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MOMENT MAP FLOWS AND THE HECKE CORRESPONDENCE FOR

QUIVERS

GRAEME WILKIN

Abstract. In this paper we investigate the convergence properties of the upwards gradient flow
of the norm-square of a moment map on the space of representations of a quiver. The first main
result gives a necessary and sufficient algebraic criterion for a complex group orbit to intersect the
unstable set of a given critical point. Therefore we can classify all of the isomorphism classes which
contain an initial condition that flows up to a given critical point. As an application, we then show
that Nakajima’s Hecke correspondence for quivers has a Morse-theoretic interpretation as pairs of
critical points connected by flow lines for the norm-square of a moment map. The results are valid
in the general setting of finite quivers with relations.

1. Introduction

There is a well-known correspondence between quotients in symplectic and algebraic geometry.

For example, the Kempf-Ness theorem relates GIT quotients and symplectic quotients of affine

spaces [16] and the Donaldson-Uhlenbeck-Yau theorem relates moduli spaces of polystable holo-

morphic bundles to moduli spaces of Yang-Mills minima [7, 8, 33].

In many examples of interest, there is also a symplectic-algebraic correspondence between GIT

unstable points and critical points of a moment map functional, given by taking the limit of the

downwards gradient flow of the norm-square of a moment map. This originated in Kirwan’s work

[18] for projective varieties, and the case of the Yang-Mills flow is studied in [5], [6] and [30]. A

version of this theorem for quiver varieties is proved in [9, Thm. 3], which has since been generalised

in [14] to the case of reductive group actions on affine spaces.

The goal of this paper is to further extend this correspondence between symplectic and algebraic

geometry to spaces of flow lines between critical sets on the space of representations of a quiver with

relations. The symplectic side of the picture determines the critical points and the flow lines for

the norm-square of the moment map and one of the main theorems of this paper gives an algebraic

criterion for the existence of a flow line connecting two critical points. Using this criterion we

then show that critical points connected by flow lines can be interpreted in terms of the Hecke

correspondence for quivers defined in [22], [23].

The setup is explained in detail in Section 2.1; here we provide a summary of the points relevant to

the rest of the introduction. The vector space Rep(Q,v) of complex representations of a quiver with
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a fixed dimension vector v has a natural symplectic structure determined by the Hermitian structure

on the complex vector space at each vertex of the quiver. Associated to this is a Hamiltonian action

of a group Kv and a moment map which we denote by µ. The complexification of Kv is denoted

Gv. In the paper [9] we studied the downwards gradient flow of ∥µ−α∥2 for any stability parameter

α and showed the existence of a Morse stratification which coincides with the algebraic Harder-

Narasimhan stratification defined by Geometric Invariant Theory (cf. [28]). The main theorem of

[9] identifies the isomorphism class of the limit of the downwards flow with the graded object of

the Harder-Narasimhan-Jordan-Hölder filtration associated to the initial condition.

The entire setup described above restricts to any closed subset Z ⊂ Rep(Q,v) which is preserved

by the action of Gv. An important special case of this is the variety of representations of a quiver

satisfying a finite set of relations in the path algebra. Moreover, the critical sets of the norm-

square of the moment map have a simple interpretation in terms of representations which are the

direct sum of subrepresentations of different slopes minimising the norm-square of the moment

map (cf. (2.15)). Therefore the critical sets can be classified by the dimension and slope of each of

the subrepresentations in this splitting in analogy with the classification of the critical sets of the

Yang-Mills functional described by Atiyah and Bott in [1].

Given a critical point x, let W−
x denote the unstable set of initial conditions for which the

upwards flow of ∥µ − α∥2 converges to x. Associated to the critical point is another space called

the negative slice S−
x , which is defined in terms of a group action around the critical point (cf.

Definition 3.22). When the ambient space is smooth then S−
x is simply the exponential image of

the negative eigenspace of the Hessian. Given a critical set C, we have fibrations πw : W−
C → C

and πs : S
−
C → C for which π−1

w (x) = W−
x and π−1

s (x) = S−
x . The first main result of the paper is

Theorem 4.22.

Theorem 1.1. There are neighbourhoods U and V of C ⊂ Z and a Kv-equivariant homeomorphism

ψ : S−
C ∩ U → W−

C ∩ V . Moreover, for each y ∈ S−
C ∩ U there exists g(y) ∈ Gv such that

ψ(y) = g(y) · y ∈W−
C ∩ V .

Since the negative slice S−
x is defined algebraically and the critial point x is a direct sum of

polystable representations (cf. (2.28)), then it is possible to classify the isomorphism classes of

representations in S−
x in terms of filtrations for which the quotients are polystable, the slopes are

increasing and the graded object is isomorphic to the critical point x (cf. Lemma 3.27). Therefore,

using the above theorem we can completely classify the isomorphism classes in W−
x .

Theorem 1.2. Let x be a critical point of ∥µ − α∥2 on ν−1(0) and let x = x1 ⊕ · · · ⊕ xn be the

decomposition as a direct sum of polystable representations as in (2.28), ordered so that slopeα(xj) <

slopeα(xk) for all j < k. Then every y ∈ W−
x admits a filtration y1 ⊂ · · · ⊂ yn such that each

quotient yk/yk−1 is isomorphic to xk for k = 1, . . . , n. Conversely, let y ∈ ν−1(0) be a representation

admitting a filtration y1 ⊂ · · · ⊂ yn such that each quotient yk/yk−1 is isomorphic to xk for

k = 1, . . . , n. Then there exists g ∈ Gv such that g · y ∈W−
x .
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In contrast to the Harder-Narasimhan filtration, where the slopes of the semistable quotients are

decreasing, filtrations of the type in the above theorem are not necessarily unique. This reflects the

fact that a single isomorphism class may contain different initial conditions that flow up to different

critical points. Equivalently, if y ∈W−
x then there may exist g ∈ Gv such that g · y ∈W−

x′ for some

higher critical point x′, or perhaps the upwards flow with initial condition g · y may not converge

to any critical point. Therefore we see the difference between the properties of the upwards and

downwards flow: the results of [9] show that the isomorphism class of the limit of the downwards

flow is an isomorphism invariant of the initial condition, however Theorem 1.2 shows that the

upwards flow is more delicate in the sense that a small perturbation within an isomorphism class

may completely change the convergence properties of the upwards flow.

Together with known results on the limit of the downwards flow from [9], Theorem 1.2 leads

to an algebraic criterion for two critical points to be connected by a flow line, which we can then

exploit to give a Morse-theoretic construction of the Hecke correspondence in Theorem 1.3 below.

The precise statement is as follows. Let Q be a finite quiver, choose a dimension vector v, and let

α denote the stability parameter from [22], [23] (cf. Definition 3.6). Let Rep(Q,v) denote the affine

space of representations with dimension vector v, let Gv be the associated complex reductive group

acting on Rep(Q,v) (cf. (2.2)) and let Z ⊂ Rep(Q,v) be any closed subset such that Gv · Z ⊂ Z.

As mentioned above, a particular case of interest is when Z is the subvariety of representations

satisfying a finite set of relations on the quiver. Define f : Rep(Q,v) → R by f(x) = ∥µ(x)− α∥2.
The gradient flow for f is the solution of (2.18).

The above choice of stability parameter implies that any critical point x for f splits into two

subrepresentations which we denote x = x1 ⊕ x2, where x1 is stable of negative slope, and x2 is

polystable of positive slope. Given dimension vectors vu
1 < vℓ

1 < v, let Cvu
1
(resp. C

vℓ
1

) denote the

critical sets on Z for which the associated stable subrepresentation of negative slope has dimension

vector vu
1 (resp. vℓ

1). Since v
u
1 < vℓ

1 then f(Cvu
1
) > f(C

vℓ
1

). Now let P
vu
1
,vℓ

1

⊂ Cvu
1
×C

vℓ
1

denote the

subset of pairs of critical points which are connected by a gradient flow line. There are projection

maps P
vu
1
,vℓ

1

→ Cvu
1
and P

vu
1
,vℓ

1

→ C
vℓ
1

defined by projecting a flow line to its upper and lower

endpoints. Lemma 3.15 shows that there are also natural projection maps Cvu
1
→ M(Q,vu

1 ) (resp.

C
vℓ
1

→ M(Q,vℓ
1)) onto the moduli space of α-stable representations with dimension vector vu

1 (resp.

vℓ
1).

Since the flow is equivariant with respect to the maximal compact subgroup Kv ⊂ Gv, then

there is an induced correspondence variety M
vu
1
,vℓ

1

which fits into the diagram below

P
vu
1
,vℓ

1

yysss
ss
ss
ss
s

%%❑❑
❑❑

❑❑
❑❑

❑❑

��✤
✤

✤

Cvu
1

��

M
vu
1
,vℓ

1

yysss
ss
ss
ss

%%❑❑
❑❑

❑❑
❑❑

❑

C
vℓ
1

��
M(Q,vu

1 ) M(Q,vℓ
1)
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Now suppose that vu
1 = vℓ

1 − ek, where ek denotes the dimension vector which is equal to one

at the kth vertex of Q and zero elsewhere. The following is the main result of the paper.

Theorem 1.3 (Theorem 4.35). M
vu
1
,vℓ

1

is the Hecke correspondence.

In the case where vu
1 < vℓ

1 − ek, one has to distinguish between broken and unbroken flow lines.

For the Yang-Mills-Higgs flow on the space of Higgs bundles, this was done in [35] in terms of

certain secant varieties of the space of Hecke modifications inside the negative slice at a critical

point. For the Yang-Mills flow, this involves studying secant varieties of the projectivisation of

the underlying bundle inside a space of bundle extensions, and for the Yang-Mills-Higgs flow the

corresponding picture involves studying secant varieties of the spectral curve.

To distinguish between broken and unbroken flow lines in the space of representations of quivers,

the analogous idea also involves secant varieties of the space of Hecke modifications, and it is

natural to ask whether one can use algebraic methods to explicitly describe the compactification

of the space of unbroken flow lines by broken flow lines. In [34] we further develop the methods of

this paper to answer this question.

1.1. Organisation of the paper. Section 2 contains the background theory for the properties of

the norm-square of the moment map on the vector space of complex representations of a quiver. In

Section 3 we show how these properties restrict to a singular subset invariant under the group action

and define the moduli spaces of flow lines. Section 4 contains the main results of the paper leading

to the classification of critical points connected by flow lines in terms of the Hecke correspondence.

Acknowledgements. The author would like to thank George Daskalopoulos, Richard Went-

worth and Matthew Young for useful discussions and Hiraku Nakajima for pointing out the stability

parameter from Definition 3.6, as well as the referee for useful comments and suggestions.

2. Background results for quivers without relations

This section contains the basic results and notational setup used in the rest of the paper. The

goal is to study the gradient flow, the structure of the critical sets and the eigenspaces of the

Hessian for the function ∥µ−α∥2 on the vector space Rep(Q,v) (where we can apply theorems for

smooth manifolds) before restricting to the singular subvariety associated to a quiver with relations

in Section 3. In Sections 2.1–2.3 we set up the notation and summarise known results used in the

rest of the paper, in Section 2.4 we derive some useful formulae for the gradient flow on the space

of metrics and in Section 2.5 we prove results about the Hessian of ∥µ−α∥2 at a critical point and

construct the unstable bundle and negative slice bundle over a critical set.

2.1. Quiver varieties.

Definition 2.1. A quiver Q is a directed graph, consisting of vertices I, edges E, and head/tail

maps h, t : E → I.

A complex representation of a quiver consists of a collection of complex vector spaces {Vi}i∈I,
and C-linear homomorphisms {xa : Vt(a) → Vh(a)}a∈E. The dimension vector of a representation is
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the vector v := (dimC Vi)i∈I ∈ Z
I
≥0. The vector space of all representations with fixed dimension

vector is denoted

Rep(Q,v) :=
⊕

a∈E
Hom(Vt(a), Vh(a)).

The group

(2.1) Gv :=
∏

i∈I
GL(Vi,C)

acts on the space Rep(Q,v) via the induced action on each factor Hom(Vt(a), Vh(a))

(2.2) (gi)i∈I · (xa)a∈E :=
(

gh(a)xag
−1
t(a)

)

a∈E

The infinitesimal action of the Lie algebra gv at a representation x ∈ Rep(Q,v) is denoted

ρCx : gv → TxRep(Q,v) ∼= Rep(Q,v). A calculation shows that

(2.3) ρCx (u) :=
d

dt

∣

∣

∣

∣

t=0

etu · x =
⊕

a∈E

(

uh(a)xa − xaut(a)
)

∈
⊕

a∈E
Hom(Vt(a), Vh(a)).

The direct sum of all the vector spaces is denoted

Vect(Q,v) :=
⊕

i∈I
Vi.

Given a representation x ∈ Rep(Q,v), we can consider each component xa as a homomorphism

Vect(Q,v) → Vect(Q,v) via the inclusion Hom(Vt(a), Vh(a)) ⊆ End (Vect(Q,v)).

There is a notion of slope-stability for quivers introduced by King in [17], which corresponds

to the usual definition of stability from GIT. Recall from [17, Lemma 2.2] that GIT-stability on

Rep(Q,v) is equivalent to defining a lift of the Gv-action to a line bundle over Rep(Q,v). In

contrast to the case of GIT on a projective variety (where the line bundle is determined by the

projective embedding), in this case the line bundle is the trivial bundle Rep(Q,v)×C, and the lift

of the action is determined by the choice of a stability parameter.

Given α = (αi)i∈I ∈ Z
I, define the lift of the Gv-action to Rep(Q,v)× C by

(2.4) g · (x, ξ) := (g · x, χα(g)ξ) ,

where the character χα : Gv → C is defined to be

χα(g) =
∏

i∈I
(det gi)

αi .

Definition 2.2. An admissible stability parameter for Rep(Q,v) is a choice of α = (αi)i∈I ∈ Z
I

such that
∑

i∈I
αivi = 0.

Remark 2.3. The subgroup {(λ · idVi
)i∈I : λ ∈ C

∗} ⊆ Gv acts trivially on Rep(Q,v). An

equivalent definition of admissibility is that α is an admissible stability parameter if and only if the

subgroup of scalar multiples of the identity in Gv also acts trivially on the line bundle Rep(Q,v)×C
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via (2.4). This is essential for the definition of stability in Definition 2.4, since all points would be

unstable if the parameter is not admissible.

The definition of GIT stability and semistability with respect to an admissible stability parameter

α is then the usual one (first described for representations of quivers in [17]), which we recall in

the following.

Definition 2.4. A representation x ∈ Rep(Q,v) is α-semistable if, for all nonzero ξ ∈ C, the

closure of the Gv-orbit of (x, ξ) in the trivial line bundle Rep(Q,v)×C does not intersect the zero

section, i.e.

Gv · (x, ξ) ∩ (Rep(Q,v)× {0}) = ∅.
A representation x ∈ Rep(Q,v) is α-polystable if x is α-semistable and the Gv-orbit of (x, ξ) in

Rep(Q,v) is closed for all nonzero ξ ∈ C, .

A representation x ∈ Rep(Q,v) is α-stable if x is α-polystable and the isotropy group of x in Gv

consists only of the scalar multiples of the identity.

The space of α-stable (respectively α-semistable and α-polystable) representations is denoted

Rep(Q,v)α−st (respectively Rep(Q,v)α−ss and Rep(Q,v)α−polyst).

Definition 2.5. The GIT quotient of Rep(Q,v) by Gv with respect to the stability parameter α

is

Mα(Q,v) = Rep(Q,v)
//

α
Gv := Rep(Q,v)α−ss

//

Gv = Rep(Q,v)α−polyst/Gv,

where the quotient
//

identifies S-equivalent orbits (those whose closures intersect) in the usual

way.

Remark 2.6. It is sometimes more convenient to divide out by the scalar multiples of the identity

(which act trivially) and use the projectivisation PGv instead. The quotients Rep(Q,v)α−ss
//

Gv

and Rep(Q,v)α−ss
//

PGv have the same underlying topological space, although when computing

the equivariant cohomology of Rep(Q,v)α−ss with respect to Gv one has to remember the extra

factor of C∗ that acts trivially.

When α = 0, then the lift of the Gv action to Rep(Q,v) × C is the trivial one, hence all

representations x ∈ Rep(Q,v) are semistable. Therefore, in this case the GIT quotient M0(Q,v)

is just the affine quotient Rep(Q,v)
//

Gv. Every Gv orbit in Rep(Q,v) has a unique closed orbit

in its closure (see [21, Theorem 4, p19] and [20, Sec. 8]), and the points in the affine quotient

correspond to these closed orbits. Therefore there is a well-defined projection map

(2.5) π : Mα(Q,v) → M0(Q,v)

taking an orbit to the unique closed orbit in its closure (where we take the closure in Rep(Q,v)).

In analogy with holomorphic bundles, one can also define slope-stability of a representation in

terms of the degree and rank (cf. [17]).



MOMENT MAP FLOWS AND THE HECKE CORRESPONDENCE FOR QUIVERS 7

Definition 2.7. A subrepresentation of a representation x ∈ Rep(Q,v) consists of vector spaces

{V ′
i ⊆ Vi}i∈I such that xa(V

′
t(a)) ⊆ V ′

h(a) for all edges a ∈ E, and homomorphisms {x′a : V ′
t(a) →

V ′
h(a)}a∈E such that x′a is the restriction of xa to V ′

t(a) for all a ∈ E.

For a given subrepresentation x′ of x ∈ Rep(Q,v), let v′ := (dimC V
′
i )i∈I be the associated

dimension vector. Then x′ ∈ Rep(Q,v′) ⊆ Rep(Q,v). We can now define the degree and rank of a

subrepresentation.

Definition 2.8. Let Q be a quiver, α = (αi)i∈I an admissible stability parameter, and v′ =

(vi)i∈I ∈ Z
I
≥0 a dimension vector. The α-degree of (Q,v′) is

degα(Q,v
′) :=

∑

i∈I
αivi,

and the rank is

rank(Q,v′) :=
∑

i∈I
vi.

The α-slope of (Q,v′) is

slopeα(Q,v
′) := degα(Q,v

′)/ rank(Q,v′).

Remark 2.9. The stability parameter α is admissible for Rep(Q,v) if and only if degα(Q,v) = 0.

The following theorem of King then shows that, in analogy with holomorphic bundles, α-stability

and α-semistability have an interpretation in terms of the slopes of subrepresentations.

Proposition 2.10 (Proposition 3.1 of [17]). Let Q be a quiver, v a dimension vector, and α an

admissible stability parameter. A representation x ∈ Rep(Q,v) is α-stable (resp. α-semistable) if

and only if every proper non-zero subrepresentation satisfies

slopeα(Q,v
′) < 0 (respectively, slopeα(Q,v

′) ≤ 0).

When classifying the critical sets of ∥µ − α∥2 in Sections 2.4 and 3.2 it is necessary to choose

a stability parameter for a given subrepresentation. In general it is not possible to use the same

stability parameter α, since degα(Q,v
′) may not be zero, and therefore α may not be admissible for

(Q,v′). Instead, the correct definition involves subtracting a scalar multiple of the vector (1)j∈I,

where the scalar is chosen so that (Q,v′) has degree zero with respect to the new parameter.

Definition 2.11. Let Q be a quiver, v a dimension vector, and α = (αj)j∈I an admissible stability

parameter for (Q,v). Given any dimension vector v′ ≤ v, the induced stability parameter on (Q,v′)

is

α′ =
(

αj − slopeα(Q,v
′)
)

j∈I .

Note that it is easy to see that the induced stability parameter is admissible on Rep(Q,v′), since

degα′(Q,v′) = degα(Q,v
′)− degα(Q,v

′) = 0.

Finally, we show that the operation of taking Hermitian adjoint of a representation preserves

stability with respect to a change in parameter from α to −α.
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Lemma 2.12. Let Q be a quiver and let Q̄ denote the quiver with the same vertices, but with

the direction of all edges reversed. Fix Hermitian structures on the vector spaces {Vk}k∈I. Then

x ∈ Rep(Q,v) is α-stable (resp. semistable, polystable) if and only if the adjoint x∗ ∈ Rep(Q̄,v) is

−α-stable (resp. semistable, polystable).

Proof. Suppose that there is a subrepresentation with dimension vector v′ preserved by x∗ and let

µ = slope−α(Q̄,v
′) = − slopeα(Q,v

′). Then the orthogonal complement of the subrepresentation

is preserved by x and so slopeα(Q,v − v′) < 0 (resp. ≤ 0) since x is α-stable (resp. semistable).

Therefore, since α is an admissible stability parameter, then slopeα(Q,v
′) > 0 (resp. ≥ 0) and

so slope−α(Q̄,v
′) < 0 (resp. ≤ 0). Therefore x is α-stable (resp. semistable) if and only if x∗ is

−α-stable (resp. semistable).

Since x is a direct sum of subrepresentations if and only if the adjoint x∗ is also a direct sum,

then the above argument shows that x is α-polystable iff x∗ is −α-polystable. �

2.2. The algebraic stratification. The Harder-Narasimhan stratification for quivers is defined

in analogy with the case of holomorphic bundles (see [1] and [10] for holomorphic bundles, and [28,

Section 2] for quivers). The filtration is denoted by the sequence

(2.6) 0 = x0 ⊂ x1 ⊂ · · · ⊂ xn = x

of subrepresentations such that for each j = 1, . . . , n, the quotient xj/xj−1 is the maximal semistable

subrepresentation of x/xj−1 (where the stability parameter is the one induced on the quotient using

Definition 2.11). The associated dimension vectors induce a canonical filtration

(2.7) {0} = Vect(Q,v0) ⊂ Vect(Q,v1) ⊂ · · · ⊂ Vect(Q,vn) = Vect(Q,v)

called the Harder-Narasimhan filtration, and the dimension vectors v∗ = (v1,v2−v1, . . . ,vn−vn−1)

form a vector called the Harder-Narasimhan type of the filtration. Note that the inclusion maps

in (2.7) are induced from the representation x, so that the spaces Vect(Q,vj) ⊆ Vect(Q,v) are all

x-invariant.

Definition 2.13. The length of the Harder-Narasimhan filtration (2.7) is equal to n, the number

of non-trivial terms in the filtration.

Definition 2.14. The Harder-Narasimhan stratum with Harder-Narasimhan type v∗ is

(2.8) Bv∗ := {x ∈ Rep(Q,v) : x has H-N type v∗} ⊆ Rep(Q,v).

Since the filtration is canonical then a representation belongs to exactly one Harder-Narasimhan

stratum, and so we have a disjoint union

Rep(Q,v) =
∪

HN types v∗

Bv∗ .

There is a partial ordering on the strata given in [28, Definition 3.6] (analogous to that for holo-

morphic bundles described by Shatz in [29]), and [28, Proposition 3.7] shows that the stratification
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has good properties in the sense that the closure of each stratum Bv∗ is contained in the union of

all Bw∗ such that w∗ ≥ v∗.

Any semistable representation also has a Jordan-Hölder filtration, given by the following

Definition 2.15. Let x ∈ Rep(Q,v)α−ss be an α-semistable representation. A filtration

{0} = Vect(Q,v0) ⊂ Vect(Q,v1) ⊂ · · · ⊂ Vect(Q,vm) = Vect(Q,v)

with induced subrepresentations of x

0 = x0 ⊂ x1 ⊂ · · · ⊂ xm = x,

is called a Jordan-Hölder filtration if each quotient representation xj/xj−1 is stable with respect

to the stability parameter on Rep(Q,vj − vj−1) induced by α, and each subrepresentation has the

same slope.

In contrast to the Harder-Narasimhan filtration, the Jordan-Hölder filtration is not necessarily

unique, but the graded object

GrJH(x) =
m
⊕

j=1

xj/xj−1

is unique up to isomorphism. Combining the Harder-Narasimhan filtration with the Jordan-Hölder

filtration, for any representation x ∈ Rep(Q,v) we obtain a double filtration called the Harder-

Narasimhan-Jordan-Hölder filtration (cf. [9, Sec. 5] for quivers and [6] for holomorphic bundles).

Again, this is not necessarily unique, but the graded object GrHNJH(x) is unique up to isomorphism.

2.3. The symplectic quotient. Another theorem of King ([17, Theorem 6.1]) identifies the GIT

quotient of Rep(Q,v) with the symplectic quotient. Since this equivalence is central to this paper,

then we recall the details here.

Let Q be a quiver with dimension vector v = (vi)i∈I, and fix a Hermitian structure on the vector

spaces Vi ∼= C
vi . There is an associated symplectic structure on Rep(Q,v), defined as follows.

Given tangent vectors δx1, δx2 ∈ TxRep(Q,v) ∼= Rep(Q,v), define the metric

(2.9) g(δx1, δx2) :=
∑

a∈E
ℜTr ((δx1)a(δx2)

∗
a) ,

and symplectic structure

(2.10) ω(δx1, δx2) :=
∑

a∈E
ℑTr ((δx1)a(δx2)

∗
a) .

Note that ω(δx1, δx2) = g(iδx1, δx2), in other words the complex structure I = i · id is compatible

with the metric. With this complex structure and metric, the space Rep(Q,v) has the structure of

a Kähler manifold.

With respect to the Hermitian structure on each Vi, one can define the unitary group U(Vi) ⊂
GL(Vi,C), and therefore the compact subgroup

Kv :=
∏

i∈I
U(Vi) ⊂ Gv.
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The induced action of Kv on Rep(Q,v) is given by

(gj)j∈I · (xa)a∈E =
(

gh(a)xag
−1
t(a)

)

a∈E
,

and the infinitesimal action of the Lie algebra kv, denoted ρx : kv → TxRep(Q,v) ∼= Rep(Q,v), is

given by

(2.11) ρx(u) :=
d

dt

∣

∣

∣

∣

t=0

etu · x =
⊕

a∈E

(

uh(a)xa − xaut(a)
)

.

This action is Hamiltonian, i.e. it preserves the symplectic structure and has an associated

moment map

µ : Rep(Q,v) → k∗v

(xa)a∈E 7→ 1

2i

∑

a∈E
[xa, x

∗
a]

(2.12)

that satisfies dµ(δx) · u = ω(ρx(u), δx) for all δx ∈ Rep(Q,v) ∼= TxRep(Q,v) and all u ∈ kv.

In the above definition the commutator [xa, x
∗
a] is defined via the inclusion Hom(Vt(a), Vh(a)) ↩→

End (Vect(Q,v)). In the following we fix an Ad-invariant inner product on kv and use this to

identify kv ∼= k∗v, so that we can consider µ as a map into kv.

Note also that the above definition implies that Trµ(x) = 0, since µ(x) is constructed from

commutators. Therefore, for the symplectic quotient to make sense, we need the following definition.

Definition 2.16. Let Q be a quiver, and v = (vj)j∈I ∈ Z
I
≥0 a dimension vector. The central

element α = (iαj · idVj
)j∈I ∈ Z(k∗) is an admissible central element if

∑

j∈I
αjvj = 0.

The symplectic quotient with respect to an admissible central element α is

Mα(Q,v) := µ−1(α)/Kv.

Remark 2.17. (1) The parameter α is admissible if and only if α is a central element of the

dual of the Lie algebra of PK.

(2) Given an admissible stability parameter (αj)j∈I ∈ Z
I one can construct an admissible central

element (iαj · idVj
)j∈I ∈ Z(k∗) and vice-versa. In the rest of the paper both of these will be

denoted α, and the meaning will be clear from the context.

A result of King from [17] shows that the GIT quotient and the symplectic quotient are bijective

and that there is a continuous map µ−1(α)/Kv → Rep(Q,v)α−ss
//

Gv. Using the gradient flow of

∥µ− α∥2, Hoskins has shown in [14, Theorem 4.2] that the inverse of this map is also continuous.

Proposition 2.18. Let Q be a quiver, v a dimension vector, and α an admissible stability pa-

rameter. Then the GIT quotient Rep(Q,v)α−ss
//

Gv is homeomorphic to the symplectic quotient

µ−1(α)/Kv.
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2.4. Critical points of ∥µ − α∥2 and the gradient flow. Recall from [9, Sec. 3.2] that a

representation x ∈ Rep(Q,v) is a critical point for ∥µ − α∥2 if and only if the infinitesimal action

of Kv satisfies

(2.13) ρx(µ(x)− α) = 0 for all a ∈ E.

More explicitly, this is equivalent to the condition that

(2.14) xa(µ(x)− α)t(a) − (µ(x)− α)h(a)xa = 0 for all a ∈ E.

This equation implies that the representation x splits into subrepresentations, each of which

corresponds to an eigenspace of i(µ(x)−α) (the factor of i is used so that the eigenvalues are real;

see (2.16) below). In other words, if λ1, . . . , λn are the eigenvalues of i(µ(x) − α), then for each

eigenvalue λj there exists a dimension vector vj such that v1 + · · ·+ vn = v, and

(2.15) x =
n
⊕

j=1

xj , Vect(Q,v) ∼=
n
⊕

j=1

Vect(Q,vj)

where xj ∈ Rep(Q,vj) for each j. Since µ(x) is constructed from commutators, then Trµ(x) = 0

on each subrepresentation, and therefore taking the trace of i(µ(x)− α) shows that

(2.16) λj = slopeα(Q,vj).

Moreover, restricting to a subrepresentation with dimension vector vj induces a new stability

parameter αj on Rep(Q,vj) (see Definition 2.11), and a direct sum of representations such as that

described in (2.15) is critical if and only if each xj is a minimum for ∥µ− α∥2 on Rep(Q,vj). See

[9, Proposition 1] for more details.

For each critical set there is a corresponding decomposition v = v1 + · · · + vn. The critical

type of a critical point is the vector v∗ = (v1, . . . ,vn), where the dimension vectors are ordered by

decreasing slope, i.e. slopeα(Q,vi) > slopeα(Q,vj) if and only if i < j. The set of all critical points

with critical type v∗ is denoted Cv∗ .

In terms of the infinitesimal action of Gv on Rep(Q,v), the gradient of f(x) = ∥µ(x)− α∥2 has

the form

(2.17) grad f(x) = Iρx(µ(x)− α).

Definition 2.19. Let ϕ(x0, t) ∈ Rep(Q,v) denote the solution to the downwards gradient flow

equation

(2.18)
d

dt
ϕ(x0, t) = −Iρϕ(x0,t)(µ(ϕ(x0, t)))− α)

with initial condition ϕ(x0, 0) := x0 ∈ Rep(Q,v).

The Kv-equivariance of a solution to (2.18) follows immediately from the Kv-equivariance of the

moment map. In the same way as for moment map flows on Kähler manifolds studied by Kirwan

in [18], the flow is generated by the action of Gv. Given x0 ∈ Rep(Q,v), let g(t) be the solution of

(2.19)
dg

dt
g(t)−1 = −i(µ(g(t) · x0)− α), g(0) = id
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A calculation then shows that ϕ(x0, t) = g(t) · x0 satisfies (2.18).

It follows from Sjamaar’s compactness result in [32, Lem. 4.10] and the Lojasiewicz inequality

technique of Simon in [31] that the flow ϕ(x0, t) exists for all time t ≥ 0 and converges to a unique

limit x∞ = lim
t→∞

ϕ(x0, t). The main theorem of [9] gives an algebraic description of the limit of the

downwards gradient flow of ∥µ − α∥2 (see also [14]) and the main result of this paper is to give

conditions on x0 such that limt→−∞ ϕ(x0, t) exists. This will be used in Section 4.2 to characterise

the pairs of critical points connected by a flow line.

Theorem 2.20. Let Q be a quiver and α a stability parameter for Q. Given a dimension vector v

for Q, let x ∈ Rep(Q,v). Then

(1) ([9, Theorem 8, p336]) The limit x∞ := limt→∞ ϕ(x0, t) is isomorphic to the graded object

of the Harder-Narasimhan-Jordan-Hölder double filtration of x.

(2) ([9, Proposition 2, p320]) The gradient flow defines a continuous Kv-equivariant deforma-

tion retract of each Harder-Narasimhan stratum Bv∗ onto the associated critical set Cv∗.

The remaining results of this section are related to the flow on Gv/Kv induced by (2.19). Let

H(n) denote the space of n × n Hermitian matrices and let H(n)+ denote the subset of positive

definite Hermitian matrices. Given a quiver Q with set of vertices I and dimension vector v =

(vi)i∈I, define Hv := ×i∈IH(vi) and H+
v := ×i∈IH(vi)

+. Recall from [19, Sec. VI.1] that there is

an identification H+
v

∼= Gv/Kv. Given two metrics h1, h2 ∈ H+
v , let λi,ℓ denote the eigenvalues of

h−1
1 h2 at vertex i ∈ I for ℓ = 1, . . . , vi. Then the geodesic distance between h1 and h2 is (cf. [19,

Sec. VI.1])

(2.20) d(h1, h2) =
∑

i∈I

vi
∑

ℓ=1

(

(log λi,ℓ)
2
)

1

2 .

Define σ : H+
v

∼= Gv/Kv → R≥0 by

(2.21) σ(h) = Tr(h) + Tr(h−1)− 2 rank(Q,v).

In the sequel we will use the following two properties of σ

(1) σ(h) = 0 if and only if h = id, and

(2) limt→∞ σ(hth
−1
∞ ) = 0 if and only if ht → h∞ with respect to the metric (2.20).

The function σ is more convenient than the distance measure on Gv/Kv given by (2.20) since it

has better properties with respect to the gradient flow (2.19). This was first observed by Donaldson

[7] in the context of the Yang-Mills flow on Kähler manifolds. Given any x ∈ Rep(Q,v) and any

g ∈ Gv, define h = g∗g and

(2.22) µh(x) = Adg−1 µ(g · x)
Note that the Kv-equivariance of the moment map implies that µh(x) depends only on h ∈ Gv/Kv.

Then the results of [9, Sec. 3.3] show that

−2iTr ((µh(x)− µ(x))h) ≤ 0

2iTr
(

h−1(µh(x)− µ(x))
)

≤ 0
(2.23)
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Let x ∈ Rep(Q,v) and g0 ∈ Gv. Then the flow (2.19) with initial conditions x and g0 · x has

respective solutions g1(t) and g2(t). Define gt := g2(t)g0g1(t)
−1 and ht = g∗t gt. In analogy with the

Yang-Mills flow studied in [7], the result of [9, Thm. 5] shows that

(2.24)
d

dt
σ(ht) ≤ 0.

As explained in the proof of Corollary 15 in [7], the geodesic distance d in the homogeneous

space GL(n,C)/U(n) compares uniformly with σ, in the sense that there exist continuous monotone

functions f, F : R≥0 → R≥0 with f(0) = F (0) = 0 such that d(id, h) ≤ F (σ(h)) and σ(h) ≤
f(d(id, h)). In Section 4.1 we need a more precise estimate, which is contained in the following

lemma.

Lemma 2.21. Given x ∈ Rep(Q,v) and a bounded neighbourhood U of x there exists a bounded

neighbourhood V of the identity in Gv/Kv and a positive constant C such that

(2.25) ∥µh(y)− µ(y)∥ ≤ C
√

σ(h)

for all y ∈ U and h ∈ V .

Proof. Since µh(x) : Rep(Q,v)×Gv/Kv → gv is a smooth function and the derivative with respect

to h is uniformly bounded in a bounded neighbourhood U of x, then µh is uniformly Lipschitz in

h on U . Therefore ∥µh(y)− µ(y)∥ ≤ C ′d(id, h) for some constant C ′, where d denotes the geodesic

distance in the homogeneous space Gv/Kv. Let {νk} ⊂ R>0 be the eigenvalues of h. Then the

calculation in [19, Ch. VI.1] shows that

d(id, h) =

(

∑

k

(log νk)
2

) 1

2

.

There is a neighbourhood V of id in Gv/Kv and a constant K < 1
2 such that for all metrics

h in V the eigenvalues satisfy |νk − 1| ≤ K for all k, and so there is a constant C such that

| log νk| ≤ C|νk − 1| for all k. Therefore there is a constant C1 such that

(2.26) d(id, h) ≤
∑

k

|log νk| ≤
∑

k

|νk − 1| ≤ C1

√

Tr((h− id)2)

We also have

(2.27) σ(h) = Tr(h+ h−1 − 2 id) = Tr
(

h−1(h− id)2
)

≥ C2Tr((h− id)2)

for some constant C2 since h−1 is positive and bounded below in the given neighbourhood V of the

identity. Combining all of these estimates gives us a positive constant C = C′C1√
C2

such that

∥µh(y)− µ(y)∥ ≤ C ′d(id, h) ≤ C ′C1

√

Tr((h− id)2) ≤ C
√

σ(h)

for all h ∈ V . �
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2.5. The eigenspaces of the Hessian at a critical point. Recall from (2.13) that the critical

point equation for ∥µ− α∥2 on Rep(Q,v) is

Iρx(µ(x)− α) = 0 ⇔ [(µ(x)− α), xa] = 0 for all a ∈ E,

and recall from (2.15) that any representation satisfying this equation must split into the direct

sum of subrepresentations

(2.28) x = x1 ⊕ · · · ⊕ xn,

where each xj ∈ Rep(Q,vj), and v1 + · · · + vn = v. In addition, each xj minimises the function

∥µ − αj∥2 on Rep(Q,vj), where αj is the stability parameter on Rep(Q,vj) induced from α, and

so each xj is polystable with respect to the induced stability parameter αj .

Also recall from (2.16) that i(µ(xj) − α) = slopeα(Q,vj) · id for each j = 1, . . . , n, and so

i(µ(x)− α) has the block-diagonal form

(2.29) i(µ(x)− α) =















λ1 · id 0 0 · · · 0
0 λ2 · id 0 · · · 0
0 0 λ3 · id · · · 0
...

...
...

. . .
...

0 0 0 · · · λn · id















,

where λj = slopeα(Q,vj) for each j = 1, . . . , n. The eigenvalues in (2.29) are ordered so that

λ1 < λ2 < · · · < λn (i.e. the slope increases with j).

Definition 2.22. The derivative of the infinitesimal action is

δρx : kv × TxRep(Q,v) → TxRep(Q,v)

(u,X) 7→ d

dt

∣

∣

∣

∣

t=0

ρx+tX(u).
(2.30)

An explicit formula for δρ is

(2.31) δρx(u)(X) =
∑

a∈E
[u,Xa].

Remark 2.23. (1) Note that the tangent bundle of Rep(Q,v) is trivial, and therefore we can

use the trivial connection on T Rep(Q,v) in the above definition.

(2) From the definition of the complex structure I in (2.10) we have δρx(u)(IX) = Iδρx(u)(X).

Lemma 2.24. At a critical point x ∈ Rep(Q,v), the Hessian Hf : TxRep(Q,v) → TxRep(Q,v)

has the form

Hf (δx) = −Iρxρ∗xIδx+ Iδρx(µ(x))(δx).

Proof. Recall that the gradient of f = 1
2∥µ− α∥2 at a representation x ∈ Rep(Q,v) is given by

grad f(x) = Iρx(µ− α).
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Differentiating the gradient of f at x ∈ Rep(Q,v) in the direction of a tangent vector X ∈
TxRep(Q,v) gives us

Hf (x)(X) = ∇X grad f(x) = Iδρx(µ(x)− α)(X) + Iρxdµ(X)

= Iδρx(µ(x)− α)(X)− Iρxρ
∗
xIX,

(2.32)

where again we use the trivial connection on the tangent bundle of Rep(Q,v). �

The next two lemmas contain some identities that will be useful in characterising the negative

eigenspace of the Hessian. In order to be completely clear about the sign conventions then all the

details are included.

Lemma 2.25. For any x ∈ Rep(Q,v) and X ∈ TxRep(Q,v) we have

(2.33) dµx(X) = −ρ∗xIX,

where we use the inner product on kv to identify kv ∼= k∗v. For any u ∈ kv we also have

(2.34) ρ∗xIρx(u) = [µ(x), u].

Proof. Using the moment map equation, we know that

dµ(X) · v = ω(ρx(v), X) = g(Iρx(v), X) = − < v, ρ∗xIX >

for all v ∈ kv, where we use dµ(X) · v to denote the dual pairing k∗v × kv → C and < ·, · > to denote

the inner product on kv. This proves (2.33). Setting X = ρx(u) gives us

− < v, ρ∗xIρx(u) >= dµ(ρx(u)) · v

for all v ∈ kv, and so we can identify ρ∗xIρx(u) = −dµ(ρx(u)) (where we use the inner product on

kv to identify kv with k∗v). Equivariance of the moment map with respect to the action of K gives

us

µ(etu · x) = etuµ(x)e−tu ⇒ dµ(ρx(u)) =
d

dt

∣

∣

∣

∣

t=0

etuµ(x)e−tu = [u, µ(x)].

Therefore ρ∗xIρx(u) = [µ(x), u], as required. �

Differentiating this result at a critical point x gives us

(δρx)
∗(Iρx(u), X) + ρ∗xIδρx(u)(X) = [dµ(X), u]

Using the fact that Iδρx(u)(X) = δρx(u)(IX) then gives us

ρ∗x (δρx(u)(X)) = −ρ∗xIδρx(u)(IX) = [ρ∗xX,u]− (δρx)
∗(Iρx(u), X).

Therefore, we have proven

Lemma 2.26.

ρ∗xIδρx(u)(X) = −[ρ∗xIX, u](2.35)

ρ∗x (δρx(u)(X)) = [ρ∗xX,u]− (δρx)
∗(Iρx(u), X)(2.36)

The next lemma will be used in the proof of Lemma 2.31.
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Lemma 2.27. Let x be a critical point of f(x) = ∥µ(x)− α∥2. Then for any v ∈ kv we have

(2.37) ρx([µ(x), v]) = δρx(µ(x)− α)(ρx(v)).

Proof. Firstly note that [µ(x), v] = [µ(x)− α, v] since α is central. Therefore

ρx([µ(x)− α, v]) = ρx(adµ(x)−α(v))

=
∂

∂t

∣

∣

∣

∣

t=0

ρx(Adexp(t(µ(x)−α))(v))

=
∂2

∂s∂t

∣

∣

∣

∣

s,t=0

(

et(µ(x)−α)esve−t(µ(x)−α)
)

· x

=
∂

∂s

∣

∣

∣

∣

s=0

(ρesv ·x(µ(x)− α)− esv · ρx(µ(x)− α)) ,

where esv · ρx(µ(x) − α) denotes the action of esv ∈ Kv on the tangent vector ρx(µ(x) − α) ∈
TxRep(Q,v), which maps it to an element of Tesv ·xRep(Q,v). Since x is a critical point then

ρx(µ(x)− α) = 0 by (2.13), and so the above equation simplifies to

ρx([µ(x)− α, v]) =
∂

∂s

∣

∣

∣

∣

s=0

ρesv ·x(µ(x)− α)

= δρx(µ(x)− α)(ρx(v))

as required. �

SinceHf is self-adjoint then the tangent space splits into the orthogonal direct sum of eigenspaces

and each eigenvalue is real. The next lemma describes the negative eigenspace of the Hessian.

Lemma 2.28. Let x ∈ Rep(Q,v) be a critical point of f(x) = 1
2∥µ(x) − α∥2, and let X ∈

TxRep(Q,v). Suppose that Hf (X) = λX for some λ ̸= 0. Then X ∈ ker ρ∗x. Moreover, if λ < 0

then X ∈ ker ρ∗xI and so the negative eigenspaces of the Hessian are orthogonal to the Gv-orbit

through x.

Proof. Since f(x) = ∥µ(x) − α∥2 is Kv-invariant then the non-zero eigenspaces of Hf (X) are

orthogonal to the tangent space Tx(Kv ·x) of theKv-orbit through x and therefore 0 = 1
λ
ρ∗xHf (X) =

ρ∗xX. One can also see this explicitly by applying ρ∗x to both sides of the equation Hf (X) = λX

and using equations (2.34) and (2.35) to obtain

ρ∗xIδρx(µ− α)(X)− ρ∗xIρxρ
∗
xIX = λρ∗xX

⇔ −[ρ∗xIX, µ− α]− [µ− α, ρ∗xIX] = λρ∗xX

⇔ 0 = λρ∗xX.

(2.38)

Since λ ̸= 0 then ρ∗xX = 0. Now suppose that Hf (X) = λX for some λ < 0. Applying ρ∗xI to both

sides of the eigenvalue equation and using (2.36) and the critical point equation gives us

−ρ∗xδρx(µ− α)(X) + ρ∗xρxρ
∗
xIX = λρ∗xIX

⇔ −[ρ∗xX,µ− α] + ρ∗xρx(ρ
∗
xIX) = λρ∗xIX.

(2.39)
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Since we have already shown that ρ∗xX = 0, then

ρ∗xρx(ρ
∗
xIX) = λρ∗xIX,

and so ρ∗xIX = 0, since λ < 0 and the operator ρ∗xρx is non-negative definite. �

Corollary 2.29. The Hessian Hf preserves ker(ρCx )
∗.

Proof. Note that im ρCx = im ρx + im Iρx and so ker(ρCx )
∗ = (im ρCx )

⊥ = (im ρx)
⊥ ∩ (im Iρx)

⊥ =

ker ρ∗x ∩ ker(ρ∗xI). Let X ∈ ker(ρCx )
∗. Then (2.38) shows that

ρ∗xHf (X) = ρ∗xIδρx(µ− α)(X)− ρ∗xIρxρ
∗
xIX = −[ρ∗xIX, µ− α]− [µ− α, ρ∗xIX] = 0.

Moreover, (2.39) shows that

ρ∗xIHf (X) = −[ρ∗xX,µ− α] + ρ∗xρx(ρ
∗
xIX) = 0,

since X ∈ ker ρ∗x ∩ ker ρ∗xI. Therefore Hf (X) ∈ ker ρ∗x ∩ ker ρ∗xI = ker(ρCx )
∗. �

Definition 2.30. Given λ ∈ R, let Vx,λ = {X ∈ TxRep(Q,v) : Hf (X) = λX} denote the λ-

eigenspace of the Hessian at a critical point x. The negative eigenspace is denoted V −
x := ⊕λ<0Vx,λ.

Lemma 2.31. ρx(kv) ⊆ Vx,0 and im ρCx splits into eigenspaces for Hf , with im ρCx ⊆
⊕

λ≥0

Vx,λ.

Proof. The statement that im ρx ⊆ V0 follows from the fact that the function ∥µ − α∥2 is Kv-

invariant. One can also explicitly see this from the calculation

Hf (ρx(u)) = Iδρx(µ(x)− α)(ρx(u))− Iρxρ
∗
xIρx(u)

= Iδρx(µ(x)− α)(ρx(u))− Iρx([µ(x), u]) by (2.34)

= Iδρx(µ(x)− α)(ρx(u))− Iδρx(µ(x)− α)(ρx(u)) by (2.37)

= 0.

Since Hf is self-adjoint and preserves ker(ρCx )
∗ by Corollary 2.29, then im ρCx = (ker(ρCx )

∗)⊥ is

preserved also, and therefore it splits into eigenspaces for Hf . Lemma 2.28 then shows that each

eigenvalue must be non-negative. �

Given dimension vectors v1 and v2, with corresponding collections of vector spaces {V 1
k }k∈I and

{V 2
k }k∈I, define the spaces

Hom0(Q,v1,v2) :=
⊕

k∈I
Hom(V 1

k , V
2
k )(2.40)

Hom1(Q,v1,v2) :=
⊕

a∈E
Hom(V 1

t(a), V
2
h(a)).(2.41)

The final result of this section is a characterisation of the negative eigenspace of the Hessian in

terms of homomorphisms between the subrepresentations that appear in the splitting (2.28).
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Proposition 2.32. Let x be a critical point of f(x) = ∥µ(x)− α∥2 on Rep(Q,v) corresponding to

a decomposition (2.28). For j, k = 1, . . . , n, define λj,k := λj − λk = slopeα(Q,vk)− slopeα(Q,vj),

where λj and λk are as in (2.29). Then if λ < 0 we have

(2.42) Vx,λ =
⊕

{j,k :λj,k=λ}
(ker ρCx )

∗ ∩Hom1(Q,vj ,vk).

Therefore the dimension of the negative eigenspace is equal to

(2.43) dimC V
−
x =

∑

λ<0

dimC Vx,λ =
∑

j,k :λj,k<0

(

dimCHom1(Q,vj ,vk)− dimCHom0(Q,vj ,vk)
)

Proof. Lemma 2.28 shows that when λ < 0 the negative eigenspace equation reduces to

Iδρx(µ(x)− α)(X) = λX.

Applying equations (2.29) and (2.31) completes the proof of (2.42).

For each j, k, the infinitesimal action defines a homomorphism

Hom0(Q,vj ,vk)
ρCx−→ Hom1(Q,vj ,vk)

and (2.42) shows that V −
x,λj,k

is the cokernel of this homomorphism. Moreover, since x = x1⊕· · ·⊕xn
splits into polystable subrepresentations and λj,k < 0 implies that slopeα(Q,vj) > slopeα(Q,vk),

then ker ρCx = {0} by [28, Lem. 2.3], and so

dimC coker(ρCx ) =
∑

j,k :λj,k<0

(

dimCHom1(Q,vj ,vk)− dimCHom0(Q,vj ,vk)
)

which gives us (2.43). �

Definition 2.33. Given a critical point x ∈ Rep(Q,v), define the unstable manifold

W−
x = {y ∈ Rep(Q,v) | lim

t→−∞
ϕ(y, t) = x}.

We conclude this section with some remarks about the relationship between the unstable manifold

and the negative slice to motivate the constructions of Section 4.1. Standard ODE theory (cf. [3],

[11]) shows that W−
x is a manifold and that the negative eigenspace of the Hessian is isomorphic

to the tangent space TxW
−
x

∼= V −
x . Therefore a neighbourhood of x in W−

x is diffeomorphic to a

neighbourhood of zero in V −
x . Moreover, when the critical sets are compact then the methods of

Kirwan in [18] (see also [12, Thm. 4.1]) show that for each critical set C, the unstable manifolds

{W−
x | x ∈ C} glue together to form a disk bundle over C, which we call the unstable bundle of

the critical set C, denoted W−
C . Similarly, the negative eigenspaces V −

x glue together to form the

negative slice bundle S−
C := {V −

x | x ∈ C}. In a neighbourhood of the zero section C, these two

bundles are homeomorphic. This homeomorphism is defined abstractly and it is not clear whether

it remains a homeomorphism on restricting to a singular subset. In addition, one would also like

to relate the isomorphism classes in W−
x to those in V −

x (which can be classified algebraically).

The main technical result of this paper is Theorem 4.22, which shows that one can construct

a Kv-equivariant homeomorphism S−
C

∼=−→ W−
C using the action of Gv and that this remains a

homeomorphism on restriction to any closed Gv-invariant subset of Rep(Q,v).
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3. Local structure of the space of representations of quivers with relations

This section contains the basic setup for quivers with relations and extends the results of the

previous section to this setting in preparation for the classification of flow lines in Section 4.

Throughout the section we allow for any stability parameter satisfying the admissibility condi-

tion of Definition 2.2, except for Lemma 3.7, Section 3.2.1 and Lemma 3.29, where we derive some

stronger results for the case of the canonical stability parameter from Definition 3.6.

3.1. Moduli spaces of quivers with relations. In this section we define and study the basic

properties of moduli spaces of quivers with relations. The definition given here is for unframed

quivers, which is also valid for framed quivers by Crawley-Boevey’s construction in [4]. In partic-

ular, the definition includes Nakajima quiver varieties from [22], [23], [24] and the handsaw quiver

varieties from [25]. A good reference for quivers with relations is [2].

Definition 3.1. A relation of a quiver Q is a subspace of the path algebra kQ spanned by linear

combinations of paths of length at least 2 having a common head and common tail.

A quiver with relations is a pair (Q,R), where Q is a quiver and R is a two-sided ideal of kQ

generated by relations. The path algebra of (Q,R) is the quotient algebra kQ/R. In the sequel R

is also used to denote the corresponding set of relations in the path algebra.

Now fix a dimension vector v for Q. A relation in Q (denoted r) with tail t(r) ∈ I and head

h(r) ∈ I determines a vector space homomorphism

(3.1) νr : Rep(Q,v) → Hom(Vt(r), Vh(r))

given by composing homomorphisms along the paths in the relation.

Example 3.2. (1) Let Q be a quiver with vertices I and edges E, and Q̃ the “doubled” quiver

with vertices I and edges E∪ Ē introduced in [22]. For each vertex k ∈ I there is a relation

∑

a∈E s.t. h(a)=k

aā−
∑

a∈E s.t. t(a)=k

āa

This induces the homomorphism

νk : Rep(Q̃,v) → Hom(Vk, Vk)

x 7→
∑

a∈E s.t. h(a)=k

xaxā −
∑

a∈E s.t. t(a)=k

xāxa

The direct sum of these maps over all the vertices is the complex moment map µC associated

to the hyperkähler structure.
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(2) Let Q be a “handsaw” quiver as in [25] with edges labeled as below.

•V1

B1

1 //

b1

""❉
❉❉

❉❉
❉❉

❉❉
❉❉

❉

B1

2

�� •V2

B2

1 //

b2

!!❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈

B2

2

�� · · ·
Bn−2

1 //

bn−2

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
•Vn−1

bn−1

##❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋

Bn−1

2

��

•W1

a1

OO

•W2

a2

OO

· · · •Wn−1

an−1

OO

•Wn

For each k = 1, . . . , n− 2 there is a relation

Bk
1B

k
2 −Bk+1

2 Bk
1 + ak+1bk = 0

Each relation induces a map νk : Rep(Q,v) → Hom(Vk, Vk+1) and the direct sum of these

maps for k = 1, . . . , n− 2 is the map µ from [25, Sec. 2].

Given a relation r, let Rel(Q,v, r) denote the subspace of Hom(Vt(r), Vh(r)) consisting of homo-

morphisms that can be written as the composition of homomorphisms along the path defining the

relation.

Example 3.3. For the quiver

•V1

// •V2

// •V3

let r be the relation corresponding to the unique path from V1 to V3. Then Rel(Q,v, r) is the

subspace of Hom(V1, V3) consisting of homomorphisms that factor through V2. Note that if dimV2 <

min{dimV1, dimV3} then Rel(Q,v, r) will be a proper subspace of Hom(V1, V3).

Given a set of relations R, let Rel(Q,v,R) denote the vector space

(3.2) Rel(Q,v,R) :=
⊕

r∈R
Rel(Q,v, r)

All of the relations together induce a Gv-equivariant map

ν : Rep(Q,v) → Rel(Q,v,R)

x 7→
∑

r∈R
νr(x)

(3.3)

where νr is the map defined in (3.1).

Remark 3.4. (1) The examples above show that the construction of ν specialises to the com-

plex moment map associated to a representation of a doubled quiver from [22], and the

analogous construction for handsaw quivers in [25].

(2) The space ν−1(0) is always Gv-invariant. To see this, note that the composition of homo-

morphisms xaℓ · · ·xa2xa1 along a path a1, a2, . . . , aℓ becomes gh(aℓ)xaℓ · · ·xa1g−1
t(a1)

under the

action of g ∈ Gv. Each relation r consists of a linear combination of paths with the same

head and tail vertex, denoted h(r) and t(r) respectively. Therefore νr(g ·x) = gh(r)νr(x)g
−1
t(r).
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(3) If each relation r ∈ R is generated by paths of the same length ℓ(r) then each νr is a

homogeneous polynomial of degree ℓ(r) and so the space ν−1(0) is invariant under scalar

multiplication x 7→ λx. This is true for Examples 3.2 (1) & (2) where each relation is

generated by paths of length two.

Definition 3.5. Given an admissible stability parameter α, the moduli space of representations of

(Q,R) is

(3.4) Mα(Q,v,R) :=
(

Rep(Q,v)α−ss ∩ ν−1(0)
)

//Gv

Proposition 2.18 shows that the GIT quotient Mα(Q,v,R) is homeomorphic to the symplectic

quotient
(

µ−1(α) ∩ ν−1(0)
)

/Kv.

There is a special choice of stability parameter which reproduces Nakajima’s stability condition

for framed quiver varieties from [22, Prop. 3.5].

Definition 3.6. Let Q be a quiver with vertices I and edges E, and let v = (vi)i∈I a dimension

vector such that one vertex (which we label ∞) has dimension 1. Define I′ = I \ {∞} be the set

of remaining vertices of Q. For such a quiver Q and dimension vector v, the canonical stability

parameter α(Q,v) := (αi)i∈I is given by

(3.5) αi :=

{−∑j∈I′ vj i = ∞
1 i ∈ I′

.

In this case we define

(3.6) Vect0(Q,v) =
⊕

k∈I′
Vk

to be the direct sum of all the vector spaces except for the one at the vertex ∞.

Lemma 3.7. The α-semistable points are all α-stable for this choice of stability parameter.

Proof. Note that a proper subrepresentation satisfies exactly one of the following conditions: (a)

the subrepresentation does not contain the vertex ∞ and so it must have strictly positive slope, or

(b) the subrepresentation contains the vertex ∞ and so it must have strictly negative slope.

A subrepresentation of an α-semistable representation cannot be in case (a) and therefore the

slope of any subrepresentation must be strictly negative, so the representation is in fact α-stable. �

When the quiver is an affine Dynkin diagram with “doubled” edges then the quiver varieties

associated to two generic stability parameters are diffeomorphic (see [22, Corollary 4.2]). In the

sequel we need the following result relating moduli spaces where the stability parameters differ by

a scalar multiple, which is valid for any set of relations where each relation is generated by paths

of the same length.

Lemma 3.8. Let Q be any quiver and suppose that each relation r ∈ R is generated by paths of

the same length ℓ(r). If β = kα for some real scalar k > 0 then Mβ(Q,v,R) ∼= Mα(Q,v,R).
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Proof. Let x ∈ µ−1(α). Then µ(
√
kx) = β, since µ is a homogeneous quadratic polynomial of

degree two. Remark 3.4 shows that the condition on the path lengths implies that the space ν−1(0)

is preserved by the transformation x 7→
√
kx and so we have a continuous map Mα(Q,v,R) →

Mβ(Q,v,R). Similarly, the inverse map is continuous and so Mβ(Q,v,R) ∼= Mα(Q,v,R).

Equivalently, one can also note that the stability condition from Definition 2.4 is preserved if

we multiply the stability parameter by a positive non-zero scalar. The same is true for the slope-

stability condition from Proposition 2.10. �

Remark 3.9. (1) Definition 3.5 differs slightly from that given by Nakajima in [22], which also

involves a framing of the quiver. It was first pointed out by Crawley-Boevey in [4] that

these framed quiver varieties can be interpreted as a quiver variety of the form described

above. We briefly recall this construction in the notation of this paper since it is relevant

to the current section. Given a quiver Q′ with vertices I′ and edges E′, dimension vector

v′ = (vi)i∈I′ , and framed dimension vector w′ = (wi)i∈I′ in the notation of [22], let Q be a

new quiver with vertices I = I′ ∪ {∞} and edges E = E′ ∪ F, where F consists of wi edges

from ∞ to each vertex i ∈ I′. Also let v = (v′, 1) be the dimension vector obtained from

v′ by adjoining a 1 for the new vertex ∞. Since the construction of (Q,v) described above

has a vertex with dimension one, then it has a stability parameter α(Q,v) as defined in

Definition 3.6. Crawley-Boevey then shows in [4] that the quotient Mα(Q,v,R) is the same

as Nakajima’s definition of quiver variety M(Q,v′,w′) and the method works in exactly the

same way for framed quivers with relations.

(2) Crawley-Boevey also shows that the stability parameter α(Q,v) induces the same stability

condition on ν−1(0) as Nakajima’s stability condition for the framed quiver (Q′,v′,w′)

from [23, Sec. 3.ii]. To see this, note that the stability condition induced by α(Q,v) is

that x ∈ µ−1
C

(0) is α-stable if and only if every subrepresentation has negative slope, which

occurs if and only if every subrepresentation contains the vertex ∞. This is equivalent to

condition (2) of [23, Lemma 3.8].

3.2. Structure of the critical sets. In this section we describe the structure of representations

that are critical points of ∥µ− α∥2 on ν−1(0). First, we define what it means for a representation

to be critical for ∥µ− α∥2 on the singular space ν−1(0) ⊂ Rep(Q,v).

Definition 3.10. A point x ∈ ν−1(0) ⊂ Rep(Q,v) is critical for ∥µ−α∥2 if and only if x is critical

for ∥µ− α∥2 on the ambient smooth space Rep(Q,v).

Since ν−1(0) is singular then this definition needs some justification. Returning to the smooth

space Rep(Q,v) for the moment, recall from (2.19) that the gradient flow of ∥µ−α∥2 on Rep(Q,v)

is generated by the action of Gv. Therefore, for any Gv-invariant closed subset Z ⊂ Rep(Q,v)

(for example Z = ν−1(0)), if x ∈ Z then the flow satisfies ϕ(x, t) ∈ Z for all t such that ϕ(x, t) is

defined. Since Z is closed, then any limit point of the flow is also contained in Z. Therefore we can

define the gradient flow on the subset to be the restriction of the gradient flow on the smooth space
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Rep(Q,v) and Theorem 2.20 will apply. In particular, if we define the critical points of ∥µ−α∥2 on

ν−1(0) as in Definition 3.10, then we have a Morse stratification of the space ν−1(0) by Theorem

2.20.

We also have the following property of critical points on the smooth space Rep(Q,v).

Lemma 3.11. (1) Let x ∈ Rep(Q,v) be a critical point of ∥µ − α∥2. Then x minimises the

value of ∥µ− α∥2 on the orbit Gv · x.
(2) Given any x ∈ Rep(Q,v), consider the orbit closure Gv · x. There is a unique Kv-orbit

Kv · x∞ of critical points in Gv · x that contains the limit x∞ of the downwards gradient

flow of ∥µ−α∥2 with initial condition x. The representations minimising ∥µ−α∥2 on Gv · x
are precisely those in this Kv-orbit.

Proof. Recall that the Harder-Narasimhan type is Gv-invariant and so Gv · x is contained in the

Harder-Narasimhan stratum of x. The result of [9, Corollary 2, p334] shows that the critical point

x minimises the value of ∥µ− α∥2 on the Harder-Narasimhan stratum and therefore it must do so

on the Gv-orbit also.

Recall Reineke’s result [28, Prop. 3.7] which says the closure of a Harder-Narasimhan stratum

Rep(Q,v)v∗ is contained in the union

Rep(Q,v)v∗ ⊂
∪

w∗≥v∗

Rep(Q,v)w∗ .

Therefore the closure Gv · x is also contained in this union.

To see that this is minimised by a unique Kv-orbit, first note that the minimum of ∥µ− α∥2 on

Gv · x is not attained by any point in Rep(Q,v)w∗ forw∗ > v∗, since (a) the minimum of ∥µ−α∥2 on
Rep(Q,v)w∗ is strictly greater than the value of ∥µ−α∥2 on the set of critical points in Rep(Q,v)v∗ ,

and (b) applying Theorem 2.20 to the gradient flow with initial condition x ∈ Rep(Q,v)v∗ shows

that the minimum of ∥µ− α∥2 on Gv · x is attained by a critical point in Rep(Q,v)v∗ .

Theorem 2.20 shows that gradient flow induces a deformation retract of Rep(Q,v)v∗ onto the

associated critical set and that the image of the subset Gv · x under this deformation retract is

a single Kv-orbit containing the limit of the flow with initial condition x. Therefore, since the

deformation retract is continuous, then Gv · x ∩Rep(Q,v)v∗ deformation retracts onto the closure

of this Kv-orbit. Since the orbit is closed then this completes the proof. �

As a consequence of the above lemma and the fact that the flow is contained in a Gv-orbit, we

see that the critical points defined in Definition 3.10 have the following properties.

Corollary 3.12. (1) Let x ∈ ν−1(0) ⊂ Rep(Q,v) be a critical point of ∥µ − α∥2. Then x

minimises the value of ∥µ− α∥2 on the orbit Gv · x ⊂ ν−1(0).

(2) Given any x ∈ ν−1(0), consider the orbit closure Gv · x. The minimum of ∥µ − α∥2 on

Gv · x is precisely the Kv-orbit of critical points in Gv · x that contains the limit of the

downwards gradient flow of ∥µ− α∥2 with initial condition x.
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3.2.1. Critical points for the canonical stability parameter for framed quivers. The rest of this sec-

tion contains more details about the structure of critical points in ν−1(0) for the special case of the

stability parameter α(Q,v) from Definition 3.6. Let x ∈ ν−1(0) be a critical point. Recall from

(2.28) that x must split into subrepresentations and from (2.29) that the value of the moment map

on each subrepresentation is determined by the slope. Each of the subrepresentations is semistable

with respect to the induced stability parameter.

Since the vertex ∞ has dimension 1 then only one of the subrepresentations (call it x1) in

the decomposition (2.28) can have non-zero dimension vector at this vertex. Let v1 = (v′i)i∈I be

the dimension vector for this subrepresentation. A calculation shows that the induced stability

parameter is

(3.7) α′
i =







1+
∑

j∈I′
vj

1+
∑

j∈I′
v′j

i ∈ I′

−
(

∑

j∈I′ v
′
j

)

1+
∑

j∈I′
vj

1+
∑

j∈I′
v′j

i = ∞

which is a positive scalar multiple of the stability parameter α(Q,v′). Lemma 3.7 then shows that

x1 is stable with respect to the induced stability parameter and Lemma 3.8 shows that the induced

stability parameter is equivalent to the parameter from Definition 3.6.

From (3.5) we see that all of the other subrepresentations must then have the same slope. Let

x2 denote the sum of all the subrepresentations in (2.28) that do not contain the vertex ∞. Then

(2.29) shows that µ(x2) = 0. The above argument is summarised in the following proposition.

Proposition 3.13. Let x ∈ ν−1(0) be a critical point of ∥µ − α∥2. Then x splits into two sub-

representations x1 and x2 with respective dimension vectors v1 and v2. The induced values of the

moment map are µ(x1) = kα(Q,v1) and µ(x2) = 0, where k =
1+

∑
j∈I′

vj

1+
∑

j∈I′
v′j
> 0 is the scalar from

(3.7). The subrepresentation x1 is stable with respect to the induced stability parameter.

Moreover, any representation x ∈ ν−1(0) of the form x = x1 ⊕ x2 where µ(x1) = kα(Q,v1) and

µ(x2) = 0 is a critical point of ∥µ− α∥2.

Definition 3.14. Let Cv1
denote all of the critical points of ∥µ − α∥2 on ν−1(0) for which the

stable subrepresentation containing the vertex ∞ from the decomposition in Proposition 3.13 has

dimension vector v1.

Given a dimension vector v1 = (v′i)i∈I < v and associated vector spaces {V ′
i }i∈I such that

dimC V
′
i = v′i, fix an inclusion V ′

i ↩→ Vi for each i ∈ I. Let C0
v1

⊂ Cv1
be the subset consisting of

representations of the form x1 ⊕ x2 with x2 = 0 such that x preserves
⊕

i∈I V
′
i .

Lemma 3.15. Given the fixed inclusion V ′
i ↩→ Vi for each i ∈ I from Definition 3.14, let Kv1

denote the associated subgroup of Kv. Then

Cv1
/Kv

∼= Mα(Q,v1,R)×M0(Q,v − v1,R), and C0
v1
/Kv1

∼= Mα(Q,v1,R).

Moreover, if each relation in R is generated by paths of the same length ℓ(r) then there is a Kv1
-

equivariant deformation retraction of Cv1
onto C0

v1
.
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Proof. On the space Rep(Q,v), [9, Prop. 12] describes the fibre bundle structure of the critical

sets. Restricting this to ν−1(0) and applying Proposition 3.13 shows that Cv1
/Kv

∼= Mα(Q,v1,R)×
M0(Q,v − v1,R). Similarly, we obtain C0

v1
/Kv1

∼= Mα(Q,v1,R)× {[0]}.
If the paths defining each relation all have the same length ℓ(r) then the equation ν(x2) = 0

is invariant under scaling by a real parameter (see Remark 3.4). The moment map µ(x2) is a

homogeneous polynomial in x2 and so a Kv1
-equivariant deformation retract of Cv onto C0

v is

given by (x1, x2) 7→ (x1, tx2) for 0 ≤ t ≤ 1. �

Lemma 3.16. For each 0 ≤ v1 ≤ v, the critical set Cv1
is a union of connected components of the

set of critical points of ∥µ− α∥2. In the hyperkähler case studied in [22], each Cv1
is connected.

Proof. Using the estimate in [9, Lemma 14], we can construct a neighbourhood around each point

in Cv1
that does not intersect Cv′

1
for any v′

1 ̸= v1. Taking the union of these neighbourhoods gives

an open neighbourhood of Cv1
in ν−1(0) that does not intersect Cv′

1
for any v′

1 ̸= v1. Therefore

Cv1
is open in

∪

v′
1

Cv′

1
(which has the subspace topology induced from ν−1(0)).

This is also true for every other critical set, and so the complement of Cv1
is open in

∪

v′
1

Cv′

1
.

Therefore Cv1
is open and closed in this set and so it must be a union of connected components of

∪

v′
1

Cv′

1
.

In the hyperkähler case of a doubled quiver with relations as in [22], Crawley-Boevey’s result

from [4] shows that Mα(Q,v1,R) is connected for each v1. Lemma 3.15 shows that C0
v1

fibres over

this space with connected fibres and so it must also be connected. Therefore Cv1
is connected,

since it deformation retracts onto C0
v1
. �

3.3. Local slices around the critical points. Returning to the smooth space Rep(Q,v) and

the case of a general admissible stability parameter for the moment, recall that the Hermitian

structure on each of the vector spaces {Vk}k∈I defines a Hermitian structure on Rep(Q,v) and

gv (cf. [9, Sec. 2.2]). We use g(·, ·) to denote the inner product on TxRep(Q,v) and ⟨·, ·⟩ to

denote the inner product on gv. The adjoint of the infinitesimal action is then a homomorphism

(ρCx )
∗ : TxRep(Q,v) → gv that defines an orthogonal direct sum decomposition TxRep(Q,v) ∼=

im ρCx ⊕ ker(ρCx )
∗ ∼= (ker ρCx )

⊥ ⊕ ker(ρCx )
∗. The space im ρCx is the tangent space at x of the orbit

Gv · x, and the space ker(ρCx )
∗ is the orthogonal complement. The following local slice theorem is

in [9, Lemma 18].

Lemma 3.17. Let x ∈ Rep(Q,v). The map

ζ : (ker ρCx )
⊥ ⊕ ker(ρCx )

∗ → Rep(Q,v)

(u, δx) 7→ exp(u) · (x+ δx)

is a diffeomorphism from a neighbourhood of (0, 0) in (ker ρCx )
⊥ ⊕ ker(ρCx )

∗ to a neighbourhood of x

in Rep(Q,v).

The next result is a restriction of Lemma 3.17 from Rep(Q,v) to a closed Gv-invariant subset

Z ⊂ Rep(Q,v). The local slices in Lemma 3.17 are sufficiently small neighbourhoods of zero in

ker(ρCx )
∗. On the space Z, we replace ker(ρCx )

∗ with the slice Sx defined below.



26 GRAEME WILKIN

Definition 3.18. Let x ∈ Z ⊂ Rep(Q,v) and let ρCx denote the infinitesimal action of Gv on

TxRep(Q,v) ∼= Rep(Q,v). The slice through x is defined to be

Sx =
{

x+ δx ∈ Rep(Q,v) : δx ∈ ker(ρCx )
∗ andx+ δx ∈ Z

}

.

We then have the following result.

Lemma 3.19. Let x ∈ Z. The map

ζ : (ker ρCx )
⊥ × Sx → Z

(u, x+ δx) 7→ exp(u) · (x+ δx)

is a homeomorphism from a neighbourhood of (0, x) in (ker ρCx )
⊥ × Sx to a neighbourhood of x in

Z.

Proof. Let y ∈ Z be sufficiently close to x such that Lemma 3.17 applies in Rep(Q,v). Therefore

we can write

y = exp(u) · (x+ δx)

for unique u ∈ (ker ρCx )
⊥ and δx ∈ ker(ρCx )

∗. Since x+δx = exp(−u)·y ∈ Z, then δx ∈ Sx. Therefore

ζ surjects onto a neighbourhood of x ∈ Z. Since it is the restriction of a local diffeomorphism then

it is injective, continuous and has a continuous inverse. Therefore ζ is a local homeomorphism. �

Since the slice consists of representations orthogonal to the Gv orbit through x, then the equation

for the moment map simplifies.

Lemma 3.20. Let x be a critical point with β = µ(x) and let y = x+ δx ∈ Sx. Then

(3.8) µ(y)− β =
1

2i

∑

a∈E
[δxa, δx

∗
a]

and there exists a constant C > 0 such that

(3.9) ∥µ(y)− β∥ ≤ C∥y − x∥2

Proof. Since the moment map µ(x+ δx) is quadratic in δx, then we have

µ(y)− β = µ(y)− µ(x) = dµx(δx) +
1

2i

∑

a∈E
[δxa, δx

∗
a]

The defining equation for the moment map says that for any u ∈ k we have

dµx(δx) · u = ω(ρx(u), δx) = g(Iρx(u), δx) = ⟨u,−ρ∗xIδx⟩ = 0

since δx ∈ ker(ρCx )
∗. This completes the proof of (3.8). The inequality (3.9) then follows from (3.8)

and the inequality ∥[A,B]∥ ≤ C∥A∥∥B∥ for matrices A and B. �

In order to understand the group action on the slice, we need the following lemma.

Lemma 3.21. Let x be a critical point, and let β = µ(x). Then for any x+ δx ∈ Sx and any t ∈ R

we have eiβt · (x+ δx) ∈ Sx.
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Proof. First note that the critical point equations (2.13) for x imply that eiβt · x = x for all t ∈ R.

Given any u ∈ g and any X ∈ TxRep(Q,v), we have

eiβt · ρCx (u) =
⊕

a∈E
eiβt(uh(a)xa − xaut(a))e

−iβt

=
⊕

a∈E

(

eiβtuh(a)e
−iβt

)

xa − xa

(

eiβtut(a)e
−iβt

)

(since eiβt · x = x when x is critical)

= ρCx

(

eiβt · u
)

Therefore, since eiβt is self-adjoint, we have for any u ∈ g and any X ∈ TxRep(Q,v)
⟨

(ρCx )
∗
(

eiβt ·X
)

, u
⟩

= g
(

eiβt ·X, ρCx (u)
)

= g
(

X, eiβt · ρCx (u)
)

= g
(

X, ρCx

(

eiβt · u
))

=
⟨

(ρCx )
∗X, eiβt · u

⟩

and so (ρCx )
∗X = 0 if and only if (ρCx )

∗ (eiβt ·X
)

= 0. Since the Gv-action preserves the space

ν−1(0) then this implies that x+ δx ∈ Sx if and only if eiβt · (x+ δx) ∈ Sx for all t ∈ R. �

Definition 3.22. Recall that β := µ(x). The negative slice is

(3.10) S−
x :=

{

x+ δx ∈ Sx : lim
t→∞

eiβt · δx = 0
}

.

Remark 3.23. In [18, Sec. 4.3 & 4.6], Kirwan uses the downwards gradient flow of the function

µβ(x) = µ(x) · β to define a stratification associated to the norm-square of a moment map. Here

we define the negative slice using the upwards gradient flow of µβ with initial condition in the slice

Sx.

Next we study the subset of the slice corresponding to the negative eigenspace of the Hessian.

Recall from Section 2.5 that we have the following description of the tangent space at a critical

point on the ambient smooth space Rep(Q,v).

• Since the Hessian is self-adjoint, then the tangent space splits into eigenspaces for the

Hessian at x.

• The tangent space also decomposes according to the splitting of the representation into

subrepresentations from (2.15). This has the form

TxRep(Q,v) ∼= Rep(Q,v) ∼=
n
⊕

j,k=1

Hom1(Q,vj ,vk).

• The negative eigenspaces of the Hessian are characterised by homomorphisms from the

subrepresentations of large slope into subrepresentations of small slope. If we order the

subrepresentations by increasing slope as in (2.29), then Proposition 2.32 shows that the

negative eigenspaces of the Hessian are

(3.11) V (x)− =
⊕

j>k

Hom1(Q,vj ,vk) ∩ ker(ρCx )
∗.
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Next we show that the negative slice corresponds to the intersection of the exponential image of

the negative eigenspace of the Hessian with the singular subset Z, where the exponential map takes

δx ∈ V (x)− to x+δx ∈ Rep(Q,v). Therefore Definition 3.25 below gives an equivalent definition of

the negative slice. When studying the singular subset Z, the negative slice is more natural since it

is defined in terms of the group action, however for the purpose of doing computations the negative

eigenspace of the Hessian is easier to deal with since we can describe it explicitly.

We first consider the case where the slice and negative eigenspace are defined on the vector space

Rep(Q,v), and then restrict to the singular subset Z ⊂ Rep(Q,v) after Lemma 3.24. Recall that

Proposition 2.32 shows that X ∈ Vx,λ with λ < 0 implies that X ∈ ker(ρCx )
∗. Therefore there is an

inclusion Vx,λ ↩→ S−
x for each λ < 0. Moreover, the negative eigenspace equation reduces to

Iδρx(β)(X) = λX

and since x is fixed by eiβt and Adeiβt(β) = β, we have

Iδρx(β)
(

eiβt ·X
)

= λ
(

eiβt ·X
)

.

Therefore eiβt ·X ∈ Vx,λ if and only ifX ∈ Vx,λ, and so the action of eiβt preserves the decomposition
⊕

λ Vx,λ. Moreover, we have

d

dt

∣

∣

∣

∣

t=0

∥

∥

∥
eiβt ·X

∥

∥

∥

2
= 2g (Iδρx(β)(X), X) .

If X ∈ Vx,λ then this expression is negative if and only if λ < 0. Since there are only finitely

many negative eigenvalues λ1 < · · · < λk < 0 ≤ λk+1 ≤ · · · ≤ λn, then X ∈ ⊕λ<0 Vx,λ implies

2ℜ⟨Iδρx(β)(X), X⟩ ≤ λk∥X∥2 < 0, and so eiβt · X converges exponentially to zero if and only if

X ∈ ⊕λ<0 Vx,λ. Therefore we have proved the following equivalence for the slice on the smooth

space Rep(Q,v).

Lemma 3.24. Let x be a critical point for ∥µ− α∥2 on Rep(Q,v). Then S−
x =

⊕

λ<0 Vx,λ.

Therefore, on restricting this result to the subset Z = ν−1(0) ⊂ Rep(Q,v), we have the following

equivalent definition of the negative slice.

Definition 3.25. Let x ∈ Z be a critical point for ∥µ−α∥2 and let V (x)− =
⊕

λ<0 Vx,λ denote the

negative eigenspace of the Hessian at x on the smooth space Rep(Q,v). The negative slice through

x ∈ Z is

S−
x :=

{

x+ δx ∈ Rep(Q,v) : δx ∈ V (x)− andx+ δx ∈ Z
}

.

There is also a local slice theorem for the restriction to the negative slice, which we use in Section

4.2. Here we order the subrepresentations for the critical point by the condition that j > k if and

only if slopeα(Q,vj) > slopeα(Q,vk) (see (2.29)).

Lemma 3.26. Let x ∈ Z be critical for ∥µ − α∥2 and let δx ∈ ⊕j>k Hom1(Q,vj ,vk) such that

x+ δx ∈ Z is in the neighbourhood from Corollary 3.19. Then there exists g ∈ Gv such that

g · (x+ δx)− x ∈ S−
x .
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Proof. Let ρ−x denote the restriction of ρCx to the subspace g−
C
:=
⊕

j>k Hom0(Q,vj ,vk). Note that

ρ−x : g−
C
→
⊕

j>k

Hom1(Q,vj ,vk)

We have the orthogonal decomposition
⊕

j>k Hom1(Q,vj ,vk) ∼= im ρ−x ⊕ ker(ρ−x )
∗ as well as the

a priori results

im ρCx =
⊕

j,k

im ρCx ∩Hom1(Q,vj ,vk)(3.12)

im ρ−x = im ρCx ∩
⊕

j>k

Hom1(Q,vj ,vk)(3.13)

ker(ρ−x )
∗ ⊇ ker(ρCx )

∗ ∩
⊕

j>k

Hom1(Q,vj ,vk).(3.14)

Note that any X ∈⊕j>k Hom
1(Q,vj ,vk) can be written X = X1+X2 with X1 ∈ im ρCx and X2 ∈

ker(ρCx )
∗. The equality (3.12) shows that X1 = X−

1 +X+
1 with X−

1 ∈ im ρCx ∩
⊕

j>k Hom1(Q,vj ,vk)

and X+
1 ∈ im ρCx ∩⊕j≤k Hom

1(Q,vj ,vk). Therefore we have X+
1 ⊥ X, X+

1 ⊥ X−
1 and X+

1 ⊥ X2,

which implies that

0 =
⟨

X+
1 , X −X−

1

⟩

=
⟨

X+
1 , X

+
1 +X2

⟩

=
⟨

X+
1 , X

+
1

⟩

and so X+
1 = 0 and X2 = X −X1 ∈ ker(ρCx )

∗ ∩⊕j>k Hom1(Q,vj ,vk). Therefore

⊕

j>k

Hom1(Q,vj ,vk) =



im ρCx ∩
⊕

j>k

Hom1(Q,vj ,vk)



⊕



ker(ρCx )
∗ ∩
⊕

j>k

Hom1(Q,vj ,vk)





Putting all of this together gives us

im ρ−x ⊕ ker(ρ−x )
∗ ∼=

⊕

j>k

Hom1(Q,vj ,vk)

=
(

im ρCx ⊕ ker(ρCx )
∗
)

∩
⊕

j>k

Hom1(Q,vj ,vk)

=



im ρCx ∩
⊕

j>k

Hom1(Q,vj ,vk)



⊕



ker(ρCx )
∗ ∩
⊕

j>k

Hom1(Q,vj ,vk)





⊆ im ρ−x ⊕ ker(ρ−x )
∗.

Therefore (3.14) must be an equality, and so ker(ρ−x )
∗ ∼= ker(ρCx )

∗∩⊕j>k Hom1(Q,vj ,vk) = V (x)−,

which implies that the function

ζ− : (ker ρ−x )
⊥ × V (x)− →

⊕

j>k

Hom1(Q,vj ,vk)

(u, δy) 7→ eu · (x+ δy)

is a local diffeomorphism. Therefore, if δx ∈ ⊕

j>k Hom1(Q,vj ,vk) is small enough, then eu ·
(x + δy) = x + δx ∈ Z for some u ∈ (ker ρ−x )

⊥ and δy ∈ V (x)−. Therefore x + δy ∈ Z and so

x+ δy ∈ S−
x . �
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From the definition of the negative slice, we can classify the isomorphism classes in S−
x . Corollary

4.23 then shows that this classification also applies to W−
x .

Lemma 3.27. Let x be a critical point of ∥µ−α∥2 on Z and let x = x1⊕· · ·⊕xn be the decomposition

as a direct sum of polystable representations as in (2.28), ordered so that slopeα(xj) < slopeα(xk)

for all j < k. Then every y ∈ S−
x admits a filtration y1 ⊂ · · · ⊂ yn such that each quotient yk/yk−1

is isomorphic to xk for k = 1, . . . , n. Conversely, let y ∈ Z be a representation admitting a filtration

y1 ⊂ · · · ⊂ yn such that each quotient yk/yk−1 is isomorphic to xk for k = 1, . . . , n. Then there

exists g ∈ Gv such that g · y ∈ S−
x .

Proof. Given y ∈ S−
x , the existence of the filtration follows directly from the definition of S−

x as

a subset of V −
x ⊂ Rep(Q,v) (cf. (3.11)). Conversely, given a representation y ∈ Z admitting a

filtration y1 ⊂ · · · ⊂ yn such that each quotient yk/yk−1 is isomorphic to xk for k = 1, . . . , n, there

exists g1 ∈ Gv such that g1 · y is in the neighbourhood where Lemma 3.26 applies, and so there

exists g2 ∈ Gv such that g2 · g1 · y ∈ S−
x . �

Definition 3.28. Let C ⊂ Rep(Q,v) be a critical set for ∥µ − α∥2 and let Z be a closed Gv-

invariant subset. The negative slice bundle is S−
C := V −

C ∩ Z and the unstable bundle is W−
C ∩ Z

(which we also denote by W−
C ).

For the special case of the stability parameter from Definition 3.6, the critical point x induces

a decomposition Vect(Q,v) ∼= Vect(Q,v1) ⊕ Vect(Q,v2) as in Proposition 3.13. The next lemma

shows that the negative slice equations simplify on the space ν−1(0) associated to a set R of

relations. In particular, the space S−
x (which a priori is a singular subset of the vector space V −

x )

is an affine space for this choice of stability parameter.

Lemma 3.29. Let α = α(Q,v) be the stability parameter from Definition 3.6. Then

S−
x
∼= Hom1(Q,v2,v1) ∩ ker(ρCx )

∗ ∩ ker dνx.

Proof. The definition of S−
x together with (3.11) shows that

S−
x = x+

{

δx ∈ Hom1(Q,v2,v1) ∩ ker(ρCx )
∗ : x+ δx ∈ ν−1(0)

}

.

The polynomial ν(x+ δx) has the following expansion.

ν(x+ δx) = ν(x) + dνx(δx) + (terms quadratic or higher in δx).

Since δx ∈ Hom1(Q,v2,v1) then im δx ⊂ ker δx and so all the higher order terms vanish. Since

x ∈ ν−1(0) then the condition ν(x+ δx) = 0 simplifies to dνx(δx) = 0. �

4. Gradient flow lines between critical points

This section contains the main results of the paper relating flow lines in symplectic geometry

to the Hecke correspondence in algebraic geometry. Section 4.1 contains the bulk of the analysis

to show that the isomorphism classes of representations in the unstable set W−
x are in one-to-

one correspondence with the isomorphism classes in the negative slice S−
x (Corollary 4.23). The
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methods used to prove this result also lead to a proof that a neighbourhood of the zero section in the

negative slice bundle S−
C is homeomorphic to a neighbourhood of the zero section in the unstable

bundle W−
C , and that this statement remains true on restricting to any closed Gv-invariant subset

(Theorem 4.22 and Corollary 4.24). These results are valid for any admissible stability parameter.

After dealing with the analytic preliminaries, in Section 4.2 we restrict to the case of the stability

parameter from Definition 3.6 and use the homological algebra of representations of quivers to give

an algebraic criterion for two critical points to be connected by a flow line and interpret the Hecke

correspondence in terms of pairs of critical points at adjacent critical levels which are connected by

a flow line (Theorem 4.35).

4.1. The relationship between the unstable set and the negative slice. The goal of this

section is to construct a Kv-equivariant homeomorphism between the negative slice bundle S−
C and

the unstable bundle W−
C (Theorem 4.22). Since the construction is done purely in terms of the Gv

action then it is sufficient to prove the result first on the manifold Rep(Q,v) and then afterwards

restrict to a closed Gv-invariant subset Z ⊂ Rep(Q,v).

4.1.1. The modified flow in a neighbourhood of a critical point. In this section we define a new flow

called the modified flow which is Kv-related to the gradient flow (2.18). The reason for doing this

is that in addition to the distance-decreasing formula for the metric flow (2.24), the modified flow

also satisfies a distance-decreasing result for the action of e−iβt (cf. Lemma 4.1) which we need to

carry out the procedure of Section 4.1.4.

Let x be a critical point of ∥µ − α∥2 on Rep(Q,v) and let U be a neighbourhood of x on

which the local slice result of Lemma 3.17 applies, so that there is a neighbourhood V of (0, 0)

in (ker ρCx )
⊥ ⊕ ker(ρx)

∗ and a diffeomorphism ζ : V → U given by ζ(u, δx) = eu · (x + δx). Let

β = µ(x) ∈ k∗v ∼= kv.

LetKβ ⊂ Kv denote the isotropy subgroup of β ∈ k via the adjoint action ofKv on k. The critical

point x has an associated Harder-Narasimhan filtration and we define Pβ ⊂ Gv as the subgroup

preserving this filtration. Kβ is the maximal compact subgroup of the Levi subgroup of Pβ . Let

(Gv)x denote the isotropy subgroup of Gv at the point x, and let (gv)x be the corresponding Lie

algebra. The following is the analog of the distance-decreasing property of the flow from (2.24).

Lemma 4.1. Given g ∈ Pβ, let gt = e−iβtgeiβt and define ht = g∗t gt. Then d
dt
σ(ht) ≤ 0.

The group Gv can be written as a fibre product Gv
∼= Kv ×Kβ

Pβ . Any homomorphism from

a semistable representation of slope ν1 to a semistable representation of slope ν2 < ν1 must be

zero (cf. [28, Lem. 2.3]) and so (gv)x ⊂ pβ (see [9, Lem. 20]). Therefore (pβ)
⊥ ⊂ (gv)

⊥
x .

Define (pβ)
⊥
x := (gv)

⊥
x ∩ pβ . Since the slice equations are Kv-invariant then k · Sx = Sk·x for

all k ∈ Kv and so we can define Sβ := Kβ ×Kx Sx. Then Kβ acts on Kv × Sβ × (pβ)
⊥
x by

kβ · (k, [k′, x+ δx], u) = (kk−1
β , [kβk

′k−1
β , kβ · (x+ δx)],Adkβ (u)). The local slice result Lemma 3.17
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can then be refined to show that the map

Kv ×Kβ

(

Sβ × (pβ)
⊥
x

)

ζ→ Rep(Q,v)

[k, k′, x+ δx, u] 7→ k · k′ · eu · (x+ δx)
(4.1)

is a Kv-equivariant local diffeomorphism in a neighbourhood of (id, 0, 0), where k′′ ∈ Kv acts on

Kv ×Kβ
(Sβ × (pβ)

⊥
x ) by k

′′ · [k, k′, x+ δx, u] = [k′′k, k′, x+ δx, u].

On the image ζ
(

Sβ × (pβ)
⊥
x

)

⊂ U , define γ(y)− as the component of iµ(y) in (pβ)
⊥. Note

that since the action of Kβ preserves ζ
(

Sβ × (pβ)
⊥
x

)

and conjugation by Kβ preserves (pβ)
⊥ then

γ(k · y)− = Adk γ(y)− for all k ∈ Kβ . Now define

(4.2) γ(y) = γ(y)− − γ(y)∗− ∈ kv.

Again we see that γ is Kβ-equivariant. Using the fibre product structure of (4.1) we can extend γ

to a Kv-equivariant map U → k. Note also that −iµ(y) + γ(y) ∈ pβ for all y ∈ U .

The following lemma shows that γ satisfies a Lipschitz bound analogous to that of Lemma 2.21.

Lemma 4.2. Fix a critical point x for ∥µ − α∥2. Given any g ∈ Gv define h = g∗g. Then there

exist neighbourhoods U of x in Rep(Q,v) and N of Kv in Gv, and a constant C such that y ∈ U

and g ∈ N implies that

(4.3) ∥Adg−1 (γ(g · y))− γ(y)∥ ≤ C
√

σ(h)

where σ(h) = Tr(h+ h−1 − 2 id) is the distance function from (2.21).

Proof. Given g ∈ Gv = ×k∈IGL(nk,C), the Cartan decomposition determines k ∈ Kv and u ∈ ikv

such that g = keu. The Kv-equivariance of γ then gives us

Adg−1 γ(g · y)− γ(y) = Ade−u γ(eu · y)− γ(y)

which is a C∞ function of u and y, which is zero when u = 0. Therefore, for each y there exists a

neighbourhood N ′ of zero in ikv and a constant C ′(y) (depending continuously on y) such that

∥Ade−u γ(eu · y)− γ(y)∥ ≤ C ′(y)d(id, eu)

for all u ∈ N ′, where d denotes the geodesic distance in Gv with respect to the left-invariant metric

determined by the norm ∥u∥ = Tr(uu∗) on the Lie algebra gv. Since C ′(y) depends continuously

on y then (2.26) and (2.27) imply that there is a neighbourhood U of x in Rep(Q,v) and a uniform

constant C such that

∥Ade−u γ(eu · y)− γ(y)∥ ≤ C
√

σ(h)

for all y ∈ U . �

From the definition of γ(y) as a sum of components of µ(y), we have the inequality

(4.4) ∥γ(y)∥ = ∥γ(y)− γ(x)∥ ≤ ∥µ(y)− µ(x)∥ = ∥µ(y)− β∥.
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Definition 4.3. Given y0 ∈ U , the modified flow with initial condition y0 is the solution to

(4.5)
dyt
dt

= −Iρyt(µ(yt)− α) + ρyt(γ(yt)).

for all t such that yt ∈ U .

Note that if x is a critical point of ∥µ−α∥2 then µ(x) = β ∈ kβ ⊂ pβ and so γ(x) = 0. Therefore

x is also a stationary point for the modified flow. Define

W−
mod,x := {y0 ∈ Rep(Q,v) : yt solves (4.5) on (−∞, 0] and lim

t→−∞
yt = x}.

Given a critical set C, define W−
mod,C :=

∪

x∈C W
−
mod,x.

In a similar way to the downwards gradient flow of ∥µ − α∥2 (cf. (2.19)), a solution yt to (4.5)

satisfies yt = gt · y0, where gt is a solution of

(4.6)
dgt
dt
g−1
t = −i(µ(gt · y0)− α) + γ(gt · y0), g0 = id .

Note that since −i(µ(y)− α) + γ(y) ∈ pβ for all y ∈ U , then gt ∈ Pβ for all t such that gt · y0 ∈ U .

Lemma 4.4. Let y0 ∈ U , let ymod
t be a solution to the modified flow (4.5) with initial condition

y0 and let yorigt be a solution to the original downwards gradient flow of ∥µ− α∥2 given by (2.18).

Then ymod
t = st · yorigt , where st ∈ Kv is the solution of

(4.7)
ds

dt
s−1
t = γ(st · yorigt ), s0 = id .

Proof. Let gorigt be the solution to (2.19) such that yorigt = gorigt · y0. Define gmod
t = st · gorigt . We

then have

dgmod
t

dt
(gmod

t )−1 =
ds

dt
s−1
t +Adst

(

dgorigt

dt
(gorigt )−1

)

= γ(st · yorigt )− iAdst

(

µ(yorigt )− α
)

= γ(gmod
t · y0)− i

(

µ(gmod
t · y0)− α

)

and so gmod
t is a solution to (4.6), hence ymod

t := gmod
t · y0 is a solution to (4.5). �

4.1.2. Exponential convergence of the reverse flow. In this section we prove that a solution to the

modified flow (4.5) which converges to a critical point as t→ −∞ must converge at an exponential

rate. The idea of the proof is similar to the case of the Yang-Mills-Higgs flow studied in [35], however

there are some simplifications here since for the Yang-Mills-Higgs flow we prove convergence in the

L2
k norm for all k, but for the finite-dimensional space Rep(Q,v) we only need to prove convergence

in the topology induced by the metric on Rep(Q,v). We can then use the exponential convergence

to prove Proposition 4.10, which shows that the unstable bundles for the gradient flow (2.18) and

the modified flow (4.5) are Kv-equivariantly homeomorphic.

Let x be a non-minimal critical point of f = ∥µ−α∥2 on Rep(Q,v) and let β = µ(x). The local

slice result of (Lemma 3.17) proves the existence of a neighbourhood U of x such that any y ∈ U

can be written y = eu · (x + z) for u ∈ g⊥x and z ∈ Sx. Moreover, this description is unique if we
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restrict to a neighbourhood of zero in g⊥x × Sx. Further decompose z = z≥0 + z− according to the

eigenspaces for the action of eiβ on Sx.

The following lemma collects some results of Kirwan [18, Sec. 10] which will be used in the

sequel.

Lemma 4.5. With respect to the decomposition y = eu · (x+ z≥0 + z−) we have

(1) f(eu · (x+ z≥0)) ≥ f(x),

(2) grad f(eu · (x+ z≥0)) is tangent to {z− = 0}, and
(3) [18, (10.14)] Let yt be a solution to the gradient flow (2.18) which converges to x as t→ −∞,

and write yt = eut · (x+ zt≥0 + zt−). Then there exists δ > 0 and positive constants K1 and

K2 such that if ∥y0 − x∥ < δ then ∥zt−∥ ≤ K1e
K2t for all t ≤ 0.

Using this, we can show that the quantity f(x)− f(yt) decreases exponentially.

Lemma 4.6. There exists a neighbourhood U of x and positive constants K ′
1 and K ′

2 such that

if yt is a solution to (2.18) with initial condition y0 ∈ U which converges to x as t → −∞, then

f(x)− f(yt) ≤ K ′
1e

K′

2
t for all t ≤ 0.

Proof. Let y = eu · (x+ z≥0+ z−) as above. Since x is a critical point then for all ε > 0 there exists

δ > 0 such that ∥y − x∥ < δ implies that

f(eu · (x+ z≥0 + z−))− f(eu · (x+ z≥0)) ≥ −ε∥z−∥.
Therefore

f(eu · (x+ z≥0 + z−))− f(x) = f(eu · (x+ z≥0 + z−))− f(eu · (x+ z≥0))

+ f(eu · (x+ z≥0))− f(x)

≥ f(eu · (x+ z≥0 + z−))− f(eu · (x+ z≥0))

≥ −ε∥z−∥
≥ −εK1e

K2t

and so the result follows after setting K ′
1 = εK1 and K ′

2 = K2. �

Lemma 4.7. There exists a neighbourhood U of x and positive constants C1 and C2 such that if

yt is a solution to (2.18) with initial condition y0 ∈ U which converges to x as t → −∞, then

∥yt − x∥ ≤ C1e
C2t for all t ≤ 0.

Proof. After possibly shrinking the neighbourhood U of the previous lemma, we can apply the

Lojasiewicz inequality method of Simon [31] to show that there exist constants C > 0 and θ ∈ (0, 1)

such that

(4.8) ∥yt − x∥ ≤
∫ t

−∞
∥ grad f(ys)∥ ds ≤

1

Cθ
(f(x)− f(yt))

θ

and the previous lemma shows that

(4.9)
1

Cθ
(f(x)− f(yt))

θ ≤ 1

Cθ
(K ′

1)
θeθK

′

2
t.
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The result then follows by combining (4.8) and (4.9). �

Now we can show that this result also applies to the modified flow. Let yt be a solution to the

gradient flow which converges to a critical point x as t → ∞ and let zt be the associated solution

to the modified flow (4.5) with initial condition y0. Lemma 4.4 shows that zt = st · yt for st ∈ Kv.

Since the metric is Kv-invariant and both γ and µ are Kv-equivariant then
∥

∥

∥

∥

dz

dt

∥

∥

∥

∥

= ∥−Iρzt(µ(zt)− α) + ρzt(γ(zt))∥

=
∥

∥st (−Iρyt(µ(yt)− α) + ρyt(γ(yt))) s
−1
t

∥

∥

= ∥−Iρyt(µ(yt)− α) + ρyt(γ(yt))∥ ≤
∥

∥

∥

∥

dy

dt

∥

∥

∥

∥

+ ∥ρyt(γ(yt))∥

Since γ is smooth and satisfies γ(x) = 0, then (after possibly shrinking the neighbourhood U)

there exists a Lipschitz constant C ′ such that

(4.10) ∥γ(y)∥ ≤ C ′∥y − x∥ for all y ∈ U .

Since yt is in the bounded neighbourhood U , then ρyt is a uniformly bounded operator and so

∥ρy(γ(y))∥ ≤ C ′′∥y − x∥ for all y ∈ U . Therefore, along the solution yt to (2.18) we have

∥ρyt(γ(yt))∥ ≤ C ′′C1e
C2t, and so there are positive constants C ′

1 and C ′
2 such that

(4.11)

∫ t

−∞

∥

∥

∥

∥

dzs
ds

∥

∥

∥

∥

ds ≤
∫ t

−∞

∥

∥

∥

∥

dys
ds

∥

∥

∥

∥

ds+

∫ t

−∞
C ′′C1e

C2s ds ≤ C ′
1e

C′

2
t.

Proposition 4.8. Let yt be a solution to the downwards gradient flow (2.18) that converges to a

critical point x as t → −∞ and let zt = st · yt be the associated solution to the modified flow with

initial condition y0. Then limt→−∞ st =: s∞ ∈ Kv exists and there exist positive constants C ′
1 and

C ′
2 such that

∥zt − s∞ · x∥ ≤ C ′
1e

C′

2
t

for all t ≤ 0.

Proof. The inequality (4.11) shows that the length of the flow line {zt : t ≤ 0} converges to zero

exponentially as t → −∞. Therefore zt converges exponentially to a unique limit z∞. Since

zt ∈ Kv · yt for all t, yt → x as t→ −∞ and Kv · x is closed then z∞ ∈ Kv · x also. Choose k ∈ Kv

such that z∞ = k · x. Note that this implies γ(z∞) = 0.

Since dst
dt
s−1
t = γ(zt) and ∥γ(zt)∥ = ∥γ(zt)− γ(z∞)∥ ≤ C ′∥zt − z∞∥ is exponentially decreasing,

then st also converges to a unique limit s∞ ∈ Kv. Since st ·yt → s∞ ·x then z∞ = k ·x = s∞ ·x. �

Now we use the limit s∞ to define a map between the unstable sets for the gradient flow (2.18)

and the modified flow (4.5).

Lemma 4.9. Let y0 ∈W−
x and let st be the solution of (4.7) for t ∈ (−∞, 0] with initial condition y0

and limit s∞(y0). Then s∞(y0)
−1 ·y0 ∈W−

mod,x. Moreover, if k ∈ Kv then s∞(k ·y0) = Adk s∞(y0).

This defines a continuous Kv-equivariant map η :W−
C →W−

mod,C .
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Proof. Proposition 4.8 shows that the solution zt to the modified flow (4.5) with initial condition

y0 converges to s∞ · x as t → −∞. The Kv-equivariance of the flow then implies that s−1
∞ · zt

is a solution to (4.5) with initial condition s−1
∞ · y0. Therefore s−1

∞ · zt → s−1
∞ · z∞ = x and so

s−1
∞ · y0 ∈W−

mod,x.

The Kv-equivariance of the flow also implies that for any k ∈ Kv the curve k · zt is a solution of

(4.5) with initial condition k · y0. The equation for st(k · y0) then becomes

dst(k · y0)
dt

st(k · y0)−1 = γ(k · zt) = Adk γ(zt) = Adk

(

dst(y0)

dt
st(y0)

−1

)

and so st(k · y0) = Adk st(y0). Therefore the limits also satisfy s∞(k · y0) = Adk s∞(y0). �

Finally, we prove that the unstable sets for the gradient flow (2.18) and the modified flow (4.5)

are Kv-equivariantly homeomorphic.

Proposition 4.10. The map η defines a Kv-equivariant homeomorphism of pairs φ : (W−
C ,W

−
C \

C) → (W−
mod,C ,W

−
mod,C \ C).

Proof. Lemma 4.9 shows that η is well-defined and continuous. Therefore the proof reduces to

showing that there is a continuous inverse.

Given any z0 ∈ W−
mod,x, let zt denote the solution of (4.5) for t ∈ (−∞, 0], let yt denote the

solution of the gradient flow of ∥µ− α∥2 given by (2.18). Then Lemma 4.4 shows that zt = st · yt
for st solving (4.7) and that s∞(z0) · z0 ∈W−

x .

The same argument as in Lemma 4.9 then shows that this defines a continuous Kv-equivariant

map η′ :W−
mod,C →W−

C . Given any y0 ∈W−
C , we compute

η′ ◦ η(y0) = η′(s∞(y0)
−1 · y0)

= s∞(s∞(y0)
−1 · y0) · s∞(y0)

−1 · y0
=
(

s∞(y0)
−1 · s∞(y0) · s∞(y0)

)

· s∞(y0)
−1 · y0 by Lemma 4.9

= y0.

An analogous calculation shows that η ◦ η′(z0) = z0. Therefore η′ is a continuous inverse to

η :W−
C →W−

mod,C and so η is a Kv-equivariant homeomorphism. �

4.1.3. Convergence of the scattering method. In this section we show how to use the Gv action to

construct a map S−
x →W−

mod,x for each critical point x ∈ C. The method is to first use the time t

linearised gradient flow on S−
x to flow towards the critical point x (this is the upwards gradient flow

of the function µβ used by Kirwan in [18]), and then to flow down for time t using the modified

flow (4.5). The main result of this section is Proposition 4.13 which shows that the composition

of these two flows converges as t → ∞. The same idea will also work if we use the gradient flow

(2.18) instead of the modified flow, however we need the modified flow for the reverse construction

in the next section and so for consistency we use the modified flow throughout both sections.

A similar process is called the scattering method in [15] and [27], since it originates in the study

of wave operators in quantum mechanics. The method in this section is different to that in [15] and
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[27], since here we define the linearised flow intrinsically on the negative slice S−
x (the method of

[15] projects the gradient flow onto the negative eigenspace of the Hessian) and we use the action

of Gv and the distance-decreasing formula (2.24) in place of the coordinate transformations and

the estimates of [15]. The reason for this is so that the entire process is defined intrinsically on

any closed Gv-invariant subset Z ⊂ Rep(Q,v), which is not the case for the method of [15] since it

requires the subset Z to be smooth in order to (a) define the projection onto the negative eigenspace

of the Hessian and (b) define the coordinate transformations which map the gradient vector field

to a vector field which differs from the linearised flow by a term of high enough order to make the

scattering method converge (cf. [15, Sec. 3]).

Throughout this section we fix a critical point x and define β = µ(x) − α ∈ kv. For any point

y0 = x + δx ∈ S−
x , let yt = ϕmod(y0, t) = gt · y0 denote the time t modified flow (4.5) with initial

condition y0, where gt solves (4.6). Now define ft = gt · eiβt so that yt = ft · e−iβt · y0 and let

ht := f∗t ft ∈ Gv/Kv be the associated change of metric.

b

b

b
b

x

y0

e−iβt · y0 gt · y0 = ft · e−iβt · y0

S−
x

ft

gt
e−iβt

The same calculation as in [35, Lem. 3.14] shows that

(4.12)
dft
dt
f−1
t = −i(µ(gt · y0)− α) + γ(gt · y0) + ft(iβ)f

−1
t

and

(4.13)
dht
dt

= −2iht(µh(e
−iβt · y0)− α) + iβht + ihtβ.

Next we derive a uniform bound on σ(ht) in terms of ∥y0 − x∥.

Lemma 4.11. There exists ε > 0 such that if ∥e−iβT · y0 − x∥2 < ε then there exists a constant K

(which is uniform over the critical set containing x) such that

(4.14) σ(ht) ≤ K∥e−iβT · y0 − x∥2.

Proof. Taking the trace of (4.13) leads to

d

dt
Tr(ht) = −2iTr

(

(µh(e
−iβt · y0)− α− β)ht

)

.

Therefore we can rewrite the derivative as
d

dt
Tr(ht) = −2iTr

(

(µh(e
−iβt · y0)− µ(e−iβt · y0))ht

)

− 2iTr
(

(µ(e−iβt · y0)− α− β)ht

)

.
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Since ht is positive definite, then the inequality (2.23) shows that

d

dt
Tr(ht) ≤ 2iTr

(

(µ(e−iβt · y0)− α− β)ht

)

≤ C∥µ(e−iβt · y0)− α− β∥Tr(ht)
≤ C∥e−iβt · y0 − x∥2Tr(ht) by (3.9).

The same idea with Tr(h−1
t ) shows that

d

dt
Tr(h−1

t ) ≤ C∥e−iβt · y0 − x∥2Tr(h−1
t )

Now write the eigenvalues of iβ in increasing order λ1 ≤ · · · ≤ λk < 0 ≤ λk+1 ≤ · · · ≤ λn. On each

critical set β = µ(x)− α is unique up to conjugation by Kv, and so these eigenvalues are constant

on the critical set containing x (we use this below to show that the constant K is uniform on the

critical set). The following estimate holds for any y0 ∈ S−
x and any t ≤ T

∥e−iβt · y0 − x∥ = ∥eiβ(T−t) · e−iβT · y0 − x∥ ≤ eλk(T−t)∥e−iβT · y0 − x∥.

Therefore the derivative of σ(ht) = Tr(ht) + Tr(h−1
t )− 2 rank(Q,v) satisfies the inequality

d

dt
σ(ht) ≤ 2Ce2λk(T−t)∥e−iβT · y0 − x∥2

(

Tr(ht) + Tr(h−1
t )
)

= 2Ce2λk(T−t)∥e−iβT · y0 − x∥2σ(ht) + 4C rank(Q,v)e2λk(T−t)∥e−iβT · y0 − x∥2

An application of Gronwall’s inequality then shows that for all 0 ≤ t ≤ T we have

σ(ht) ≤
(

4C rank(Q,v)∥e−iβT · y0 − x∥2
∫ t

0
e2λk(T−s) ds

)

exp

(

2C∥e−iβT · y0 − x∥2
∫ t

0
e2λk(T−s) ds

)

≤
(

4C rank(Q,v)∥e−iβT · y0 − x∥2 1

2|λk|

)

exp

(

2C∥e−iβT · y0 − x∥2 1

2|λk|

)

Therefore if ∥e−iβT · y0 − x∥2 < ε then there exists a constant K such that

σ(ht) ≤ K∥e−iβT · y0 − x∥2 for all 0 ≤ t ≤ T .

Moreover, since the constant K depends only on ε, rank(Q,v) and the eigenvalue λk, which are all

constant on each critical set, then K is uniform over the critical set containing x. �

Now we can use this estimate to derive a bound on the distance from ft to the identity in Gv.

In the following we fix a norm on gv given by ∥u∥2 := Tr(uu∗), and use d(g1, g2) to denote the

geodesic distance between g1, g2 ∈ Gv with respect to the left-invariant metric on Gv associated to

the norm on gv.

Lemma 4.12.

(4.15) d(id, ft) ≤ C1∥e−iβT · y0 − x∥+ C2∥e−iβT · y0 − x∥2
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Proof. Equation (4.12) shows that

f−1
t

dft
dt

= −if−1
t (µ(gt · y0)− α)ft + ftγ(gt · y0)f−1

t + iβ

= −i(µht
(e−iβt · y0)− α) + ftγ(gt · y0)f−1

t + iβ

= −i
(

µht
(e−iβt · y0)− µ(e−iβt · y0)

)

− i
(

µ(e−iβt · y0)− α− β
)

+
(

ftγ(gt · y0)f−1
t − γ(e−iβt · y0)

)

+ γ(e−iβt · y0)

From the bounds (2.25), (4.3), (3.9) and (4.4), there exist constants K1 and K2 such that
∥

∥

∥

∥

f−1
t

dft
dt

∥

∥

∥

∥

≤ K1

√

σ(ht) +K2∥e−iβt · y0 − x∥2.

Now the inequality (4.14) implies that for all 0 ≤ t ≤ T

(4.16) d(id, ft) ≤
∫ T

0

∥

∥

∥

∥

f−1
t

dft
dt

∥

∥

∥

∥

dt ≤ C1∥e−iβT · y0 − x∥+ C2∥e−iβT · y0 − x∥2.

�

Now fix y0 ∈ S−
x such that ∥y0 − x∥ < ε (where ε is defined in the previous lemma) and define

yt = eiβt · y0 for t ≥ 0. Let gs(yt) ∈ Gv be the curve in Gv generating the time s modified flow

(4.6) with initial condition yt, i.e. ϕ
mod(yt, s) = gs(yt) · yt. Define fs(yt) = gs(yt) · eiβs ∈ Gv and

let hs(yt) = fs(yt)
∗fs(yt) be the associated change of metric. This is summarised in the following

diagram.

b

b

b

b

b b

b

x

yt1 = eiβt1 · y0

y0

yt2 = eiβt2 · y0

gt1(yt1) · yt1 = ft1(y0) · y0
gt2(yt2) · yt2 = ft2(y0) · y0

gt1−t2(yt1) · yt1 = ft1−t2(yt2) · yt2

S−
x

Using this notation, the estimate (4.14) now becomes

(4.17) σ(hs(yt)) ≤ K∥yt − x∥2 ≤ Ke2λkt∥y0 − x∥2.

and (4.15) becomes

(4.18) d(id, fs(yt)) ≤ C1∥yt − x∥+ C2∥yt − x∥2
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Now we can use the estimate from the previous lemma to prove that the sequence ft(y0) converges

in Gv. The limit of this sequence defines the map ψx : S−
x →W−

x used in Section 4.1.5.

Proposition 4.13. The sequence ft(y0) is Cauchy in Gv. Let f∞(y0) denote the limit. Then

ft(y0) · y0 converges to f∞(y0) · y0 in Rep(Q,v).

Proof. Consider the gradient flow with initial conditions yt2 = eiβt2 ·y0 and ft1−t2(yt2) ·yt2 = δ0 ·yt2 ,
where δ0 = ft1−t2(yt2) ∈ Gv. The estimate (4.18) shows that

(4.19) d(id, δ0) ≤ C1∥yt2 − x∥+ C2∥yt2 − x∥2 ≤ C1e
λkt2∥y0 − x∥+ C2e

2λkt2∥y0 − x∥2.

Denote the respective solutions by Y
(1)
t = g

(1)
t ·yt2 and Y

(2)
t = g

(2)
t ·ft1−t2(yt2) ·yt2 = δt ·Y (1)

t , where

δt = g
(2)
t · δ0 · (g(1)t )−1 as shown in the diagram below.

b

b

b

b

b b

b

x

yt1 = eiβt1 · y0

y0

yt2 = eiβt2 · y0

Y
(1)
t

Y
(2)
t = δt · Y (1)

t

δ0 · yt2 = ft1−t2(yt2) · yt2

S−
x

Let ht = δ∗t δt. Then

δ−1
t

d(δt)

dt
= δ−1

t

(

dg
(2)
t

dt
(g

(2)
t )−1

)

δt −
dg

(1)
t

dt
(g

(1)
t )−1

= δ−1
t

(

−i
(

µ(g
(2)
t · ft1−t2(yt2) · yt2)− α

)

+ γ(g
(2)
t · ft1−t2(yt2) · yt2)

)

δt

+ i(µ(g
(1)
t · yt2)− α)− γ(g

(1)
t · yt2)

= −i
(

µht
(g

(1)
t · yt2)− µ(g

(1)
t · yt2)

)

+
(

δ−1
t γ(δt · g(1)t · yt2)δt − γ(g

(1)
t · yt2)

)

where in the last step we use the fact that δtαδ
−1
t = α since α is central. Applying the Lipschitz

bounds (2.25) and (4.3) and then the distance decreasing formula (2.24) gives us
∥

∥

∥

∥

δ−1
t

d(δt)

dt

∥

∥

∥

∥

≤ C
√

σ(ht) ≤ C
√

σ(h0).
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The estimate from (4.17) shows that σ(h0) ≤ K∥eiβt2 · y0 − x∥2. Therefore, for any T such that

t1 > t2 ≥ T > − 1
λk
, the geodesic distance d(δ0, δt2) in Gv is bounded above by

∫ t2

0

∥

∥

∥

∥

δ−1
t

d(δt)

dt

∥

∥

∥

∥

dt ≤
∫ t2

0
C
√
K∥eiβt2 · y0 − x∥ dt = t2C

′∥eiβt2 · y0 − x∥

≤ t2C
′eλkt2K∥y0 − x∥ ≤ TeλkTC3∥y0 − x∥

Combining this with the estimate (4.19) shows that

(4.20) d(ft1(y0), ft2(y0)) = d(id, δt2) ≤ d(id, δ0) + d(δ0, δt2)

≤ C1e
λkT ∥y0 − x∥+ C2e

2λkT ∥y0 − x∥2 + C3Te
λkT ∥y0 − x∥

which can can be made arbitrarily small by making T large. Therefore the sequence ft(y0) is

Cauchy in Gv. Let f∞(y0) denote the limit. Since the action of Gv on Rep(Q,v) is continuous,

then ft(y0) · y0 converges to f∞(y0) · y0 in Rep(Q,v). �

As a consequence of the methods used above, we can derive the following estimate which is used

in Theorem 4.22.

Corollary 4.14. Let C be a critical set. Then there exist constants K1 and K2 such that for any

x ∈ C and any y0 ∈ S−
x , we have

(4.21) ∥ft(y0) · y0 − f∞(y0) · y0∥ ≤
(

K1e
λkt(t+ 1)∥y0 − x∥+K2e

2λkt∥y0 − x∥2
)

∥y0∥.

Proof. Since {ft(y0)} is Cauchy, then the inequality (4.20) shows that

d(ft(y0), f∞(y0)) ≤ C ′
1e

λkt(t+ 1)∥y0 − x∥+ C2e
2λkt∥y0 − x∥2.

Since the action of Gv is continuous then there exists a constant K such that ∥ft(y0) · y0− f∞(y0) ·
y0∥ ≤ Kd(ft(y0), f∞(y0))∥y0∥. The result then follows after combining these two estimates. �

Next we show that f∞(y0) · y0 lies in W−
mod,x.

Lemma 4.15. Let ε > 0 be as in Lemma 4.11. For each y0 ∈ S−
x such that ∥y0 − x∥ < ε, we have

f∞(y0) · y0 ∈W−
mod,x.

Proof. Since ft(y0) · y0 → f∞(y0) · y0 and the finite-time flow ϕmod(·, t) : Rep(Q,v) → Rep(Q,v)

depends continuously on the initial condition, then for each T > 0, we have ϕmod(ft(y0) ·y0,−T ) →
ϕmod(f∞(y0) · y0,−T ). Therefore we can choose t large so that t ≥ T and

(4.22) ∥ϕmod(f∞(y0) · y0,−T )− ϕmod(ft(y0) · y0,−T )∥ ≤ ∥eiβT · y0 − x∥.

Moreover, since ft(y0) · y0 = ϕmod(eiβt · y0, t) by definition, for all t ≥ T we have

ϕmod(ft(y0)·y0,−T ) = ϕmod(eiβt·y0, t−T ) = ϕmod(eiβ(t−T )·eiβT ·y0, t−T ) = ft−T (e
iβT ·y0)·(eiβT ·y0).
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In particular, the bound of (4.15) applies, and so we have

∥ϕmod(ft(y0) · y0,−T )− eiβT · y0∥ = ∥ft−T (e
iβT · y0) · (eiβT · y0)− eiβT · y0∥

≤ Cd
(

id, ft−T (e
iβT · y0)

)

∥eiβT · y0∥

≤ C
(

∥e−iβT · y0 − x∥+ ∥e−iβT · y0 − x∥2
)

∥eiβT · y0∥

(4.23)

for some positive constant C. Combining (4.22) (4.23) gives us

∥ϕmod(f∞(y0) · y0,−T )− x∥ ≤ ∥ϕmod(f∞(y0) · y0,−T )− ϕmod(ft(y0) · y0,−T )∥
+ ∥ϕmod(ft(y0) · y0,−T )− eiβT · y0∥+ ∥eiβT · y0 − x∥

≤ ∥eiβT · y0 − x∥+ ∥eiβT · y0 − x∥

+ C
(

∥e−iβT · y0 − x∥+ ∥e−iβT · y0 − x∥2
)

∥eiβT · y0∥

Since the right-hand side converges to zero as T → ∞ then limT→∞ ϕ(f∞(y0) · y0,−T ) = x and so

f∞(y0) · y0 ∈W−
mod,x. �

Let ψx : S−
x → W−

mod,x be the map ψx(y0) = f∞(y0) · y0. The final result of this section shows

that ψx is continuous.

Lemma 4.16. There exists a neighbourhood U of x in S−
x such that ft(y0) · y0 converges uniformly

to f∞(y0) · y0 for all y0 ∈ U . Therefore f∞(y0) · y0 depends continuously on y0.

Proof. To simplify the notation, given y0 ∈ S−
x set ft = ft(y0) for each t ∈ R≥0. The inequality

(4.20) shows that in a neighbourhood U of x in S−
x we have for all t1 > t2 ≥ T

d(ft1 , ft2) ≤ C1e
λkT ∥y0 − x∥+ C2e

2λkT ∥y0 − x∥2 + C3Te
λkT ∥y0 − x∥

and so there exists a constant K such that

(4.24) ∥ft1 · y0 − ft2 · y0∥ ≤ KeλkT
(

C1∥y0 − x∥+ C2∥y0 − x∥2 + C3T∥y0 − x∥
)

∥y0∥

Therefore if y0 is in a fixed neighbourhood of x then ∥ft1 · y0 − ft2 · y0∥ ≤ K ′
1e

λkT +K ′
2Te

λkT and

so the sequence ft · y0 is uniformly Cauchy with respect to the variable y0, and therefore uniformly

convergent. Since the finite-time terms ft · y0 depend continuously on y0, then this implies that

ψx(y0) = f∞ · y0 also depends continuously on y0. �

4.1.4. The inverse of the scattering method. In this section we carry out the inverse of the procedure

described in the previous section. Given y0 ∈W−
mod,x, let yt = gt ·y0 denote the solution to the time

t modified flow (4.5) and define ft = gt · eiβt. The goal is to show that ft converges to the inverse

of the map defined in the previous section. The key to the proof is that ft ∈ Pβ for all t, and so

the distance decreasing formula of Lemma 4.1 applies (this is the reason for using the modified flow

instead of the original gradient flow).

First we derive a uniform bound on the metric ht in analogy with Lemma 4.11. The proof differs

slightly from Lemma 4.11, since the point y0 is not necessarily in the negative slice and so we need

to derive some extra estimates after finding the bound (4.27).
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b

b

b
b

x

y0

e−iβt · y0
gt · y0

W−
mod,x

ft

gt
e−iβt

Lemma 4.17. There exists ε > 0 and a constant K such that for any initial condition y0 ∈W−
mod,x

and any t > 0 satisfying ∥e−iβt · y0 − x∥+ ∥gt · y0 − x∥ < ε we have

σ(ht) ≤ K
(

∥e−iβt · y0 − x∥+ ∥gt · y0 − x∥
)

.

Proof. The same calcuation as (4.12) and (4.13) shows that

(4.25)
dft
dt
f−1
t = −i(µ(gt · y0)− α) + γ(gt · y0) + ft(iβ)f

−1
t

and

(4.26)
dht
dt

= −2iht(µh(e
−iβt · y0)− α) + iβht + ihtβ.

Taking the trace in the same way as the proof of Lemma 4.11 gives us the estimates

d

dt
Tr(ht) ≤ 2iTr

(

(µ(e−iβt · y0)− α− β)ht

)

≤ C Tr(ht)∥e−iβt · y0 − x∥

and
d

dt
Tr(h−1

t ) ≤ −2iTr
(

h−1
t (µ(e−iβt · y0)− α− β)

)

≤ C Tr(h−1
t )∥e−iβt · y0 − x∥

and so
d

dt
σ(ht) ≤ Cσ(ht)∥e−iβt · y0 − x∥+ 2C rank(Q,v)∥e−iβt · y0 − x∥

Therefore Gronwall’s inequality implies that

(4.27) σ(ht) ≤ 2C rank(Q,v)

(∫ t

0
∥e−iβs · y0 − x∥ ds

)

exp

(∫ t

0
C∥e−iβs · y0 − x∥ ds

)

and so the problem of finding a bound for σ(ht) reduces to the problem of finding a bound for
∫ t

0 ∥e−iβs · y0 − x∥ ds in terms of ∥gt · y0 − x∥ and ∥e−iβt · y0 − x∥.
To find this bound we decompose y0 − x into eigenspaces (y0 − x)+, (y0 − x)0 and (y0 − x)−

according to whether the action of e−iβ is has eigenvalues greater than one, equal to one, or less

than one. Since ∥(e−iβs · y0 − x)+∥ is exponentially increasing with s then there exists a constant

C1 such that
∫ t

0
∥(e−iβs · y0 − x)+∥ ds ≤ C1∥(e−iβt · y0 − x)+∥ ≤ C1∥e−iβt · y0 − x∥.
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Since ∥(e−iβs · y0 − x)0∥ is constant then
∫ t

0
∥(e−iβs · y0 − x)0∥ ds = t∥(y0 − x)0∥ ≤ Cte−C′

2
t∥gt · y0 − x∥.

where we use the bound ∥y0 − x∥ ≤ C ′
1e

−C′

2
t∥gt · y0 − x∥ from Proposition 4.8 (note that here t > 0

and so the exponent is −C ′
2t). The term ∥(e−iβs · y0−x)−∥ is exponentially decreasing with s, and

so there is a constant C2 such that
∫ t

0
∥(e−iβs · y0 − x)−∥ ds ≤ C2∥(y0 − x)−∥ ≤ CC2e

−C′

2
t∥gt · y0 − x∥.

Substituting these into (4.27) and noting that the exponential terms are bounded if ∥e−iβt · y0 −
x∥+ ∥gt · y0 − x∥ < ε for small enough ε shows that

(4.28) σ(ht) ≤ K
(

∥e−iβs · y0 − x∥+ ∥gt · y0 − x∥
)

for some positive constant K. �

Now we prove a uniform bound on ft.

Lemma 4.18. With the same conditions as Lemma 4.17 we have

(4.29) d(id, ft) ≤ C1∥e−iβt · y0 − x∥ 1

2 + C2∥e−iβt · y0 − x∥.

Proof. After conjugating (4.25) by ft, we obtain the same bound as in the proof of Lemma 4.12

f−1
t

dft
dt

= −if−1
t (µ(gt · y0)− α)ft + ftγ(gt · y0)f−1

t + iβ

= −i(µht
(e−iβt · y0)− α) + ftγ(gt · y0)f−1

t + iβ

= −i
(

µht
(e−iβt · y0)− µ(e−iβt · y0)

)

− i
(

µ(e−iβt · y0)− α− β
)

+
(

ftγ(gt · y0)f−1
t − γ(e−iβt · y0)

)

+ γ(e−iβt · y0)

and therefore the Lipschitz bounds (4.3), (4.10) and the moment map bound (2.25) lead to the

inequality
∥

∥

∥

∥

f−1
t

dft
dt

∥

∥

∥

∥

≤ K1

√

σ(ht) +K2∥e−iβt · y0 − x∥

Therefore Lemma 4.17 implies

d(id, ft) ≤
∫ t

0

∥

∥

∥

∥

f−1
t

df

dt

∥

∥

∥

∥

dt ≤ C1∥e−iβt · y0 − x∥ 1

2 + C2∥e−iβt · y0 − x∥.

�

Now we use the uniform bound on the metric together with the distance-decreasing formula to

show that the sequence is Cauchy. Fix y0 ∈ W−
mod,x and for all t < 0 let yt = gt(y0) · y0 be the

solution to (4.5) and define ft(y0) = eiβt · gt(y0). This is summarised in the diagram below.

Lemma 4.19. There exists ε′ > 0 such that the limit f∞(y) := limt→−∞ ft(y) exists in Pβ for any

y ∈W−
mod,x such that ∥y − x∥ < ε′.
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b

b

b

b

b

b

b

x

yt1 = gt1(y0) · y0

ft1(y0) · y0 = eiβt1 · yt1

eiβ(t1−t2) · yt1

y0

ft2(y0) · y0 = eiβt2 · yt2

yt2 = gt2(y0) · y0

W−
mod,x

Proof. First we show that for any ε > 0 there exists ε′ > 0 such that ∥y0 − x∥ < ε′ implies that

∥ft(y0) · y0 − x∥+ ∥y0 − x∥ < ε, and therefore we can apply the estimate of Lemma 4.18.

First suppose that ∥y0 − x∥ = 1
2ε. If ∥ft(y0) · y0 − x∥ < 1

2ε for all such y0 then we are done. If

not, then there exists t′ > 0 such that ∥eiβt′ · ft(y0) · y0 − x∥ = 1
2ε. Let g−t′ · y0 denote the time

t′ upwards flow with initial condition y0. Note that ∥g−t′ · y0 − x∥ < 1
2ε. Then eiβt

′ · ft(y0) · y0 =

ft−t′(g−t′ · y0) · g−t′ · y0 by definition. Since ∥g−t′ · y0 − x∥+ ∥ft−t′(g−t′ · y0) · g−t′ · y0 − x∥ < ε then

the bound of Lemma 4.18 applies.

Therefore ft−t′(g−t′ · y0) is in a bounded neighbourhood of the identity in Gv. We also know

that x ∈ Gv · y0 \ (Gv · y0) and that ∥ft−t′(g−t′ · y0) · g−t′ · y0 − x∥ = 1
2ε and so there exists δ > 0

such that ∥g−t′ · y0 − x∥ > δ. Since ft−t′(g−t′ · y0) is uniformly bounded by Lemma 4.18 then δ is

uniform with respect to the choice of y0 ∈W−
mod,x such that ∥y0 − x∥ < 1

2ε. Therefore there exists

T such that t′ ≤ T for any such y0.

Therefore given any ε′ > 0 such that ∥g−T ·y0−x∥ < ε′ for all y0 ∈W−
mod,x such that ∥y0−x∥ < 1

2ε,

for any y ∈ W−
mod,x such that ∥y − x∥ < ε′ we have ∥ft(y) · y − x∥ + ∥y − x∥ < ε and now we can

use the estimate of Lemma 4.18 for any initial condition y satisfying ∥y − x∥ < ε′.

Choose y0 ∈ W−
mod,x such that ∥y0 − x∥ < ε′. Given t1 < t2 < 0, let δ0 = eiβ(t1−t2) · gt1 · g−1

t2

and δt2 = ft1(y0)ft2(y0)
−1 = eiβt2δ0e

−iβt2 . Lemma 4.18 shows that there exists T < 0 such that

t1, t2 < T implies that d(id, δ0) < ε. Since t2 < 0 then the distance-decreasing formula of Lemma

4.1 then shows that

d(ft1(y0), ft2(y0)) = d(id, δt2) = d(id, eiβt2δ0e
−iβt2) ≤ d(id, δ0) < ε.

Therefore the sequence ft(y0) is Cauchy and so it has a unique limit in Pβ . �

For each z0 ∈ W−
mod,x define φx(y0) = f∞(y0) · y0. The same proof as Lemma 4.16 shows that

the sequence ft(y0) is uniformly Cauchy for y0 in a bounded neighbourhood of x in W−
mod,x and so
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φx is continuous. The next result shows that φx is a left inverse of the map ψx : S−
x → W−

mod,x

defined in the previous section.

Lemma 4.20. φx ◦ ψx(y0) = y0 for all y0 ∈ S−
x .

Proof. Let z0 = ψx(y0). Then z0 = f∞(y0)·y0 and for all ε > 0 there exists T such that d(id, f∞(eiβt·
y0)) < ε for all t ≥ T . Since f∞(eiβt ·y0) ∈ Pβ then d(id, e−iβt ·f∞(eiβt ·y0)·eiβt) ≤ d(id, f∞(eiβt ·y0))
by the distance-decreasing property of Lemma 4.1. Therefore for all t ≥ T we have

∥e−iβt · f∞(eiβt · y0) · eiβt · y0 − y0∥ ≤ Cε

for a constant C which is uniformly bounded when y0 is in a fixed neighbourhood of x. This is true

for all ε > 0 and so

(4.30) lim
t→∞

e−iβt · f∞(eiβt · y0) · eiβt · y0 = y0.

Since ψx(y0) is the time t downwards flow of f∞(eiβt · y0) · eiβt · y0 then

φx(ψx(y0)) = lim
t→∞

e−iβtϕmod(ψx(y0),−t) = lim
t→∞

e−iβtf∞(eiβt · y0) · eiβt · y0 = y0.

and so φx is a left inverse to ψx. �

The standard graph transform approach to constructing unstable manifolds (see for example [12])

determines a local homeomorphism S−
x →W−

mod,x in a neighbourhood of x. The next result shows

that in fact there is a local homeomorphism determined by the action of Gv via the map ψx. The

point of using ψx is that (a) the standard methods do not work on a singular space, however the

method used here does work since ψx remains a homeomorphism after restricting to any singular

subset Z ⊂ Rep(Q,v) preserved by Gv, and (b) this allows us to classify the isomorphism classes in

the unstable set in terms of those in the negative slice, which is used in the next section to interpret

critical points connected by a flow line in terms of the Hecke correspondence.

Proposition 4.21. There is a neighbourhood U of x in S−
x and a neighbourhood V of x in W−

mod,x

such that ψx defines a homeomorphism of pairs (U,U \ {0}) ∼= (V, V \ {x}).

Proof. Choose a ball U centred at 0 in S−
x of radius small enough such that the conditions of

Lemma 4.16 are satisfied and so the map ψx is defined and continuous, and define V := ψx(U).

Then ψx : U → V has a continuous left inverse by Lemma 4.20, and so it is a homeomorphism onto

its image V . Therefore it only remains to show that V is a neighbourhood of x in W−
mod,x.

First note that since f∞(y0) is uniformly bounded by Lemma 4.12 and x ∈ Gv · y0 \ (Gv · y0)
then there exists r > 0 such that if y0 ∈ ∂U then ψx(y0) /∈ Br, where Br is the ball of radius r in

W−
mod,x.

Since ψx(e
iβt · y0) = ϕmod(ψx(y0),−t) then we can define a continuous map ∂U → ∂Br by using

the modified flow to flow the image ψx(∂U) up to ∂Br. This is is injective since ψx is injective and

ψx(e
iβt ·y0) = ϕmod(ψx(y0),−t). Therefore we have a continuous injective map between two spheres

of the same dimension, which must also be surjective, since if there exists a point which is not in

the image then we have a continuous map from a sphere into a ball of the same dimension from
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which the Borsuk-Ulam theorem contradicts injectivity. Therefore the image V = ψx(U) contains

the ball of radius r in W−
mod,x, and so it is a neighbourhood of zero. �

4.1.5. The negative slice is homeomorphic to the unstable manifold. Fix a critical set C, and for

each x ∈ C define ψx : S−
x → W−

mod,x by ψx(y0) := f∞(y0) · y0. Since ψx is surjective and φx is

a left-inverse then φx : W−
mod,x → S−

x . Recall the definition of the negative slice bundle S−
C and

the unstable bundle W−
C from Definition 3.28. The goal of this section is to show that ψx can be

extended to a homeomorphism ψ : S−
C → W−

C . We first prove this result on the smooth space

Rep(Q,v) where S−
C and W−

C are bundles over C with smooth fibres, and then note that since

this homeomorphism ψ is defined using the action of Gv, then it remains a homeomorphism on

restriction to any closed Gv-invariant subset of Rep(Q,v).

Lemma 4.16 shows that ψ and φ are continuous on each fibre of S−
C . The next result shows that

ψ and φ are continuous on S−
C and hence define a homeomorphism.

Theorem 4.22. There is a Kv-equivariant homeomorphism of a neighbourhood of C in S−
C with

a neighbourhood of C in W−
C .

Proof. Proposition 4.10 shows that it is sufficient to show that ψ : S−
C → W−

mod,C is a homeo-

morphism in a neighbourhood of C. The results of the previous section show that ψ is injective,

surjective and the restriction to each fibre of S−
C is continuous. Therefore it only remains to show

that ψ is continuous on all of S−
C and that φ is continuous on all of W−

C .

Given ε > 0 and y0 ∈ S−
x , use Corollary 4.14 to choose T such that ∥fT (y0)·y0−ψ(y0)∥ < ε. Since

the action of eiβT is continuous and the time T flow depends continuously on the initial condition,

then there exists δ such that for all y ∈ S−
C such that ∥y−y0∥ < δ we have ∥fT (y)·y−fT (y0)·y0∥ < ε.

Since the constants in Corollary 4.14 are uniform over the critical set, then (after shrinking δ if

necessary) we can arrange it so that ∥fT (y) · y − ψ(y)∥ < 2ε for all y such that ∥y − y0∥ < δ.

In conclusion, given ε > 0 we have constructed δ > 0 such that ∥y − y0∥ < δ implies that

∥ψ(y)− ψ(y0)∥ ≤ ∥ψ(y)− fT (y) · y∥+ ∥fT (y) · y − fT (y0) · y0∥+ ∥fT (y0) · y0 − ψ(y0)∥
< 2ε+ ε+ ε = 4ε.

Therefore ψ is continuous. Since the constants in Lemma 4.18 are uniform over the critical set then

the same proof shows that φ is also continuous.

This shows that S−
C is homeomorphic to the unstable set W−

mod,C for the modified flow (4.5).

Together with the result of Proposition 4.10 this shows that S−
C is homeomorphic to the unstable

set for the gradient flow (2.18). The Kv-equivariance of this homeomorphism follows from the

Kv-equivariance of the modified flow (4.5), the linearised flow eiβt = eiµ(x)t and the negative slice

k · S−
x = S−

k·x for all k ∈ Kv. �

Corollary 4.23. The isomorphism classes in S−
x are in bijective correspondence with the isomor-

phism classes in W−
x .
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Proof. Since the map ψx is defined using the action of Gv, then the previous lemma together with

Proposition 4.10 shows that the statement is true in a neighbourhood of x. Since eiβt · y → x for

all y ∈ S−
x , then any representation in S−

x is isomorphic to one in this neighbourhood. Similarly,

limt→−∞ ϕ(y, t) = x for all z ∈ W−
x and so the same is true for W−

x . Therefore the isomorphism

classes of S−
x are in bijective correspondence with those of W−

x . �

Since ψ(y) ∈ Gv · y for all y ∈ S−, then ψ is still a homeomorphism on restriction to any subset

of Rep(Q,v) which is a union of Gv-orbits. An important special case is the subset ν−1(0), where

ν : Rep(Q,v) → Rel(Q,v,R) is the function from (3.3) determined by a set of relations in the path

algebra of Q.

Corollary 4.24. Let Z ⊂ Rep(Q,v) be a closed Gv-invariant subset. Then the restriction ψ :

S−
C ∩Z →W−

C ∩Z is a Kv-equivariant homeomorphism of a neighbourhood U of C in S−
C ∩Z with

a neighbourhood V of C in W−
C ∩ Z. This determines a Kv-equivariant homeomorphism of pairs

ψ|U (U,U \ C) ∼=−→ (V, V \ C).

Remark 4.25. The condition that Z ⊂ Rep(Q,v) is closed and Gv-invariant is sufficient to apply

this result to the subset of representations satisfying a given set of relations. More generally, we

only need that the subset Z is preserved by (a) the gradient flow of ∥µ − α∥2 and (b) the action

of eiβt, where β = µ(x)− α for some critical point x. Therefore the above result also applies after

reducing the structure group of Gv to a subgroup (for example when studying real structures in

analogy with the work of Hitchin on real Higgs bundles in [13]).

4.2. Gradient flow lines and the Hecke correspondence. The goal of this section is to clas-

sify the gradient flow lines connecting critical points in the space of representations of a quiver.

Throughout this section, α is the stability parameter from Definition 3.6 with respect to a fixed

dimension vector v. Since the gradient flow is generated by the action of Gv, then these results

remain valid on restricting to any closed Gv-invariant subset of Rep(Q,v).

Let xu and xℓ be two critical points connected by a flow line. Therefore there exists y ∈ W−
xu

such that limt→−∞ ϕ(y, t) = xu and limt→∞ ϕ(y, t) = xℓ. Theorem 4.22 shows that there exists a

corresponding xu + δx ∈ S−
xu

and g ∈ Gv such that y = g · (xu + δx) and that every xu + δx ∈ S−
xu

corresponds to some y ∈W−
xu

in this way. Since Gv-equivalent initial conditions have Kv-equivalent

limits for the downwards flow (cf. [9]), then we can determine the possible limits xℓ = limt→∞ ϕ(y, t)

up to Kv-equivalence by classifying the possible graded objects of the Harder-Narasimhan-Jordan-

Hölder filtration of the representations xu + δx for δx ∈ S−
x (cf. Lemma 4.33). This leads to the

main result of Theorem 4.35, which interprets the Hecke correspondence in terms of pairs of critical

points connected by a flow line.

In summary, the analytic question of classifying critical points connected by flow lines has been

reduced to an algebraic question, which we will address in this section using homological algebra.

4.2.1. Homological algebra for quivers with relations. In this section we recall some results from

homological algebra and use these to prove some preliminary results which will be used to study
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gradient flow lines in Section 4.2.2. Fix a finite set of relations on the quiver and consider the

subset ν−1(0) ⊂ Rep(Q,v) defined in (3.3). Let x be a critical point in ν−1(0). Recall from

Proposition 3.13 that x is the direct sum of subrepresentations x1 ⊕ x2 with respective dimension

vectors v1 and v2 = v − v1. Let v1 be the dimension vector which is non-zero at the vertex

∞ from Definition 3.6. Proposition 3.13 shows that x1 is stable with µ(x1) = kα(Q,v1) · id,
where α(Q,v1) < 0, and that x2 is semistable with µ(x2) = 0. Now Lemma 3.29 shows that

S−
x = Hom1(Q,v2,v1) ∩ ker(ρCx )

∗ ∩ ker dνx. Therefore S
−
x is isomorphic to the middle cohomology

of the complex

(4.31) Hom0(Q,v2,v1)
ρCx−→ Hom1(Q,v2,v1)

dνx−−→ Rel(Q,v,R)

Denote the cohomology groups of this complex by H0(Q,v2,v1) = ker ρCx and H1(Q,v2,v1) =

ker dνx/ im ρCx
∼= ker(ρCx )

∗∩ker dνx. Given two representations xs ∈ Rep(Q,vs) and xq ∈ Rep(Q,vq),

the extensions 0 → xs → x → xq → 0 are parametrised up to isomorphism by ker(ρCx )
∗ ⊂

Hom1(Q,vq,vs) and each extension class has a canonical representative in ker(ρCx )
∗ by Lemma

3.26, analogous to the harmonic representative of an extension class of holomorphic bundles. In the

presence of a set of relations R, we impose the extra condition that the homomorphisms xs ↩→ x

and x։ xq are compatible with the relations. This is summarised in the following lemma.

Lemma 4.26. Each extension class has a canonical representative in the affine space

S−
x = x+Hom1(Q,v2,v1) ∩ ker(ρCx )

∗ ∩ ker dνx ∼= H
1(Q,v2,v1).

Consider a representation x ∈ ν−1(0) ⊂ Rep(Q,v) given by an extension 0 → xs → x→ xq → 0

and let v = vs + vq be the corresponding decomposition of the dimension vector v. Now let

x′ ∈ ν−1(0) ⊂ Rep(Q,v′) be another representation. Then there is a long exact sequence of

cohomology groups

(4.32) H
0(Q,v′,vs) → H

0(Q,v′,v) → H
0(Q,v′,vq) → H

1(Q,v′,vs) → H
1(Q,v′,v) → · · ·

In an analogous way to extensions of holomorphic bundles, the extension class e ∈ H1(Q,vq,vs)

is the image of the identity homomorphism in H0(Q,vq,vq) by the connecting homomorphism in

the long exact sequence (4.32) with x′ = xq. Similarly, e is also the image of id ∈ H0(Q,vs,vs) by

the connecting homomorphism in the long exact sequence

H
0(Q,vq,vs) → H

0(Q,v,vs) → H
0(Q,vs,vs) → H

1(Q,vq,vs) → H
1(Q,v,vs) → · · ·

The following lemma is a quiver analog of [26, Lem. 3.1] for holomorphic bundles.

Lemma 4.27. Let x ∈ ν−1(0) ⊂ Rep(Q,v) be an extension of representations 0 → xs → x→ xq →
0 with extension class e ∈ H1(Q,vq,vs), and let v = vs + vq be the corresponding decomposition

of the dimension vector of the representation x. Given a positive dimension vector d, let x′q be

a subrepresentation of xq with dimension vector vq
′ = vq − d and associated inclusion map i ∈

H0(Q,vq
′,vq). Then x′q lifts to a subrepresentation of x if and only if the extension class e is in

the kernel of the pullback map i∗ : H1(Q,vq,vs) → H1(Q,vq
′,vs).
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In the same way, if xs is a subrepresentation of x′s with dimension vector vs
′ = vs+d then x′s is

a quotient representation of x if and only if the extension class e is in the kernel of H1(Q,vq,vs) →
H1(Q,vq,vs

′).

Proof. We have the following commutative diagram of long exact sequences associated to x′q
i
↩→ xq.

· · · // H0(Q,vq,vq)

��

// H1(Q,vq,vs)

��

// · · ·

· · · // H0(Q,v′
q,vs) // H0(Q,v′

q,v) // H0(Q,v′
q,vq) // H1(Q,v′

q,vs) // · · ·

The extension class e ∈ H1(Q,vq,vs) and the inclusion i ∈ H0(Q,v′
q,vq) are the images of

id ∈ H0(Q,vq,vq) in H1(Q,vq,vs) and H0(Q,v′
q,vq) respectively. The long exact sequence above

shows that i lifts to a homomorphism ĩ ∈ H0(Q,v′
q,v) iff it maps to zero in H1(Q,v′

q,vs), which

occurs iff the extension class e maps to zero in H1(Q,v′
q,vs).

The second statement follows from an analogous argument with the long exact sequences asso-

ciated to xs ↩→ x′s.

· · · // H0(Q,vs,vs)

��

// H1(Q,vq,vs)

��

// · · ·

· · · // H0(Q,vq,v
′
s) // H0(Q,v,v′

s) // H0(Q,vs,v
′
s) // H1(Q,vq,v

′
s) // · · ·

�

Now we can define Hecke modifications of quivers with relations. First consider the case of a

one-dimensional Hecke modification at a single vertex of Q. In analogy with [36] we call these

miniscule Hecke modifications. For each vertex k ∈ I, we use ek to denote the dimension vector

equal to 1 at vertex k and zero at all other vertices.

Definition 4.28. Let k ∈ I be a vertex of the quiver Q. A pair of representations (x1, x2) ∈
ν−1
v1−ek

(0)×ν−1
v1

(0) is related by a Hecke modification if x1 is a subrepresentation of x2 (cf. [22, Sec.

10], [23, Sec. 5]). Therefore we have the subset

B̃k(Q,v1,R) :=

{(x1, x2) ∈ ν−1
v1−ek

(0)α−st × ν−1
v1

(0)α−st | x1 and x2 are related by a Hecke modification}.

The Hecke correspondence Bk(Q,v1,R) (see [22], [23]) is the subvariety of M(Q,v1 − ek,R) ×
M(Q,v1,R) induced from the quotient maps ν−1

v1−ek
(0)α−st → M(Q,v1 − ek,R) and ν

−1
v1

(0)α−st →
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M(Q,v1,R)

B̃k(Q,v1,R)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

��
ν−1
v1−ek

(0)α−st

��

Bk(Q,v1,R)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

''PP
PP

PP
PP

PP
PP

ν−1
v1

(0)α−st

��
M(Q,v1 − ek,R) M(Q,v1,R)

Equivalently, a miniscule Hecke modification corresponds to a choice of surjective homomorphism

Vk
v−→ C at a single vertex k ∈ I such that the following diagram commutes. The subrepresentation

x2 is the induced representation in Rep(Q,v1 − ek).

0 // Vect(Q,v1 − ek) //

x2

��✤
✤

✤
Vect(Q,v1)

v //

x1

��

C

id
��

// 0

0 // Vect(Q,v1 − ek) // Vect(Q,v1)
v // C // 0

More generally, one can define multiple Hecke modifications associated to a dimension vector d =

(nk)k∈I > 0 as follows (see also [22], [23]). Given x1 ∈ ν−1
v1

(0)α−st and a subrepresentation x2 ∈
ν−1
v1−d

(0)α−st, at each vertex k ∈ I, choose a homomorphism Vk
vk−→ C

nk such that the following

diagram commutes.

0 // Vect(Q,v1 − d) //

x2

��✤
✤

✤
Vect(Q,v1)

⊕vk //

x1

��

⊕

k∈IC
nk

id
��

// 0

0 // Vect(Q,v1 − d) // Vect(Q,v1)
⊕vk //

⊕

k∈IC
nk // 0

Given a stable representation x1 (here we are using the stability parameter from Definition 3.6

such that slopeα(Q,v1) = 0) and a Hecke modification
⊕

k∈I vk : Vect(Q,v) →⊕

k∈IC
nk as above,

the stability of x2 follows automatically, since if x2 is unstable then there exists a subrepresentation

x′ of x2 with dimension vector v′ such that slopeα(Q,v
′) > 0, and so x′ is also a subrepresentation

of x1 with slopeα(Q,v
′) > slopeα(Q,v1) = 0, which contradicts the fact that x1 is stable.

This is summarised in the following lemma.

Lemma 4.29. Let d > 0 be a dimension vector and let x1 ∈ ν−1
v1

(0) and x2 ∈ ν−1
v1−d

(0) be two

representations related by a Hecke modification. Then x1 stable implies x2 stable.

Conversely, if x2 is stable, then x1 is not necessarily stable (for example, it could be the direct

sum of x2 with the trivial representation).

Lemma 4.30. Let d > 0 be a dimension vector and let x1 ∈ ν−1
v1

(0)α−st and x′1 ∈ ν−1
v1−d

(0)α−st

be two stable representations related by a Hecke modification such that slopeα(x
′
1) < slopeα(x1) <

0. Let x2 ∈ ν−1
v2

(0)α−ss be a semistable representation with positive slope. Then the kernel of

H1(Q,v2,v1 − d) → H1(Q,v2,v1) is isomorphic to H0(Q,v2,d). In particular, this has non-zero

dimension if and only if H0(Q,v2,d) has non-zero dimension.
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Proof. Since x1 and x′1 are related by a Hecke modification, then there is an exact sequence

0 → x′1 → x1 → x1/x
′
1 → 0

This induces a long exact sequence in cohomology

H
0(Q,v2,v1 − d) → H

0(Q,v2,v1) → H
0(Q,v2,d) → H

1(Q,v2,v1 − d) → H
1(Q,v2,v1) → · · ·

Since x1 and x2 are semistable and slopeα(Q,v1) < 0 = slopeα(Q,v2) then H0(Q,v2,v1) = 0.

Therefore the kernel of H1(Q,v2,v1 − d) → H1(Q,v2,v1) is isomorphic to H0(Q,v2,d). �

Now we give a simple condition for H0(Q,v2,d) to have non-zero dimension which applies in

the case of Theorem 4.35. Let d = ek for some vertex k ∈ I and let x′1 ∈ Rep(Q,v1 − ek) be a

subrepresentation of x1 ∈ Rep(Q,v1). If the quiver Q has no loops at the vertex k (i.e. there are no

edges e ∈ E such that h(e) = t(e) = k), then let x2 ∈ Rep(Q,v2) be the zero representation. Then

the map ρCx from (4.31) is zero, and so H0(Q,v2, ek) ∼= C
(v2)k , where (v2)k denotes the dimension

of v2 at the vertex k ∈ I.

If the quiver has loops e1, . . . , eℓ at the vertex k, then x1/x
′
1 ∈ Rep(Q, ek) ∼= C

ℓ. Write

(A1, . . . , Aℓ) := x1/x
′
1 with each Ai ∈ C. Then define x2 ∈ Rep(Q,v2) as a representation which

is equal to Ai · id on the edge ei, and zero elsewhere. Note that any relation in the path algebra

satisfied by x1/x
′
1 is also satisfied by x2 and vice-versa. Then once again, the map ρCx from (4.31)

is zero, and so H0(Q,v2, ek) ∼= C
(v2)k .

These results are summarised in the following lemma.

Lemma 4.31. Let x′1 ∈ Rep(Q,v1 − ek) be a subrepresentation of x1 ∈ Rep(Q,v1). If Q has no

loops at k ∈ I, then let x2 ∈ Rep(Q,v2) be the zero representation. If Q has at least one loop at k,

then define x2 as above. Then H0(Q,v2, ek) ∼= C
(v2)k .

4.2.2. Spaces of gradient flow lines. In this section we relate the homological algebra of the previous

section to the problem of constructing gradient flow lines between critical points. The main theorem

is Theorem 4.35 which shows that critical points connected by flow lines determine the Hecke

correspondence.

Throughout this section we fix a dimension vector v and consider the subvariety ν−1(0) ⊂
Rep(Q,v) determined by a finite set of relations on the quiver. Consider a pair of critical points

xu = xu1 ⊕ xu2 and xℓ = xℓ1 ⊕ xℓ2 connected by a flow line {yt : t ∈ R} ⊂ ν−1(0). Let v = vu
1 + vu

2 =

vℓ
1+vℓ

2 be the corresponding decomposition of the dimension vector. We always use the convention

that vu
1 and vℓ

1 are non-zero on the vertex ∞ from Definition 3.6.

Theorem 4.22 shows that there exists t such that yt ∈ W−
xu

is isomorphic to a representation

z ∈ S−
xu
. Lemma 4.26 shows that for the stability parameter of Definition 3.6, the representation

z ∈ S−
xu

= Hom1(Q,vu
2 ,v

u
1 ) ∩ ker(ρCxu

)∗ ∩ ker dνxu determines an extension 0 → xu1 → z → xu2 → 0.

Let e ∈ H1(Q,vu
2 ,v

u
1 ) be the extension class of 0 → xu1 → z → xu2 → 0.

Since xℓ is the downward limit of the flow with initial condition z, then xℓ is isomorphic to

the graded object of the HNJH filtration of z (Theorem 2.20) and therefore we have an extension

0 → (xℓ2)
′ → z → (xℓ1)

′ → 0, where (xℓ2)
′ is the maximal semistable subrepresentation of z and xℓ2
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is isomorphic to the graded object of the Jordan-Hölder filtration of (xℓ2)
′. Note that by the choice

of stability parameter from Definition 3.6, the quotient (xℓ1)
′ is stable and isomorphic to xℓ1.

Since xu is critical then xu1 is stable and xu2 is semistable. Since f(xu) > f(xℓ) then slope(Q,vu
1 ) <

slope(Q,vℓ
1) < slope(Q,vℓ

2) < slope(Q,vu
2 ) and so H0(Q,vℓ

2,v
u
1 ) = 0. Therefore (xℓ2)

′ is a subrep-

resentation of xu2 .

If the image of xu1 → z intersects with the image of (xℓ2)
′ → z then, since (xℓ2)

′ → xu2 is injective,

we have a non-zero map xu1 → xu2 contradicting the fact that 0 → xu1 → z → xu2 → 0 is a short exact

sequence. Therefore the image of xu1 → z maps injectively to (xℓ1)
′ and so xu1 is a subrepresentation

of (xℓ1)
′. This is summarised in the diagram below.

0

yysss
ss
s

(xℓ2)
′

yytt
tt
tt

��
0 // xu1

//

��

z //

yyttt
tt
t

xu2
// 0

(xℓ1)
′

yysss
ss
s

0

The result of Lemma 4.27 shows that the extension class e is in the kernel of the pullback map

H1(Q,vu
2 ,v

u
1 ) → H1(Q,vu

2 ,v
ℓ
1). Therefore we have proved

Lemma 4.32. If xu = xu1 ⊕xu2 and xℓ = xℓ1⊕xℓ2 are connected by a flow line then xℓ1 is isomorphic

to a Hecke modification of xu1 . Moreover, there exists an extension 0 → xu1 → z → xu2 → 0 such

that the extension class e ∈ H1(Q,vu
2 ,v

u
1 ) pulls back to zero in H1(Q,vu

2 ,v
ℓ
1).

Conversely, suppose that xu1 and xℓ1 are stable and related by a Hecke modification, and that vℓ
1 =

vu
1+ek. If dimCH0(Q,vu

2 , ek) > 0 then Lemma 4.30 shows that ker
(

H1(Q,vu
2 ,v

u
1 ) → H1(Q,vu

2 ,v
ℓ
1)
)

is non-trivial, and so we can choose an extension 0 → xu1 → z → xu2 → 0 such that the extension

class e pulls back to zero in H1(Q,vu
2 ,v

ℓ
1). Lemma 4.31 shows that there always exists xu2 such

that dimCH0(Q,vu
2 , ek) > 0 if vu

2 has non-zero dimension at the vertex k ∈ I, which is always true

since vℓ
1 = vu

1 + ek implies vℓ
2 = vu

2 − ek ≥ 0.

Since z is a nontrivial extension, then the Harder-Narasimhan type of z is strictly less than that

of xu = xu1 ⊕ xu2 . Moreover, since e pulls back to zero in H1(Q,vu
2 ,v

ℓ
1) then xℓ1 is a quotient of

z by Lemma 4.27. Therefore there is an extension 0 → xℓ2 → z → xℓ1 → 0 and using the same

argument as the proof of Lemma 4.32 we can show that xℓ2 is a subrepresentation of xu2 . If xℓ2 is

unstable, then the maximal semistable subrepresentation of xℓ2 has slope greater than slope(xℓ2).

Since vℓ
2 = vu

2 − ek, then this contradicts the fact that the Harder-Narasimhan type of z is strictly

less than that of xu. Therefore xℓ2 is the maximal semistable subrepresentation of z. If xℓ2 is not

polystable, then replace xℓ2 by the graded object of the Jordan-Hölder filtration of xℓ2. Therefore

xℓ = xℓ1 ⊕ xℓ2 is isomorphic to the graded object of the HNJH filtration of x. Therefore we have

proved
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Lemma 4.33. Let xu1 be a minimiser of ∥µ − α∥2 on ν−1
vu
1

(0), let xℓ1 ∈ ν−1
vu
1
+ek

(0)st be a Hecke

modification of xu1 and choose xu2 such that dimCH0(Q,vu
2 , ek) > 0 and xu = xu1 ⊕xu2 is critical for

∥µ− α∥2 on ν−1
v (0) where v = vu

1 + vu
2 . Then there exists xℓ2 such that xℓ = xℓ1 ⊕ xℓ2 is isomorphic

to a critical point connected by a flow line to xu.

Now we can use Lemmas 4.32 and 4.33 to show that the Hecke correspondence is determined by

pairs of critical points connected by a flow line.

Definition 4.34. Let Cℓ and Cu be two critical sets with f(Cℓ) < f(Cu). First define the space of

representations that flow up to Cu and down to Cℓ

F̃ℓ,u := {y ∈ ν−1(0) | lim
t→∞

ϕ(y, t) ∈ Cℓ, lim
t→−∞

ϕ(y, t) ∈ Cu}.

The gradient flow ϕ(y, ·) defines a natural R-action on F̃ℓ,u. The space of flow lines connecting Cℓ

and Cu is Fℓ,u := F̃ℓ,u/R. The space of pairs of critical points connected by a flow line is

Pℓ,u := {(xℓ, xu) ∈ Cℓ × Cu | ∃y ∈ F̃ℓ,u such that lim
t→∞

ϕ(y, t) = xℓ, lim
t→−∞

ϕ(y, t) = xu}

The canonical projection maps taking a flow line to its upper and lower endpoints fit into the

following commutative diagram

(4.33) F̃ℓ,u

��

�� ��

Fℓ,u

��



 ��

Pℓ,u

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

!!❈
❈❈

❈❈
❈❈

❈

Cℓ Cu

Lemma 3.15 shows that in the special case of the stability parameter from Definition 3.6, each

critical set (modulo isomorphism) splits as a product

C
vℓ
1

/Kv
∼= Mα(Q,v

ℓ
1,R)×M0(Q,v − vℓ

1,R)

and so there is a projection map C
vℓ
1

→ Mα(Q,v
ℓ
1,R). Given a vertex k ∈ I such that vℓ

1 has

positive dimension at k, the critical sets C
vℓ
1

and C
vℓ
1
−ek

satisfy f(C
vℓ
1

) < f(C
vℓ
1
−ek

). Since the

gradient flow is Kv-equivariant, then there is an induced subvariety M
vℓ
1
,vℓ

1
−ek

⊂ Mα(Q,v
ℓ
1,R) ×
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Mα(Q,v
ℓ
1 − ek,R) such that the following diagram commutes

P
vℓ
1
,vℓ

1
−ek

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣

((PP
PP

PP
PP

PP
PP

P

��
Cℓ
v1

��

M
vℓ
1
,vℓ

1
−ek

ww♦♦♦
♦♦
♦♦
♦♦
♦

((◗◗
◗◗

◗◗
◗◗

◗◗
◗

C
vℓ
1
−ek

��
Mα(Q,v

ℓ
1,R) Mα(Q,v

ℓ
1 − ek,R)

Theorem 4.35. M
vℓ
1
,vℓ

1
−ek

is the Hecke correspondence.

Proof. Lemma 4.32 shows that if xu = xu1 ⊕ xu2 and xℓ = xℓ1 ⊕ xℓ2 are connected by a flow line, then

the pair of isomorphism classes ([xℓ1], [x
u
1 ]) is in the Hecke correspondence Bk(Q,v

ℓ
1,R). Conversely,

if ([(xu1)
′], [(xℓ1)

′]) ∈ Bk(Q,v
ℓ
1,R) then Lemma 4.33 shows that there exist representatives xu1 and xℓ1

for [(xu1)
′] and [(xℓ1)

′] respectively, and there exist xu2 and xℓ2 such that xu = xu1⊕xu2 and xℓ = xℓ1⊕xℓ2
are critical points connected by a flow line. �
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