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Abstract

We consider a model of external financing in which entrepreneurs are privately

informed about the quality of their projects and seek funds from competitive fi-

nanciers. The literature restricts attention to monotonic or ‘manipulation proof’

securities and finds that straight debt is the uniquely optimal contract. Mono-

tonicity is commonly justified by the argument that it would arise endogenously

if the entrepreneur can window dress the realized earnings before contract ma-

turity. We explicitly characterize the optimal contracts when entrepreneurs can

engage in window dressing and/or output diversion, and derive necessary and suffi-

cient conditions for straight debt to be optimal. Contrary to conventional wisdom,

debt is often suboptimal and it is never uniquely optimal. Optimal contracts are

non-monotonic and induce profit manipulation in equilibrium. They can be imple-

mented as performance-sensitive debt.
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1 Introduction

Asymmetric information is often used to explain the prevalence of debt as a means of

external financing. Early theories focused on frictions that arise after cash flows real-

ize, showing that debt minimizes the deadweight losses associated with monitoring and

verification when cash flows are only partially or costly observable.1 Subsequent work

derived the optimality of debt under ex-ante asymmetries of information.2 The idea is

that borrowers are often better informed than lenders about the distribution of future

cash flows, or that they need to exert effort to generate the cash flows. In either case,

the same two conditions are sufficient for debt to be optimal: (i) cash flows distributions

are hazard-rate ordered in the borrower’s quality, or in the degree of effort exerted; (ii)

securities’ payoffs are restricted to be monotonic functions of the realized cash flows, so

that performance-based bonuses or other non-monotonicities are assumed away.3

In this paper we explore when and why ruling out such bonuses is optimal, and

we derive necessary and sufficient conditions on fundamentals under which the optimal

securities are monotonic. Although we focus on adverse selection (that is, we build on

Nachman and Noe (1994)), similar insights extend to the moral hazard setting of Innes

(1990). When borrowers are better informed about the distribution of future cash flows

relative to their lenders, high quality borrowers can either credibly signal their type, or

they end up paying an information cost through the underpricing of the securities they

issue. Since better borrowers are less likely to generate low cash flows, this information

cost is minimized if the securities issued offer the greatest downside protection and the

lowest upside gain which secure that the lenders obtain their desired return.

It follows that non-monotonic contracts challenge the optimality of straight debt. This

occurs because, relative to debt, they increase the cash payed out to the lenders in low

states of the world, at the expense of the cash payed out to them in high states. Namely,

lenders who issued non-monotonic contracts have a greater downside protection and a

lower upside gain than lenders who issued straight debt. In the security design language,

1See the costly-state-verification models of Townsend (1979) and Gale and Hellwig (1985).
2See especially Innes (1990, 1993), Nachman and Noe (1994) and DeMarzo and Duffie (1999). These

models formalize intuitions already present in Myers and Majluf (1984).
3In a moral hazard setting, Hébert (2017) studies a model where effort moral hazard and risk shifting

are simultaneously present and shows that the optimal contract is always monotonic; Antic (2014), and
Lee and Rajan (2016) show that monotonic contracts are optimal when the principal is ambiguity averse.
In an adverse selection setting, Malenko and Tsoy (2018) show that the optimal contract is monotonic
when the principal is ambiguity averse.
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the payoff of such non-monotonic securities crosses the one of straight debt from the right,

reducing the mispricing of the securities issued by better quality borrowers.

So, what prevents such contracts from being used? The common explanation appeals

to window dressing possibilities. A (possibly discrete) performance-based bonus is paid

when the realized cash flows exceed some pre-specified benchmark. Now, suppose that a

borrower can window dress the cash flows - perhaps by secretly borrowing additional funds

from a friend.4 She clearly has an incentive to window dress when the realized cash flows

do not hit the benchmark, in order to cash the bonus. So, window dressing effectively

transforms debt with bonuses into straight debt, with ‘real’ (correctly anticipated) face

value equal to the contractual face value minus the bonus. The above story is sound if:

(i) window dressing possibilities are unbounded (e.g., the ‘friend’ has a deep pocket); and

(ii) borrowers may never be caught cheating. However, often some of these conditions

fail empirically.

In this paper, we generalize the results of Nachman and Noe (1994) to encompass such

cases. We characterize optimal securities and derive novel testable predictions relating the

size of bonuses to cross-sectional differences in asymmetric information and to the efficacy

of the legal system. In particular, we explicitly model window dressing by assuming that,

in the interim period, the borrower has access to a credit line from a ‘friend’. The credit

line enables her potentially to window dress earnings up to a fixed upper bound (with

respect to which we perform comparative static exercises), as well as to divert output. We

allow the window dressing and diversion bounds to depend on the realized cash flow and

we show that the optimal contracts is non-monotonic and it involves profit manipulation.

The key observation driving the results is as follows. Consider three possible realiza-

tions of the cash flows: $10, $20 and $30. Further, suppose that cash flows can be window

dressed up to $15, perhaps by secretly borrowing from a friend. An entrepreneur with a

realized cash flow of $10 can claim to have $20, but not $30. In contrast, an entrepreneur

with $20 can easily claim to have $30. Because the $10 type cannot pretend to be the $30

type, this example describes a situation known in the contracting literature as a failure

of the nested-range-condition, as defined in Green and Laffont (1986). This condition is

both necessary and sufficient for the revelation principle to hold – or, in our language,

for concentrating attention without loss of generality on contracts that prevent any profit

4Importantly, a secret third-party loan is just one of the many possible examples of window dressing,
which is a more general phenomenon. As it will be clear, our qualitative results do not depend on the
specific source of window dressing opportunities, but rather on their extent.
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manipulation on the equilibrium path.

The immediate and, in our opinion, important consequence of a failure of the nested-

range-condition is that contracts involving profit manipulation in equilibrium implement

allocations that cannot be achieved otherwise. In fact, we show that they strictly reduce

the mispricing of the securities issued by better borrower types for some (most) param-

eter values. We characterize two parameter regions where the uniquely optimal security

requires profit manipulation. In one region, the equilibrium is pooling and all borrowers

issue non-monotonic securities, such as debt with a strictly positive performance-based

bonus. In the other region, the equilibrium is separating and better borrowers issue non-

monotonic securities, whereas the worst borrowers can issue any other security, e.g. debt

or equity.

Furthermore, for sufficiently large window dressing possibilities the aforementioned

justification for monotonicity of securities holds, and every non-monotonic contract is ex

post equivalent to straight debt, with ‘real’ face value equal to the nominal face value

minus the bonus (as in Nachman and Noe (1994)). One contribution of our paper is to

explicitly characterize what ‘sufficiently large’ means analytically, i.e., to derive necessary

and sufficient conditions for debt to be optimal. We also show that such conditions

are never satisfied if the distribution of future cash flows is unbounded above - this is

especially relevant for structural models, where often cash flows are assumed to be either

log-normally or exponentially distributed. Moreover, debt is never uniquely optimal:

there always exists a non-monotonic contract ex post equivalent to debt. We also provide

numerical examples to demonstrate that the region where debt contracts belong to the set

of optimal contracts is not only quite limited, but it also corresponds to the most extreme

degrees of manipulation opportunities and adverse selection. In this region, there always

exist optimal non-monotonic contracts that are ex post equivalent to debt.

Our model is explicitly designed to study the effect of window dressing on optimal

securities. However, window dressing is only one possible type of output manipulation, the

other being cash diversion. In the analysis, we allow for both window dressing and cash

diversion; our results cover both cases. The main insight obtained from cash diversion is

that it induces manipulation also with monotonic securities, which is not true for window

dressing. As a result, it constraints the set of firms that can be successful in raising

external financing.

One important question concerns the empirical implications of our exercise. Non-

4



monotonic contracts are hard to observe in reality, and presumably this explains some

of the literature’s incentives to assume monotonicity in the first place. We would like

to point out that, although not as frequently as debt, non-monotonic contracts do exist,

especially in the context of managerial compensation.

Managerial compensation typically features performance-based bonuses, that may

often be discrete and sizable. These bonuses induce a non-monotonicity in outside in-

vestors’ compensation, and – consistent with our predictions – they introduce incentives

for the managers to manipulate earnings in order to cash the bonus. Our model provides

an equilibrium explanation of such manipulations, where they are priced out and used

optimally as a signaling device or to reduce mispricing. We predict that the lower the

extent of feasible manipulations and the smaller the distance across entrepreneurial types

in terms of net present values, the larger should be both the dispersion in bonuses across

entrepreneurs, as well as the informational content of the bonus. Indeed, larger bonuses

are granted to higher quality entrepreneurs in the separating region of the model.

The paper unfolds as follows. Section 2 reviews the relevant literature. Section 3

presents the baseline model. Section 4 introduces the relevant securities, and discusses

when and how they induce profit manipulation. Section 5 derives our main results. Sec-

tion 6 presents some parametric examples to streamline our findings. Section 7 concludes.

2 Literature Review

Our paper is closely related to the literature on security design under asymmetric infor-

mation. Myers and Majluf (1984) developed the ‘pecking order’ theory of debt optimality

under asymmetric information in a set up where only debt and (inside or outside) equity

contracts were allowed. Noe (1988) first showed that their theory required somewhat

restrictive assumptions on the distributions of earnings. Innes (1993) and Nachman and

Noe (1994) revisited the theoretical argument allowing for a broader set of contracts

than debt and equity. These papers found that to obtain debt as the optimal security

some monotonicity constraint has to be imposed both on the type space, and on the set

of feasible securities. The latter constraint restricts admissible contracts to those that

are ‘manipulation proof’. Since then, the monotonicity constraint has been widely used.

Prominent examples include DeMarzo and Duffie (1999); DeMarzo et al. (2005); Inderst

and Mueller (2006); Axelson (2007); Axelson et al. (2009); Gorbenko and Malenko (2011);
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Philippon and Skreta (2012); Scheuer (2013). Our contribution is to derive necessary and

sufficient conditions for monotonicity to be without loss of generality.

Furthermore, our paper is related to the literature on optimal contracting under profit

manipulation. The existing papers can be separated along two dimensions: (i) whether

manipulations are assumed to be bounded (and a function of types) or not; and (ii)

whether repayments can be extracted via additional tools such as verification, termination

or liquidation of the firm. A literature originating from Townsend (1979) and Gale

and Hellwig (1985) models unbounded manipulation with the possibility of verifying the

earnings at a cost (the so-called ‘costly state verification’ models). Bolton and Scharfstein

(1990) and Hart and Moore (1998) study related models where verification is substituted

with the threats of termination and liquidation. In contrast, Green and Laffont (1986)

consider a set up with bounded manipulation possibilities but no verification. They

provide a necessary and sufficient condition for the revelation principle to hold – the

nested range condition – which fails naturally in financial contracting models where the

set of feasible manipulations is likely to be convex and depends on the type.

Lacker and Weinberg (1989) studied a model of ex post moral hazard where profit

manipulation opportunities move optimal contracts from debt toward equity-like arrange-

ments. Recent work that explicitly models profit manipulation opportunities includes

Picard (2000), Crocker and Slemrod (2007), Sun (2014), Guttman and Marinovic (2017)

and Strobl and Povel (2018). To our knowledge, previous papers did not allow for profit

manipulation within an adverse selection context, which is the focus of this paper.

3 The Economy

There are two dates {0, 1}, an entrepreneur and a competitive financier. Both agents are

risk-neutral and maximize date one consumption. The entrepreneur has a project that

generates stochastic date one earnings x ∈ X and requires a fixed input of I > 0 at date

zero. The financier has wealth W > I, and can either lend it to the entrepreneur or store

it without depreciation. The set of possible earnings realizations is X ≡ [0, K]. When

we allow for unbounded future earnings, we let K approach infinity. There are two types

of projects (entrepreneurs), t ∈ T ≡ {l, h}. Types differ according to their distribution

of earnings. The cumulative distribution function (cdf ) over X for a type t project is

Ft(x); its associated density is ft(x) > 0 for every x ∈ X. The project’s type is private

6



information of the entrepreneur. Outside financiers only know that a fraction λl ∈ (0, 1)

are type l projects, and a fraction λh = (1 − λl) are type h projects. All projects have

positive net present value, and the firm’s assets in place are assumed to be zero. Denote

by Et[x] =
∫ K

0
x dFt(x) the full information expected value of a type t project. We assume

that all projects have positive net present value:

Assumption 1: Et[x] ≥ I > 0 for every t ∈ T .5 (A1)

In addition, we make the following standard assumptions on the distributions of earnings:

Assumption 2: (A2)

• Strict Monotone Likelihood Ratio Property (MLRP): ∂
∂x

(
fh(x)
fl(x)

)

> 0 for every x.

Continuity simplifies the analysis and it prevents contracts that penalize realizations

with strictly positive probability only for one type. Strict MLRP implies that Eh[x] >

El[x]. Both assumptions are standard in the literature (see for instance DeMarzo et al.

(2005)). The timing of the game is as follows:

• date 0: The entrepreneur of type t issues publicly a security (financial contract) de-

noted by s. Each financier simultaneously quotes a price P (s) at which he is willing

to buy the securities. If a contract is signed (securities are sold), the entrepreneur

collects P (s). Subsequent investment is observable and verifiable;

• date 1: Realized earnings x ∈ X are perfectly but privately observed by the

entrepreneur. She can costlessly manipulate reported earnings by secretly borrowing

from friends up to η̄(x) ≥ 0 or diverting η(x) ≤ x, and then report earnings

m ∈ M(x) ≡ [x−η(x), x+η̄(x)]. The possibility of manipulation and its magnitude

is common knowledge at date 0;

• date 2: Claims are settled based on borrower’s reported earning; the game ends.

t = 0 t = 1 t = 2

Contracting stage Entrepreneur observes x
and reports m(x|s)

Claims are settled

Timeline

5A1 guarantees that investment is risky, because I > 0 and strict positivity of ft(x) for every x imply
that Ft(I − ǫ) > 0 for all t ∈ T , for ǫ > 0.
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The novel ingredient that differentiates our findings from existing results is the pos-

sibility of ex post profit manipulation. We summarize the restrictions imposed on the

manipulation technology in the following assumption:

Assumption 3: The set of feasible manipulated earnings for given x ∈ X is: (A3a)

M(x) ≡ [x− η(x), x+ η(x)]

where η(x) and η(x) are C1 functions such that for every x: (i) η(x) ≤ x and η′(x) ∈ [0, 1);

(ii) η(x) ≤ K − x and η′(x) ≥ −1.

Condition η̄′(x) ≥ −1 guarantees that the higher the realized output, the higher the

output that can be reported. We allow for unbounded secret borrowing to nest Nachman

and Noe (1994) results as a special case of our framework. We assume that M(x) is a

convex set because if the entrepreneur can divert k dollars from the project to his own

accounts, we believe he should be able to divert also k − ǫ for every ǫ ∈ [0, k].

Since profit manipulation possibilities are the key innovation of our model relative to

the existing work, a few comments are due. First, we use the term window dressing to

denote any upward profit manipulation for two main reasons: first, to be in line with most

of the previous security design papers that refer to window dressing possibilities as the

main problem affecting non-monotonic security designs; second, and most importantly,

because our assumption is equivalent to a simple formal model of window dressing in the

literal sense, that is, a model of secret borrowing from friends. Indeed, we could think

about a third party who is directly related to the borrower (and so not subject to ex

post informational asymmetries) and who provides a short-term bridge financing at the

interim stage. The bounds on window dressing possibilities would naturally corresponds

to the depth of this friend’s pocket, hence such a model would be equivalent to ours.

In addition, although we believe that there is a potential risk of strategic default as

well as other issues in raising the necessary funds from a ‘friend’, in this model we assume

that all those impediments are absent for the following reason. The literature justifies

the monotonicity constrain due to the possibility of window dressing and concludes that

debt arises as the optimal contract under this assumption. We will claim that this is

not the case (as it is true only in some extreme cases). To clarify this point we make

this manipulation as easy as possible for the entrepreneur (subject to our manipulation

boundaries) and show that even in this hypothetical scenario manipulation does not
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eliminate non-monotonicity of the equilibrium contact. Surely, if one makes manipulation

even more difficult the monotonicity constraint is even harder to justify.

As for the possibility of output diversion, it is important to stress that none of our

qualitative results depend on it, so the reader who just wants to consider window dressing

can simply set η(x) = 0 from now on.6 Because of earnings misreporting, a security s(·)

cannot be a function of x as in the previous literature. Instead, it is a function of the

reported earnings m(x|s). Because M(x) is a compact set for every x ∈ X, we know that

for every security s and every x there exists a best message m∗(x|s) defined so that:

m∗(x|s) ≡ argmin
m∈M(x)

{s(m)}.

Further, because M(x) ⊆ X, we know that m∗(x|s) ∈ X.7 Hence, the expected repay-

ment of a security (or its real payoff ) is a function s(m∗(x|s)) : X → R. It should be

noticed that the ex post verification problem created by the possibility of profit manip-

ulation prevents the application of the revelation principle, since M(x) does not need to

satisfy the nested-range-condition of Green and Laffont (1986).

The only restriction we impose on the contract space is that each security must satisfy

limited liability, as appropriately redefined in terms of messages:

Assumption 4: The set of admissible securities is given by: (A4)

S ≡ {s(m) | 0 ≤ s(m) ≤ m, ∀m ∈ X}.

If the borrower declares m and cannot repay s(m) to his financier, then the financier

becomes the legitimate owner of borrower’s assets.8

A possible interpretation of our limited liability assumption is that sending a message

is equivalent to the action of showing the balance on the firm’s account to the lenders,

after any eventual window dressing or cash diversion. In this case, payments can only be

6We could have modeled diversion as output destruction, in which case the entrepreneur could not
put the diverted amount in his pocket. However, in such a scenario the entrepreneur would be indifferent
between diverting and not in equilibrium, making such possibilities useless.

7Our formulation restricts attention to direct mechanisms where the set of messages is a subset of the
set of states X, following Green and Laffont (1986).

8Since the limited liability constraint must be defined in terms of messages rather than realized output,
we should consider the case in which the entrepreneur declares earnings that exceed true earnings, and
does not have the resources to repay the contractual obligation. In this case, the fraud becomes observable
and verifiable: it is revealed that he is either lying about x or refusing to make the payment he committed
to make. We implicitly assume that when the fraud is revealed the agent receives a large punishment.
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weakly smaller than the total cash shown to be available in the accounts, i.e. m.9

Denote by Vt the profits of an entrepreneur of type t whose offered security s has been

priced at P by the financier, and by Vf the financier’s profits. Then we can write:

Vt = P − I + Et

[
x− s(m∗(x|s))

]
, (1)

Vf = Eλ(s)

[
s(m∗(x|s))

]
− P (s). (2)

The expectation in (2) is given by the sum across types (weighted by the posterior be-

lief λ(t|s) that type t is issuing the contract s) of the final payoff of the security after

manipulation takes place:

Eλ(s)

[
s(m∗(x|s))

]
≡

∑

t∈T
λ(t|s)

[ ∫

x∈X
s(m∗(x|s))dFt(x)

]

.

Notice that we can write m∗
t (x|s) = m∗(x|s) because the cost and benefits of output

manipulation ex post are not type-dependent.

Here we adopt the concept of Perfect Bayesian Equilibrium (PBE) in pure strategies:

PBE: A strategy profile
(
s∗t , m

∗(x|s), P ∗(s)
)
and a common posterior belief λ∗(t|s) for

t ∈ T form a pure strategy PBE of the game if the following conditions are satisfied:

1. For every x ∈ X and for s ∈ S: m∗(x|s) = argminx∈M(x)

{
s(m)

}
;

2. For every t ∈ T , s∗t maximizes Vt(st, P
∗(st),m

∗) subject to the limited liability

constraint (st ∈ S);

3. The posterior belief λ∗(t|st) is obtained from Bayes’ Rule whenever possible;

4. Competitive Rationality: for st ∈ S, P ∗(st) = Eλ
∗(t|st)[st]

As standard, a PBE is said to be separating if s∗h 6= s∗l , and pooling otherwise. Notice

that, because investment is observable and verifiable, in every equilibrium it must be

the case that either P ∗(st) = 0 (no investment), or P ∗(st) ≥ I (investment takes place).

To rule out ‘unreasonable’ equilibria, we refine the off-equilibrium-path beliefs using the

Intuitive Criterion by Cho and Kreps (1987).10

9We thank the editor for having suggested this interpretation to us.
10The formal definition of the Intuitive Criterion is left to the Appendix.
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4 Debt and Bonus Contracts

It is useful to stress again the distinction that arises in this model (unlike the existing

literature) between the promised expected payoff and the real expected payoff of a security.

The promised expected payoff is given by Eλ
∗(s)[s(m = x)], where each realized x is

assumed to be reported truthfully. In contrast, the real expected payoff is given by

Eλ
∗(s)[s(m

∗(x|s))], where m∗(x|s) solves condition (1) of a PBE, i.e. it maximizes the

entrepreneur’s ex post payoff. The characteristic features of a debt contract are: (i) the

fixed repayment in non-bankruptcy states; and (ii) seniority in bankruptcy states. If we

denote the face value of debt by d, then whenever m ≥ d, the debt security specifies

s = d. If, instead, m < d, a bankruptcy state, the debt holder is a senior claimant on the

assets, obtaining repayment s(m) = m.

In order to characterize the real payoff of a standard debt contract, we need to intro-

duce some additional notation. In particular, consider a debt contract with a face value

d and suppose that K− η(K) > d. Define as δ(d) the highest threshold such that output

diversion is profitable for entrepreneurs, i.e.:

δ(d) ≡ max
x∈X

{x|x− η(x) < d}.

Such point exists and is unique by the intermediate value theorem due to continuity and

monotonicity of function x − η(x) (see Assumption 3) and the fact that K − η(K) > d

and −η(0) < d. If K − η(K) ≤ d, instead, then simply set δ(d) ≡ K.

Given this definition of δ(·), for any debt security s with fixed repayment d, the

entrepreneur optimally reports:

m∗(x|s) =







x− η(x), if x ≤ δ(d),

x, otherwise.

The dashed curve in Figure 1 depicts the real payoff of a standard debt contract.

Insert Figure 1 about here

The contract that turns out to be generically optimal (we call it a bonus contract)
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takes the following form. For (b, d) ∈ X2:

s(m) =







m, if m < b

d, otherwise.
(3)

A bonus contract can be decomposed in two parts: straight debt with face value b, and

a bonus of size b − d to be paid whenever the firm does not default on its debts. It is a

non-monotonic contract, and the reason for its optimality (as we shall prove) lies in the

fact that it crosses the payoff of straight debt from the right. In other words, it provides

greater downside protection and lower upside gain to the outside lenders.

Since any admissible security satisfies limited liability (s ∈ S), we must have d ∈
[
0, b

]
.11 Moreover, if d = 0 the bonus contract becomes an asset-or-nothing binary

option (or, equivalently, debt with a strictly positive performance-based bonus). Figure

2 depicts the promised payoff of contracts as defined in (3).

Insert Figure 2 about here

We next characterize the optimal amount of secret borrowing under bonus contracts.

To do so we need to introduce a final piece of notation. Define a function ¯̄η(x) ≡ x+ η̄(x).

This function is continuous and strictly increasing on [0, K]. Consider a bonus contract

(b, d) such that η̄(0) < b. Given that ¯̄η(b) ≥ b by definition, the intermediate value

theorem implies that there exists β(b) ∈ (0, b] such that ¯̄η(β(b)) = β(b) + η̄(β(b)) = b.

Monotonicity of the function ¯̄η(x) ensures the uniqueness of such a point. This defines

a strictly monotonic function12 on the interval (η̄(0), K). We extend this function on

[0, d] by setting β(b) = 0 for any b ∈ [0, η̄(0)]. For a given b, the value β(b) specifies the

smallest realized earnings so that the entrepreneur can reach the cut-off point b by means

of secret borrowing. Consider a bonus contract (b, d) such that η̄(0) < b.

Lemma 1. (The Real Payoff of a Bonus Contract) Given any bonus contract s

with fixed repayment d and threshold b, we have two cases:

11Standard debt contracts are special cases of (3) where d = b. For this reason we shall always make
explicit whether the contracts we discuss must feature a strictly positive bonus or not.

12It followed from the implicit function theorem and Assumption 3.
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1. If b− d > η(b), then the entrepreneur optimally reports,

m∗(x|s) =







x− η(x), if x < max{β(b), δ(d)},

b, if x ∈ [max{β(b), δ(d)}, b),

x, otherwise.

2. If b − d ≤ η(b), then the real payoff of a bonus contract is equivalent to that of a

debt contract with face value d.

As a result, a bonus contract is ex post non-monotonic if and only if β(b) > δ(d).

Proof. See the Appendix

Figure 3 depicts the real payoff of a bonus contract for the cases of two different levels

of profit manipulation. In Panel A of Figure 3, β(b) > δ(d) and the real payoff is not ex

post monotonic. In Panels B and C of Figure 3, β(b) < δ(d) and the real payoff is ex

post equivalent to that of a debt contract with face value d.

Insert Figure 3 about here

5 Optimal Security Design

In this section we solve for the optimal securities. We first consider the case in which the

separation can be achieved and then turn attention to pooling equilibria.

5.1 Separating Equilibria

In this section we characterize the set of Separating Perfect Bayesian Equilibria (SPBE).

Such equilibria never arise with the exogenous monotonicity constraint (Nachman and

Noe, 1994). The intuition behind the SPBE is the following: the most productive type

tries to distinguish himself from the less productive one by offering securities with high

downside protection and low upside payoff for the financier (e.g., bonus contracts). By

doing so, high types impose a relatively higher cost on low types should they try to mimic.

Of course, separation can only be achieved if El[x− η(x)] ≥ I. From now on, we assume

that this inequality holds.

In a SPBE, sl 6= sh. Moreover, given the offered security st, the posterior belief that

it is offered by type t is one, i.e. λ(t|st) = 1 for every t ∈ T . Incentive compatibility for
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type t requires:

Et[x− st(m
∗(x|s))] ≥ Et[x− st′ 6=t(m

∗(x|s))],

or, equivalently: Et[st(m
∗(x|s))] ≤ Et[st′ 6=t(m

∗(x|s))]. Further, at any SPBE it must be

that Et[st(m
∗(x|s))] = I, for every t ∈ T , so we can rewrite the incentive constraint as:

Et′ [st′(m
∗(x|s))]− Et[st′(m

∗(x|s))] ≤ 0.

Finally, it is trivial to show that the only incentive constraint that may be binding is that

for the l type not to mimic the h type, i.e:

Eh[sh(m
∗(x|s))]− El[sh(m

∗(x|s))] ≤ 0. (4)

This formulation of the incentive constraint allows us to proceed and solve for the optimal

contract as it will become clear below.

Suppose that sh is a bonus contract (bh, dh). After some algebraic manipulation which

are left to the Appendix, inequality (4) reads:

IC ≡

∫ β(bh)

0

[

Fl(x)
(
1− Fh(β(bh))

)
− Fh(x)

(
1− Fl(β(bh))

)
]

(1− η′(x))dx

︸ ︷︷ ︸

≥0 by FOSD and by Assumption 3a

+

[

Fl

(
β(bh)

)
− Fh

(
β(bh)

)
]

︸ ︷︷ ︸

≥0 by FOSD

[

I − β(bh) + η(β(bh))

]

︸ ︷︷ ︸

sign?

≤ 0. (5)

Recall that β(bh) is defined as the threshold such that for every x ≤ β(bh) diversion is

weakly preferred to window dressing. Hence, inequality (5) highlights the key mechanism

that underlies separation: setting a threshold bh that makes β(bh) high enough so that

the last bracket becomes not just negative, but low enough that the second line counter-

balances the first. The key properties of (5) that are useful in the analysis are given in

Lemma 2:

Lemma 2. (Incentive Compatibility) If ∃ bh ∈ [0, K] that satisfies (5), then:

1. There is a unique bh at which the inequality (5) binds. We denote it by b1;

2. For every bh < b1 the inequality (5) is violated, and separation fails;

3. For every bh ≥ b1 the inequality (5) is satisfied, and separation succeeds.

Proof. See the Appendix.
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The argument to prove Lemma 2 is not immediate, as inequality (5) is a non-monotonic

function of bh. The proof relies on the fact that if the inequality is satisfied for some

bh < K, one can show that the set of bh such that the inequality is binding is a singleton,

and the inequality is always satisfied for values bh ≥ b1, and never otherwise. If (5) is

satisfied, then a contract is incentive compatible and leaves the financier at his participa-

tion constraint. However, it remains to guarantee that the underlying contract belongs

to the set of admissible securities, i.e. that dh ≥ 0.

Denote by βmax the solution to the zero profit condition in a SPBE for type h when

the face value of debt dh = 0, and by bmax the corresponding contractual threshold such

that βmax = β(bmax). We have:

∫ βmax

0

(
x− η(x)

)
fh(x)dx = I. (6)

We obtain the following theorem:

Theorem 1. (SPBE) If b1 exists and b1 ≤ bmax then:

a. there exists a separating equilibrium e∗s in which a type h entrepreneur issues a

bonus contract (b∗h, d
∗
h) such that the financiers make zero profits, b∗h ∈ [b1, bmax],

and β(b∗h) > δ(d∗h);

b. type l entrepreneurs are indifferent between any contract such that El(s) = I, as

long as it is not a bonus contract with d∗l ≤ d∗h;

c. no pooling equilibrium satisfies the Intuitive Criterion.

Proof. See the Appendix.

Intuitively, when b1 ≤ bmax separation may be achieved because MLRP implies that the

low type (t = l) expects to repay more relative to the high type. Thus, by choosing

a sufficiently high threshold for the bonus contract (and a sufficiently low face value of

debt) the high type can make the cost of mimicking for the low type excessively high, and

credibly signal his type to the uninformed financiers. Separation requires that the contract

issued by the high type is ex post non-monotonic, otherwise the analysis in Nachman and

Noe (1994) goes through. So, a necessary condition for separation is β(b) > δ(d), which

guarantees that the bonus contract is ex post non-monotonic (see Lemma 1).

It should be stressed that this equilibrium is not unique in terms of the securities

used for achieving it. However, the equilibrium allocation is unique in the sense that

in any of the separating equilibria the securities issued are fairly priced. Thus, in any
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separating equilibrium each type of entrepreneur get the net present value of his project.

The multiplicity of separating equilibria is the feature of all models where the signal does

not imply the deadweight loss (non-dissipative signals, see Bhattacharya (1980)).

Nevertheless, our choice of focusing on bonus contracts still needs to be justified. Does

a separating equilibrium exist outside the region covered by Theorem 1? And if so, what

contracts support it? The answers to these questions are negative: if separation is not

implementable through bonus contracts, then credible signaling cannot happen under any

other security that satisfies limited liability. This occurs because under a bonus contract

the full reported earnings are transferred to the financier if they lie between zero and

the threshold b. Because the probability that the low type reports earnings below b is

higher, the bonus contract maximizes the cost of mimicking for the l type. Given limited

liability, no other contract can achieve a higher expected repayment for the low type in

this region. In other words, the conditions in Theorem 1 are both necessary and sufficient

for separating equilibria to exist:

Corollary 1. (Necessity of bonus contracts for separation) If b1 does not exist

or b1 > bmax, then any PBE of the game must be pooling.

Proof. See the Appendix.

The intuition for this result is as follows: a higher threshold for the bonus contract (and

a lower face value of debt) increases the cost of mimicking for the low type. This cost

is maximized when dh = 0 and the threshold is bmax. If the distributions are such that

the incentive constraint for the low type is violated at this contract, then separation is

impossible and every equilibrium must be pooling. The argument is sometimes referred

to in the literature as showing that ‘no security in S crosses the repayment function of a

bonus contract from the left’. We characterize the pooling equilibria next.

5.2 Pooling Equilibria

Since Nachman and Noe (1994) seminal paper, the literature has adopted a stronger

refinement than the intuitive criterion to deal with pooling equilibria: the D1 criterion.

As is well known, the intuitive criterion does not bind in the pooling region of such models.

The reason is that both types may benefit from any deviation depending on the posterior

belief of the financier. D1 refines the equilibrium set and obtain a unique equilibrium

because it is a condition on the range of beliefs for which a deviation is profitable.
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The zero-profit condition for a bonus contract (b, 0) is:

ZP (b) ≡ λh

∫ β(b)

0

(
x− η(x)

)
fh(x)dx+ (1− λh)

∫ β(b)

0

(
x− η(x)

)
fl(x)dx− I. (7)

Applying D1 yields:

Theorem 2. (PPBE, part (a)) If b1 > bmax (or b1 does not exist) and there exists

bλ ∈ (0, K] solving (7), then there is a unique pooling equilibrium e∗p which satisfies D1.

At e∗p, all types issue a bonus contract with zero face value of debt (bλ, 0).

Proof. See the Appendix.

Theorem 2 characterizes the set of equilibria that satisfy D1 when separation is not

feasible (b1 > bmax), but the manipulation possibilities are relatively low (bλ < K). In

this region, the uniquely optimal contract is a bonus contract with zero face value of debt.

The intuition for the result is similar to that of Theorem 1: bonus contracts minimize

the mispricing of securities issued, even though they do not reduce it to zero.

To conclude the characterization, define the zero-profit condition for a debt contract

with face value d (when window dressing opportunities are shut down due to monotonicity

of the contract) is:

ZP−(d) ≡ λh

∫ δ(d)

0

(
x− η(x)

)
fh(x)dx+ (1− λh)

∫ δ(d)

0

(
x− η(x)

)
fl(x)dx

+

[

λhFh

(
δ(d)

)
+ (1− λh)Fl

(
δ(d)

)
]

d− I. (8)

The following result holds:

Theorem 3. (PPBE, part (b)) If the solution bλ of (7) satisfies bλ > K and

ZP−(K) ≥ 0 then there is a unique pooling equilibrium e∗p satisfying D1, at which all

types issue a bonus contract (b∗p, d
∗
p) with d∗p > 0. If ZP−(K) < 0 then there is no

financing.

Proof. See the Appendix.

Unlike the previous cases, where debt has been shown to be suboptimal, the result in

Theorem 3 allows debt contracts to arise in equilibrium, since d∗p > 0. To be precise: A

necessary and sufficient condition for debt to be optional under output diversion is:

Corollary 2. (Optimality of straight debt) Suppose that bλ > K and ZP−(K) ≥

0. Then the optimal contract (b∗p, d
∗
p) is ex post equivalent to straight debt if and only if
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β(b∗p) ≤ δ(d∗p), which implies that any bonus contract that satisfies the pooling zero profit

condition is ex post monotonic (see Lemma 1).

The Corollary follows immediately from Theorem 3 and Lemma 1. Importantly, debt is

never uniquely optimal because its payoff can always be replicated by a bonus contract

with a higher threshold and identical face value d∗p.

Finally, observe that both Theorem 3 and its corollary rely on the distribution of

earnings being bounded above. For this reason, whenever the earnings distribution is not

bounded above they describe empty sets. Such result would hold, for instance, whenever

earnings belong to the normal or exponential family.

Theorem 4. (Unbounded support) If the distribution of earnings is unbounded

above, i.e. K → ∞, then straight debt is suboptimal regardless of parameter values.

Proof. See the Appendix.

In this section we characterized the set of equilibria of the model. Bonus contracts are

always optimal, and they provide necessary and sufficient conditions to characterize the

unique equilibrium allocation of the game. Debt contracts only arise as a corner solution,

when limited liability is binding and the earnings distribution is bounded above.

6 Examples

We now show how our results translate both for some families of widely used distributions

that satisfy A2: the exponential, normal and log-normal distribution. We also present

the case of the distribution with linear density function. The probability distribution

functions for this family are linear and given by:

ft(x) =
1

K

[
K − 2x

(µt + 1)K
+ 1

]

(9)

with µt=l > 0 and µt=l < µt=h. This family satisfies strict MLRP, because for any

(t, t′) ∈ T 2 such that t′ < t we have:

∂

∂x

(
ft(x)

ft′(x)

)

=
2K(1 + µt′)

(K(2 + µt′)− 2x)2(1 + µt)
︸ ︷︷ ︸

>0

[µt − µt′ ]

and µt′ < µt whenever t′ < t. We solve for optimal contracts for a range of parameter

values and for two cases: when output diversion is forbidden and when it is allowed
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along with window dressing. In this exercise we demonstrate under which parameters

we observe separating vs. pooling equilibria as well as equilibria with monotonic vs.

non-monotonic contracts. Since debt can only arise only in cases of distributions with

bounded support we consider truncated versions of the above mentioned distribution

families. The examples are solved under the assumption that (i) η(x) = 0 and η(x) = η

for every x, for η ∈ [0, 10] for the case of window dressing only and (ii) η(x) = η(x) = η

for every x, for η ∈ [0, 4] for the case of window dressing and output diversion.13 Table

1 summarizes the parameter values that we assume.14

Insert Table 1 about here

Figures 4 and 5 shows the characterization of equilibria for the examples. The black

region is where a separating equilibrium exists (and it is unique, in terms of allocations).

The gray regions are where a pooling equilibrium exists, and it is unique. Dark gray

area corresponds to pooling equilibrium with non-monotonic contract, while light gray

area represents cases with debt being the unique pooling equilibrium contract. Finally,

the white region is where no financing occurs. Figure 4 corresponds to the case when

entrepreneurs can engage only in window dressing and Figure 5 draws types of equilib-

ria when both window dressing and output diversion are allowed.show that the regions

described in Theorems 1 and 2 are non-empty.

Insert Figures 4 and 5 about here

7 Conclusion

We have shown that the optimal financial contract under ex ante asymmetric informa-

tion, limited liability and ex post profit manipulation (window dressing) has the fol-

lowing features: (i) it is non-monotonic in earnings; (ii) it exhibits profit manipulation

on-the-equilibrium path. That is, the standard justification for restricting attention to

monotonic, manipulation-proof securities is not sound. The results suggest that ex ante

asymmetric information is not sufficient to theoretically justify the optimality and the

widespread use of debt contracts. We derive necessary and sufficient conditions for mono-

tonic securities to arise in equilibrium. Monotonic securities are never uniquely optimal,

13More precisely, at the boundaries of the set X we assume that: (i) whenever x−η < 0, then η(x) = x;
and (ii) whenever x+ η > K, then η(x) = K − x.

14The examples include all projects such that $1 ≈ I ≤ El(x) < Eh(x) ≈ $4.
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and they may prevail only if both earnings are bounded, and feasibility is binding. Our

model should be of interest in at least two empirical contexts: CEO compensation, where

the presence of stock options and other performance-related bonuses is widespread, and

venture capital, where valuation-based milestones might induce non-monotonicities in the

payoff of both the investors and the firm’s managers/owners.
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8 Figures and Tables

Figure 1: The real payoff of debt

This figure depicts real (dashed line) and promised (solid line) payoffs of a standard debt
contract. The promised payoff is based on the realized output while the promised payoff is
based on the declared output.
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Figure 2: The promised payoff of a bonus contract

This figure depicts the promised payoff of a bonus contract as a function of realized output.
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Figure 3: The real payoff of a bonus contract

This figure depicts real (dashed line) and promised (solid line) payoffs of a bonus contract for the
cases of two different levels of profit manipulation. The promised payoff is based on the realized
output while the promised payoff is based on the declared output. In Panel A, β(b) > δ(d) and
the real payoff is not ex post monotonic. In Panels B and C, β(b) < δ(d) and the real payoff is
ex post equivalent to that of a debt contract with face value d.
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Figure 4: Numerical example: Equilibria types under window dressing only

This figure shows the characterization of equilibria for different distributions of the output. The
black region corresponds to parameters values where a unique separating equilibrium exists.
Recall that separation can only be implemented by means of non-monotonic contracts. The
dark gray region is where a unique pooling equilibrium in bonus contracts exists, and it is
unique. The light gray area corresponds to monotonic (debt contract) pooling equilibrium.
Finally, the white region is where no financing occurs. Four panels corresponds to four different
distributions: Exponential (truncated), Normal (truncated), Lognormal (truncated) and Linear.

Exponential Normal

Lognormal Linear
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Figure 5: Numerical example: Equilibria types under window dressing and output
diversion

This figure shows the characterization of equilibria for different distributions of the output. The
black region corresponds to parameters values where a unique separating equilibrium exists.
Recall that separation can only be implemented by means of non-monotonic contracts. The
dark gray region is where a unique pooling equilibrium in bonus contracts exists, and it is
unique. The light gray area corresponds to monotonic (debt contract) pooling equilibrium.
Finally, the white region is where no financing occurs. Four panels corresponds to four different
distributions: Exponential (truncated), Normal (truncated), Lognormal (truncated) and Linear.

Exponential Normal

Lognormal Linear
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Table 1: Parameter Assumptions

This table summarizes the parameter values for a set of statistical distributions that are used
for the numerical calculation of equilibria. The examples are solved under the assumption
that η(x) = η(x) = η for every x, for η ∈ [0, 4]. Examples include exponential (truncated),
normal (truncated), lognormal (truncated) distributions and a distribution with linear density
function. Notation: erf denotes the error function, whereas erfc denotes the complementary
error function.

Family CDF I Parameter

Ft(x) =







0, x < 0,
1−e−x/t

1−e−K/t , x ∈ [0, K],

1, x > K

Truncated K = $10 tl ∈ [1, 4)
Exponential I = $1 th = 4

Ft(x) =







0, x < 0,
erf((x−t)/

√
2)−erf(t/

√
2)

erfc((K−t)/
√
2)−erfc(t/

√
2)
, x ∈ [0, K],

1, x > K

Truncated K = $10 tl ∈ [1, 4)
Normal I = $1 th = 4

Ft(x) =







0, x < 0,
erfc((ln(x/t)+0.5)/

√
2)

erfc((ln(K/t)+0.5)/
√
2)
, x ∈ [0, K],

1, x > K

Truncated K = $10 tl ∈ [1, 4)
Lognormal I = $1 th = 4

Linear
Ft(x) =







0, x < 0,
K(2+t)x−x2

K2(1+t)
, x ∈ [0, K],

1, x > K

K = $10 tl ∈ [1, 4)
I = $1 th = 4
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Appendix

The Intuitive Criterion

Denote by Vt(s
∗
t , e

∗) the expected utility of type t entrepreneur issuing s∗t at the

equilibrium e∗, and by Π∗(s|T ) the set of all possible PBEs of the game played by

financiers given an observed s ∈ S15. We say that:

A PBE is does not satisfy the Intuitive Criterion if there exist an out-of-equilibrium

security s′ ∈ S such that only a subset of types τ ⊂ T may benefit from deviating to s′.

That is, for every t ∈ τ and t′ ∈ T \ τ

Vt(s
∗
t , e

∗) ≤ max
P ∗∈Π∗(s′|T )

Vt(s
′, e∗),

Vt′(s
∗
t , e

∗) > max
P ∗∈Π∗(s′|T )

Vt′(s
′, e∗).

In words, suppose there are two types. Consider a pooling equilibrium, and a deviant

security that could only benefit the high type (if accepted) compared to the equilibrium

contract, for some off-equilibrium beliefs. The Intuitive Criterion prevents equilibria that

are sustained by the off-equilibrium belief that such a security would be offered by a low

type with positive probability. The next section introduces the key properties of the two

contracts which are relevant in this framework: debt and bonus contracts.

D1 refinement

Denote by V ′
t the utility of type t entrepreneur at the deviant contract, and by V ∗

t the

utility of type t entrepreneur at the equilibrium contract. Moreover, denote by D(t|s′)

the set of responses of the financier that would deliver strictly higher utility to type t

entrepreneurs than the utility he would obtain at the equilibrium contract. Formally:

D(t|s′) ≡ {P ∗(s′) ≥ I : V ′
t > V ∗

t }

where by competitive rationality, P ∗(s′) = Eλ
∗(s′)[s

′] for all λ∗(s′) ∈ ∆T , as beliefs off-

the-equilibrium path are arbitrary. Finally, define the indifference set D0(t|s′):

D0(t|s′) ≡ {P ∗(s′) ≥ I : V ′
t = V ∗

t }.

15Each element of the set can be parameterized by a posterior belief λ(s) ∈ ∆T , where we adopt the
convention that bold symbols represent vectors.
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The D1 restriction can be defined as follows16:

D1: Suppose s′ ∈ S is observed off-the-equilibrium path. Then for all t ∈ T :

λ∗
t (s

′) =







0, if ∃ t′ ∈ T s.t. t′ 6= t, and D(t|s′) ∪D0(t|s′) ⊂ D(t′|s′),

1, if D(t′|s′) ∪D0(t′|s′) ⊂ D(t|s′), ∀t′ 6= t ∈ T,

1− λt′ 6=t, otherwise.

Derivation of the Incentive Constraint – Inequality (5)

Start from inequality (4) in the main text:

Eh[sh(m
∗(x|s))]− El[sh(m

∗(x|s))] ≤ 0.

Suppose that sh is a bonus contract (bh, dh). Then, inequality (4) reads:

∫ max{δ(dh),β(bh)}

0

(
x − η(x)

)
[

dFh(x)− dFl(x)

]

+

[

Fl

(
max{δ(dh), β(bh)}

)
− Fh

(
max{δ(dh)β(bh)}

)
]

dh ≤ 0.

Notice that if max{δ(dh), β(bh)} = δ(dh), the incentive constraint can never be satisfied

because the real payoff of the bonus contract is monotonic. Hence, for the rest of this

section suppose that max{δ(dh), β(bh)} = β(bh). This condition imply that β(bh) −

η(bh) ≥ dh, which together with the fact that β(bh) = bh−η̄(β(bh)) lead to bh−dh > η(bh).

Rewrite the incentive compatibility constraint as:

∫ β(bh)

0

(
x− η(x)

)
[

dFh(x)− dFl(x)

]

+

[

Fl

(
β(bh)

)
− Fh

(
β(bh)

)
]

dh ≤ 0. (10)

Substituting Eh(sh) = I into (10) we get:

∫ β(bh)

0

(
x− η(x)

)
[

dFh(x)− dFl(x)

]

+

[

Fl

(
β(bh)

)
− Fh

(
β(bh)

)
](

I −
∫ β(bh)

0

(
x− η(x)

)
dFh(x)

1− Fh(β(bh))

)

≤ 0.

16The D1 restriction is stronger than the intuitive criterion, hence Theorem 1 goes through unchanged
if D1 is imposed.
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Integrating by parts and rearranging yields:

IC ≡

∫ β(bh)

0

[

Fl(x)
(
1− Fh(β(bh))

)
− Fh(x)

(
1− Fl(β(bh))

)
]

(1− η′(x))dx

︸ ︷︷ ︸

≥0 by FOSD and by Assumption 3a

+

[

Fl

(
β(bh)

)
− Fh

(
β(bh)

)
]

︸ ︷︷ ︸

≥0 by FOSD

[

I − β(bh) + η(β(bh))

]

︸ ︷︷ ︸

sign?

≤ 0.

Proof of Lemma 1

1. Suppose that b− d > η(b) and β(b) ≤ δ(d). In this case, for any x < δ(d) it is not

optimal to window dress as the entrepreneur is better off with output diversion. For any

x ∈ [δ(d), b) we have that ¯̄η(x) ≥ ¯̄η(β(b)) ≥ b and therefore the entrepreneur can report

b which makes him better off than diverting the output. Finally, for any x > b neither

output diversion nor windows dressing benefits the entrepreneur and he truthfully reports

x.

Suppose now that β(b) > δ(d). In this case the entrepreneur diverts output for any

x < β(b) since it is impossible to reach the bonus region {x : x ≥ b} by means of window

dressing. For any x ∈ [β(b), b) window dressing is beneficial since d = δ(d) − η(δ(d)) <

x− η(x). Finally, for any x > b, as above, the entrepreneur truthfully reports x.

2. Assume now that b− d ≤ η(b). Note that in this case δ(d) > b. For any x < δ(d)

it is not optimal to window dress as the entrepreneur is better off with output diversion.

For any x > δ(d) > b the entrepreneur truthfully reports x. Q.E.D.

Proof of Lemma 2

Proof. From the definition of b1 we know that, if b1 exists, it must generate a threshold

β1 = β (b1) such that:

∫ β1

0

[

Fl(x)
(
1− Fh(β

1)
)
− Fh(x)

(
1− Fl(β

1)
)
]

(1− η′(x))dx

+

[

Fl

(
β1

)
− Fh

(
β1

)
][

I − β1 + η(β1)

]

= 0.

The proof consists on showing that the derivative of the incentive constraint with

respect to β(bh) evaluated at β1 is strictly negative.

To simplify notations in this section, we denote βh = β(bh). Differentiating the
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incentive constraint (5) with respect to βh yields:

∂IC

∂βh

=
(
fl(βh)− fh(βh)

)
[I − βh + η(βh)] +

(
Fl(βh)− Fh(βh)

)
(−1 + η′(βh))

+
[
Fl(βh)(1− Fh(βh))− Fh(βh)(1− Fl(βh))

]
(1− η′(βh))

− fh(βh)

[ ∫ βh

0

Fl(x)(1− η′(x))dx

]

+ fl(βh)

[ ∫ βh

0

Fh(x)(1− η′(x))dx

]

.

Adding and subtraction fl(βh)

[
∫ βh

0
Fl(x)(1− η′(x))dx

]

and rearranging terms yields

∂IC

∂βh

=
(
fl(βh)− fh(βh)

)
[

I − βh + η(βh) +

∫ βh

0

Fl(x)(1− η′(x))dx

]

− fl(βh)

[ ∫ βh

0

(
Fl(x)− Fh(x)

)
(1− η′(x))dx

]

Evaluating the derivative at β1 yields:

∂IC

∂βh

∣
∣
∣
∣
βh=β1

=
fl(β

1)− fh(β
1)

Fl(β1)− Fh(β1)

∫ β1

0

[

Fh(x)
(
1− Fl(β

1)
)
− Fl(x)

(
1− Fh(β

1)
)
]

(1− η′(x))dx

+
(
fl(β

1)− fh(β
1)
)
∫ β1

0
Fl(x)(1− η′(x))dx− fl(β

1)

∫ β1

0

(
Fl(x)− Fh(x)

)
(1− η′(x))dx

=
fl(β

1)(1− Fh(β
1))

Fl(β1)− Fh(β1)

∫ β1

0
(Fh(x)− Fh(x))(1− η′(x))dx

−
fh(β

1)(1− Fl(β
1))

Fl(β1)− Fh(β1)

∫ β1

0
(Fh(x)− Fh(x))(1− η′(x))dx

=

∫ β1

0 (Fl(x)− Fh(x))(1− η′(x))dx

Fl(β1)− Fh(β1)
︸ ︷︷ ︸

>0 by FOSD and η′(x) ∈ [0, 1)

[

fl(β
1)[1− Fh(β

1)]− fh(β
1)[1− Fl(β

1)]

]

︸ ︷︷ ︸

<0 because MLRP implies HRO

< 0.

The fraction is strictly positive whenever β1 > 0, which is clearly satisfied at every

contract that implements investment. The second bracket is negative because we assumed

strict MLRP, and it is well known that strict MLRP implies the strict HRO - hazard rate

ordering - which in turns guarantees that the bracket is strictly negative.

An immediate consequence of the strict inequality is that if the incentive constraint

crosses zero, it must do so only once. Lemma 2 follows. Q.E.D.
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Proof of Theorem 1

Proof. Claims a and b: The claims follow from Lemma 2, definition of b1 and bmax

and the fact that if type l entrepreneur issues a bonus contract with d∗l ≤ d∗h that breaks

even on his type, the h type would mimic him and the financier would end up with a rate

of repayment lower than I. If β(b∗h) ≤ δ(d∗h), the incentive compatibility constraints are

violated because the contract is ex-post monotonic (see the discussion preceding Lemma

2).

Claim c: Suppose that all agents are in the pooling equilibrium ê of the game. Type

h (the better type) is certainly paying a strictly positive net rate of return to the investors,

therefore she would prefer to separate if possible. Type l would prefer to pool, but she

still prefers to separate than to mimic type h and issue the non-monotonic contract that

satisfies (5). Hence, whenever the non-monotonic contract is observed by the lenders

off-equilibrium, the Intuitive Criterion implies that they must believe that the deviation

comes from type h with probability one. If this is so, the deviation is profitable and the

pooling equilibrium does not satisfy the Intuitive Criterion. Q.E.D.

Proof of Corollary 1

Proof. To establish this result, some preliminary steps are required.

Denote the bonus contract with bh = bmax and dh = 0 as s∗, and compare it with

another generic security s such that Eh[s
∗] = Eh[s] = I. Define the following sets:

Π+(s) ≡ {m|s∗(m = x) > s(m = x)}

Π−(s) ≡ {m|s∗(m = x) < s(m = x)}

Lemma 3. For every pair (ml = xl,mh = xh) in X2 such that ml ∈ Π+ and mh ∈ Π−

we have mh > ml. Moreover, m∗(xl|s
∗) ≥ m∗(xl|s) and m∗(xh|s

∗) ≤ m∗(xh|s).

Proof. First notice that Π+(s) = ∅ if and only if Π−(s) = ∅, because ft(x) > 0 for

every x ∈ [0, K], for every t ∈ T . In this case the lemma is not very useful, but it is still

satisfied. Suppose Π+(s) is non-empty. Because of limited liability, it must be the case

that mh > bmax for every mh ∈ Π−, and ml < bmax for every ml ∈ Π+(s). As for the

claim about the real payoff, it follows directly from the shape of s∗. Q.E.D.

Lemma 4. Denote the bonus contract with bh = bmax and dh = 0 as s∗. For any

generic security s such that Eh[s
∗] = Eh[s] = I, we have that El[s

∗] > El[s].
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Proof. The only interesting case is, again, when Π+(s) is non-empty (else the lemma

holds trivially). Suppose so. Furthermore, suppose we move from s∗ toward s through

a series of steps such that in each step we create a security s′ such that Eh[s
′] = I, but

there exists a small interval dxa ∈ Π+(s) such that s′(m∗(dxa)) < s∗(m∗(dxa)) and this

change is compensated by inducing a change in the real payoff for another small interval

dxb ∈ Π−(s) so that s′(m∗(dxb)) > s∗(m∗(dxb))
17. Then,

El[s
∗]− El[s

′] = fl(xa)
[
s∗(m∗(dxa))− s′(m∗(dxa))

]
+ fl(xb)

[
s∗(m∗(dxb))− s′(m∗(dxb))

]

=
[
s∗(m∗(dxb))− s′(m∗(dxb))

]

︸ ︷︷ ︸

< 0 by construction

(
fl(xb)

fh(xb)
−

fl(xa)

fh(xa)

)

︸ ︷︷ ︸

< 0 by MLRP

ft(xb) > 0,

where the second equality comes from Eh[s
∗] = Eh[s

′]. The iteration of this procedure

one step at a time concludes the proof. Q.E.D.

Because of Lemma 4 we know that Eh[s
∗]− El[s

∗] < Eh[s]− El[s], for every Eh[s
∗] =

Eh[s] = I. The Corollary follows. Q.E.D.

Proof of Theorem 2

Proof. Existence: Suppose there exists an bλ that satisfies the pooling zero profit

condition. Define the security sp so that: dp = 0 and bλ solves the pooling zero profit

condition. Moreover, suppose that the market posterior is equal to the prior at sp, and

it is λh = 0 at any other s′ 6= sp such that s′ ∈ S. Then, all types issuing sp is an

equilibrium. It remains to show that it satisfies D1. In particular, we need to prove that

D(1|s′) ∪D0(1|s′) 6⊂ D(2|s′) for every s′ 6= sp such that s′ ∈ S. There are two cases:

1. If El[s
′] < El[sp], then D(1|s′) = [I,∞). Hence D(2|s′) ⊆ D(1|s′) ∪D0(1|s′);

2. If El[s
′] ≥ El[sp], Lemma 4 implies Eh[s

′] ≥ Eh[sp] as well. But we can say more:

Suppose we move from sp to s′ through a series of consecutive steps (i.e. interim

contracts s′′) such that in each step we induce an increase in the real payoff of sp

by raising s′′(mk = xk) for some xk ∈ X. Clearly, it must be that xk ≥ bλ. Notice

that because sp is a pooling equilibrium, it must be that it does not satisfy (5).

Hence, because of MLRP, at xk we must have fl(xk) < fh(xk) - i.e. xk must exceed

17In both cases, construct the interval such that it is of equal length as the pdf centered at the two
points: f(xa), f(xb)
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the (unique) crossing point of the two densities. Therefore:

El[s
′′]− El[sp] = fl(xk)

[
s′′(m∗(xk|s

′′))− sp(m
∗(xk|sp))

]

= fl(xk)(s
′′(m∗(xk|s

′′)) < fh(xk)(s
′′(m∗(xk|s

′′)) = Eh[s
′′]− Eh[sp].

Iterating the same logic we conclude that Eh[s
′]−Eh[sp] > El[s

′]−El[sp]. It follows

that at e∗p it must be the case that, for all P ∗ ≥ I:

(
V ′
h − V ∗

h

)
−

(
V ′
l − V ∗

l

)
=

(
El[s

′]− El[sp]
)
−

(
Eh[s

′]− Eh[sp]
)
< 0,

which implies that D(2|s′) ⊆ D(1|s′) ∪D0(1|s′) again.

Uniqueness: From Corollary 1 we know that there can only exist other pooling

equilibria if the conditions required for Theorem 1 to apply do not hold. We now show that

if there exists an bλ ∈ (bmax, K) such that (7) is satisfied, then every pooling equilibrium

e′ of the game such that e′ 6= e∗p does not satisfy D1.

Consider a generic e′ 6= e∗p. The above analysis and Lemma 4 imply that there exists

s′ such that El[s
′] ≥ El[sp] but Eh[s

′] < Eh[sp]. Then the logic of the previous proof (point

2 above) is reversed. We conclude that such a equilibrium does not satisfy D1. Q.E.D.

Proof of Theorem 3

Proof. This theorem can be proved in the same fashion as Theorem 2, with a twist:

now it must be the case that a bonus contract with d = 0 cannot satisfy the pooling zero

profit condition. Hence, we start by finding the minimum d > 0 such that the condition

can be satisfied. Then, the result follows from the logic of the previous proof.

Note that with a bonus contract (bλ, d
∗
p) with d∗p > 0 we are hitting the upper bound

of the distribution of earnings. If ZP−(K) < 0 then such contract does not exist because

of high degree of output diversion so that even issuing a debt contract with face value

K does not satisfy the zero-profit condition. Hence, any other security could not break

even for the financier. Q.E.D.

Proof of Theorem 4

Proof. When K → ∞ there always exists bmax such that the pooling zero profit

condition is satisfied for dp = 0, because ft(x) > 0 for every x ∈ X and t ∈ T . Moreover,

regardless of the extent profit manipulation, as long as it is bounded, the pooling contract
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with dp = 0 has a real payoff which is non-monotonic. As a result, any contract with a

monotonic real payoff cannot be part of an equilibrium that satisfies D1. Q.E.D.
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