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Abstract 10 

 11 
Injecting chemical inhibitors is the most common method to mitigate mineral scaling in 12 
the oil industry. As such, the effectiveness of the techniques employed to evaluate 13 
performance of chemical scale inhibitors and apply the appropriate dosage is a very 14 
important aspect to be considered during the design of a scale prevention treatment. 15 
In this paper, the kinetics of scale formation and its inhibition are studied using a 16 
conventional bottle test, a dynamic tube blocking rig and a recently developed in-situ 17 
flow visualization rig. Calcium carbonate scaling brine was prepared at two saturation 18 
indices (SI) of 2.1 and 2.8 at 50ºC and run through the rigs at flow rate of 20ml/min. 19 
The conventional polphosphinocarboxylic acid (PPCA) inhibitor was used for the 20 
inhibition study at concentration ranging between 0.5–10ppm. The MICbulk determined 21 
from bottle test and supported with the in-situ turbidity MICbulk for SI of 2.1 and 2.8 are 22 
1ppm and 8ppm respectively. For the same SI values, a considerably lower 23 
concentration of PPCA, 0.5ppm and 4ppm for the surface inhibition test using the 24 
capillary rig were obtained compared to MICsurface of 4ppm and 8ppm from the in-situ 25 
visualization technique. The surface visualization technique enables the range of 26 
concentration of inhibitors at which both bulk and surface scaling are completely 27 
controlled to be determined. The different techniques are shown to give 28 
complementary information for different stages of crystallization process and 29 
inhibition. 30 

 31 
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 33 

1 Introduction 34 

The performance and efficiency of chemical scale inhibitors to prevent mineral scaling 35 
in bulk solutions and on surfaces of equipment in the oilfield industry cannot be 36 
compromised. Great attention has been given to inhibition of bulk precipitation 37 
reactions (Amjad, 1994; Boak et al., 1999; Shaw and Sorbie, 2013; Shaw, 2012; 38 
Tomson et al., 2005).  39 



The conventional bottle tests used for evaluating the efficiency of scale inhibitor 40 
usually focus on the inhibition of bulk scale precipitation processes. Bulk jar test 41 
consists of mixing brine in a beaker or a jar and carrying out an assessment of the 42 
precipitation process (Graham et al., 2005). At the range of temperature (5oC, 50oC 43 
and 95oC) usually encountered in the production system, it was demonstrated that the 44 
dosage of inhibitor marginally below the required minimum concentration can actually 45 
enhance surface scale growth (Graham et al., 2005; Morizot, 1999a).  46 
 47 
Dynamic tube-blocking rigs have been widely used for the study of scaling phenomena 48 
and in particular for the ranking of scale inhibitors (Dyer and Graham, 2002; Liu et al., 49 
2012; Liu et al., 2016). A typical tube blocking rig experiment involves measurements 50 
of the differential pressure across a small diameter bore tubing of approximately 1-2m 51 
length (Bazin et al., 2005; Bazin et al., 2004; Dyer and Graham, 2002). The time for 52 
the pressure across the cell to increase and deviate from the baseline value gives a 53 
measure of the scaling time. Such technique is often used to assess the efficiency of 54 
scale inhibitors before being deployed in the production lines. Tube blocking tests were 55 
used by Zhang et al (Zhang et al., 2001) to perform bulk measurements at the outlet 56 
of the tube and to develop a kinetic model to predict downhole scaling. Dyer and 57 
Graham (Dyer and Graham, 2002) studied the effects of temperature and pressure on 58 
barium sulphate and calcium carbonate precipitation. The relative efficiency of two 59 
inhibitors combined with temperature and pressure effects on scale formation was also 60 
assessed using the dynamic tube blocking rig with good success. Inhibitor efficiency 61 
is measured by the ratio of the time needed to block the tube in the presence of 62 
inhibitor divided by the time needed to block the tube without inhibitor (Bazin et al., 63 
2004). The drawback of this technique is that the reduction of ionic species as scale 64 
is formed in the 1-2m long tubing coil with residence time of above 3s at 20ml/min, will 65 
cause a decrease in the saturation ratio and possibly uneven distribution of deposited 66 
scale along the tubing. It is therefore difficult to use the methodology to develop a 67 
robust kinetic models where the experimental conditions should remain constant 68 
across the working section. The possibility of scale gradually building up in the 69 
capillary or tube without effectively detecting it could also lead to incorrect assessment 70 
of the Minimum Inhibitor Concentration (MIC).  71 
 72 
An in-situ flow visualization technique with associated image analysis of scale build-73 
up in real-time was recently developed to study the kinetics and mechanisms of 74 
surface scaling under constant condition (Sanni et al., 2015; Sanni et al., 2017). It was 75 
used to assess the inhibition of BaSO4 surface and bulk scaling using phosphino-76 
polycarboxilic acid (PPCA) and di-ethylene triamine penta methylene phosphonic acid 77 
(DETPMP) (Bukuaghangin et al., 2016). Scale precipitation and surface deposition is 78 
followed in-situ and in real-time in a once-through flow rig that allows control and 79 
assessment of various parameters such as temperature, flow rate, inhibitor 80 
concentration, brine chemistry and scaling indices. Having a constant supersaturation 81 
across the working section is important to be able to accurately predict scaling kinetics 82 
and effectively evaluate the MIC.  83 



 84 
Recent studies are now being focussed on the evaluation and inhibition of surface 85 
fouling and crystal growth rates at solid interfaces (Bukuaghangin et al., 2016; 86 
Charpentier et al., 2015; Keogh et al., 2017). Chen et al (Chen, 2005) reported that at 87 
4 ppm of PPCA, the inhibition efficiency of surface deposition is greater than the 88 
inhibition efficiency of bulk precipitation. It is assumed that the inhibitor film formed on 89 
the metal surface at the highest concentration of PPCA (4 ppm) prevent the adsorption 90 
of scale crystals on the metal surface. Other studies have shown that the mechanisms 91 
and kinetics controlling bulk and surface deposition are different and scale inhibition 92 
efficiency varies between surface and bulk processes (Chen et al., 2005; Mavredaki, 93 
2009; Morizot and Neville, 2000; Sanni et al., 2015; Setta and Neville, 2011).  94 
 95 

As such, there is need to evaluate existing bulk inhibition methods and establish their 96 
suitability to assess surface inhibition by focussing on the distinction between bulk and 97 
surface mechanisms and the effects on inhibition strategies. The current paper, 98 
therefore assesses and compares the inhibition performance of PPCA using the 99 
conventional bottle, dynamic tube blocking rig, a new capillary system as well as the 100 
newly developed once-through in-situ flow visualization technique. The new technique 101 
has been used at the same condition as the conventional methods in order to 102 
simultaneously and distinctively study the inhibition of both homogeneous bulk 103 
precipitation and heterogeneous surface deposition in a single system. The results are 104 
further analysed to show effects of chemical inhibition on crystallization mechanisms 105 
using a model developed by Beaunier et al (Beaunier et al., 2001) and subsequently 106 
modified by Euvrard et al (Euvrard et al., 2006). It describes the types of nucleation as 107 
either instantaneous or progressive. Instantaneous nucleation describes the situation 108 
when, in the initial stages of crystal formation, nuclei are formed and then grow. The 109 
nucleation and growth processes are separated, and no further nucleation occurs 110 
when the growth is occurring while progressive nucleation describes the process when 111 
nucleation occurs and the crystals grow but new nuclei continue to be formed. 112 

 113 
For instantaneous nucleation:  114 鯨勅掴痛岫建岻 噺  伐 ln盤な 伐 鯨岫建岻匪 噺  警計怠軽墜建貢                                            (1) 

                                 115 
For Progressive nucleation:   116  鯨勅掴痛岫建岻 噺  伐 ln盤な 伐 鯨岫建岻匪 噺  警計怠軽墜畦建態貢  (2) 

Sext(t) is the extended surface coverage, S(t) is the actual covered surface area, A is 117 
the nucleation rate, k1 is the lateral growth rate (mol/µm/s), M is the molar mass of 118 
CaCO3(100g/mol), と is the density of the crystals (と=2.71 X 10-12g/µm3 for calcite), 119 
No is the number of active nucleation sites (equivalent to detected number of crystals). 120 



Instantaneous nucleation occurs when Sext(t) is proportional to time, whereas 121 
progressive nucleation takes place when Sext(t) is proportional to time squared (t2). 122 
 123 

2 Experimental Details  124 

 Chemical  125 

 Brine Composition 126 

Two brines were mixed at 50:50 at a temperature of 50°C and at mospheric pressure. 127 
The saturation ratio of these brines was calculated using the ScaleSoftPitzer (Version 128 
4.0) (Tomson, 2009). Saturation ratio is calculated generally using equation (3). 129 鯨迎 噺  岷系欠態袋峅岷系頚戴鉄貼峅計鎚椎頓尼頓捺典  

(3) 

The composition of the brines used is presented in Table 1 and Table 2. The seawater 130 
(SW) is the source of carbonate ions (CO32-) while the Formation Water (FW) is the 131 
source of calcium ions (Ca2+) in the experiment. Each brine shows a simple 132 
composition to prevent the influence of impurities on the formation of CaCO3 scale. 133 

The scaling tendency can also be expressed in terms of Saturation Index (SI), which 134 
is the logarithm of Saturation Ratio (SR) 135 鯨荊 噺 log怠待 SR (4) 

 136 

Table 1: Brine Composition in g/l for SI 2.1 137  
NaCl NaHCO3 CaCl2.2H2O 

Formation 
water 

46.36 0 7.35 

Sea water 31.02 5.51 0 

Supersaturation 
index SI (50:50) 

2.1 (SR = 126 ) 

  138 

Table 2: Brine Composition in g/l for SI 2.8 139  
NaCl NaHCO3 CaCl2.2H2O 

Formation 
water 

46.36 0 14.70 

Sea water 31.02 11.70 0 

Supersaturation 
index SI (50:50) 

2.8 (SR = 630 ) 

 140 

The two concentrations were selected to induce both homogeneous bulk and 141 
heterogeneous surface precipitation within a reasonable time frame. The temperature 142 



of 50oC selected was based on temperature observed in an oilfield topside 143 
operations(Graham et al., 2005). 144 

 Additives 145 

The chemical additive used during the study is PPCA, which is a commercial product 146 
commonly used in the oilfield because of its good quality, low cost and environmental 147 
acceptability. PPCA is a standard polymeric scale inhibitors widely applied in the field 148 
to prevent both carbonate and sulphate scales (Farooqui et al., 2014)  149 

The molecular weight of PPCA IS 3600g/mol and its molecular structure shown in 150 
Figure 1. 151 

 152 

Figure 1: Schematic structures of PPCA (Amjad, 1998) 153 

 Cleaning solution 154 

In order to reduce error and increase good reproducibility, the rigs were cleaned up 155 
after each experiment with a solution containing 25g of ethylene-diamine-tetra-acetic 156 
acid (EDTA) and 25g of potassium hydroxide (KOH) in 500 ml (pH of ~11). 157 

 Experimental Set-up 158 

 Bulk Jar/Bottle Test  159 

This is the common test method used to evaluate the efficiency of chemical scale 160 
inhibitors in bulk solution. The test procedures for the conventional bottle test 161 
performed are as described in the NACE standards (NACE, 2001). The experiment 162 
involves the mixing of brine in a beaker/jar the precipitation is then followed by 163 
measuring the concentration of free calcium ions in solutions over time (t). The 164 
efficiency of the inhibitor is calculated by using the equation: 165 荊┻ 継 噺 などど 峪系岫建岻 伐   系長岫建岻系待  伐      系長岫建岻崋 (5) 

 166 

Where C (t) = test sample Ca2+ concentration at time, t, Cb(t) = Ca2+ concentration in 167 
the blank solution (no scale inhibitor) and CO = control sample Ca2+ concentration at 168 
time, t = 0 (ppm). 169 

CaCO3 brine solutions at SI values of 2.1 and 2.8 are prepared separately and tested. 170 
PPCA inhibitors at different concentrations ranging from 1ppm – 10ppm were added 171 
to each solution and the solutions were incubated at 50ºC for 2 and 22 hours. 172 



Uninhibited CaCO3 brine serves as baseline conditions. After incubation, 1 ml sample 173 
is taken from each bottle for chemical analysis using the Atomic Absorption 174 
Spectrometry (AAS) analysis to determine the free calcium ion concentration 175 
remaining in solution. 9 ml of a quenching (KCl/polyvinyl sulfonate) solution is added 176 
to each sample to prevent further precipitation. The concentration of gas-phase atoms 177 
is measured by the AAS using light absorption (Seeger et al., 2019). The analyte 178 
atoms or ions is vaporized in a flame or graphite furnace. The light source is a hollow 179 
cathode lamp in which the cathode is made from the same metal that is being 180 
analysed, in this case calcium. The calcium atoms are excited on heating and their 181 
electrons go to higher energy levels. When the electrons fall back to lower levels, 182 
visible radiation is given off. The energy of the emitted photons corresponds to the 183 
energy difference of the Ca atom electron levels. Concentration measurements are 184 
usually determined from a working curve after calibrating the instrument with 185 
standards of known concentration. Calcium ion standard solution of 1.0 mg ml–1, was 186 
prepared by dissolving an appropriate amount of CaO in diluted hydrochloric acid. 187 

 Capillary flow rig 188 

The dynamic tube blocking test is a well-known technique used in the oil and gas 189 
industry to investigate the effectiveness of scale inhibitor in dynamic conditions (Dyer 190 
and Graham, 2002; Frenier, 2008; Graham et al., 2005). The set-up is equipped with 191 
a temperature controlled device and a pressure transducer which is used to measure 192 
the pressure difference across the tube as illustrated in the schematic diagram shown 193 
in Figure 2. The brine solutions (SW and FW) are injected into the coils using a 194 
reciprocating pump. The residence time of the fluid to travel from the mixing section to 195 
the cells is 0.54s at flow rate of 20ml/min. Supersaturated solutions flow through a thin 196 
tube of 1mm in diameter and scale builds up on the surface of the tube results in 197 
differential pressure between the inlet and outlet of the tube (Frenier, 2008; 198 
Koutsoukos and Kontoyannis, 1984) . In this study, two capillary tubes with lengths of 199 
10mm and 1000mm (both internal diameters of 1mm) were used during the 200 
experiment. The short capillary tube is the adapted version of the conventional tube 201 
blocking rig where the saturation ratio of the flowing fluid is considered constant within 202 
the capillary cell with a very short residence time of 0.03s.  203 

The performance of scale inhibitor is assessed by injecting scale inhibitor solutions 204 
upstream of the mixing point of the waters. The inhibitor was injected into the seawater 205 
brine solution containing carbonate ions. The scaling time is first evaluated for the 206 
baseline conditions for both the long coil and short capillary cell. The effectiveness of 207 
the inhibitor concentration is measured by the time period at which the inhibitor 208 
prevents or delays the increase in differential pressure. The concentration of PPCA 209 
inhibitor used for the different tests and SI values range from 0.5ppm – 10ppm as in 210 
the bottle test for bulk precipitation.     211 

 212 



 213 

                     214 
         Long coil                         Short capillary 215 

(L= 1000mm; ID = 1mm)         (L = 10mm, ID = 1mm) 216 

Figure 2:  (a) Schematic diagram of the capillary rig (b) typical data (Bello, 2017) 217 

 218 

  In-situ visualization cell 219 

The in-situ visualization set-up presented in Figure 3, has been described in detail 220 
previously (Sanni et al., 2017). The set-up was designed to work under atmospheric 221 
pressure and allows experimental conditions to be kept constant at the point where 222 
the images are recorded. In addition, the set-up allows surface fouling and bulk 223 
precipitation to be assessed simultaneously. The images captured were processed to 224 
assess the number of crystals and their sizes as well as the CaCO3 surface coverage. 225 
Similarly, real-time measurements of the bulk precipitation were performed using a 226 
turbidity probe. 227 

Prior to the start of the experiment, the thermostatic bath is set to the desired operating 228 
temperature. The two brine solutions are pumped through the thermostatic bath to be 229 
heated up to the desired experimental temperature, they are mixed in a tee chamber 230 
close to the flow cell. The residence time of fluids from the mixing point to the cell is 231 
0.03s at 20ml/min. In the flow cell, the camera takes images of the scale formed on 232 
the substrate every 5 minutes during the course of the experiment.  233 

 

   (a) 
 

   (b) 
 



 234 

(a)                                                              (b) 235 

Figure 3: Schematic diagram of the in-situ visualization rig (Sanni et al., 2017) 236 

 237 

The inhibition performances and mechanisms at different SR on both turbidity and 238 
surface scaling were assessed in-situ and in real time. 239 

CaCO3 scale inhibition tests were carried out in the flow rig with the two SR values of 240 
2.1 and 2.8 at 50ºC using polyphosphinocarboxylic acid (PPCA) at 1, 2, 4, 6 and 8ppm. 241 
The inhibitor was prepared and added into the seawater (SW) solution, containing 242 
CO32-, prior to mixing. 243 

 Test conditions  244 

Tests were carried out to assess the effectiveness of each technique regarding scale 245 
inhibition. The test conditions for the static and dynamic flow tests are shown in Table 246 
3. The temperature used is 50ºC to represent a realistic temperature at top side oil 247 
production facilities. The flow rate used for the study is 20ml/min and the total time of 248 
study is 4hours. 249 

Table 3: Experimental conditions 250 
 

Parameters 
Conditions 

  Bottle In-situ 
visualization  

Capillary rig  

Flow rate (ml/min)   Static                      20 
Duration of test (hours)   2 & 22                       4 
Mixing Ratio  50:50 
Pressure      Atmospheric 
Temperature (°C) 50 
Inhibitor Concentration (ppm) 1, 2, 4, 6, 8, 10 

 Surface profilometry  251 

The surface contact profilometer was used to determine the scale thickness or growth 252 
in direction normal to the surface (refer to z- direction in the remaining of the paper). 253 
The contact profilometer measures the vertical characteristics of the surface deviation. 254 
The scale deposition was performed in the visualization rig on four samples under the 255 



same condition of saturation index, flow and temperature. The scaling time considered 256 
are 60 minutes, 120 minutes, 180 minutes and 240 minutes corresponding to the 257 
induction period observed in the short capillary (10mm) cell for brine with SI values of 258 
2.1 and 2.8. The scale was deposited on one half of the sample surface while scale 259 
on the other half is prevented with a masking tape. The scale average thickness is 260 
measured relative to the unscaled part of the sample with the evaluation length, L, set 261 
at 8mm at three different sections (Figure 4). 262 

 263 
Figure 4: Sample profile for surface roughness 264 

  265 

3 Results and discussion  266 

 Bulk Solution Minimum Inhibition Concentration (MIC) 267 

The static bottle test was used to establish the bulk MIC for the CaCO3 brines. The 268 
rate of consumption of ionic species (Ca2+, CO32) in the bulk solution gives an 269 
understanding of the precipitation rate of calcium carbonate scale (CaCO3). The MIC 270 
was determined for the brine mixing ratio of NSSW/FW (50:50) at 2 and 22 hours 271 
residence times. The inhibition efficiency at different concentrations of PPCA in the 272 
bulk solutions of CaCO3 at 50oC are shown in Figure 5. The acceptable industrial 273 
standard for bulk MIC (MICbulk) is the concentration of inhibitor that gives an 80% or 274 
more inhibition efficiency at 2 and 22 hours (Graham and Sorbie, 1997; Graham et al., 275 
2001). For this study, the bulk MIC is taken as the concentration level of inhibitor that 276 
maintains a 90% inhibition efficiency. For saturation values of 2.1, the MICbulk is 1ppm 277 
as the inhibition efficiency is 90%. At SI of 2.8, the 90% efficiency is attained at higher 278 
amount of PPCA concentration of 8 ppm 279 
 280 

    281 
Figure 5: Inhibitor efficiency at different levels of scale inhibitor (a) SI = 2.1 (b) SI = 2.8 282 

(a) (b) 



Increase in SI and scaling ions requires greater concentration of PPCA to control the 283 
formation of calcium carbonate in the bulk solution. This is consistent with previous 284 
results by Graham et al.(Graham et al., 2005; Graham et al., 2001) and (Setta and 285 
Neville, 2011) 286 
 287 

 In-situ turbidity measurement  288 

The turbidity measurement from the in-situ flow rig for the blank tests plotted in Figure 289 
6 are 95 and 166 FTU for SI values of 2.1 and 2.8 respectively with zero induction 290 
time. The system is such that the saturation ratio is kept constant throughout the flow 291 
cell which consequently maintains constant values of the turbidity measured (Sanni et 292 
al., 2017). The inhibition effects and mechanisms for bulk precipitation at different SR 293 
were assessed in-situ and in real time. The results presented are in agreement with 294 
the MICbulk obtained from static bottle tests. It can be seen in Figure 6 (a) that for SI 295 
value of 2.1, there was no bulk precipitation occurring with the addition of PPCA at 296 
1ppm concentration while for SI of 2.8, the bulk scaling is completely inhibited with the 297 
injection of 8ppm of PPCA. At these points, the values of the turbidity measured are 298 
zero indicating that there are no crystals precipitating in the solution.   299 
 300 

  301 

Figure 6: In-situ bulk turbidity for (a) SI = 2.1 (b) SI = 2.8 302 
 303 

The real-time in-situ turbidity measurement makes it possible to follow the gradual 304 
decrease in turbidity with increasing concentration of PPCA up to the MIC. As shown 305 
in Figure 6b, at concentrations below MICbulk (8ppm), the bulk turbidity values only 306 
reduced when compared with the blank turbidity indicating that the precipitation has 307 
not been completely controlled.  308 
 309 

 Surface scaling in capillary rig versus conventional tube blocking rig  310 

The surface scaling times for the uninhibited tests for both the conventional long coil 311 
of 1000mm and the adapted short 10mm capillary are presented here. The residence 312 
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time of the fluid in the long coil is about 3.0s at flow rate of 20 ml/min, and for the short 313 
capillary cell, the residence time is 0.025s at the same flow rate of 20 ml/min.   314 

For the brine solution with SI value of 2.1 (Figure 7a), the surface scaling induction 315 
period is 90 minutes for the conventional tube blocking rig (1000 mm coil length) 316 
compared to the induction period of 200 minutes observed for the short capillary rig 317 
(10 mm). A similar trend is observed for SI of 2.8, for longer coil length, faster induction 318 
time of about 10 minutes and it resulted in faster scale build up as it took shorter time 319 
(50 minutes) to reach the threshold differential pressure of 5psi (Figure 7b). However, 320 
the induction time for the short capillary for SI 2.8 is observed to be 45 minutes. 321 

Homogeneous precipitation and heterogeneous crystallization processes take place 322 
in the two cells with a more constant thermodynamic condition in the short capillary. 323 
Primary nucleation is a stochastic process which manifests in crystallization at different 324 
scales, as such, detection time of crystals may not be identical in many experiments 325 
despite identical experimental conditions (Mazzotti, 2015).  326 

 327 

    328 
Figure 7: Effects of capillary length on scale deposition (a) SI = 2.1, (b) S.I = 2.8 329 

   330 

The difference in the scaling time observed in these two systems could be attributed 331 
to the different lengths and configuration of their cells. The long capillary means 332 
greater surface area that can facilitate crystallization by heterogeneous nucleation. 333 
Heterogeneous nucleation sites include surface defects, joints and seams in tubing. 334 
The hot spots created by the coil system of the long capillary can act as high energy 335 
region for surface reaction and could facilitate interaction between the adsorbed 336 
hydrated calcium ion and the substrate thereby leading to faster crystallization on the 337 
scale (Flaten et al., 2010; Nielsen, 1984; Yamanaka et al., 2012).   338 

 Inhibition in capillary rig 339 

The capillary rig test is designed to assess scale inhibition under dynamic flow 340 
conditions at constant saturation ratio. The Minimum Inhibitor Concentration (MIC) for 341 
a given SI is taken as the scaling induction time which corresponds to at least 5 times 342 
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the blank value (Bazin et al., 2004). The graphs in Figure 8 and Figure 9 summarise 343 
the effects of injecting inhibitors to the system. 344 

A similar trend is observed with respect to scale inhibition for both the conventional 345 
tube blocking and the adapted short capillary systems. For SI 2.1, no scale formation 346 
was observed with the addition of 0.5ppm concentration of PPCA while for S.I value 347 
of 2.8, the formation of scale in the capillaries was prevented with the injection of 4ppm 348 
concentration of PPCA inhibitor.  349 

   350 

 351 

Figure 8: Scaling in capillary rig at SI = 2.1 (a) Short capillary (b) Long capillary 352 
 353 

 354 

 355 

Figure 9: Scaling in capillary rig at SI = 2.8 (a) Short capillary (b) Long capillary 356 
 357 

Results of the inhibition tests from the capillary rig show the concentration of the 358 
inhibitor needed to prevent surface scale formation to be lower compared to the static 359 
bottle test for bulk. A previous study at 50oC by Graham et al (Graham et al., 2005) 360 
reported that the reaction kinetics are moderately fast in the bulk solutions and larger 361 
amount of inhibitors were required to control the bulk reaction. The interplay of two or 362 
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more factors is responsible for the discrepancies between low value of MICsurface 363 
obtained from tube blocking test and the high MICbulk obtained with static bottle test. 364 
Firstly, the residence time (0.025s) for the brine solution to travel through the capillary 365 
cell after mixing is very short compared to the long residence times ( 2 hours, 22 hours) 366 
used for the standard bottle test (Graham and Sorbie, 1997). The longer residence 367 
time of bottle test would promotes growth of crystals at later stages. It is erroneous to 368 
make a direct comparison of MIC between the two systems as the parameters may 369 
vary and the residence times differ. Secondly, the chemistry of inhibitors which make 370 
them efficient in stopping either nucleation or growth of crystals with PPCA regarded 371 
as being more effective nucleation inhibitors (Reddy and Hoch, 2001; Yuan et al., 372 
1998). The short residence time of brine solution in the capillary cell and long coil 373 
coupled with the effective nucleation inhibiting mechanisms of PPCA, the nucleation 374 
sites are reduced significantly, the differential pressure would be held at zero or rise 375 
slowly depending on the SI and concentrations of inhibitors. 376 
  377 
Employing the MIC determined from the tube blocking rig may pose a potential 378 
problem both with regards to scaling in bulk and surface facilities as surface growth of 379 
nucleated crystals can still take place at a slow rate. Previous studies have shown 380 
surface MIC (MICsurface) to be higher than MICbulk (Bukuaghangin et al., 2015; Chen et 381 
al., 2004; Graham and Sorbie, 1997; Graham et al., 2005; Setta and Neville, 2011). 382 
Surface deposition is usually initiated by heterogeneous nucleation which requires a 383 
lower energy barrier than the homogenous nucleation in bulk precipitation (Myerson, 384 
2001; Setta and Neville, 2011).  The growth of scale on metal surfaces is clearly a 385 
much more serious problem than precipitation within the bulk solution. 386 

 Surface scaling and inhibition using in-situ visualization 387 

The in-situ flow visualization set up has been used to assess surface deposition and 388 
inhibition under the same set of conditions in the capillary rig. The range of inhibitor 389 
concentration, SI values, flow rates and temperature are maintained as in the capillary 390 
rig test.  391 

 In-situ surface images 392 

The in-situ images for each set of experimental condition were recorded every 5 393 
minutes for 4 hours. Figure 10 shows surface crystals formed after 10 minutes and 394 
240 minutes at SI value of 2.1 without inhibitor. The constant SI means that the 395 
thermodynamic condition is constant across the cell, as such, surface growth and bulk 396 
precipitation can be observed to continue over the duration of the experiment with 397 
larger crystals and more surface coverage at 240 minutes.  398 

     399 
 400 



      401 

Figure 10: In-situ surface images for Blank test at SR = 2.1 402 
     403 

The number of crystals formed on the surface is reduced with the injection of 1ppm 404 
inhibitor. This is the MICbulk determined from the bottle test and also effective to control 405 
the in-situ bulk precipitation in the visualization rig. However, contrary to assessment 406 
of surface inhibition using the capillary rig, it is shown with the in-situ surface images 407 
in Figure 11 that the active surface nucleation sites are only reduced but the growth of 408 
already nucleated crystals continued. Real time visualization test in contrast to the 409 
capillary tests shows that complete inhibition of surface scaling was not achieved at 410 
1ppm concentration.  At this concentration, the inhibitor molecules are not completely 411 
adsorbed and block all the active growth sites to prevent growth of the crystals 412 
(Bukuaghangin et al., 2016; Graham and Sorbie, 1997; Graham et al., 2004) .  413 
  414 

      415 

Figure 11: In-situ surface images at SR = 2.1 and 1ppm PPCA 416 

Further increase in the concentration of PPCA to 2ppm resulted in greater reduction 417 
in the number of crystals as shown in Figure 12. Here, more crystals growth’s sites 418 
are blocked compared to 1ppm concentration of PPCA concentration. The scale 419 
formation at the surface is significantly diminished but not entirely controlled at 420 
concentration slightly above the MICbulk. The overall surface coverage was significantly 421 
reduced and could be accountable for the inability of the capillary rig to detect the 422 
surface scaling at the same concentration of PPCA.   423 
 424 
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                      425 

Figure 12: In-situ surface images at SR = 2.1 and 2ppm PPCA 426 

Scanning Electron Microscope (SEM) images were taken to assess the morphology 427 
of the surface crystals formed on the samples in the in-situ cell after 4 hours. Figure 428 
13 and Figure 14 show the SEM images for SI = 2.1 and 2.8 respectively at flow rate 429 
of 20 ml/min. For the uninhibited test, the crystals are distributed uniformly across the 430 
metal surfaces. The crystals are composed of mainly leaf-like vaterite and a few 431 
sparsely distributed cubic calcite crystals which is consistent with previous works on 432 
CaCO3 deposition at 50oC (Euvrard et al., 2000; Kjellin, 2003; Sanni et al., 2017). 433 
However, injection of inhibitors at MICbulk resulted in distorted growth of the surface 434 
crystals because the inhibitor molecules are not completely adsorbed on all faces 435 
resulting in preferential growth of faces (Bukuaghangin et al., 2016; Mavredaki, 2009). 436 

 437 

   438 

Figure 13:SEM images of the CaCO3 scale deposited on the surface for SI = 2.1 at 50C; (a) blank (b) 439 
1ppm PPCA (c) 2ppm PPCA 440 

 441 

      442 

Figure 14: SEM images of the CaCO3 scale deposited on the surface for SI = 2.8 at 50C; (a) blank (b) 443 
4ppm PPCA (c) 8ppm PPCA 444 

 445 
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 Crystal nucleation and surface coverage  446 

The in-situ images from the visualization rig were analysed to assess the number and 447 
the surface coverage of crystals. In all cases, the crystals could be quantified as soon 448 
as their sizes reached 1µm. Figure 15 presents the reduction in surface nucleation 449 
and total surface coverage of scale as PPCA concentration is increased from 1ppm, 450 
2ppm to 4ppm for SI of 2.1. 451 

Generally, the number of crystals decreases with increase in the concentration of 452 
PPCA inhibitor. The PPCA acts to block active nucleation sites and consequently 453 
inhibits scale formation to various degrees depending on its concentration and brine 454 
solution SI.   455 

  456 

Figure 15: (a) Number of crystals and (b) Surface coverage at SR = 2.1 for blank and with PPCA 457 
inhibitor at different concentrations 458 

 459 

For SI value of 2.1 (Figure 15), the inhibitor concentration required to effectively inhibit 460 
scaling is 4ppm compared to the capillary rig test where the concentration is 1ppm for 461 
the same SI. The visualization rig technique shows that nucleation of crystals is only 462 
partially inhibited with the injection of 1ppm and 2ppm of PPCA inhibitor, and the rates 463 
of surface coverage are only significantly reduced with respect to the non-inhibited test 464 
as shown in Figure 15b. Nucleation of crystals is completely inhibited when 4ppm of 465 
PPCA was added as no crystals are detected, therefore the surface coverage remains 466 
at zero. At this concentration, heterogeneous surface nucleation was totally controlled 467 
with complete adsorption of inhibitor molecules on the nucleation sites.  468 
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 470 

Figure 16: (a) Number of crystals and (b) Surface coverage at SR = 2.8 for blank and with PPCA 471 
inhibitor at different concentrations 472 

 473 

For higher SI of 2.8 (Figure 16a), the inhibitor concentration of 4ppm was not sufficient 474 
to block all the nucleation sites. The number of active nucleation sites is a function of 475 
SI, therefore, a function of the ionic concentration of the brine solutions. Here, higher 476 
PPCA inhibitor concentration of 8ppm is required to completely inhibit crystal growth. 477 
This is in contrast to the capillary rig test where no increase in differential pressure 478 
was observed with the addition of PPCA at 4ppm. The results from the visualization 479 
rig in Figure 16 shows that at this concentration (4ppm), the number of crystals was 480 
only reduced while the rate of surface coverage of scale significantly dropped from 481 
0.29 µm2/min to 0.04 µm2/min. PPCA partially inhibits calcium carbonate nucleation 482 
by decreasing the number of nuclei and also the number of active sites on the metal 483 
(Martinod, 2008). 484 

Thus, MIC levels depend on the sensitivity that can be achieved in the different rigs. 485 
The visualization set up could be used to evaluate the minimum inhibitor concentration 486 
at which complete inhibition of scaling on surface equipment is achievable. This is 487 
usually higher than the MIC require to delay the surface induction or scaling time as 488 
determined by the dynamic tube blocking rig. The concentration requires to completely 489 
inhibit further growth is a function of percentage surface coverage of crystals and the 490 
number of active growth sites. With greater surface coverage, it requires higher 491 
concentration of the inhibitor to be completely adsorbed on the crystals. 492 

The effects of injecting the PPCA inhibitor on the kinetics is summarised in Table 4. 493 
The rate of scale formation is the slope of the linear fit on the surface coverage area 494 
(Figure 15 and Figure 16) as a function of time.  495 

 496 
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Table 4: Rate of surface coverage with inhibitor injection at S.I = 2.1 and 2.8 498 

SR 
Inhibitor 
Concentration Linear Equation Rate 

(µm2/s) 

2.1 Blank y = 0.293x + 3.654 0.293 

 1 ppm y = 0.077x + 1.874 0.077 

 2 ppm y = 0.038x  + 0.814 0.038 

 4 ppm y = 0.000 0.000 

2.8 Blank y = 0.454x + 4.602 0.454 

 1 ppm y=  0.216x + 1.368 0.216 

 2 ppm y= 0.112x – 0.1698 0 .112 

 4 ppm y =  0.005x + 0.005 0.005 

 499 

Higher SR shows higher rates of surface scale coverage while a decrease in rate of 500 
formation is clearly observed with an increase in the concentration of inhibitors. This 501 
shows that the adsorption rate of inhibitors is a function of its concentration. The in-502 
situ technique allows to know the concentration that completely inhibit surface scaling, 503 
in this case, 4ppm was able to block all the active sites at S.I value of 2.1 and prevent 504 
nucleation of crystals.  505 

In regards to the crystallization mechanisms, it can be observed from Figures 15a and 506 
16a that nucleation takes place very fast with no measurable induction period 507 
(Karabelas, 2002) and the number of crystals stabilizes very quickly. The nucleation 508 
mechanisms is instantaneous nucleation as all active nucleation sites are assumed to 509 
be converted into nuclei at the early stage of crystallization (Beaunier et al., 2001; 510 
Euvrard et al., 2006). The nucleation process did not proceed for the entire duration 511 
of the test. The number of crystals reaches a maximum, as such, the later stages of 512 
crystallization process would be dominated by the growth or agglomeration of existing 513 
crystals as indicated by the increase in surface coverage with time (Figure 15b and 514 
Figure 16b). It shows that a scaling surface consists of a finite number of active 515 
nucleation sites (Beaunier et al., 2001).  516 

As stated in equation (1), for instantaneous nucleation:   517 傘岫嗣岻 噺 捌皐層錆伺嗣持   

Therefore, plotting the actual surface coverage, 傘岫嗣岻 against time, t for SI values of 2.1 518 
and 2.8 gives a linear relationship as shown in Figure 15b and Figure 16b. 519 

The CaCO3 crystals are formed in a short time and grow progressively as a result of 520 
constant supersaturation as shown in Figure 17. The early stage of crystallization is 521 
dominated by rapid nucleation with all available active sites generating nuclei in a 522 
relatively short period (Sanni et al., 2016). This is similar to the observations by 523 



Beaunier et al (Beaunier et al., 2001) for high concentrations of calcium ions where it 524 
was assumed that difusion controls the process.   525 

    526 
Figure 17: Schematic illustration of instantaneous crystallization mechanisms 527 

There are different mechanisms to control the process of scale formation at different 528 
ionic concentrations. The ability to understand and determine the surface 529 
crystallization mechanisms allows for the correct type and dosage of inhibitor to be 530 
selected. It could also help to assess how efficient inhibitors would be in controlling 531 
either the nucleation or growth of scale on surfaces. Inhibition strategy should be able 532 
to accommodate the possibility of surface scaling without bulk precipitation and the 533 
use of either nucleation or growth inhibitors.  534 

 535 

 Minimum Inhibition Concentration from the different test methods 536 

The minimum inhibitor concentrations obtained for each technique is summarised in 537 
Table 5. 538 

 539 

Table 5: Minimum inhibition concentration (MIC) values from different techniques 540 

 

Technique 

Bulk Precipitation Surface crystallization 

SI 2.1 SI 2.8 SI 2.1 SI 2.8 

Bottle jar test 1 8 - - 

TBT Long - - 0.5 4 

TBT Short - - 0.5 4 

Visualization  test (VR) 1 8 4 >8 

 541 

The MICbulk determined from bottle test and supported with the in-situ turbidity MICbulk 542 
for SI of 2.1 and SI of 2.8 are 1ppm and 8pmm respectively. It requires a considerably 543 
lower concentration of PPCA for the surface inhibition test using the capillary rig. The 544 
method for assessing the efficiency of scale inhibitor varies in the two systems. Scale 545 
inhibition efficiency is measured in terms of the reduction of scaling ion concentrations 546 
for static bottle test while it is expressed in terms of delaying the induction time up to 547 
5 times of the blank scaling time in the capillary rigs. By comparison, the longer 548 
residence time in static bottle test could result in further growth of nucleated crystals 549 
which invariably require higher concentration of inhibitor for maximum efficiency than 550 
the capillary rig (Graham and Sorbie, 1997). The consumption of inhibitor by 551 
adsorption within the lattice of growing crystals leads to a reduction in its concentration 552 



and consequently restricts its ability to prevent further growth. The dynamic condition 553 
in the tube blocking rig can also magnify a possible dispersion mechanisms in addition 554 
to nucleation inhibiting mechanisms, since the scale inhibition and differential pressure 555 
rise is determined by the build-up of scales on the wall of the tubing (Graham and 556 
Sorbie, 1997).  557 

The surface visualization methods enables the range of concentration of inhibitors at 558 
which both bulk and surface scaling are completely controlled to be determined. MIC 559 
in the visualization cell is defined as the concentration of inhibitors which prevent 560 
surface crystallization completely by blocking all the active nucleation sites. The 561 
surface inhibition from the in-situ visualization rig shows the surface MIC at SI values 562 
of 2.1 and 2.8 is 4ppm and 8ppm respectively. The visualization rig as compared with 563 
the capillary rig shows that surface inhibition requires higher concentrations to reach 564 
PPCA inhibition efficiency. In agreement with previous study, the calcium carbonate 565 
inhibition requires higher concentrations for surface scaling than for bulk scale 566 
precipitation. The formation of surface scale is as a result of heterogeneous process 567 
compared to scale precipitation which originally starts as a homogeneous reaction in 568 
a bulk free of suspended particles (Setta and Neville, 2011). The inhibitor 569 
concentrations needed to suppress CaCO3 scale precipitation are generally not 570 
enough to prevent CaCO3 deposition on a stainless steel surface due to the different 571 
mechanisms and kinetics involved in these two processes (Cheong et al., 2012; 572 
Morizot and Neville, 2001; Sanni et al., 2017).   573 

MIC cannot be viewed in isolation. It depends on whether scale formation is to be 574 
completely prevented as in the case of downstream safety control valves or 575 
controlled/reduced as in pipelines. It is important to ascertain whether the application 576 
of inhibitor is actually meant to achieve a delay of induction period or to effectively stop 577 
the growth of crystals. For this, there needs to be an understanding of the tolerable 578 
level of scale and often this is very difficult to determine. 579 

The MICsurface from capillary test which effectively delayed the induction time 580 
throughout the experiment is considerably lower than the MICsurface from the 581 
visualization test. At the MICsurface from the capillary test, the visualization cell shows 582 
that surface growth continues, albeit at a lower rate. The difference in MICsurface 583 
between the capillary rig and the in-situ visualization rig can be due to the sensitivity 584 
and capabilities of the two techniques. It emphasises the need to understand each 585 
technique and their limitations in order to predict scale formation and evaluate its 586 
control using inhibitor.  587 

 In-situ visualization versus capillary tests - Thickness of scale deposits 588 

The surface scale deposition were further analysed by profilometry technique to 589 
assess the thickness of scale formed with time on the surface. Estimating the scaling 590 
kinetics would be difficult using the Hagen-Poiseuille flow equation (Jianxin wang, 591 
2004; Kazeem  A. Lawal, 2012; Zhang et al., 2001) especially for the longer coil where 592 
there is a drop in the saturation ratio across the capillary cell due to longer residence 593 



time. The scale layer is not uniform, and as such to link the deposition thickness to the 594 
pressure drop along the capillary tube based on Hagen-Poiseuille equation will not be 595 
valid. Figure 18 shows the surface thickness, which is a measure of the vertical 596 
characteristics of the surface deviation as a function of time. It distinguished the stages 597 
of growth clearly detected by both the in-situ visualization and capillary cells.  598 

 599 
Figure 18: Surface thickness of deposits 600 

 601 
The induction period is followed by an early stage of crystallization up to about 120 602 
minutes where the growth is parallel to the surface and increasing the scale coverage. 603 
The growth of the crystals at the initial stage is basically on the XY plane as depicted 604 
in Figure 19a.  605 

     606 
 607 

                      (a)                                              (b) 608 

Figure 19: Schematic representation of the growth of scale during (a) Initial (b) later stages of 609 
crystallization process. 610 

 611 
This is the region where the in-situ visualization is more practically suitable to detect 612 
and analyse crystallization processes comprising of induction, nucleation and the early 613 
stages of growth. For the capillary rig, this initial stage corresponds to the surface 614 
induction period (Figure 7) where the differential pressure remains at zero.  However, 615 
the surface induction time from the capillary test is different when compared to the in-616 
situ visualization test. The surface induction time for the visualization test is taken as 617 
the time for the first crystal to be detected on the surface. Scale crystals are already 618 
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detected with the in-situ visualization cell for the period of induction indicated in the 619 
capillary test.  The critical nuclei are not detected when formed upon nucleation in the 620 
capillary test until after growing to a size large enough to occupy a significant volume 621 
fraction of the cell.  622 
 623 
At the later stages of crystallization, the scale start to grow in the z-direction which 624 
increases the scale thickness as depicted in Figure 18b.This second stage is observed 625 
to coincide with the time or point where there is a rise in differential pressure in the 626 
capillary test (Figure 7). At the later stage of growth, the scale deposition could not be 627 
easily analysed with the visualization rig as the crystals begin to cluster and grow out 628 
of focus. The visualization rig would therefore be best for detecting and assessing 629 
early stages of surface crystallization. The analysis shows that the scaling or induction 630 
time for the dynamic tube blocking rig could actually be the onset of growth in the z-631 
direction. 632 

A good understanding of the mechanisms of bulk and surface scaling processes can 633 
enable reliable strategies for mitigating its formation in the field to be developed. A 634 
knowledge of the mechanisms is required to predict scale formation and its control 635 
using inhibitor, therefore, scale inhibitor selection and ranking for a proposed field 636 
application can be made more effective by employing laboratory test techniques that 637 
will better simulate and reflect the real field scaling environment that the inhibitor will 638 
encounter on application.  639 
 640 

4 Conclusions 641 

The work has shown the uniqueness and suitability of the various techniques including 642 
a recently developed in-situ visualization rig to distinctively quantify the inhibition of 643 
both nucleation and growth of surface scaling. The use of shorter capillary length 644 
instead of the more conventional long coil of the tube blocking system allows to keep 645 
the experimental conditions constant across the working section. 646 

The determination of the correct dosage or minimum inhibition concentration (MIC) to 647 
effectively combat scale problems relies amongst other factors, on the accuracy, 648 
sensitivity or effectiveness of the techniques employed. It points to a potential 649 
problems if viewed in isolation. Each technique has its merits and contributes specific 650 
performance data that could provide the basis for scale mitigation when viewed 651 
together. There is no single test design which can successfully stimulate all possible 652 
field scenarios. Bottle test, capillary test (dynamic tube blocking test) and the new in-653 
situ visualization method offer complementary information to study crystallization and 654 
inhibition of sparingly soluble salts. 655 
  656 

 The standard bottle test provides useful data regarding the threshold below 657 
which scale precipitation is likely to occur. It also emphasises the efficiencies 658 
of chemical inhibitors to prevent homogeneous bulk crystallization.  659 



 The capillary and dynamic tube blocking tests provide more insight on the 660 
kinetics of crystal growth in Z direction, relating to the later stages of 661 
crystallization. 662 

 The in-situ visualization cell is effective to study early stage surface 663 
crystallization, when the growth is in the XY plane. The scale is typically single 664 
layer of crystals and can offer a good evaluation of nucleation inhibitors. It also 665 
offers a close assessment of both bulk and surface scaling inhibition 666 

 667 
A good understanding of the mechanisms of bulk and surface scaling processes could 668 
enable reliable strategies for mitigating its formation in the field to be developed. 669 
Information needed to ascertain the performance of scale inhibitors should not be 670 
based only on their performance under various environmental conditions such as 671 
temperature, pH, hydrodynamic conditions and brine composition but also where 672 
possible on data from two or more techniques.  673 
 674 
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