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Abstract We consider a model of competitive insurance markets under asymmetric

information with ambiguity-averse agents who maximize their maxmin expected util-

ity. The interaction between asymmetric information and ambiguity aversion gives rise

to some interesting results. First, for some parameter values, there exists a unique pool-

ing equilibrium where both types of insurees buy full insurance. Second, in separating

equilibria where the low risks are underinsured, their equilibrium contract involves

more coverage than under standard expected utility. Finally, due to the endogeneity of

commitment to the menus offered by insurers, our model has always an equilibrium

which is unique (in terms of allocation) and interim incentive efficient (second-best).

Keywords Adverse selection · Ambiguity aversion · Endogenous commitment

JEL Classification D82 · G22

1 Introduction

Most theoretical models of competitive insurance markets under asymmetric infor-

mation assume that individuals’ preferences admit the standard von Neumann–

Morgenstern expected utility representation. The classical model rules out the situation

where insurees are uncertain about the likelihood of a state of the world occurring and
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cannot assess precisely their own probability of events. This assumption might be

too restrictive in reality. Individuals, contrary to insurance companies, may not have

perfect confidence on the perceived probability measure simply due to the lack of

experience or data at their disposal. With imprecise information, individuals may con-

sider several probability measures without knowing which of these measures is the

correct one. This lack of knowledge about the underlying probabilities is referred to

as Knightian uncertainty or ambiguity and was defined by Knight (1921).1 A deci-

sion criterion which is compatible with this pattern of preferences is the maxmin (or

multiple-prior) expected utility model which has been given axiomatic foundations by

Gilboa and Schmeidler (1989).2 Under this model, an individual has a set of proba-

bility beliefs (priors) instead of a single one, and evaluates an action according to the

minimum expected utility over this set of priors. Such a behavior is often referred to as

ambiguity aversion, for it indicates the dislike of uncertainty associated with unknown

or ambiguous odds.

This paper considers a model with two key features: First, it introduces ambiguity

(in the form of Gilboa–Schmeidler preferences), in a competitive insurance model with

asymmetric information. Second, it employs an optimal mechanism to study the effects

of the interaction between asymmetric information and aversion to ambiguity on the

equilibrium allocations.3 The introduction of ambiguity aversion into an asymmetric

information framework allows us to derive some interesting results which cannot

obtain in the expected utility setting.

First, for some parameter values, there exists a unique pooling equilibrium where

both types of insurees buy full insurance. If the degree of ambiguity aversion of low-

risk insurees is high, the utility cost of under- or overinsurance becomes excessively

high and ensures the existence of this pooling equilibrium. Under the expected utility

preferences, in a neighborhood of full insurance, this utility cost is not sufficiently high

to support this pooling allocation as an equilibrium. Furthermore, the existence of the

full-insurance pooling equilibrium we establish here is not driven by the indemnity

(no-overinsurance) principle.

Second, under ambiguity aversion, the equilibrium contract of the low risks is closer

to the first-best one than under the standard expected utility. In fact, ambiguity aversion

relaxes the (binding) incentive compatibility constraint of high risks. As a result, the

low risks buy more insurance (while still revealing their type) and move closer to the

first-best allocation.

Finally, because the mechanism we employ in this paper is optimal, the results

discussed above are driven by ambiguity aversion and not by the sub-optimality of

the mechanism used for the allocation of resources or their interaction. To the best

of our knowledge, none of the existing papers in the ambiguity aversion literature

1 There is a large body of experimental literature documenting ambiguity-averse preferences among indi-

viduals. See Etner et al. (2012) and Gilboa and Marinacci (2013) for two recent comprehensive surveys.

2 Maccheroni et al. (2006) have generalized maxmin preferences to variational preferences. Also, Sinis-

calchi (2006) has provided a behavioral foundation for such preferences.

3 We have also examined the case of ambiguity-seeking agents. The main difference between the ambiguity

aversion and the ambiguity-seeking cases is that in the latter case, in any separating equilibrium, no insuree

(regardless of his risk type) buys full insurance. These results are available upon request.
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is concerned with the optimality of the mechanism used. As a result, it is not clear

which of the results are only driven by ambiguity aversion and which by the (possible)

sub-optimality of the mechanism.

2 Related literature

There is a growing body of literature studying the effects of ambiguity in financial

markets. Ambiguity is known to lead to limited participation and reduced liquidity

in the market, adverse effects on risk sharing, uncertainty premium in equilibrium

prices of financial assets, market inefficiency (see Bossaerts et al. 2010; Epstein and

Schneider 2010 for recent surveys on effects of ambiguity in financial markets).

Although the effects of ambiguity on its own have been studied extensively, the

effects of the interaction between ambiguity aversion and asymmetric information are

relatively unexplored. Tallon (1998) and Condie and Ganguli (2011a, b) illustrate how

ambiguity aversion helps to resolve the Grossman–Stiglitz paradox and demonstrates

that an agent facing ambiguity might be willing to pay to acquire information which is

already contained in the equilibrium price. Kajii and Ui (2009) and Martins-da-Rocha

(2010) characterize weakly interim efficient allocations under ambiguity using the

notion of compatible priors.

Jeleva and Villeneuve (2004) characterize optimal insurance contracts with impre-

cise probabilities (rank-dependent utility) and adverse selection. They have also

obtained a pooling equilibrium for some parameter values. However, there are three

important differences between their paper and ours: First, they consider a monopolis-

tic insurer instead of competition. Second, their pooling equilibrium involves partial

insurance, whereas in our case the pooling involves full insurance. Third, in Jeleva and

Villeneuve, the pooling equilibrium is, in general, inefficient, whereas in our paper it

is always (first-best) efficient.

The two papers more closely related to ours are De Castro and Yannelis (2012)

and Koufopoulos and Kozhan (2014). Both of them also consider an economy with

ex ante asymmetric information (adverse selection) and ambiguity-averse agents. The

aim of the De Castro and Yannelis (2012) paper is to determine the restrictions on

preferences such that efficient (first-best) allocations are always incentive compatible.

Koufopoulos and Kozhan (2014) focus on two interesting equilibria which do not

involve cross-subsidization across contracts. In contrast, the objective of this paper is

to characterize the whole set of interim efficient (second-best) equilibria of the game

under maxmin preferences.

3 The model

We consider the basic framework introduced by Rothschild and Stiglitz (1976). There

is a continuum of individuals (insurees) and a single consumption good. All individuals

have the same twice continuously differentiable von Neumann–Morgenstern utility

function U : R → R with U ′(x) > 0 and U ′′ < 0 for all x ∈ R and the same wealth

level, W . We denote by Φ(x) the inverse of U (x)(Φ(x) ≡ U−1(x)). There are two

possible states of nature: good and bad. In the good state, there is no loss, whereas in
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the bad state the individual suffers a gross loss of d ∈ (0, W ). Individuals differ with

respect to the probability of having the bad state (accident), p. There are two types of

individuals: high risks (Hs) and low risks (Ls) with 1 > pH > pL > 0. Let λ ∈ (0, 1)

be the fraction of the Ls in the economy.

Each individual may insure himself against the accident by accepting an insurance

contract A = (α1, α2), where α1 ≥ 0 is the insurance premium, and α2 ≥ 0 is the

coverage (gross payout in the event of loss). We can represent the insurance contract

equivalently as A = (wG, wB), where wB = W − d − α1 + α2 is the wealth of the

agent in the bad state, wG = W − α1 is the agent’s wealth in the good state. Let

C = {(wG, wB) ∈ R
2
+}, CU = {(wG, wB) ∈ C |wG > wB} and CO = {(wG, wB) ∈

C |wG < wB} be the sets of all contracts, underinsurance and overinsurance regions,

respectively. Also, denote, C
U

= {(wG, wG) ∈ C |wG ≥ wB} and C
O

= {(wG, wB) ∈

C |wG ≤ wB}. In this environment, if an agent i knows precisely his own accident

probability pi , then his expected utility is given by:

EU(W, d, (wG, wB), pi ) = piU (wB) + (1 − pi )U (wG), i = H, L .

In this paper, we extend the above setting by introducing aversion to ambiguity.

In particular, we assume that individuals do not know precisely the distribution of

accident probabilities. Their beliefs consist of a set of priors about the true probability

of accident pi an individual of type i and this set is described by an interval [p
i
, pi ].

If this interval shrinks to a singleton, the set of beliefs of the individual is reduced

to a single probability of accident. We also assume that the true probability pi ∈

[p
i
, pi ], i = H, L .4

More specifically, insurees’ preferences admit the maxmin expected utility repre-

sentation of Gilboa and Schmeidler (1989):

MEU(W, d, (wG, wB), pi ) = min
pi ∈[p

i
,pi ]

EU (W, d, (wG, wB), pi ), i = H, L .

For each contract A = (wG, wB), an individual computes the worst outcome with

respect to the accident probabilities and then maximizes the worst-case utility with

respect to (wG, wB). The shape of this function is given in Fig. 1, where the axes

represent wealth in the bad (B) and the good (G) states, respectively, and E is the

endowment point.

The indifference curve MEUI(p) of the maxmin expected utility consists of two

parts. In the underinsurance region CU, it coincides with the standard expected utility

indifference curve I (p) based on the accident probability p (insurees act as if their

true accident probability is the highest possible). In the overinsurance region CO,

4 We make this assumption to distinguish the effects of ambiguity from over-optimism or over-pessimism.

However, this assumption rules out the following equilibria which are driven by over-optimism: (i) separating

equilibria where no incentive compatibility constraint is binding (the equilibrium allocation coincides with

that under full information); (ii) equilibria where none of the two types buys full insurance; (iii) separating

equilibria exhibiting negative correlation between coverage and the accident probability (see Koufopoulos

2011).
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Fig. 1 Maxmin expected utility

it coincides with the indifference curve I (p) (insurees act as if their true accident

probability is the lowest possible).

The slope of the indifference curve (the marginal rate of substitution between

income in the no-accident state and income in the accident state) in the expected

utility case is [U ′(W1)(1− p)]/[U ′(W2)p], which is equal to (1− p)/p when income

in the two states is the same. The slope of I (p) on the 45◦ line is (1 − p)/p, while

the slope of I (p) is (1 − p)/p. Therefore, MEUI(p) has a kink on the 45◦ line. In

Fig. 1, ZP(p) and ZP(p) denote the zero-profit lines corresponding to the p and p

probabilities, respectively.

There are (at least) two risk-neutral insurance companies involved in Bertrand

competition. Insurers cannot observe the type of insurees, but they know the proportion

of the Hs and Ls in the population. They also know the utility function of insurees and

the probability interval for each type. We assume that insurers are ambiguity neutral.5

They use reference accident probabilities, one for each type, which coincide with true

probabilities pi .
6 This assumption is justified by insurers’ capacity to collect large

data sets and estimate true probabilities.

The insurance contract A = (wG, wB) specifies the wealth in the good wG and

the bad wB states. As a result, the (expected) profit of an insurer offering contract

A = (wG, wB), conditional on insurees’ type, is

πi = W − pi d − [(1 − pi )wG − piwB], i = H, L .

Insurers offer menus of contracts. A menu {(AL, AH), c} consists of a pair of con-

tracts (which could be the same contract) and the binary variable c ∈ {0, 1}. A

5 We have also analyzed the case insurers are ambiguity averse, and most of the results are qualitatively

similar except two main differences. First, ambiguity-averse insurers charge a higher per-unit price which

reflects the ambiguity premium. Second, if the insurers’ degree of ambiguity is sufficiently high, the insurees

are not willing to pay the high ambiguity premium the insurers charge and the insurance market collapses

(no trade).

6 Our results would be qualitatively similar if the reference probabilities are different from the true ones.

However, if the reference accident probabilities are lower than the true ones, the insurance companies should

have some initial capital to fulfill their promises (cover their losses).
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single-contract menu {(A, A), c} is also denoted by {(A), c}. The variable c deter-

mines whether the insurer is committed to the menu or not (c = 1 means commitment

and c = 0 means no commitment).7 That is, commitment is related to the menu and

not to individual contracts within the menu.8

4 Efficiency

Following Holmström and Myerson (1983), the allocation (AH, AL) with AH =

(wHG, wHB) and AL = (wLG, wLB) is interim incentive efficient (second-best) if

it solves the problem

max
(AL,AH)∈R+×R+

[ξMEU(W, d, AL, L) + (1 − ξ)MEU(W, d, AH, H)] (1)

for some ξ ≥ 0 subject to the two incentive compatibility constraints

min
p∈[p

L
,pL]

{(1 − p)U (wLG) + pU (wLB)}

≥ min
p∈[p

L
,pL]

{(1 − p)U (wHG) + pU (wHB)} (2)

min
p∈[p

H
,pH]

{(1 − p)U (wHG) + pU (wHB)}

≥ min
p∈[p

H
,pH]

{(1 − p)U (wLG) + pU (wLB)} (3)

and the feasibility constraint

λ[(1 − pL)wLG + pLwLB] + (1 − λ)[(1 − pH)wHG + pHwHB] ≤ Rλ, (4)

where Rλ = W − pλd and pλ = λpL + (1 − λ)pH.

5 Equilibrium

Game structure Insurance companies and insurees play the following three-stage

screening game9:

Stage 1 At least, two insurance companies simultaneously make offers of menus

of contracts.

7 This assumption is made for simplicity and does not imply any loss of generality. Because there are only

two types of insurees, all the results go through even if we allow menus to contain any finite number of

contracts.

8 All the results go through if we allow insurers to commit only to one of the two contracts in a two-contract

menu.

9 This game has also been used in Koufopoulos (2010) and Diasakos and Koufopoulos (2013) in the

standard expected utility framework.
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Stage 2 Insurees apply for (at most) one of the menus offered from one insurance

company. If an insuree’s most preferred menu is offered by more than one insurance

company, he takes each insurer’s menu with equal probability.

Stage 3 After observing the menus offered by their rivals and those chosen by the

insurees, the insurers decide whether to withdraw or not the menus which they did not

commit to at Stage 1. If a menu is withdrawn, the insurees who have chosen it go to

their endowment.

We should stress here that endogeneity of commitment refers to commitment within

the game and until an equilibrium has been achieved. Once an equilibrium has been

reached and the two parties have signed the contract, they are fully committed to it.

That is, there is no enforcement problem.

Definition of equilibrium We only consider pure-strategy Bayes–Nash equilibria. A

set of menus is an equilibrium if the following conditions are satisfied:

(i) Insurees maximize their maxmin expected utility given the menus offered.

(ii) No menu in this set makes negative expected profits.

(iii) No other set of menus introduced alongside those already in the market would

increase an insurer’s expected profits.

We begin by examining how different assumptions about the degree of ambiguity

of the two types of insurees affect the relative slopes and shapes of their indifference

curves. This is important because the relative slopes and shapes of the indifference

curves determine the nature of the equilibrium (pooling or separating) and whether the

separating equilibria involve under- or overinsurance. There are four cases to consider

which are:

Case (1) p
L

< p
H

< pH < pL,

Case (2) p
L

< p
H

and pL < pH,

Case (3) pL > pH > p
L

> p
H

,

Case (4) pH > pL > p
L

< p
H

.

In Cases (1) and (4), the indifference curves of the two types intersect twice (the

single-crossing condition fails), whereas in Cases (2) and (3) the indifference curves

cross only once (the single-crossing condition is satisfied). Figure 2 below illustrates

these cases.

We now derive some general results which will be useful for establishing and char-

acterizing the equilibria of our game. We first show that any equilibrium of our game

must be interim incentive efficient. We then show that in any equilibrium allocation

of our game, at least one of the two types will choose full insurance.

In all the figures below, ZPH and ZPL denote zero-profit lines of the Hs and Ls,

respectively, and PZP denotes the pooling zero-profit line.

Lemma 1 Any equilibrium allocation of our game must be interim incentive efficient.

Proof Suppose that at Stage 1 of the game a firm offers a (pooling or separating)

allocation (with or without commitment) which is not interim incentive efficient. This

allocation is below the (second-best) Pareto frontier. Thus, there exist incentive com-

patible and feasible allocations which make both types better-off and imply strictly
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Fig. 2 Four cases of relation between relative slopes of indifference curves

positive profits for the firm(s) which offer them. As a result, at Stage 1, a new entrant

can offer an allocation with commitment which is incentive compatible, profitable, and

is preferred by both types of insurees to the incumbent’s offer. Since the new entrant

is committed to his offer, both types will take it regardless of their beliefs about the

choice of the other type. Hence, the new entrant’s offer will attract both types, and the

incumbent’s (inefficient) offer cannot be an equilibrium. ⊓⊔

Lemma 2 In any equilibrium allocation of our game, at least, one of the two types of

insurees buys full insurance.

Proof Suppose that an insurer offers the menu {(AH, AL), c}, c ∈ {0, 1}, involving

an incentive compatible and zero-profit allocation (AH, AL) where, for example, both

types of insurees are underinsured (see Fig. 3).10 Then, a new entrant can offer the

menu {(AD
H, AD

L ), 1} involving another incentive compatible allocation (AD
H, AD

L ) (see

Fig. 3) which makes both types strictly better-off and strictly positive profits for the

deviant insurer. Since the new entrant is committed to the deviant menu, both types

will take it regardless of their beliefs about the choice of the other type. As a result,

10 A similar argument applies if one type chooses underinsurance and the other overinsurance or both types

choose overinsurance.
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Fig. 3 At least one type buys

full insurance

Fig. 4 Efficient pooling

equilibrium

the new entrant will make a strictly positive profit and the initial menu {(AH, AL), c}

cannot be an equilibrium. Hence, in any equilibrium of our game, at least, one of the

two types of insurees buys full insurance. ⊓⊔

Based on Lemmas 1 and 2, we show that if the condition in Case (1) is satisfied,

there always exists a unique pooling equilibrium where both types of insurees buy full

insurance.

Case 1 The Ls’ degree of ambiguity is sufficiently higher than Hs’ so that p
L

< p
H

<

pH < pL.

Proposition 1 Suppose that the Ls’ degree of ambiguity is sufficiently higher than

that of the Hs so that p
L

< p
H

< pH < pL. Then, the menus {(A∗
P ), 0}, {(A∗

P ), 1}

and any combination of them, involving the unique pooling allocation A∗
P where both

types buy full insurance, are Bayes–Nash equilibria (see Fig. 4).

Proof The Ls’ indifference curves are flatter than the Hs’ to the right of 45◦ line

because (1 − pL)/pL < (1 − pH)/pH and to the left of 45◦ line steeper, because

(1 − p
L
)/p

L
> (1 − p

H
)/p

H
. Since the Ls’ indifference curve lies inside that of
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the Hs, there exists no allocation which is preferred to A∗
P by the Ls and not by the

Hs. Also, any allocation which is preferred to A∗
P by the Ls lies above the pooling

zero-profit line. Hence, no insurer can profitably attract the Ls (or both types) and so

{(A∗
P ), c} is an equilibrium.

Because the Ls’ indifference curve lies inside that of the Hs, a separating equi-

librium cannot exist. Also, by Lemma 2, in any equilibrium allocation, at least one

type buys full insurance and so in any pooling equilibrium both types buy full insur-

ance. Hence, {(A∗
P ), c} is the unique pooling allocation (since any other full-insurance

pooling allocation implies strictly negative or positive profit for the insurers). Hence,

the pooling full-insurance allocation {(A∗
P ), c} is the unique equilibrium allocation.

However, the menus involving this unique pooling allocation may be offered with or

without commitment which leads to multiple equilibria. ⊓⊔

Intuitively, ambiguity aversion increases the utility cost of under- or overinsurance.

In particular, if the Ls are sufficiently more ambiguity averse than high-risk insurees,

the utility cost of under- or overinsurance strictly dominates the monetary benefit of

the lower per-unit premium. As a result, the Ls prefer to purchase full insurance at

a high (pooling) per-unit than under- or overinsurance at a lower per-unit premium.

That is, the high degree of ambiguity makes the cost of separation prohibitively high

for the Ls.

The following points should be made here: First, the pooling equilibrium in Propo-

sition 1 is exclusively due to ambiguity aversion and cannot obtain in the standard

expected utility framework or under over-optimism/pessimism.11 If the insurees know

accurately their accident probability, the utility cost of underinsurance will always be

lower for the Ls. Hence, the Ls will always prefer underinsurance at a lower per-unit

premium to full insurance at a high (pooling) per-unit premium. A similar argument

applies to the case of over-optimism/pessimism because, at full insurance, the indiffer-

ence curves of the two types will cross (unless they coincide, which is a zero-probability

event). As a result, pooling cannot be an equilibrium and separation will always pre-

vail. Second, this result does not depend on the maxmin formulation of ambiguity

aversion we have adopted in this paper. It also obtains under smoother representations

of ambiguity aversion (for example, the representations suggested by Klibanoff et al.

2005) or more general variational preferences (see Maccheroni et al. 2006). Third,

the existence of the full-insurance pooling equilibrium we establish here is not driven

by the indemnity (no-overinsurance) principle (as in Jeleva and Villeneuve 2004).

Finally, its existence does not require the three-stage game we employ in this paper

(this equilibrium exists even if we use the standard two-stage screening game).

If the condition of Proposition 1 is violated (Cases (2)–(4)), then both pooling and

separating equilibria can exist. Before proceeding to characterize these equilibria, we

derive some useful general results.

Lemma 3 In any separating equilibrium of our game, the Hs take full insurance.

11 Unless the degree of risk aversion is infinite (Leontief preferences) in the standard expected utility

framework or the perceived probabilities coincide in the case of over-optimism/pessimism (which is a

zero-probability event).
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Fig. 5 The H-type always takes full insurance

Proof By Lemma 2, in any equilibrium allocation, at least one of the two types takes

full insurance. Suppose that an insurer offers a menu {(AH, AL), c}, c ∈ {0, 1}, involv-

ing an efficient separating allocation (AH, AL) where the Ls choose full insurance (see

Fig. 5). Then, depending on the relative degree of ambiguity, efficiency requires that

the Hs choose either overinsurance or underinsurance. Also, zero profit on the menu

{(AH, AL), c} implies that AL lies below the pooling zero-profit line (PZP) and AH lies

above it. Consider now a new entrant offering the deviant menu {(AD), 1}. Given the

separating allocation (AH, AL), the deviant menu attracts either only the Ls (if c = 1)

or both types (if c = 0). In either case, the deviation is profitable because AD lies

below the pooling zero-profit line. A similar argument applies if the Hs’ indifference

curve is steeper and the Hs choose underinsurance (see Panel B of Fig. 5). Hence, a

separating equilibrium where the Ls choose full insurance cannot exist. Therefore, by

Lemma 2, in any separating equilibrium the Hs choose full insurance. ⊓⊔

Lemma 4 In any equilibrium of our game involving cross-subsidization across types,

the Ls subsidize the Hs.

Proof Let us start with separating equilibria. By Lemma 3, in any separating equi-

librium, the Hs choose full insurance. Also, from the Ls’ perspective, their accident

probability is lower than that of the Hs either in the underinsurance region (Cases (2)

and (4)) or in the overinsurance region (Cases (3) and (4)). As a result, the Ls will

accept either under- (Cases (2) and (4)) or overinsurance (Cases (3) and (4)) in order

to reveal their type and achieve a lower per-unit premium. Since the Ls are willing to

bear the utility cost of under or overinsurance, they strictly prefer their contract to that

chosen by the Hs. Thus, the incentive compatibility constraint of the Ls is not binding

(see Fig. 5). Consider now an insurer offering a menu involving an efficient separating

allocation with the Hs’ contract implying strictly positive profits for the insurer. Since

the Ls’ incentive compatibility constraint is not binding, a new entrant can attract

the Hs by offering them a menu involving a welfare improving (but still profitable)

allocation. Hence, there cannot exist a separating equilibrium where the Hs subsidize

the Ls. Hence, in any separating equilibrium with cross-subsidization across types,

the Ls subsidize the Hs. Consider now pooling equilibria. Lemma 2 implies that any
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pooling equilibrium will involve both types taking full insurance. Because of Bertrand

competition, in any equilibrium, insurers make zero profit. Hence, the fact that the Ls’

expected income is higher than the Hs’ implies that in any pooling equilibrium, the

Ls subsidize the Hs. ⊓⊔

Lemma 5 In any equilibrium allocation of our game involving cross-subsidization

across types, the Ls’ expected utility is maximized given the constraints (2), (3), (4)

and the constraint implied by Lemma 4

min
p∈[p

H
,pH]

{(1 − p)U (wHG) + pU (wHB)} ≥ U (W − pHd). (5)

Proof By Lemma 4, there cannot exist an equilibrium allocation where the Hs sub-

sidize the Ls. Let us consider a firm which, at Stage 1, offers an interim incentive

efficient allocation where the Ls subsidize the Hs’ and Ls’ expected utility is not max-

imized. This implies that there exist incentive compatible allocations which make the

Ls strictly better-off and the insurer offering a menu involving one of them can make

strictly positive profit on the contract chosen by the Ls. Hence, at Stage 1, a new entrant

can offer a menu with commitment involving an incentive compatible allocation mak-

ing strictly better-off the Ls and strictly worse-off the Hs. Because the new entrant is

committed to his offer and this offer makes the Ls better-off, at Stage 2, the Ls choose

the new entrant’s offer regardless of the Hs’ choice. If the incumbents’ offer is with

commitment, the Hs stay there, the incumbent is making losses and the deviant menu

is clearly profit-making. If the incumbents’ offer is without commitment, it will be

withdrawn at Stage 3. Anticipating the withdrawal of the incumbent’s offer, at Stage

2, the Hs choose the new entrant’s offer. Thus, being constrained only by incentive

compatibility, the new entrant can make an offer implying strictly positive profits for

him. Hence, the incumbent’s offer cannot be equilibrium. ⊓⊔

Lemmas 4 and 5 imply the following corollary:

Corollary 2 The equilibrium allocation of our game is the solution to the following

problem (P1):

P1 : max
(wHG,wHB,wLG,wLB)∈R

4
+

min
p∈[p

L
,pL]

{(1 − p)U (wLG) + pU (wLB)} (6)

satisfying the constraints (2)–(5).

Notice that the objective function (6) in P1 coincides with the objective function in

the planner’s problem (as defined in Sect. 4) for ξ = 1. Also, constraint (5), which is

implied by Lemma 4, is due to competition and that is why it does not appear in the

planner’s problem.

Lemma 6 The constrained optimization problem P1 has a unique solution V ∗ =

(w∗
HG, w∗

HB, w∗
LG, w∗

LB) with w∗
HG = w∗

HB. The constraints (3) and (4) are binding.

Proof To prove the lemma, we extend the proof of Lemma 1 in Netzer and Scheuer

(2014). We first prove the statement about the constraints and then show the uniqueness

of the solution.
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Before we proceed, we have to first make claims regarding the regions where the

solutions of the problem P1 belong to depending on the relation among the accident

probabilities. Specifically, we claim that for Case (2), AL ∈ C
U

and for Case (3),

AL ∈ C
O

. Indeed, consider Case (2) where p
L

< p
H

and pL < pH. Assume V =

(wHG, wHB, wLG, wLB) satisfies all the constraints and wLG < wLB. For εi > 0

consider Ṽ (ε) = (wHG, wHB, wLG + δ1, wLB − δ2) for δ1, δ2 > 0 such that U (wLG +

δ1) = U (wLG) + ε and U (wLB − δ2) = U (wLB) − ε(1 − p
L
)/p

L
. By construction

and because p
L

< p
H

, the allocation Ṽ (ε) satisfies (2), (3) and (5), and the value of

(6) is the same for both allocations Ṽ (ε) and V for any ε > 0. Let

Π(ε) = λ
[

(1 − pL)Φ(U (wLG) + ε) + pLΦ
(

U (wLB) − ε(1 − p
L
)/p

L

)]

+ (1 − λ)[(1 − pH)wHG + pHwHB]

be the per capita expenditure in Ṽ (ε). The derivative dΠ(ε)/dε < 0 for 0 < ε <

p
L
(U (wLG) − U (wLB)), so that for ε > 0 small enough Ṽ (ε) satisfies (4) with slack.

Thus, Ṽ1(ε) = (wHG, wHB, wLG + δ1 + δ3, wLB − δ2) for small enough δ3 > 0

satisfies all the constraints and strictly increases the value of (6). This contradicts the

assumption that V is the solution of P1 and hence proves the claim.

In order to show that our claim is true for Case (3) with pL > pH > p
L

> p
H

, we

have to consider Ṽ (ε) = (wHG, wHB, wLG − δ1, wLB + δ2) for δ1, δ2 > 0 such that

U (wLG − δ1) = U (wLG) − ε and U (wLB + δ2) = U (wLB) + ε(1 − p
L
)/p

L
. The

arguments are applied in the same way.

Constraint (4). Let us show that the constraint (4) is binding. Assume that V =

(wHG, wHB, wLG, wLB) is a solution of P1 that satisfies the constraint (4) with slack.

To reach a contradiction, let us find δi > 0, i = 1, . . . , 4 such that Ṽ = (wHG +

δ1, wHB + δ2, wLG + δ3, wLB + δ4) satisfies (2), (3), (4), (5) and strictly increases the

value of (6). Note that the continuity of U implies that for any εi > 0, i = 1, . . . , 4,

there exists δi > 0 such that U (wHG+δ1) = U (wHG)+ε1, U (wHB+δ2) = U (wHB)+

ε2, U (wLG + δ3) = U (wLG)+ ε3, U (wLB + δ4) = U (wLB)+ ε4. The choice of εi , in

turn, depends on the particular relation among higher and lower bounds of the accident

probabilities and the position of allocations AH = (wHG, wHB) and AL = (wLG, wLB)

relative to the 45◦ line. Let us consider these choices for Cases (2)–(4) separately.

Consider Case (2) with p
L

< p
H

and pL < pH. Because pL < pH, for any

∆24 > 0 there exists ∆31 > 0 such that
pL

1−pL
∆24 ≤ ∆31 ≤ ∆24

pH
1−pH

. Now, fix

any ε4 > 0 and define ε1 = ε2 = ∆24 + ε4 and ε3 = ∆24 + ∆31 + ε4. Given that

AH, AL ∈ C
U

, the choice of εi implies that Ṽ satisfies (2), (3) and (5) and strictly

increases the value of (6). Each εi can be chosen sufficiently small so that Ṽ also

satisfies (4) and ensures that ÃH, ÃL ∈ CU.

Consider Case (3) with pL > pH > p
L

> p
H

. Because p
L

> p
H

, for any ∆42 > 0

there exists ∆13 > 0 such that
p

H
1−p

H

∆42 ≤ ∆13 ≤ ∆42
p

L
1−p

L

. Now, fix any ε2 > 0

and define ε1 = ε2 = ∆13 + ε3 and ε4 = ∆13 + ∆42 + ε3. In this case AH, AL ∈ C
O

,
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and again, by construction Ṽ satisfies (2), (3) and (5) and strictly increases the value

of (6). All εi can be chosen sufficiently small so Ṽ satisfies (4) and ÃH, ÃL ∈ C
O

.

For Case (4), (pH > pL > p
L

< p
H
), if AL ∈ C

U
, then the choice of εi is identical

to Case (2), while if AL ∈ C
O

then the choice of εi is the same as in Case (3).

Constraint (3). Let us show that the constraint (3) is binding. Let V = (wHG, wHB,

wLG, wLB) be a solution of P1 satisfying the constraint (4) with equality and let us

assume that (3) is slack. Again, as before, to reach a contradiction, let us find an

allocation Ṽ satisfying (2)–(5) and in which the value of (6) is strictly greater than

in V .

Consider Case (2) (p
L

< p
H

and pL < pH). For ε > 0, consider Ṽ (ε) =

(wHG, wHB, wLG−δ1, wLB+δ2) with δ1, δ2 > 0 such that U (wLG−δ1) = U (wLG)−ε

and U (wLB + δ2) = U (wLB) + ε(1 − pL)/pL. By construction, Ṽ (ε) satisfies (2)

and (5), and the value of (6) is the same under Ṽ (ε) and V for any ε > 0. Given

pL < pH, Ṽ (ε) also satisfies (3) for ε > 0 small enough. Let

ΠL(ε) = λ[(1 − pL)Φ(U (wLG) − ε) + pLΦ(U (wLB) + ε(1 − pL)/pL)]

be the Ls’ per capita expenditure in Ṽ (ε). Since AL ∈ CU, we have that dΠL(ε)/dε <

0 for 0 < ε < pL(U (wLG) − U (wLB)) for ε > 0 small enough and Ṽ (ε) satisfies (4)

with slack. In this case, according to the previous statement, one can find an allocation

satisfying all of the constraints and in which the value of (6) is strictly greater than in

V , so V cannot be a solution to P1.

Consider Case (3), (pL > pH > p
L

> p
H
). For ε > 0, consider Ṽ (ε) =

(wHG, wHB, wLG +δ1, wLB−δ2) for δ1, δ2 > 0 such that U (wLG +δ1) = U (wLG)+ε

and U (wLB − δ2) = U (wLB) − ε(1 − p
L
)/p

L
. By construction and because

p
L

> p
H
, Ṽ (ε) satisfies (2), (3) and (5), and the value of (6) is the same under

Ṽ (ε) and V for small enough ε > 0. Let

ΠL(ε) = λ[(1 − pL)Φ(U (wLG) + ε) + pLΦ(U (wLB) − ε(1 − p
L
)/p

L
)]

be the Ls’ per capita expenditure in Ṽ (ε). Because AL ∈ CO, it follows that

dΠL(ε)/dε < 0 for 0 < ε < p
L
(U (wLB) − U (wLG)) for ε > 0 small enough

and Ṽ (ε) satisfies (4) with slack.

Consider Case (4), (pH > pL > p
L

< p
H
). Assume that AL ∈ CU. For ε >

0, consider Ṽ (ε) = (wHG, wHB, wLG − δ1, wLB + δ2) with δ1, δ2 > 0 such that

U (wLG − δ1) = U (wLG) − ε and U (wLB + δ2) = U (wLB) + ε(1 − pL)/pL. By

construction and because pL < pH, Ṽ (ε) satisfies (2), (3) and (5) for small enough

ε > 0, and the value of (6) remains the same under Ṽ (ε) and V . Let

ΠL(ε) = λ[(1 − pL)Φ(U (wLG) − ε) + pLΦ(U (wLB) + ε(1 − pL)/pL)]

be the Ls’ per capita expenditure in Ṽ (ε). Since dΠL(ε)/dε < 0 for 0 < ε <

pL(U (wLG) − U (wLB)) for ε > 0 small enough, Ṽ (ε) satisfies (4) with slack.
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Assume that AL ∈ CO. For ε > 0, consider Ṽ (ε) = (wHG, wHB, wLG + δ1, wLB −

δ2) for δ1, δ2 > 0 such that U (wLG + δ1) = U (wLG) + ε and U (wLB − δ2) =

U (wLB) − ε(1 − p
L
)/p

L
. By construction and because p

L
> p

H
, Ṽ (ε) satisfies (2),

(3) and (5) for small enough ε > 0, and the value of (6) is the same under Ṽ (ε) and

V . Let

ΠL(ε) = λ[(1 − pL)Φ(U (wLG) + ε) + pLΦ(U (wLB) − ε(1 − p
L
)/p

L
)]

be the Ls’ per capita expenditure in Ṽ (ε). Since dΠL(ε)/dε < 0 for 0 < ε <

p
L
(U (wLB) − U (wLG)) for ε > 0 small enough, Ṽ (ε) satisfies (4) with slack and

hence V cannot be a solution to P1.

Output-independent utilities for high risks Let us assume that allocation V =

(wHG, wHB, wLG, wLB) with wHG �= wHB is a solution of P1 and satisfies the con-

straints (3) and (4) with equality. In order to reach a contradiction, we construct an

allocation satisfying all the constraints (2)–(5) and strictly increasing the value of (6)

over V . Consider again three cases.

Start with Case (2) (p
L

< p
H

and pL < pH). Let wHG > wHB. Define w̃ = Φ((1−

pH)U (wHG) + pHU (wHB)) and consider Ṽ = (w̃, w̃, wLG,wLB). By construction, Ṽ

satisfies (3) and (5), and the value of (6) is the same under V and Ṽ . Since pL < pH

and wHG > wHB, it follows that (1 − pL)U (wHG) + pLU (wHB) > U (w̃) = (1 −

pL)U (w̃) + pLU (w̃), so that Ṽ satisfies (2) as well. Strict convexity of Φ implies

that Ṽ satisfies (4) with slack: (1 − pH)wHG + pHwHB > (1 − pH)wHG + pHwHB >

w̃ = (1 − pH)w̃ + pHw̃. From the above argument, the value of (6) can be increased

above its value for V so it cannot be a solution to P1.
Let wHG < wHB. Define w̃ = Φ((1− p

H
)U (wHG)+ p

H
U (wHB)). By construction,

Ṽ satisfies (3) and (5), and the value of (6) is the same under V and Ṽ . In order

to show that Ṽ satisfies (2) note that given that the constraint (3) is binding, the
contract (wLG, wLB) should lie on the Hs’ indifference curve that goes through AH:

U (wLG) = U (w̃) −
pH

1−pH
U (wLB). Since pL < pH and wLB < w̃ (the slope of the

Hs’ indifference curve is negative), it follows that

(1 − pL)U (wLG) + pLU (wLB) = (1 − pL)

(

U

(

w̃ −
pH

1 − pH
U (wLB)

))

+ pLU (wLB)

> U (w̃) = (1 − pL)U (w̃) + pLU (w̃)

Finally, (1− pH)wHG + pHwHB > (1− p
H
)wHG + p

H
wHB > w̃ = (1− p

H
)w̃+ p

H
w̃

due to strict convexity of Φ which implies that Ṽ satisfies (4) with slack. Again, the

value of (6) can be increased above its value at V so V cannot be a solution to P1.

Consider now Case (3) (pL > pH > p
L

> p
H
). Let wHG < wHB. Let us define

w̃ = Φ((1 − p
H
)U (wHG) + p

H
U (wHB)). By construction, Ṽ = (w̃, w̃, wLG, wLB)

satisfies (3) and (5), and the value of (6) is the same under V and Ṽ . Since p
L

< p
H

and wHG < wHB we have (1− p
L
)U (wHG)+ p

L
U (wHB) > U (w̃) = (1− p

L
)U (w̃)+

p
L

U (w̃), so that Ṽ satisfies (2). Strict convexity of Φ implies that Ṽ satisfies (4) with

slack: (1− pH)wHG + pHwHB > (1− p
H
)wHG + p

H
wHB > w̃ = (1− p

H
)w̃+ p

H
w̃.
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As the value of the objective can be increased above its value at V so V cannot be a

solution to P1.
Suppose that wHG > wHB. Define w̃ = Φ((1 − pH)U (wHG) + pHU (wHB)).

Ṽ satisfies (3) and (5), and the value of (6) is the same under V and Ṽ . In order

to show that Ṽ satisfies (2) note that given that the constraint (3) is binding, the
contract (wLG, wLB) should lie on the Hs’ indifference curve that goes through AH:
U (wLG) = U (w̃) − p

H
U (wLB)/(1 − p

H
). Since p

L
> p

H
and wLB > w̃ (the slope

of the Hs’ indifference curve is negative), it follows that

(1 − p
L
)U (wLG) + p

L
U (wLB) = (1 − p

L
)

(

U

(

w̃ −
p

H

1 − p
H

U (wLB)

))

+ p
L

U (wLB)

> U (w̃) = (1 − p
L
)U (w̃) + p

L
U (w̃)

Finally, (1− pH)wHG + pHwHB > (1− pH)wHG + pHwHB > w̃ = (1− pH)w̃+ pHw̃

due to strict convexity of Φ which implies that Ṽ satisfies (4) with slack.

Finally, consider Case (4) with pH > pL > p
L

< p
H

. If wHG > wHB and

wLG > wLB the proof is the same as for the corresponding scenario of Case (2). If

wHG > wHB and wLG < wLB, the proof is the same as for the corresponding scenario

of Case (3). If wHG < wHB and wLG < wLB, the proof is same as for the corresponding

scenario of Case (3). If wHG < wHB and wLG > wLB, the proof is identical to the

corresponding scenario of Case (2).

Existence and uniqueness In order to prove existence and uniqueness of the solution

of P1, let us rearrange the four-dimensional maximization problem (6) into a one-

dimensional one. Let us start with Case (2). The solution to P1 must be in the form

V = (wH, wH, wLG, wLB). The incentive compatibility constraint (3) is binding which

implies U (wLB) = [U (wH)−(1− pH)U (wLG)]/pH. Moreover, constraint (2) is slack.

Also, note that wLG ≥ wH , i.e., (wLG, wH) ∈ C
U

. We can reformulate problem (6)

as:

max
(wLG,wH)∈C

U
min

p∈[p
L
,pL]

{

p

pH

U (wH) +

(

pH − p

pH

)

U (wLG)

}

(7)

subject to

λ

[

(1 − pL)wLG + pLΦ

(

U (wH) − (1 − pH)U (wLG)

pH

)]

+ (1 − λ)wH = Rλ (8)

and constraint (5). Let

E(wLG, wH) = λ

[

(1 − pL)wLG + pLΦ

(

U (wH) − (1 − pH)U (wLG)

pH

)]

+ (1 − λ)wH.

Function E is continuously differentiable on R
2 and is strictly increasing in wLG

on C
U

with lim
wLG→∞

E(wLG, wH) = ∞ due to convexity. Furthermore, E is strictly

increasing in wH globally with lim
wH→−∞

E(wLG, wH) = −∞. The cross-subsidy con-

straint (5) can be re-arranged to wH ≥ W − pHd. Denote the minimal choice for wH

as w− : = W − pHd.
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We claim that w+(λ) = Rλ = W − pλd is the highest possible value for wH

so that (wLG, wH) satisfies relation (8) and simultaneously satisfies (wLG, wH) ∈

C
U

. Indeed, consider (w+(λ),w+(λ)) ∈ C
U

satisfying (8) by construction. Any

tuple (w̃LG, w̃H) ∈ C
U

with w̃H > w+(λ) and w̃LG > w+(λ) can be reached from

(w+(λ),w+(λ)) by first increasing wLG from w+(λ) to w̃LG and then by increasing

wH from w+(λ) to w̃H. Both moves strictly increase E so that (w̃LG, w̃H) violates (8)

which proves the claim.

Let A(λ) = [w−, w+(λ)] and fix any wH ∈ A(λ). It follows that

E
(

w+(λ),wH

)

≤ E
(

w+(λ),w+(λ)
)

= Rλ

with strict inequality whenever wH < w+(λ). Since E is strictly increasing in wLG on

C
U

with lim
wLG→∞

E(wLG, wH) = ∞, there exists a unique value H(wH, λ) such that

E(H(wH, λ), wH) = Rλ with H(wH, λ) ≥ w+(λ) ≥ wH.

Let

L(wH, λ) = min
p∈[p

L
,pL]

{pU (wH) + (pH − p)U (H(wH, λ))}.

Function H(wH, λ) : R+×(0, 1) → R+ is continuous and continuously differentiable

by the implicit function theorem, with H(A(λ) × (0, 1)) ⊆ [w+(λ),∞). So we can

reduce (7) to one-dimensional problem

w∗
H(λ) = argmax

wH(λ)∈A(λ)

L(wH, λ)

= argmax
wH(λ)∈A(λ)

min
p∈[p

L
,pL]

{pU (wH) + (pH − p)U (H(wH, λ))} (9)

for which existence of a solution follows immediately by the Weierstrass theo-

rem. To prove uniqueness, we show strict concavity of the objective function by

showing that H(wH, λ) is strictly concave. Let (w1
LG, w1

H) and (w2
LG, w2

H) in C
U

satisfy E(w1
LG, w1

H) = (w2
LG, w2

H) = Rλ and (w1
LG, w1

H) �= (w2
LG, w2

H). Define

w3
LG = ηw1

LG + (1 − η)w2
LG and w3

H = ηw1
H + (1 − η)w2

H for η ∈ (0, 1). The

strict convexity of E implies that E(w3
LG, w3

H) < Rλ, which in turn implies that

H(w3
H, λ) = H(ηw1

H + (1 − η)w2
H, λ) > w3

LG = ηw1
LG + (1 − η)w2

LG

= ηH(w1
H, λ) + (1 − η)H(w2

H, λ),

which completes the proof. Cases (3) and (4) are proved analogously. ⊓⊔

Now that we have derived these general results, we can proceed to establish and

characterize the equilibria of our game in Cases (2)–(4).

Case 2 (p
L

< p
H

and pL < pH)

In this case, the indifference curves of the two types of insurees intersect only once

and the Ls’ indifference curve is steeper as in the standard expected utility framework
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(see Rothschild and Stiglitz 1976). Not surprisingly, in the equilibrium which does not

involve cross-subsidization across types, the results are qualitatively similar to those

in Rothschild and Stiglitz. The key difference is that, because the ambiguity aversion

relaxes the Hs’ no-mimicking constraint, the Ls buy more insurance compared to the

expected utility framework.

In order to characterize the equilibria in this case, we need to define a measure of

cross-subsidization. Define the cross-subsidy as follows:

χ(λ) = w∗
H(λ) − (W − pHd).

Lemma 7 Suppose (p
L

< p
H

and pL < pH). Then:

(i) χ(λ) is continuous on (0, 1), lim
λ→0

χ(λ) = 0 and lim
λ→1

χ(λ) = (pH − pL)d > 0.

(ii) There exists λ̃ ∈ (0, 1) such that χ(λ) = 0 for all λ ≤ λ̃ and χ(λ) is strictly

increasing in λ for all λ > λ̃.

(iii) Moreover, there exists
˜̃
λ ∈ (λ̃, 1] such that (w∗

LG, w∗
LB) ∈ CU for all λ <

˜̃
λ and

w∗
LG = w∗

LB = w∗
H for all λ ≥

˜̃
λ.

Proof Property (i). We first show that the solution to the maximization problem (6) is

continuous in λ on (0, 1). It then follows that χ(λ) is continuous as well.

We now transform the original constrained maximization problem (6) into an

unconstrained one. Let U = [w−, (1 − pL)W + pL(W − d)]. The correspon-

dence A(λ) ≡ [w−, w+(λ)] : (0, 1) ⇒ U is compact-valued and continuous. Define

Z : U × (0, 1) → R as

Z(wH, λ) =

{

U (H(wH, λ)), wH ≤ w+(λ)

U (w+(λ)), wH > w+(λ).

Since H(wH, λ) is continuous in both variables, H(w+(λ), λ) = w+(λ) holds and

w+(λ) is continuous in λ, it follows that Z is continuous on U × (0, 1). Given that

wH ∈ A(λ), we rewrite (9) as

w∗
H(λ) = argmax

wH∈A(λ)

{pLU (wH) + (pH − pL)Z(wH, λ)}. (10)

Berge’s maximum principle (applied twice) implies continuity of w∗
H(λ) and χ(λ).

We now show that as λ → 0, the constraint (5) must eventually become binding,

so that we get w∗
H(λ) = w− = W − pHd. Consider the derivative of the objective

function (9) in wH = w−: ∂L(wH,λ)
∂wH

|wH=w− . It exists because for Case (2) the function

L(wH, λ) coincides with L̃(wH, λ) = pLU (wH) + (pH − pL)U (H(wH, λ)) in the

neighborhood of the point wH = w−. Indeed, since H(w−, λ) ≥ w+(λ) > w−, there

exists a neighborhood U of wH = w− such that (w, H(w, λ)) ∈ C
U

for every w ∈ U

and hence the min operator in the definition of the function L(wH, λ) is not binding

in this neighborhood. The function L̃(wH, λ) is continuously differentiable because

the function H(wH, λ) is continuously differentiable (see proof of Lemma 6) and so
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is L(wH, λ). Using the derivative of H(wH, λ) with respect to wH, obtained from

implicitly differentiating (8), and taking into account the fact that H(wH, λ) ≥ wH,

we can write the condition ∂L(wH,λ)
∂wH

|wH=w− ≤ 0 for L(wH, λ) to be weakly decreasing

in w− as follows:

(1 − λ)(pH − pL) ≥ λ
pL

pH

U ′(w−)

×

[

pH(1 − pL) − pLΦ

(

U (w−) − (1 − pH)U
(

H(w−, λ)
)

pH

)

×

[

(1 − pH)U ′(H(w−, λ)) +
(pH − pL)

pL

]

]

(11)

Fixing wH = w−, we can simplify the budget constraint (4) to

(1 − pL)H(w−, λ) + pLΦ

(

U (w−) − (1 − pH)U (H(w−, λ))

pH

)

= W − pLd,

implying that H(w−, λ) is independent of λ. The left hand side of (11) converges to

a strictly positive value as λ → 0, whereas the right hand side converges to zero. This

implies that for a sufficiently small λ, the function L(wH, λ) is strictly decreasing in

wH = w−. Given that L(wH, λ) is strictly concave in wH ∈ (w−, w+(λ)) (see proof

of Lemma 6), wH = w− is the solution of (9). Hence, for a sufficiently small λ, it

holds that χ(λ) = 0 and therefore (5) must eventually become binding as λ → 0.

We now show that as λ → 1, constraint (5) should become slack. This happens

because inequality (11) is violated as λ becomes large enough and w∗
H = w+(λ) as

λ → 1. Indeed, for any λ ∈ (0, 1), the function L(wH, λ) is continuously differentiable

on (w−, w+(λ)) (see the argument above and proof of Lemma 6) and its derivative in

wH ∈ (w−, w+(λ)) is

∂L(wH, λ)

∂wH
= pLU ′(wH)

+ (pH − pL)U ′(wLG)
pLΦ ′(U (wLB))U ′(wH) + 1−λ

λ
pH

pL(1 − pH)Φ ′(U (wLB))U ′(wLG) − pH(1 − pL)

≥ U ′(wH)

[

pL + (pH − pL)
pL + (1−λ)

λ
pH

pL(1 − pH) − pH(1 − pL)

]

= U ′(wH)

[

pH(pL − pL)

pH − pL
+

(1−λ)
λ

pH(pH − pL)

pL(1 − pH) − pH(1 − pL)

]

(12)

(here we used the inequality U ′(wLG) ≤ U ′(wH) ≤ U ′(wLB) for any two contracts

AH = (wH, wH) and AL = (wLG, wLB) with wH ∈ (w−, w+(λ)) satisfying the

constraints (2)–(5), see proof of Lemma 6). The first term in the parenthesis in the

right hand side of (12) is positive, and the second term tends to zero as λ → 1.

Therefore, the derivative of L(wH, λ) is positive for a large enough λ for all wH ∈
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(w−, w+(λ)). Due to the continuity of L(wH, λ), it holds that w∗
H = w+(λ) and

hence, w∗
LG = H(w+(λ), λ) = w+(λ) = w∗

H and w∗
LB(λ) = w∗

LG(λ) = w∗
H(λ). This

implies

lim
λ→1

w∗
LB(λ) = lim

λ→1
w∗

LG(λ) = lim
λ→1

w∗
H(λ) = lim

λ→1
(W − pλd) = (pH − pL)d.

Property (ii). We will first show that both 1 − pLU (w∗
LG(λ)) + pLU (w∗

LB(λ)) and

U (w∗
H(λ)) are weakly increasing in λ, and strictly so if (5) is slack. Fix λ0 ∈ (0, 1) and

consider λ = λ0 + δ for some δ > 0. Note that V ∗(λ0) satisfies all the constraints of

P1 under λ. Indeed, constraints (2), (3) and (5) are satisfied trivially. V ∗(λ0) satisfies

(4) under λ if and only if

(pH − pL)d −
[

(1 − pL)w∗
LG(λ0) + pLw∗

LB(λ0) − w∗
H(λ0)

]

≥ 0, (13)

and satisfies the budget constraint with slack if and only if the inequality is strict. On

the other hand, the binding constraint (4) can be rearranged to

λ0

[

(1 − pL)w∗
LG(λ0) + pLw∗

LB(λ0) − w∗
H(λ0) − (pH − pL)d

]

+ w∗
H(λ0)

= W − pHd,

which together with the fact that w∗
H(λ0) ≥ W − pHd from (5) implies that (13) is

always satisfied (as a strict inequality whenever w∗
H(λ0) > W − pHd). Hence, if (5)

is binding, the old allocation V ∗(λ0) is still feasible under λ and the optimal value of

the objective cannot decrease. If (5) is slack, the optimal value of the objective under

λ must be strictly larger than under λ0 (see the proof of Lemma 6).

Now consider the high risks’ utility U (w∗
H(λ)). If (5) is binding, it is given by

U (w∗
H(λ)) = U (W − pHd) and is independent of λ. Assume now that (5) is slack, such

that w∗
H(λ) ∈ (w−, w+(λ)) satisfies the first-order condition ∂L(wH,λ)

∂wH
|wH=w− = 0

(the derivative exists because w∗
H(λ) ∈ (w−, w+(λ)) where the function L(wH, λ) is

differentiable) which can be rewritten as

(pH − pL)
(1 − λ)

λ
= U ′(w∗

H)

[

pL(1 − pL)

U ′
(

w∗
LG

) −
pL(1 − pL)

U ′
(

w∗
LB

)

]

. (14)

Suppose now we increase λ and U (w∗
H(λ)) decreases weakly. The binding incentive

compatibility constraint (3) can be rearranged to

(1 − pL)U
(

w∗
LG(λ)

)

+ pLU
(

w∗
LB(λ)

)

− U
(

w∗
H(λ)

)

=
(

pH − pL

) (

U
(

w∗
LG(λ)

)

− U
(

w∗
LB(λ)

))

.

Because (1 − pL)U (w∗
LG(λ)) + pLU (w∗

LB(λ)) strictly increases in λ, the term

U (w∗
LG(λ)) − U (w∗

LB(λ)) must also be strictly increasing which can be possible

only in the case of increasing U (w∗
LG(λ)) and decreasing U (w∗

LB(λ)) in λ, given

that U (w∗
LG(λ)) and U (w∗

LB(λ)) cannot both decrease. Thus, U ′(w∗
H(λ)) is weakly

increasing (by assumption), U ′(w∗
LG(λ)) is weakly decreasing and U ′(w∗

LB(λ)) is

weakly increasing. This, however, contradicts the fact that both sides of Eq. (14) must

decrease with λ.
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Assume now that (5) is slack, i.e., ∂L(wH,λ)
∂wH

> 0 for all wH ∈ (w−, w+(λ)). In

this case, by the continuity of L(wH, λ), we have that U (w∗
H(λ)) = U (w+(λ)) =

U (W − pλd), which is strictly increasing in λ.

Finally, if (5) is slack and U (w∗
H(λ)) is strictly increasing at some level of λ, the

same clearly holds for all λ′ > λ. Together with the previous result that (5) must be

binding in V ∗(λ) for sufficiently small and slack for sufficiently large values of λ, it

follows that there exists a value λ̃ ∈ (0, 1) such that for all λ ≤ λ̃, constraint (5) will

be binding in V ∗(λ) and neither V ∗(λ) nor χ(λ) change in λ, while for all λ > λ̃, (5)

is slack and U (w∗
H(λ)), and χ(λ) is strictly increasing in λ.

Property (iii). Define
˜̃
λ ∈ (λ̃, 1) as

˜̃
λ = sup

{

λ :
∂L(wH, λ)

∂wH

∣

∣

∣

∣

wH=w∗
H(λ)<w+(λ)

= 0

}

.

The continuity of w∗
H(λ) and L(wH, λ) together with the uniqueness of the solution

of P1 implies that w∗
H(

˜̃
λ) = w+(

˜̃
λ) = W − p ˜̃

λ
d = wLG(

˜̃
λ) = w∗

LB(
˜̃
λ).

Consider λ >
˜̃
λ. Suppose there exists a solution V ∗(λ) of the problem P1 with

(w∗
LG, w∗

LB) ∈ CU. In this case, w∗
H(λ) < w+(λ); otherwise, we get a contradiction

and violation of the constraint (4). Then,

∂L(wH, λ)

∂wH

∣

∣

∣

∣

wH=w∗
H(λ)

= pLU ′
(

w∗
H

)

+(pH − pL)U ′(wLG)
pLΦ ′

(

U
(

w∗
LB

))

U ′
(

w∗
H

)

+ (1 − λ)pH/λ

pL(1 − pH)Φ ′
(

U
(

w∗
LB

))

U ′
(

w∗
LG

)

− pH(1 − pL)

≥ U ′
(

w∗
H

)

[

pL + (pH − pL)
pL + (1 − λ)pH/λ

pL(1 − pH) − pH(1 − pL))

]

> U ′
(

w∗
H

)

[

pL + (pH − pL)
pL + (1 −

˜̃
λ)pH/

˜̃
λ

pL(1 − pH) − pH(1 − pL))

]

. (15)

Note that the left hand side derivative ∂L−(wH,λ)
∂wH

exists and is continuous on

A(λ) × (0, 1). Indeed, for any λ ∈ (0, 1) and any wH ∈ A(λ), we have that

(H(wH, λ), wH) ∈ C
U

and therefore the function L(wH, λ) coincides on the interval

A(λ) with the function L̃(wH, λ) = pLU (wH) + (pH − pL)U (H(wH, λ)) which is

continuously differential on R+ × (0, 1). Furthermore, given the definition of w∗
H(

˜̃
λ),

it holds that

∂L−(wH, λ)

∂wH

∣

∣

∣

∣ wH = w∗
H

(

˜̃
λ
)

λ =
˜̃
λ

= U ′
(

w∗
H

(

˜̃
λ
))

[

pL + (pH − pL)
pL + (1 −

˜̃
λ)pH/

˜̃
λ

pL(1 − pH) − pH(1 − pL)

]

= 0.
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Hence, at the point w+(
˜̃
λ), it holds that

∂L−(wH, λ)

∂wH

∣

∣

∣

∣ wH = w+
(

˜̃
λ
)

λ =
˜̃
λ

=
∂ L̃−(wH, λ)

∂wH

∣

∣

∣

∣

∣ wH = w+
(

˜̃
λ
)

λ =
˜̃
λ

=
∂ L̃(wH, λ)

∂wH

∣

∣

∣

∣

∣ wH = w+
(

˜̃
λ
)

λ =
˜̃
λ

= U ′
(

w∗
H

(

˜̃
λ
))

[

pL + (pH − pL)
pL + (1 −

˜̃
λ)pH/

˜̃
λ

pL(1 − pH) − pH(1 − pL)

]

= 0.

Finally, note that ∂L−(wH,λ)
∂wH

|
wH = w∗

H
(
˜̃
λ)

λ =
˜̃
λ

= 0 which follows from the definition of
˜̃
λ and

the continuity of the functions ∂L−(wH,λ)
∂wH

and w∗
H(λ). Hence, this fact and (15) imply

that ∂L(wH,λ)
∂wH

|wH=w∗
H(λ) >

∂L(wH,λ)
∂wH

|
wH = w∗

H
(
˜̃
λ)

λ =
˜̃
λ

= 0. This means that the function

L(wH, λ) is increasing in wH and therefore w∗
H(λ) = w+(λ). This contradicts our

earlier assumption. ⊓⊔

Proposition 3 Suppose that λ ∈ [0, λ̃] and the separating allocation (A∗
H, A∗

L) is

the solution of the problem P1. Then, the menus {(A∗
H, A∗

L), 0}, {(A∗
H, A∗

L), 1} or any

combination of them, involving the unique separating allocation (A∗
H, A∗

L), are Bayes–

Nash equilibria with underinsurance and no cross-subsidization across types.

Proof Lemma 5 implies that the only candidate for an equilibrium in our game is the

solution of P1. According to Lemmas 6 and 7, the unique solution of P1 is (A∗
H, A∗

L),

where A∗
H = (W − pHd, W − pHd) and the contract A∗

L = (w∗
LG, w∗

LB) is defined by

the intersection of the Hs’ binding incentive compatibility constraint U (W − pHd) =

pHU (w∗
LB) + (1 − pH)U (w∗

LG) and zero-profit condition pLw∗
LB + (1 − pL)w∗

LG =

W − pLd.

We now show that the menu {(A∗
H, A∗

L), c} involving the separating allocation

(A∗
H, A∗

L) is an equilibrium. By Lemma 6, there is no allocation which can profitably

attract both types. Also, because, by Lemma 6, the Hs’ incentive compatibility con-

straint is binding and A∗
L implies zero profit, there is no contract that can profitably

attract only the Ls (see Fig. 6). Hence, the separating allocation (A∗
H, A∗

L) is the unique

equilibrium allocation. However, the menus involving this unique separating alloca-

tion may be offered with or without commitment which leads to multiple equilibria.

⊓⊔

Compared to the standard expected utility framework (Rothschild and Stiglitz

1976), the Hs choose the same contract in equilibrium in both cases A∗
H = AEU

H .

In contrast, the Ls’ equilibrium contract under ambiguity aversion, A∗
L, involves more

coverage than the corresponding contract in the standard expected utility model, AEU
L

(Fig. 6). This difference is due to the fact that ambiguity aversion relaxes the Hs’

incentive compatibility constraint allowing the Ls to buy more insurance and move

closer to the efficient insurance level.

Proposition 4 Suppose that λ ∈ (λ̃,
˜̃
λ) and the separating allocation (A∗∗

H , A∗∗
L ) is the

solution of problem P1. Then, the menu {(A∗∗
H , A∗∗

L ), 0} which involves underinsurance
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Fig. 6 Efficient separating

equilibrium with no

cross-subsidies and

underinsurance

Fig. 7 Efficient separating

equilibrium with cross-subsidies

and underinsurance

and cross-subsidy across types is the unique Bayes–Nash equilibrium of our game (see

Fig. 7).12

Proof According to Lemma 5, the allocation (A∗∗
H , A∗∗

L ), which is the solution of P1,

is the only candidate for an equilibrium. Statement (iii) of Lemma 7 implies that this

allocation is separating and involves cross-subsidization across types.

We first show that {(A∗∗
H , A∗∗

L ), 1} cannot be an equilibrium. Suppose that, at Stage

1, an insurer offers {(A∗∗
H , A∗∗

L ), 1}. Consider a new entrant who offers the deviant menu

{(AD), 1} (Fig. 7). Because the incumbent has committed to the menu {(A∗∗
H , A∗∗

L ), 1},

the deviant menu {(AD), 1} attracts only the Ls and so {(A∗∗
H , A∗∗

L ), 1} becomes loss-

making and cannot be an equilibrium.

Suppose now that, at Stage 1, an insurer offers the separating allocation (A∗∗
H , A∗∗

L )

through two single-contract menus: {(A∗∗
H ), c} and {(A∗∗

L ), c}, where c ∈ {0, 1}.

From the argument above, if the insurer commits to both menus, his strategy will

12 Notice that if we employed the two-stage screening game widely used in applied theory papers (e.g.,

Rothschild and Stiglitz 1976), the nonexistence of equilibrium problem would arise in cases the Rothschild–

Stiglitz separating allocation was not interim incentive efficient.
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be loss-making and so it cannot be an equilibrium strategy. Clearly, the strategy of

offering {(A∗∗
H ), 1} and {(A∗∗

L ), 0} will also be loss-making for the insurer choos-

ing it. Hence, it cannot be an equilibrium strategy either. Finally, consider the case

where the insurer offers {(A∗∗
L ), c} and {(A∗∗

H ), 0}, where c ∈ {0, 1}. Then, at Stage

3, the insurer would withdraw the loss-making menu {(A∗∗
H ), 0}. Anticipating that, all

insurees would choose the menu {(A∗∗
L ), c} which would also become loss-making (it

lies above the pooling zero-profit line). Thus, this strategy cannot be an equilibrium

strategy. Therefore, the menu {(A∗∗
H , A∗∗

L ), 0} is the only candidate for equilibrium.

There are two different types of deviations which could potentially destroy the

equilibrium: One is to offer a menu involving an allocation different from (A∗∗
H , A∗∗

L ),

and the other one is to offer a menu involving the allocation (A∗∗
H , A∗∗

L ) but different

strategies.

We start with the first type of deviations. Because the separating allocation

(A∗∗
H , A∗∗

L ) is the solution of P1, there cannot exist an incentive compatible allocation

which attracts both types profitably (see Lemma 6). Thus, the potentially profitable

deviations would be the ones that attract only the Ls. Since the aim is to attract only

the Ls, without loss of generality, we can consider only the menus consisting of a

single contract. This contract should be in the shaded area in Fig. 7. Suppose now that

a new entrant offers the deviant menu {(AD), 1} (Fig. 7). Given the incumbent’s menu,

at Stage 2, the Ls will choose the deviant menu. As a result, the incumbent’s menu

becomes loss-making and so it will be withdrawn at Stage 3. Anticipating that, the Hs

will also choose the deviant menu at Stage 2 and so the deviant menu becomes loss-

making too. Finally, suppose that a new entrant offers the deviant menu {(AD), 0}. This

off-the-equilibrium path sub-game has two equilibria: (i) both types take the deviant

menu and so it becomes loss-making; (ii) both types stay in the incumbent’s menu.

In either case, the deviant strategy is not profitable. Therefore, there is no profitable

deviation of this type.

The second type of potential deviations involves the same allocation but different

strategies. Suppose that a new entrant offers two menus {(A∗∗
L ), c}, c ∈ {0, 1} and

{(A∗∗
H ), c}, c ∈ {0, 1}. The menu {(A∗∗

H ), 0} is loss-making and since the new entrant

is not committed to it, it will be withdrawn at Stage 3. Anticipating that, none of

the Hs will choose {(A∗∗
H ), 0} at Stage 2. Notice that the Ls are indifferent between

{(A∗∗
H , A∗∗

L ), 0} and {(A∗∗
L ), c}. As a result, in this out-of-equilibrium sub-game, there

are two types of equilibria: (i) all Hs and Ls choose the incumbent’s menu and so

the equilibrium is not upset; (ii) the insurees believe that some Ls (a strictly positive

measure of them) will choose {(A∗∗
L ), c} at Stage 2. So, the incumbent’s menu becomes

loss-making, and it will be withdrawn at Stage 3. Given this belief, both types will

choose {(A∗∗
L ), c} at Stage 2. As a result, {(A∗∗

L ), c} becomes loss-making and the new

entrant cannot make any profit. Suppose that a new entrant offers two menus {(A∗∗
L ), c}

and {(A∗∗
H ), 1}. The resulting out-of-equilibrium sub-game has two equilibria. (i) The

belief is that the proportion of the Ls who switch to the deviant menu is bigger than

λ. In this case, the incumbent’s menu becomes loss-making and will be withdrawn

in Stage 3. Hence, both types take the corresponding deviant menu. As a result, the

deviation does not make a strictly positive profit. (ii) The belief is that the proportion of

the Ls who switch to the deviant menu is smaller than λ. In this case, the incumbent’s

menu remains profitable and will not be withdrawn in Stage 3. In contrast, the deviant
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Fig. 8 Efficient pooling

equilibrium

is loss-making. Hence, there is no profitable deviation, and the unique equilibrium of

our game is {(A∗∗
H , A∗∗

L ), 0}. ⊓⊔

The intuition behind this separating equilibrium is straightforward: The Ls accept

to subsidize the Hs in order to relax the Hs’ incentive compatibility constraint, buy

more insurance and reduce the disutility cost of underinsurance. If the Ls’ proportion

is sufficiently high, the utility benefit (due to higher insurance) exceeds the cost of

subsidization. The existence of this equilibrium relies on two elements: (i) in equi-

librium, both types choose the same menu (but different contracts within the menu);

(ii) the equilibrium menu is offered without commitment. Notice, however, that in our

game, these two key elements emerge endogenously (they are optimal responses by

the players).

Proposition 5 For any λ ∈ (
˜̃
λ, 1], the menu {(A∗∗∗), 0} involving the pooling allo-

cation A∗∗∗ = (W − pλd, W − pλd), which is the solution of P1, is the unique

Bayes–Nash equilibrium of our game (see Fig. 8).

Proof According to Lemma 5, only the solution to P1 can be a candidate for equi-

librium. Statement (iii) of Lemma 7 implies that the pooling allocation A∗∗∗ is the

solution.

We first show that {(A∗∗∗), 1} cannot be an equilibrium. Suppose that, at Stage

1, an insurer offers {(A∗∗∗), 1}. Consider a new entrant who offers the deviant menu

{(AD), 1} (see Fig. 8). Because the incumbent has committed to his offer, the deviant

menu {(AD), 1} attracts only the Ls and so {(A∗∗∗), 1} becomes loss-making. Hence,

it cannot be an equilibrium.

We now show that {(A∗∗∗), 0} is an equilibrium. The only way to potentially destroy

the equilibrium is to offer a menu involving an allocation different from A∗∗∗. Because

A∗∗∗ is the solution of P1, there cannot exist an incentive compatible allocation which

attracts both types profitably (see Lemma 6). Thus, the potentially profitable deviations

would be the ones that attract only the Ls. Again, without loss of generality, we consider

only menus consisting of a single contract. This contract can only be in the shaded
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Fig. 9 Efficient separating

equilibrium with no

cross-subsidies and

overinsurance

area on Fig. 8. Suppose now that a new entrant offers the deviant menu {(AD), 1}.

Given the incumbent’s menu, at Stage 2, the Ls will choose the deviant contract.

As a result, the menu becomes loss-making and so it will be withdrawn at Stage 3.

Anticipating that, the Hs will also choose the deviant menu at Stage 2 and so the

deviant menu becomes loss-making. Finally, suppose that a new entrant offers the

deviant menu {(AD), 0}. This off-the-equilibrium path sub-game has two equilibria:

(i) both types take the deviant menu and so it becomes loss-making; (ii) both types

stay in the incumbent’s menu. In either case, the deviant strategy is not profitable.

Therefore, there is no profitable deviation, and {(A∗∗∗), 0} is the unique equilibrium

of our game. ⊓⊔

The basic intuition for the existence of this pooling equilibrium is similar to that

in Proposition 1. That is, the high degree of ambiguity makes the cost of separation

prohibitively high for the Ls. However, there are two main differences between the two

pooling equilibria: First, the pooling equilibrium of Proposition 1 exists regardless of

the proportion of the Ls whereas that of Proposition 5 exists only if the proportion

of Ls is sufficiently high. Second, the pooling equilibrium of Proposition 1 exists

even if the standard two-stage screening game is used while that of Proposition 5

does not. Finally, it should be noticed that the pooling equilibrium of Proposition 5

does not exist under standard expected utility. In the latter case, regardless of the Ls’

proportion, a separating equilibrium always arises (except for the limiting case where

the Ls’ proportion is 1).13

Case 3 pL > pH > p
L

> p
H

In this case, the indifference curves of the two types intersect only once but, contrary

to the standard expected utility framework, the Ls’ indifference curves are flatter.

Hence, if the equilibrium is separating, it involves the Ls taking overinsurance. This

result, which is due to ambiguity aversion, is in sharp contrast with those of the

expected utility model (Fig. 9).

Lemma 8 Suppose pL > pH > p
L

> p
H

. Then:

13 See, for example, Diasakos and Koufopoulos (2013) and Netzer and Scheuer (2014).
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Fig. 10 Efficient separating

equilibrium with overinsurance

and cross-subsidies

(i) χ(λ) is continuous on (0, 1), lim
λ→0

χ(λ) = 0 and lim
λ→1

χ(λ) = (pH − pL)d > 0.

(ii) There exists λ̃ ∈ (0, 1) such that χ(λ) = 0 for all λ ≤ λ̃ and χ(λ) is strictly

increasing in λ for all λ > λ̃.

(iii) Moreover, there exists
˜̃
λ ∈ (λ̃, 1] such that (w∗

LG, w∗
LB) ∈ CU for all λ <

˜̃
λ and

w∗
LG = w∗

LB = w∗
H for all λ ≥

˜̃
λ.

Proof The proof is similar to the one of Lemma 7. ⊓⊔

Proposition 6 Suppose that λ ∈ [0, λ̃] and the separating allocation (A∗
H, A∗

L) is

the solution of the problem P1. Then, the menus {(A∗
H, A∗

L), 0}, {(A∗
H, A∗

L), 1} or any

combination of them, involving the unique separating allocation (A∗
H, A∗

L), are Bayes–

Nash equilibria with overinsurance and no cross-subsidization across types.

Proof Similar to Proposition 3. ⊓⊔

Because the lower bound of the Ls’ accident probability, p
L

, is higher than that of

the Hs, p
H

, the utility cost of overinsurance is lower for the Ls. As a result, the insurers

can separate the two types of insurees by offering contracts involving overinsurance.

The Ls prefer overinsurance at a lower per-unit premium to full insurance at a high

(pooling) per-unit premium. In contrast, because the Ls’ highest accident probability,

pL, is greater than the corresponding probability of the Hs, pH, the utility cost of

underinsurance is higher for the Ls. Hence, insurers cannot profitably attract the Ls

by offering contracts involving less than full coverage (underinsurance). Therefore,

there can exist separating equilibria involving overinsurance but not underinsurance.

Notice that if we impose the no-overinsurance restriction (indemnity principle), the

unique equilibrium would be pooling with full insurance.

Proposition 7 Suppose that λ ∈ (λ̃,
˜̃
λ) and the separating allocation (A∗∗

H , A∗∗
L ) is the

solution of problem P1. Then, the menu {(A∗∗
H , A∗∗

L ), 0} which involves overinsurance

and cross-subsidy across types is the unique Bayes–Nash equilibrium of our game

(see Fig. 10).

Proof Similar to Proposition 4. ⊓⊔
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Fig. 11 Efficient pooling

equilibrium

Proposition 8 For any λ ∈ (
˜̃
λ, 1], the menu {(A∗∗∗), 0} involving the pooling allo-

cation A∗∗∗ = (W − pλd, W − pλd), which is the solution of P1, is the unique

Bayes–Nash equilibrium of our game (see Fig. 11).

Proof Similar to Proposition 5. ⊓⊔

Case 4 pH > pL > p
L

> p
H

In this case, the Ls’ indifference curves are steeper in the underinsurance region

and flatter in the overinsurance region. Therefore, depending on the relative slopes of

the indifference curves of the two types, there can exist either pooling or separating

equilibria involving either under- or overinsurance which are similar to those in Cases

(2) and (3), respectively.

6 Conclusions

In this paper, we examine the impact of ambiguity aversion on the equilibrium allo-

cation in competitive insurance markets with asymmetric information. We derive a

number of interesting results which are due to ambiguity aversion. First, for some para-

meter values, there exists a unique pooling equilibrium where both types of insurees

buy full insurance. This result is driven by ambiguity aversion as it cannot obtain under

standard expected utility. Second, we show that under ambiguity aversion, the equi-

librium contract of the Ls is closer to their first-best one than under standard expected

utility. In fact, ambiguity aversion relaxes the (binding) incentive compatibility con-

straint of the Hs. As a result, the Ls buy more insurance (while still revealing their

type) and move closer to their first-best allocation.

Another distinguishing feature of our model is that the mechanism we employ

in this paper is optimal (the equilibrium is always interim incentive efficient). This

implies that the results discussed above are driven by ambiguity aversion and not by
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the sub-optimality of the mechanism used. To the best of our knowledge, none of the

existing papers in this literature considers the optimality of the mechanism employed

and so it is not clear whether their results are only driven by ambiguity aversion or by

the (possible) sub-optimality of the mechanism.

Finally, although in this paper we have focused on insurance markets, the intro-

duction of ambiguity aversion into an asymmetric information framework may have

interesting implications for other issues as well. The design of managerial compensa-

tion schemes, the choice between self employment and being an employee, the design

of financial contracts and other corporate finance issues are only some of them.
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