts also generate large quantities of contaminated wastewater during biodiesel 52 

neutralisation [13, 16-19], and essential processing step to avoid engine corrosion. 53 

Solid acids and bases can offer good catalytic activity under mild conditions for the (trans)esterification 54 

processes of WCO feedstocks [18], and enable efficient product separation and catalyst recycling, in 55 

addition to continuous biodiesel production [20]. Although base catalysts are generally more active for 56 

triacylglyceride (TAG) transesterification, their sensitivity to FFA contaminants (and necessity for 57 

feedstock pre-treatment to remove such impurities) remain problematic [21]. Solid acid catalysts are more 58 

resistant to high FFA concentrations, and can simultaneously transesterify TAGs and esterify FFAs to 59 

biodiesel [22, 23]. The catalytic activity of solid acids is strongly dependent on the accessibility of bulky 60 

reactants to active sites, and the number, strength, and type (Brønsted and/or Lewis) of active site. 61 

Numerous solid acids have been explored for biodiesel production, including zeolites, metal oxides and 62 

mixed metal oxides, supported acids, polyoxometallates, sulfonated carbons, cation exchange resins and 63 

sulfated metal oxides [13, 18, 21, 24-26]. Sulfated metal oxides have attracted significant interest in 64 

catalysis [23, 27-32], and are typically synthesised by the preparation of metal oxide sol gel (step 1), the 65 

subsequent introduction of sulfate ions by exposure of the sol gel to sulfuric acid [H2SO4], chlorosulfonic 66 

acid [HSO3Cl], or ammonium sulfate [(NH4)2SO4] (step 2), and a final calcination at high temperature 67 
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(step 3). The resulting solid superacidic features SOସଶି groups at the surface on non-porous metal oxide 68 

nanoparticles. The acidity of sulfated metal oxides depend on the degree of hydration, preparation method 69 

and calcination temperature of the sulfated metal oxide, and the sulfate concentration and presence of 70 

neighbouring strong Lewis acid sites [33, 34]. Low sulfate loadings promote bidentate adsorption 71 

geometries, whereas high loadings favour Brønsted acidic polynuclear (pyro)sulfates [35, 36]. Sulfated 72 

metal oxides, binary metal oxides, and ternary metal oxides are all reported as promising solid acid 73 

catalysts for biodiesel production from low cost feedstocks in the presence of FFAs, water, and other 74 

impurities. Studies from several authors [37-43] showed that the catalytic activity of sulphated metal 75 

oxides could be improved by their fast separation from the product and by-products. The magnetic catalyst 76 

has the potential to overcome the limitation for separating solid acid catalysts from the reaction medium. 77 

Furthermore, the acidity of magnetic solid acid catalyst reported to be stronger (H0<-13.8) than 100% 78 

sulfuric acid (H0=-12). For example, the uniform and monodispersed iron oxide nanoparticles were 79 

designed by co-precipitation method followed by growing zirconia on the surface of iron oxide 80 

nanoparticles whilst the introduction of boron oxide into the solution was to inhibit the nucleation and 81 

grain growth of zirconia by delaying the phase transformation of zirconia from tetragonal to monoclinic. 82 

The catalytic activity was tested at different calcination temperatures (400-900 oC) for esterifying acetic 83 

acid with n-butanol. A yield of 97±1% was reported under optimum conditions of 4 h, 100 oC, 850 RPM, 84 

and 1 atm nitrogen pressure [39]. Another recent study by Wu and co-workers [38] reports the design of 85 

a super paramagnetic polysulphated trinary metal oxides catalyst for the transesterification of cottonseeds 86 

with methyl acetate. The core was made from iron oxide and prepared by co-precipitation method. Titania 87 

and zirconia was introduced to the iron oxide core by another co-precipitation with different mole ratios 88 

of Zr/Ti/Fe, followed by impregnation of sulphate ions from (NH4)2S2O8. The final gel was calcined at 89 

550, 650 and 750 oC for 3 h. The synthesised magnetic catalysts showed super acidity (155.3±0.9 – 90 

5λ8.6±1.3 ȝmol/g) with polysulphate ions coordinated to ZrO2-TiO2-Fe3O4 catalyst support. It was 91 

reported that SO4/ZrO2-TiO2-Fe3O4 catalyst calcined at 550 oC enabling a FAME yield of 99% after 10.8 92 

h at 50 oC with 21.3 wt% of catalyst and 13.8 ml of methyl acetate per g of seed. The acidity of the catalyst 93 

increased with the addition of an appreciable amount of titania (3:1 mole ratio of Zr:Ti) into the catalyst 94 

texture due to the formation of Zr-O-Ti units during the calcination. This resulted in more sulphur species 95 

being adsorbed on the surface and inhibit the zirconia grain growth. As a result, the number of Lewis acid 96 

sites increased which enhanced the catalytic activity of the catalyst. The catalyst was re-used for 8 cycles 97 

with a slight decrease in activity. Alhassan et al. [37] have also designed a bifunctional magnetic sulphated 98 
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ternary metal oxide [Fe2O3-MnO-SO4/ZrO2] catalyst via impregnation method followed by calcination at 99 

600 oC for 3 h. This magnetic catalyst was tested for transesterification of WCO under optimum conditions 100 

of 180 oC reaction temperature, 20:1 mole ratio of methanol to oil, 3 wt% of catalyst loading, and 600 101 

RPM stirring rate, where 97 ± 0.5 % of FAME yield was obtained. The loss of catalytic activity reported 102 

after 6 re-runs of the spent catalyst because of pore blockage and sulphur leaching. In summary, the 103 

catalytic activity of sulphated metal oxide depends mainly on the precursors, type of sulfonating agent, 104 

calcination temperature, amount of sulphate content, and crystallinity of the catalyst. However, there are 105 

still prone to deactivation, active site leaching, mass transport limitations, low activity at lower 106 

temperatures, water sensitivity, low surface area, and difficult and/or time-consuming separation by 107 

filtration or centrifugation [10, 38, 44-49]. These drawbacks highlight the continuing need to design 108 

improved catalysts for esterification and transesterification of WCO. Here we report the preparation of a 109 

magnetic core-shell SO4/Mg-Al -Fe3O4 nanoparticle catalyst for the simultaneous esterification and 110 

transesterification of WCO with methanol under mild conditions. The Fe3O4 core facilitates magnetic 111 

separation of the solid acid catalyst from the reaction media, while the encapsulating MgAlOx shell 112 

protects the magnetic core and increases the nanoparticle surface area prior to sulfation conferring good 113 

activity and stability for biodiesel production even in the presence of high FFA concentrations. 114 

2. Experimental 115 

2.1 Synthesis of magnetic core-shell SO4/Mg-Al-Fe3O4 catalyst 116 

Iron oxide nanoparticles were synthesised by co-precipitation (Fe2+ + 2 Fe3+ + 8 OH-  Fe3O4 + 4 H2O). 117 

0.2 mol FeCl2.4H2O, (≥λλ.λλ %, Sigma-Aldrich) and 0.68 mol FeCl3.6H2O (≥λ8 %, Sigma-Aldrich) were 118 

separately dissolved in 25 ml of an aqueous 1:1 vol% ethanol (≥λλ.8 %, Sigma-Aldrich) solution using an 119 

ultrasonic probe. The resulting clear solutions were added to a 250 ml round-bottomed flask, and the 120 

solution pH held at 12 by dropwise addition of NH4OH (28-30 vol%, Sigma-Aldrich), prior to heating at 121 

80 °C during stirring (250 rpm) for 6 h under a N2 atmosphere. Following 24 ageing at room temperature, 122 

iron oxide nanoparticles were isolated using an external magnetic field (Nd magnet), and repeatedly rinsed 123 

with 1:1 vol% aqueous ethanol until chloride ions could not be detected in the washings. The resulting 124 

dark-reddish particles were dried in an oven at 120 °C overnight, and then calcined at 550 °C for 3 h to 125 

obtain Fe3O4 nanoparticles. 126 
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Magnesium oxide and alumina encapsulated Fe3O4 nanoparticles were synthesised as follows: 3 g of as-127 

prepared Fe3O4 nanoparticles were dispersed in 50 ml of 1:1 vol% aqueous isopropanol (+99.5 %, Sigma-128 

Aldrich) using an ultrasonic probe. Subsequently, 50 ml of 1:1 vol% aqueous IPA, 0.6 mol Al(O-i-Pr)3 129 

(+98 % granular, Alfa Aesar) and 0.25 mol Mg(NO3)2.6H2O (≥λλ.λ %, Sigma-Aldrich) were added 130 

dropwise to the mixture along with 1.5 ml of HNO3 (≥λ0.0 %, Sigma-Aldrich). The resulting solution was 131 

mixed at room temperature for 30 min, and the pH then adjusted to 7 using NH4OH. This slurry was held 132 

at 65 °C during stirring at 250 rpm for 4 h, and then aged at room temperature overnight, and the 133 

encapsulated MgO@Al2O3@Fe3O4 particles magnetically separated, washed with deionised water until 134 

pH neutral, and then dried in an oven at 80 °C for 6 h before a final calcined at 550 °C for 2 h. The 135 

preceding nanoparticles were functionalised by sulfation. 1.0 g of as-prepared MgO@Al2O3@Fe3O4 136 

nanoparticles was added to 10 ml of 0.5 M (NHΏ)΍SOΏ (≥λλ.5 %, VWR International Ltd) aqueous 137 

solution and stirred for 6 h at room temperature. The sulfated nanoparticles were magnetically separated, 138 

dried in an oven at 80 °C for 6 h, and finally calcined at 500 °C for 3 h in static air. This sample is denoted 139 

SO4/Mg-Al -Fe3O4. 140 

 141 

2.2 Catalyst characterisation 142 

Powder XRD patterns were measured using a Bruker D8 diffractometer with Cu KĮ (Ȝ=1.5418 Å) 143 

radiation and a LynxEye detector between 10-70° with steps of 0.035° at 5 s per step. Particle morphology, 144 

and elemental composition and spatial distributions were determined using a Hitachi SU8230 cold field 145 

emission scanning electron microscope (SEM) operated at 2 kV, and FEI Titan Themis Cubed 300 146 

transmission electron microscope (TEM) coupled with an Oxford INCA energy dispersive X-ray 147 

spectrometer (EDS). For the TEM analysis magnetic nanoparticles were dispersed in acetone and then drop 148 

cast on a carbon coated copper grid. Surface functional groups were examined at room temperature using 149 

a Nicolet iS10 FTIR spectrometer by attenuated total reflectance (ATR) between 550-4000 cm-1 at a 150 

resolution of 4 cm-1. Textural properties were obtained by N2 physisorption method at 77 K using a 151 

Micromeritics TriStar 3000 porosimeter. The as-prepared magnetic catalyst was degassed in vacuo at 120 152 

°C for 16 h prior to analysis, and the surface area calculated using the Brunauer–Emmett–Teller (BET) 153 

method over the relative pressure (p/p0) range 0.05-0.2, with pore size distributions determined by the 154 

Barrett-Joyner-Halenda (BJH) method applied to the desorption isotherm. Thermogravimetric analysis 155 

(TGA) was performed using a Mettler Toledo TGA/DSC-2 instrument under N2 gas at 50 ml min-1 and a 156 
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heating rate of 10 °C min-1 from 25 to 900 °C. Total sulfate loadings were determined from the mass loss 157 

by TGA between 600-900 °C and using a Thermo Scientific™ FLASH 2000 CHNS-O elemental analyser. 158 

Metal loadings were determined using a PerkinElmer Sciex inductively coupled plasma-mass spectroscopy 159 

(ICP-MS). Acid site loadings were quantified by n-propylamine chemisorption and subsequent temperature 160 

programmed desorption (TPD) under flowing He at 30 ml min-1 and a heating rate of 10 °C min-1 from 40 161 

to 800 °C. The catalyst was first saturated with n-propylamine, and physisorbed species removed by in 162 

vacuo drying at 30 °C overnight [5].Thermal desorption of reactively-formed propene (m/z=41) and 163 

ammonia (m/z=17) from propylamine decomposition was monitored using a Pfeiffer ThermoStar 164 

quadupole mass spectrometer.  165 

2.3 Catalyst testing 166 

2.3.1 Esterification and transesterification of WCO 167 

WCO was obtained from a restaurant in Leeds, and contained 0.14 wt% moisture and 2 wt% FFA [5]. 168 

Transesterification and esterification was conducted in a stirred glass batch reactor connected to a Ministat 169 

Huber 125 Pilot ONE Controller temperature controller and reflux condenser. The WCO was pre-treated 170 

by simple filtration to remove physical impurities, and then heated to 100 °C to remove water. 171 

Physicochemical properties of the waste cooking oil were measured after this pre-treatment. Pre-treated 172 

WCO was mixed with methanol (≥λλ.λ %, HPLC grade Sigma-Aldrich) to achieve the desired molar ratio 173 

and added to the glass reactor at room temperature, together with the desired mass of SO4/Mg-Al -Fe3O4 174 

catalyst. The reaction mixture was then stirred at 600 rpm and heated to the required temperature. Aliquots 175 

of the mixture were periodically sampled for off-line GC-MS analysis using a Perkin Elmer Clarus 580S 176 

gas chromatograph, equipped with an Elite 5ms capillary column (30.0 m x 250 µm) and a 560S mass 177 

spectrometer [45]. 178 

2.3.2 Esterification of oleic acid 179 

The stability of SO4/Mg-Al -Fe3O4 catalyst was assessed during oleic acid esterification as a model FFA 180 

using the optimised process parameters for biodiesel production from WCO. 4.0 wt% of SO4/Mg-Al -181 

Fe3O4 catalyst and 9:1 molar ratio of methanol: oleic acid (Fluka Analytical, ı99) were charged into the 182 

glass reactor at room temperature. The three-phase mixture (solid-liquid-liquid) was agitated at 600 RPM 183 

and heated to 95 C. Methyl oleate formation was periodically monitored by withdrawing sample aliquots 184 

and off-line GC-MS analysis [45]. 185 
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2.4 Biodiesel characterisation 186 

A Setaflash series 3 closed cup automated flash point tester was used to capture the flash point of the 187 

synthetic biodiesel under a temperature ramp of 1-2 °C min-1. The biodiesel density was calculated using a 188 

pycnometric method at 15 °C, and kinematic viscosity measured at 40 °C by a Malvern Bohlin-Gemini 150 189 

rotary rheometer. Acid values and %FFA of the synthetic biodiesel were measured according to standard 190 

methods [5]. Free glycerol, mono-, di-, triglyceride and total glycerine contents were quantified using a 191 

Perkin Elmer Clarus 560 GC equipped with an on-column injection system, a flame ionization detector and 192 

a capillary column (15.0 m x 0.32 mm, 0.1 µm) [50, 51]. The total FAME (biodiesel) yield was determined 193 

by off-line GC-MS using a modified EN-14103 procedure as previously reported [45] from Equation 1: 194 

 195 Total FAME Ψ ൌ ሺσ ୅ሻି୅౅౏୅౅౏ כ େ౅౏כ୚౅౏୛ כ ͳͲͲ                             Eqn. (1) 196 

 197 

where ěA=total peak area of methyl esters, AIS=peak area of methyl heptadecanoate, CIS=methyl 198 

heptadecanoate concentration in mg/ml, VIS=used volume of methyl heptadecanoate solution in ml, and 199 

W=sample mass in mg. 200 

 201 

2.5 Catalyst reusability and leaching  202 

Catalyst reusability for biodiesel production from WCO was assessed by magnetically separating the post-203 

reaction catalyst from the reaction mixture, washing the catalyst repeatedly with a 1:1 vol% methanol:n-204 

hexane mixture to remove any weakly bound organic residues, and then a final 250 C re-calcination for 2 205 

h to remove any chemisorbed organics, moisture or CO2 on the catalyst surface. Leaching from the 206 

SO4/Mg-Al -Fe3O4 catalyst was investigated by ICP-MS. A sample of the synthetic biodiesel was digested 207 

after each reaction using a HF100-multiwave 3000 (Anton Paar) microwave digester using 7.0 ml of 208 

concentrated nitric acid (≥69%, Fluka Analytical, TraceSELECT®), 1.0 ml of concentrated fuming 209 

hydrochloric acid (≥37%, Fluka Analytical, TraceSELECT®) and 2.0 ml of hydrogen peroxide (~30%, 210 

Sigma-Aldrich, for ultra-trace analysis) reagents. The resulting solutions were diluted with deionised 211 

water to 50 ml and then nebulised into the ICP. Mg, S, Al, and Fe concentrations were determined by 212 

standard methods [50]. 213 
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3. Results and discussion 214 

3.1 Catalyst characterisation 215 

Powder XRD of the as-prepared SO4/Mg-Al -Fe3O4 (Figure 1a) revealed sharp reflections at 18.3, 30.2, 216 

35.5, 37.2, 43.2, 53.6, 57.1, and 62.7°, assigned to the [111], [220], [311], [222], [400], [422], [511] and 217 

[440] planes of cubic Fe3O4 (magnetite, ICDD: 04-002-3668) respectively. Particle size analysis applying 218 

the Scherrer equation to peak widths indicates volume-averaged Fe3O4 crystalline diameters of 86 nm. 219 

Reflections were also observed at 24.3, 33.4, 35.8, 41.1, 49.7, 54.4, 62.8, and 64.4° assigned to the [012], 220 

[104], [110], [113], [024], [116], [214] and [300] planes respectively of rhombohedral Fe1.84Al 0.16O3 (iron 221 

aluminium oxide, ICDD: 04-005-8669). Weak reflections are also present between 2ș=20-65°, attributed 222 

to orthorhombic magnesium sulfate (MgSO4, ICDD: 00-021-0546) with cell parameters a=4.75, b=8.59 223 

and c=6.71 Å. 224 
 225 

    226 

Figure 1. (a) Powder XRD pattern, and (b) N2 adsorption-desorption isotherms and mean pore sizes 227 
(inset) of as-prepared SO4/Mg-Al -Fe3O4. 228 

 229 
 230 
Porosimetry of SO4/Mg-Al -Fe3O4 showed a Type IV isotherm (Figure 1b) and type H1 hysteresis loop 231 

[52] which are typically associated with capillary condensation within cylindrical mesopores. Since the 232 

synthesis did not employ a structure-directing template, these mesopores may arise from interparticle voids, 233 

but in any even could serve to improve reactant accessibility to active sites. SEM images of the SO4/Mg-234 

Al -Fe3O4 catalyst reveal the formation of large (~20-40 nm) nanoparticle aggregates (Figure 2) which are 235 

embedded in a (presumably amorphous alumina and/or MgSO4) matrix to form a coral-like porous 236 

architecture. TEM images confirm the presence of (high contrast) Fe3O4 cores between 20-150 nm 237 
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diameter, encapsulated by amorphous shells comprising low contrast aggregates of (presumably Al/Mg-238 

rich) of ~5-15 nm nanoparticles (Figure 3). Elemental maps confirm that Fe3O4 nanoparticles are 239 

embedded within an Al-rich matrix (Figure 4), with Mg co-located with S in a 1:1 atomic ratio. The 240 

atomic ratio of Al:Mg = 6:1 throughout the sample which may suppress nucleation and growth of Mg-Al 241 

hydrotalcites (unstable for values >4:1), whereas that for Fe:Mg = 3:1 [53]. The low magnesium content 242 

of the as-prepared catalyst may also reflect the low pH used during its synthesis. The total sulfur content 243 

determined by TEM-EDS, CHNS-O, and ICP-MS was approximately 7 wt% (Table 1), higher than that 244 

reported for SO4/MOx (2-3 wt%) [54] and Al-doped SO4/ZrO2 (1.5 wt%) [55], but comparable to SO4/Fe-245 

Al -TiO2 [5]. 246 

 247 

Figure 2. SEM images at different magnifications for SO4/Mg-Al -Fe3O4 catalyst. 248 
 249 
 250 
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 251 

Figure 3. TEM images of SO4/Mg-Al -Fe3O4 catalyst. 252 

 253 

Table 1. Textural properties and composition of SO4/Mg-Al -Fe3O4. 254 

 
Textural propertiesa Composition / atom%b 

Bulk S content/ wt% 

SBET / m2 g-1 Dp / nm Vp / cm3 g-1 O Mg Al  S Fe 

SO4/Mg-Al -Fe3O4 123 ± 1 6.5 ±0.5 0.3 60.5 3.5 20.7 4.6 10.7 7.8 ±1c 7.6 ±0.5d 
a N2 porosimetry. b EDS. c CHNS-O. d ICP-MS. 255 

 256 
 257 

The ATR-IR spectrum of SO4/Mg-Al -Fe3O4 exhibited a strong broad band at 3252 cm-1 attributed to the 258 

O-H stretch of physisorbed water (Figure 5a) on the surface of the catalyst from the air and/or interlayer 259 

water molecules while the peak at 3072 cm-1 corresponded to the O-H stretching vibration of bound water 260 

[5, 38, 56]. The strong bands between 982-1087 cm-1 are assigned to chelating bidentate sulfate ሺSOସଶିሻ 261 

and/or chelating double-bridge peroxydisulfate ሺSଶOଶ଼ିሻ groups, and that at 1418 cm-1 to an S=O stretch 262 

[38, 39]. Bands at 719, 604, and 566 cm-1 likely arise from to M-O-M stretches involving Al -O, Mg-O and 263 

Fe-O bonds [38, 56-59]. 264 
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 265 

Figure 4. EDS elemental mapping of SO4/Mg-Al -Fe3O4 catalyst. 266 
 267 

 268 
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 271 

TGA of the as-prepared SO4/Mg-Al -Fe3O4 exhibited two distinct weight losses (Figure 5b). The first, 272 

between 100 and 150 C, is associated with the loss of physisorbed water [60], and the second between 273 

600-900 C is due to the decomposition of sulfate and/or peroxydisulfate groups and SOx evolution [5]; 274 

sulfate species are thermally stable <600 C, superior to that observed for other sulfated metal oxides [39, 275 

61]. The sulfate loading calculated from TGA of 11 wt% is in good agreement with elemental analysis. 276 

Acid loading and strength of the as-prepared catalyst were quantified by n-propylamine TPD-MS (Figure 277 

6). A strong desorption peak for reactively-formed propene is observed between 300-500 °C (arising from 278 

4000 3500 3000 1500 1000 500
0

20

40

60

80

100

T
ra

ns
m

itt
an

ce
 (

%
)

Wavenumber (cm-1)

O
-H

S
tr

.

S
=

O M
-O

-M
 S

tr
e

.

S
-O

(a) (b) 



13 
 

Hofmann elimination of chemisorbed n-propylamine over acid sites) indicative of moderate strength acid 279 

sites akin to those reported in SO4/ZrO2 [32]. The calculated total acidic site loadings of the SO4/Mg-Al -280 

Fe3O4 catalyst were found to be 2.35 mmol g-1 which is much higher than that reported for other sulfated 281 

metal oxides (typically <1 mmol g-1) [5, 62, 63]. 282 

 283 

      284 

Figure 6. (left) TPD profiles, and (right ) mass spectra for SO4/Mg-Al -Fe3O4 catalyst of pure and 285 
saturated with n-propylamine. 286 

 287 

3.2 Catalytic performance 288 

The as-prepared SO4/Mg-Al -Fe3O4 catalyst was subsequently evaluated for biodiesel production from 289 

WCO (Figure 7). First, the effect of methanol:WCO molar ratio was explored between 3:1 to 12:1; 290 

increasing the methanol content monotonically enhanced the 6 h FAME yield from approximately 55 to 291 

80 % by shifting the transesterification reaction equilibrium (Figure 7a). Since only a small yield 292 
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improvements during further optimisation without encountering diffusion limitations. The impact of 299 

reaction temperatures was also studied between 65 to 95 °C (Figure 7c) [45]. A significant yield increase 300 
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temperature) which may both reflect both enhanced rates of TAG hydrolysis and better miscibility of the 302 

methanol/WCO liquid phases, as previously reported [65, 66]. The maximum 6 h FAME yield >95 % at 303 

the highest temperature. To establish the catalyst tolerance to FFAs, oleic acid esterification with methanol 304 

was also examined under the optimum reaction conditions (Figure 7d). SO4/Mg-Al -Fe3O4 catalyst was 305 

active for methyl oleate production, with a maximum FAME yield of 87 % after 2 h reaction; the small 306 

drop in FAME yield at longer reaction times may be associated with water (by-product) accumulation 307 

driving the reverse hydrolysis. 308 

      309 

       310 

Figure 7. WCO transesterification over SO4/Mg-Al -Fe3O4 as a function of (a) methanol:WCO molar 311 
ratio at 75 °C and 3 wt% catalyst, (b) catalyst loading at 75 °C and 9:1 methanol:WCO molar ratio, and 312 

(c) reaction temperature at 4 wt% catalyst and 9:1 methanol:WCO molar ratio. (d) Oleic acid 313 
esterification over SO4/Mg-Al -Fe3O4 at 95 °C, 4 wt% catalyst, and 9:1 methanol:oleic acid molar ratio. 314 
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3.3 Magnetic catalyst reusability and leaching 316 

Stability of SO4/Mg-Al -Fe3O4 for WCO transesterification was investigated during five catalyst re-uses 317 

under optimal reaction conditions (Figure 8). Minimal deactivation was observed, consistent with post-318 

reaction XRD analysis of the catalyst which evidenced negligible change in the phase or crystallinity, and 319 

elemental analysis which revealed negligible metal or sulfur leaching occurred into the reaction medium 320 

(Table 2). A small increase in the residual Al and Fe concentrations in the biodiesel product was observed 321 

for Run 3, attributed to the use of a different strength magnet to separate the nanoparticles compared with 322 

the other four runs. This excellent stability is an important consideration for commercial (large scale) 323 

biodiesel production from low grade oil feedstocks. 324 

 325 
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Figure 8. (left) Transesterification of WCO over SO4/Mg-Al -Fe3O4 as a function of re-use: reaction 327 

conditions: 4 wt%, 95 °C, 9:1 methanol:WCO molar ratio. (right ) XRD patterns of post-reaction 328 
SO4/Mg-Al -Fe3O4. 329 
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Table 2. Elemental analysis of biodiesel after magnetic catalyst separation. 332 
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Run 1 0.343 0.124 0.000 0.082 
Run 2 0.308 0.098 0.000 0.028 
Run 3 0.356 0.378 0.000 0.229 
Run 4 0.327 0.120 0.000 0.067 
Run 5 0.220 0.082 0.000 0.053 
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3.3 Biodiesel characterisation 334 

Analysis of the transesterification biodiesel product is critical to determining the quality of any ultimate 335 

fuel blend due to the potential presence of contaminants including glycerol, FFAs, catalyst residue, 336 

methanol, and water. GC-MS analysis (Figure 9) of the biodiesel product was therefore conducted to 337 

quantify the biodiesel purity, using a response factor from the methyl heptanoate internal standard (≥λλ.5 338 

purity, Sigma-Aldrich) to calculate the amount of individual FAME components (Table 3). The major 339 

FAME products were methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, methyl linoleate, 340 

and methyl gadoleate. The physicochemical properties of the biodiesel confirm that its quality meets 341 

ASTM and EU standards (Table 4). 342 

 343 

 344 

Figure 9. GC-MS chromatogram for biodiesel product from WCO transesterification over SO4/Mg-Al -345 

Fe3O4. Reaction conditions: 4 wt% catalyst mass to WCO, 95 °C, 9:1 methanol:WCO molar ratio 346 

 347 

 348 

 349 

 350 

 351 

 352 



17 
 

Table 3. FAME composition of biodiesel derived from WCO transesterification over SO4/Mg-Al -Fe3O4 353 

FAME  
Chain 

structure 
Retention time 

/ mins 
Area FAME / Area %  

Myristic acid methyl ester Cଵସǣ଴ 14.157 528458 0.04 
Palmitic acid methyl ester Cଵ଺ǣ଴ 17.074 66629604 5.01 
Palmitoleic acid methyl ester Cଵ଺ǣଵ 16.673 2244707 0.17 
Heptadecanoic acid methyl ester Cଵ଻ǣ଴ 19.334 195359776 IS 
Stearic acid methyl ester Cଵ଼ǣ଴ 22.351 26016648 1.96 
Oleic acid methyl ester Cଵ଼ǣଵ 21.675 898642007 67.77 
Linoleic acid methyl ester Cଵ଼ǣଶ 21.280 279073632 20.99 
Linolenic acid methyl ester Cଵ଼ǣଷ 21.675 17771433 1.17 
Gadoleic acid methyl ester Cଶ଴ǣଵ 27.413 20598874 1.55 
Erucic acid methyl ester Cଶଵǣଵ 30.334 11479104 0.86 
Behenic acid methyl ester Cଶଶǣ଴ 30.639 5037719 0.38 
Lignoceric acid methyl ester Cଶସǣ଴ 30.980 1328256 0.10 

 354 

 355 

Table 4. Properties of biodiesel derived from WCO transesterification over SO4/Mg-Al -Fe3O4 356 

Property Unit 
Limits Synthesised 

biodiesel ASTM D6751 EN14214 
Flash point °C 93 min. 101 min. 179.5 
Kinematic viscosity mm2 s-1 1.9-6.0 3.5-5.0 4.74 
Acid number mgKOH g-1 0.8 max. 0.5 max. 0.34 
Density at 15 °C kg m-3 --- 860-900 892.6 
FAME content % mass --- 96.5 min. 98.5 
Methyl linolenate content % mass --- 12 max. 1.17 
Free glycerine content % mass 0.02 max. --- 0.025 
Total glycerine content % mass 0.24 max. 0.25 max. 0.122 
Monoglyceride content % mass --- 0.8 max. 0.007 
Diglyceride content % mass --- 0.2 max. 0.008 
Triglyceride content % mass --- 0.2 max. 0.082 

4. Conclusions 357 

A novel magnetically separable SO4/Mg-Al -Fe3O4 core-shell catalyst was synthesised for the 358 

transesterification of WCO and esterification of oleic acid. Bulks and surface physicochemical properties 359 

were characterised by XRD, SEM, TEM, TGA, ATR-FTIR, N2 porosimetry, and propylamine TPD-MS. 360 

Magnetic Fe3O4 (20-150 nm dimeter) nanoparticles were encapsulated by 5-15 nm thick alumina and/or 361 
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MgSO4 shells. Sulfation generated surface bidentate sulfate ions which exhibited moderate acid strengths 362 

but high acid site loadings of 2.35 mmol g-1. The multifunctional catalyst properties (super acidity and 363 

magnetic separability) pave the way for simultaneous esterification and transesterification of low grade 364 

bio-oil feedstocks to biodiesel, eliminating the need for current pre-treatments to reduce the FFA content, 365 

and enabling facile and energy efficient product separation. The SO4/Mg-Al -Fe3O4 catalyst exhibited good 366 

activity for biodiesel production from WCO for a 9:1 methanol:oil molar ratio and 4 wt% catalyst loading 367 

after 5 h reaction at 95 C. It also exhibited good activity for oleic acid esterification (87 % yield in 2 h) 368 

under similar reaction conditions, highlighting the potential of SO4/Mg-Al -Fe3O4 for the direct conversion 369 

of low grade oil feedstocks high in FFAs to biodiesel, without requiring any pre-treatment. SO4/Mg-Al -370 

Fe3O4 demonstrates excellent stability and recyclability over five consecutive transesterification reactions 371 

with negligible deactivation or leaching, paving the way to commercial biodiesel production from WCO 372 

using a heterogeneous catalyst. Future study could involve investigation of the effect of different 373 

calcination temperatures on the catalytic performance of this magnetic catalyst. An extended study should 374 

also focus on the investigation of mechanism of this catalyst for esterification and transesterification 375 

reactions. Tests of different chain length of fatty acid composition feedstocks need to be carried out in 376 

order to better understand its effect on the performance of this type of catalyst as WCO is a mixture of 377 

different fatty acids. 378 
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