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Abstract This paper presents a two-step framework to identify key water resource vulnerabilities

in transboundary river basins where data availability on both hydrological fluxes and the operation

of man-made facilities is either limited or nonexistent. In a first step, it combines two state-of-the-art

modeling tools to overcome data limitations and build a model that provides a lower bound on

risks estimated in that basin. Land data assimilation (process-based hydrological modeling taking

remote-sensed products as inputs) is needed to evaluate hydrological fluxes, that is, streamflow data

and consumptive use in irrigated agriculture—a lower-end estimate of demand. Hydroeconomic

modeling provides cooperative water allocation policies that reflect the best-case management of storage

capacity under hydrological uncertainty at a monthly time step for competing uses—hydropower,

irrigation. In a second step, the framework uses additional scenarios to proceed with the in-depth analysis

of the vulnerabilities identified despite the use of what is by definition a best-case model. We implement

this approach to the Tigris-Euphrates river basin, a politically unstable region where water scarcity has been

hypothesized to serve as a trigger for the Syrian revolution and ensuing war. Results suggest that even

under the framework’s best-case assumptions, the Euphrates part of the basin is close to a threshold where

it becomes reliant on transfers of saline water from other parts of the basin to ensure irrigation demands

are met. This Tigris-Euphrates river basin application demonstrates how the proposed framework quantifies

vulnerabilities that have been hitherto discussed in a mostly qualitative, speculative way.

1. Introduction

There are 268 international river basins worldwide, covering about two thirds of the global land mass and

hosting about 40% of the world’s population (Draper, 2007). The management of those transboundary river

basins is challenging due to fragmented and heterogeneous institutions and the sentiment that territorial

sovereignty overrides the notion of cooperative basin management (Molle et al., 2007). It took 26 years,

starting in 1971, for the international community to come up with a set of principles for sharing water in

transboundary river basins, a process which culminatedwith the adoption of theUNConvention on the Lawof

the Non-Navigational Uses of InternationalWatercourses at the general assembly in 1997 (Wolf, 1999). The first

two principles, equitable and reasonable use and obligation not to cause significant harm, aim at balancing the

interests of upstream and downstream countries. The third principle, the obligation to cooperate, aims primar-

ily at exchanging hydrological data and information regarding existing and planned future uses in the basin

(McCaffrey, 2001).

Data sharing is indeed a prerequisite for cooperation in transboundary river basins (Giuliani & Castelletti,

2013; Watkins, 2006). Yet growing pressure on water resources from riparian countries threatens the validity

of cooperative agreements (Kliot et al., 2001) and leads to noncoordinated infrastructure development (e.g.,

Geressu &Harou, 2015; Tilmant & Kelman, 2007; Tilmant & Kinzelbach, 2012;Wu&Whittington, 2006)with the

potential to create closing basins in which available supply can no longer meet rising demands (Mianabadi

et al., 2015). Downstream riparians are most at risk then, and their upstream counterparts have little inter-

est in releasing data that would enable crafting policies advocating to share this risk (Timmerman & Langaas,

2005). Therefore, in many transboundary river basins, especially in developing countries, competition over
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resource use disrupts data sharing and cooperation, and conversely, fragmentary or nonexistent data about

hydrological fluxes hamper the resolution of disputes (Olsson et al., 2010).

This paper presents amethodological framework toovercomedata limitations concerningnot only thehydro-

logical fluxes but also the management rules of the water-related infrastructure throughout a river basin.

It is aimed at identifying key vulnerabilities linked to the mismatch between uncertain water supplies and

demands. In particular, the lack of data is an obstacle to validating a water resources allocation model across

the full range of hydrological variability. Therefore, the modeling framework aims to establish a lower bound

for water resource vulnerability, by providing lower-bound estimates for supply variability and demands and

by assuming a cooperativemanagement of the basin’s existing infrastructure. Vulnerabilities identified in that

first step despite these best-case assumptions are likely to exist. They are then further explored through addi-

tional scenarios. Ideally, the lower bound should explicitly consider the role of a large-scale reservoir system in

altering water flows and bridging the temporal mismatch between the high-flow and high-demand seasons,

aswell as the role of hydrological uncertainty in thatmanagement. It therefore has to consider amonthly time

step and an explicitly stochastic management module.

The proposed framework contributes to a growing body of work in the management of coupled human and

natural systems (e.g., Giuliani et al., 2016; Ng et al., 2011; Yaeger et al., 2014), which necessitates data on both

the hydrological fluxes and their management. It is applied to the present situation of the Tigris-Euphrates

(T-E) river basin to identify keywater resource vulnerabilities in this unstable region. Indeed, the T-Ewas listed

among the most risk-prone transboundary basins in the world before the 2004 invasion of Iraq (Yoffe et al.,

2003). Since then, thebasinhasbeenengulfedby a series of conflicts that havehad ramifications far beyond its

hydrological boundaries. Climate change and drought (Gleick, 2014; Kelley et al., 2015) and alsomanagement

of land andwater resources (Barnes, 2009; DeChâtel, 2014; Feitelson&Tubi, 2017) havebeen cited as potential

destabilizing factors. This regional backdrop stresses the urgency of developing methodological frameworks

that overcome the lack of data.

In the absence of detailed, high-quality data on the space and time variability of water flows, and the oper-

ation of the basin’s infrastructure, several approaches have been proposed to describe the state of water

resources in T-E. Some studies have compiled existing data sources to describe the state of the basin’s water

resources andprovide recommendations regarding the challenges and opportunities ahead (Altinbilek, 2004;

Al-Ansari, 2013; Beaumont, 1998; Frenken, 2009; Kibaroglu & Unver, 2000). They generally depict a situation

where given the current development projects, especially GAP (Turkish for "Southeastern Anatolia Project")

in Turkey, total water demand from riparian countries may soon exceed supply. This has prompted the appli-

cation ofmodeling approaches to understand howwater can be allocated among riparian countries. Many of

these studies examinewater allocation during a single year, with an annual time step (e.g., Kucukmehmetoglu

& Guldmann, 2010; Mianabadi et al., 2015, 2014). Recognizing that the seasonal patterns of runoff and irri-

gation do not match, Ohara et al. (2011) perform a subannual water balance downstream of Turkey, using

a simplified representation of reservoirs. Yet given Turkey’s position as the basin’s water tower, the storage

capacity of its reservoirs, and its ambitious development plans for the upstream portions of T-E it controls

(Beaumont, 1998; Kolars and Mitchell, 1991), a more detailed approach is needed to evaluate vulnerabilities

associated with infrastructure development. This level of detail can be provided by basin-wide water balance

analysis at a finer,monthly time step, considers both distributed hydrological fluxes and themanagement of a

large-scale reservoir system.

The rest of this paper proceeds as follows. Section 2 proposes the methodological framework that combines

Land Data Assimilation (LDA) and hydroeconomic optimization to overcome the lack of data and enumerates

the key assumptions needed to establish a lower bound to vulnerability within the basin. Then, section 3

introduces the application of that framework to produce that lower bound in the T-E. Section 4 presents the

key identified vulnerabilities in that scenario. Then, section 5 builds on these results to further investigate the

near closure of the Euphrates portion of the basin. Finally, strengths and weaknesses of the framework vis à

vis its case study application are discussed in the concluding section 6.

2. Framework: Building a Best Case
2.1. Vulnerability Modeling

By definition, vulnerability is a measure of possible future harm (Hinkel, 2011; Ionescu et al., 2009; Wolf et al.,

2013). Here we are concerned with identifying key vulnerabilities in river basins in their current state, and
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the phrase possible future harm refers to the hypothetical character of the damage, contrary to damage that

has already materialized in a past event. Using an analytical approach, Rougé et al. (2015) determined that to

measure vulnerability in any given system, the following is necessary:

(i) Equations determining the dynamic of that system over time;

(ii) A management rule or the possibility to determine one;

(iii) A representation of variability in that system; and

(iv) A function assessing harm in a given state of that system.

In the case of water resources systems, the dynamics (i) are given by the water balance equation, which can

be written for all nodes of the network representing the river system:

st+1 − CR(rt + lt) = st + qt − et − wt, (1)

where st and st+1 are the vector of reservoir storage at the beginning and end of the period, rt and lt are the

vector of releases and spills, qt are the inflows, et are the evaporation losses, and wt is the net water con-

sumption, that is, gross consumptionminus return flows.CR is the reservoir system connectivitymatrix, where

CR
j,k
= 1(−1) when reservoir j receives (releases) water from (to) reservoir k.

A water allocation policy (ii) and a representation of variability (iii), starting with hydroclimatic variability,

are classic features of water resources modeling. As for (iv), common approaches to assessing harm in water

resources systems include metrics associated with the nonrespect of a threshold or with failure to meet the

integrality of the demand (Hashimoto et al., 1982) or economic valuations of water across space and time

(Harou et al., 2009). Other ways can be imagined; it is worth noting that any evaluation of harm includes a

normative choice (Hinkel, 2011; Rougé et al., 2015). In any case, knowledge about demands and about the

thresholds existing in a water resources systems is necessary for assessing harm.

2.2. Missing Data and Key Assumptions

This work deals with identifying key vulnerabilities in a situation where data records are fragmentary or

nonexistent regarding (ii) the allocation policy, (iii) hydroclimatic and other sources of variability, and (iv) the

demands to meet. In this situation, it is difficult if not impossible to validate the tail ends of the probability

distributions of model outcomes. Yet this is what is relevant to vulnerability assessments. Therefore, rather

than accurately representing vulnerability, the modeling framework aims at obtaining a lower-bound esti-

mate, through assumptions on (ii), (iii), and (iv). In other words, these assumptions aim at building a best-case

scenario for the basin under consideration. The ultimate goal of this best-case scenario is to make sure that

the resulting vulnerabilities identified while analyzing the results of that scenario are likely to exist. This is an

important feature of the proposed framework as it makes it more difficult for riparian countries to challenge

and contest the very existence of those vulnerabilities.

2.2.1. Best-Case Assumptions on Variability

Capturing hydroclimatic variability is necessary for vulnerability assessments. Best-case assumptions must

limit the range of variability that is considered, for instance:

1. Only inflow variability is considered;

2. Long-term (e.g., multidecadal) variability is not considered.

The latter is due to the fact that uninterrupted long-term records are difficult to obtain in many data-scarce

basins (see section 3.2 for the T-E). Considering long-term hydrological variations would greatly increase

the range of considered inflow conditions (Koutsoyiannis, 2006; Koutsoyiannis & Montanari, 2007). The

methodology for obtaining inflow data in data-scarce cases is detailed in section 2.3.

2.2.2. Best-Case Assumptions on Demand

Best-case assumptions minimize demand by only considering demand levels that can be modeled in the

absence of reliable data:

1. Only irrigation demand is accounted for; this excludes industrial and domestic demand aswell as ecological

flows;

2. Deliveries can be obtained (see section 2.3), and deliveries are atmost equal to the demands; they are lower

if all demands are not met.

2.2.3. Best-Case Assumptions on the Allocation Policy

The allocation policy (ii) is closely related to the management of reservoirs, which have the ability to sub-

stantially alter water flow regimes. Large-scale multireservoir systems are often too complex to enable
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the parametrization of rule-based simulation models without substantial information on the reservoirs’ pur-

poses. This information is often unavailable, and it would be a challenge to try and calibrate operation policies

using fragmentary hydrological flow records.What ismore, flow regimes keepbeing altered by new reservoirs

as they go online, which also incidentally causes the operating rules of existing reservoirs to keep changing.

In this context, vulnerability-minimizing assumptions for reservoir management are the following:

1. A cooperative allocation strategy; and

2. The allocation strategy prioritizes meeting irrigation demands.

The latter reflects a context where riparian countries emphasize food security and is consistent with the fact

that data on irrigationwithdrawals reflect observed fluxes rather than actual irrigation demand.What ismore,

we are looking for demand deficit as a vulnerability indicator (see section 2.1).

Obtaining reservoir rules through optimization is an alternative where the high number of state and decision

variables leads to the so-called curse of dimensionality (e.g., Pereira & Pinto, 1985), which constitutes an insur-

mountable obstacle for most algorithms. Stochastic dual dynamic programming (SDDP; Pereira, 1989) is one

of the few solutions available for the optimization of large-scale reservoir systems and the production of sen-

sible operating policies. It can be used even in situations where data availability on the system itself is limited

(Rougé & Tilmant, 2016). Section 2.4 provides details on this methodology.

2.3. Land Data Assimilation

Process-based hydrological models, remote sensing, and LDA systems, which combine the two, can compen-

sate for the lack of direct information on upstream hydrological fluxes (Bastiaanssen et al., 2000; Hrachowitz

et al., 2013; Maswood & Hossain, 2016; Zhang et al., 2014). As shown by Kolars and Mitchell (1991) in the

T-E, these flows are very difficult to evaluate in a context of fragmented institutions, weak governance, and

politically motivated claims on the geographical origin of the water supply. Coupling remote sensing with a

rule-based irrigation model can provide insights on such complex situations (Evans & Zaitchik, 2008).

Estimates of naturalized streamflow throughout the river systemwere extracted from simulations performed

with the Noah Land Surface Model (Noah LSM; Ek et al., 2003) v3.2 within the NASA Land Information System

(Kumar et al., 2006) software framework v6.1. Noah LSM iswidely used in land surfacemodeling, including the

North American Land Data Assimilation System (Mitchell et al., 2004) and the Global Land Data Assimilation

System (Rodell et al., 2004), and is also used as the land component in weather forecasting models. It is

selected for this application because of its advanced physics, widespread use, and flexible parameterization.

These are the characteristics that a LSMwould need to possess to be used for the framework presented in this

work. The goal of this work is not to ascertain what the best LSM is in a given situation but to demonstrate

how a suitable LSM can be a key piece to vulnerability assessments in data-scarce river basins. Naturalized

estimates obtained through LDA are conceptually appropriate as input to a hydroeconomic model, which

use them to outputwatermanagement decisions concerning reservoir operations and irrigationwithdrawals.

Background information on Noah LSM can be found in supporting information section S2.

In addition to providing streamflow inputs for hydroeconomicmodeling, Noah 3.2 was used to generate esti-

matesof irrigatedwater demandas a functionofmeteorological conditions, cropping season length, and local

soil properties. These estimates were generated by including an irrigation module in the model designed to

simulate traditional flood irrigation (algorithm detailed in supporting information section S3.1; Yilmaz et al.,

2014). This approach has been tested in previous simulations in the T-E basin (Evans & Zaitchik, 2008; Zaitchik

et al., 2005) and the Nile Delta (Yilmaz et al., 2014).

2.4. Hydroeconomic Optimization Through SDDP

Water allocation inmultipurposemultireservoir systems can be formulated as a nonlinear and stochasticmul-

tistage decision-making problem. The goal is to determine a sequence of optimal allocation decisions xt that

maximizes the expected benefits Z from system operation over a planning period time T , while meeting

operational and/or institutional constraints:

max
xt

{Z} = max
xt

{
E

[
T∑

t=1

�tbt(st,qt, xt) + �T+1�(sT+1,qT )

]}
, (2)

where bt(⋅) is the immediate benefit function at stage t, �(⋅) is the terminal value function, �t is the discount

factor at stage t, and E[⋅] is the expectation operator. The vector of allocation decisions xt includes release rt ,
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spill lt , storage st+1, and water withdrawals it . Immediate benefits bt(⋅) include the net benefits from sys-

tem generation and penalties for not meeting target demands and/or violating operational and/or policy

constraints such as minimum flow requirements.

At stage t, the immediate benefit function bt(⋅) can be written as follows:

bt(st,qt, rt) = �t(� − �)′Pt − �′tzt, (3)

where �t is the number of hours in period t, Pt (MW) is the vector of power generated,� is the vector of energy

price ($/MWh), � is the vector of the operation andmaintenance cost ($/MWh), and zt is the vector of deficits

or surpluses (unit deficit or surplus) penalized by the vector �′t of penalties ($/unit deficit or surplus).

To provide a lower bound for vulnerability, including demand shortage, irrigation withdrawals are treated as

constraints. Vector zt includes irrigation deficits, that is, the differences between irrigation requirements and

the amount of water effectively delivered to the farms:

zirr
t
= max(It − �it, 0), (4)

where It is the crop water requirement at stage t and � is the irrigation efficiency.

Most solutions to these problems, including discrete stochastic dynamic programming, become intractable

in large-scale systems where the computational effort increases exponentially with the number of state vari-

ables. Simulation-optimization alternatives such as EvolutionaryMulti-ObjectiveDirect Policy Search (Giuliani

et al., 2016) are promising for exploring other aspects of system complexity but require significant comput-

ing power (Giuliani et al., 2017) and have not been tested for systems of more than four reservoirs. SDDP is

an extension of stochastic dynamic programming that avoids this curse by decomposing the nonlinearmulti-

stage problem into a series of one-stage linear problems, enabling computation in a matter of hours without

parallelization. This algorithm is based on the approximation of the expected cost-to-go functions by piece-

wise linear functions (hyperplanes). It is organized through an iterative procedure in which new hyperplanes

are added to the regions of the state space where a quality approximation is most needed, that is, in the

regions explored by the system (Tilmant & Kelman, 2007).

When data availability is limited, as is the case in this study, this algorithm has been shown to lead to results

that can be difficult to validate and interpret, and a year-periodic reoptimization (YPRE) scheme has been pro-

posed to overcome this difficulty (Rougé & Tilmant, 2016). The reoptimization can be used with any number

of simulation time series. The resulting algorithm is called SDDP-YPRE in this work.

3. Application to the T-E

3.1. The T-E Basin

The Euphrates and Tigris rivers are twomajor rivers inwestern Asia, with a drainage area of 879,000 km2. From

their headwaters in Turkey, they run almost in parallel before theymerge to form the Shatt al-Arab, which dis-

charges into the PersianGulf (Figure 1). The northern and eastern parts of the basin aremountainous, whereas

the southeastern part essentially consists of the Mesopotamian plain. The basin is shared by six countries:

Turkey, Syria, Iraq, Iran, Saudi Arabia, and Jordan—the latter two only encompass small, arid portions of the

basin. Iran is riparian only to the Tigris, and the Iranian portion of the basin is mainly through the Karkheh

and Karun river basins. The former joins the Tigris at the upstream end of the Lower Mesopotamia Marshes.

The latter discharges directly into the Shatt al-Arab downstream of these marshes along the confluence of

the Euphrates and the Tigris rivers and has been excluded from the study area for that reason. The marshes

are system of interconnected wetlands that was once home to 250,000 Marsh Arabs, important wildlife and

migratory wildlife species as well as unique freshwater ecosystems. Its size has been reduced dramatically

since the First Gulf War, even though restoration efforts have recently been implemented (Richardson &

Hussain, 2006).

The hydrological regime of the upstream portions of the basin is characterized by a high-flow season starting

in December and culminating during a snowmelt spring period from April to June, when 70% of the annual

discharge takes place. This is followed by a low-flow season starting in July. Turkey contributes up to 98% of

the Euphrates runoff (Kolars & Mitchell, 1991), whereas Turkey and Iraq each contribute around half of the

annual discharge of the Tigris river upstream of the Mesopotamia Marshes.
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Figure 1. The Tigris-Euphrates river basin. Contours are annual average precipitation for
the period 1982–2011. Points of interests for vulnerability identification (A–E) are as
follows: (A) The Turkey-Syria border on the Euphrates, (B) the Syria-Iraq border on the
Euphrates, (C) the Turkey-Iraq border on the Tigris, (D) the Tigris-Euphrates river basin’s
outlet, and (E) Tharthar Lake, a depression where excess waters are diverted in order
to avoid flooding in Baghdad.

The Euphrates and Tigris rivers are key water resources for

the riparian countries. Irrigated agriculture has been prac-

ticed since 6000 BCE in theMesopotamia plain in present-day

Iraq. More recently, several dams have been constructed dur-

ing the second half of the twentieth century to harness

hydropower potential in the headwaters of the basin’s main

rivers. These new impoundments also openedupnewoppor-

tunities for using T-E waters for irrigation. The location of the

infrastructure considered in this study, along with the water

sources—lateral inflows—and sinks—consumption nodes

and natural lakes—is given by an arc-node representation

of the water network from Figure 2. This study considers the

existing infrastructure in the basin, plus the Ilisu and Bekhme

Dams (nodes 8 and 223, respectively), which are currently

under construction.

Most developments in the Turkish portion of the T-E have

taken place over the last four decades with the Southeast-

ern Anatolia Project (GAP), an ambitious effort aimed at a

total installed capacity of 7,256 MW and the irrigation of

1.7-million ha (Kolars & Mitchell, 1991). It most notably relies

on the large elevation gradient along the course of the

Euphrates river, where the three dams with the largest nomi-

nal hydropower production in the T-E basin are located; from

upstream to downstream, these are Keban, Karakaya, and

Ataturk (nodes 1 to 3). The latter also serves to irrigate large

areas, including the Harran Plain (197) at the border with

Syria. Syria also developed hydropower and irrigation during

the second half of the twentieth century, organizing its development plans around the Tabqa Dam (101).

Downstream, Iraq built one major dam on the Euphrates at Haditha (201) and on the Tigris at Mosul (221),

but it also harnessed the potential of the Tigris affluents in the Zagros mountains (223, 227, 239, and 240).

In addition, diversions meant to protect Iraqi cities from floods created and sustained artificial lakes in natu-

ral depressions, most notably Tharthar Lake (238; E in Figure 1), which protects Baghdad by receiving surplus

Tigris flow. Finally, Iran also has built the Seymareh and Karkheh dams (300, 302) in the Karkheh river basin to

exploit the available hydropower potential and develop irrigated agriculture.

3.2. Hydroclimatic Estimates

In this study, Noah 3.2 was implemented in uncoupled mode (i.e., not linked to a climate model), with mete-

orological forcing drawn from the NASA Modern-Era Reanalysis for Research and Applications (Rienecker

et al., 2011) supplemented with Climate Hazards Group InfraRed Precipitation with Stations (Funk et al.,

2015) satellite-derived precipitation estimates. Noah LSM requires a suite of gridded parameter fields to rep-

resent soil, vegetation, and land cover conditions. This work used the Food and Agriculture Organization

of the United Nations (FAO) global soil data set, Moderate Resolution Imaging Spectrometer-derived esti-

mates of vegetation fractional coverage, theU.S. Geological Survey global land covermap supplementedwith

Moderate Resolution Imaging Spectrometer-derived estimates of active irrigated land produced at 500-m

resolution (Salmon et al., 2015), and the GTOPO (Global Topography) data set at 1-km resolution. Noah LSM

simulationswereperformedat 5-km resolution. A30-year spin-upwasperformedand the simulationwas then

run continuously for the period 1982–2011. Noah 3.2 was used to generate estimates of naturalized stream-

flow and irrigated water demand. The latter was obtained for 2001–2008 only, based on a map of irrigated

areas circa 2004–2005 (Salmon et al., 2015).

Simulated annual average evapotranspiration estimates from irrigation were assessed by comparing simu-

lated evapotranspiration in irrigated areas to satellite-derived evapotranspiration estimates derived using the

Atmosphere Land Exchange Inverse algorithm (ALEXI; Anderson et al., 2007) implemented using Meteosat

imagery (Yilmaz et al., 2014). ALEXI is a satellite-derivedproduct that has not been independently validated for

the T-E basin; therefore, we use the ALEXI estimates only as a check onmodel realism and not as a quantitative

test of accuracy.Wedidnot recalibrate themodel to improve agreementwithALEXI. Note that these estimates
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Figure 2. Network representation of the Tigris-Euphrates. Lists of hydropower and irrigation nodes are given in
supporting information section S1.
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Figure 3. Average annual streamflow for the entire Tigris-Euphrates basin and points of interest within the basin.
Dark bars are simulated naturalized discharge. Light bars are derived from available gauge records or previously
published estimates.

apply only to on-field applications and return flows; losses in conveyance are not included in the Noah LSM

simulations and were instead addressed by matching with basin-wide Food and Agriculture Organization of

the United Nations estimates (see supporting information sections S3.2 and S3.3).

Calibrating naturalized streamflow estimates is challenging in the T-E, where the development of irriga-

tion and the construction of large dams partly predates the 1982–2011 period included in our simulations.

To address this challenge, we inventoried streamflow estimates available for Iraq in Saleh (2010) together

with records from other countries in the basin provided by contacts in national water ministries. From these

recordswe selectedgauge records fromupstreammonitoring sites, located as close as possible to headwaters

regions and upstreamof allmajormodern irrigation developments. These recordswere assumed to represent

approximately natural conditions andwere used to bias correct simulated streamflow estimates. Recognizing

that this is an imperfect approximation of natural conditions, as even headwaters regions may include some

human modification, we did not apply any bias correction to subbasins in which the mean and interannual

standard deviation of monthly streamflow was within 15% of gauged records for that month. For subbasins

in which the simulations were biased bymore than 15% in any calendar month, we applied a simple bias cor-

rection consisting of a linear additive correction for themean and a ratio scaling for standard deviation. Since

the vast majority of streamflow in the T-E basin is generated in headwaters regions, it was not necessary to

bias correct incremental discharge contribution of downstream reaches.

The bias-corrected simulated discharge records were provided as water supply inputs to the hydroeco-

nomic optimization model as monthly time series of estimated incremental streamflow at each model node.

Summed simulated incremental streamflows across the entire basin and at critical locations within it are con-

sistent with previously published estimates (Figure 3). Comparisons with observed discharge suffer from a

number of caveats: The observations come from gauges that correlate with the gauges used in bias correc-

tion, the period of gauge records does not match the period of simulation for most rivers, gauge locations

are not an exact match to the points of interest, and the naturalized discharge estimates of the simulation

are not intended to be exactly comparable to gauge records—for example, the Euphrates entering Iraq gauge

observation is highly affected by upstreamwithdrawals. For these reasons we consider the comparison to be

a test of general realism and not a formal evaluation. In Figure 3, Euphrates entering Iraq, Tigris at Mosul, and

Tigris tributaries (sum of Greater Zab, Lesser Zab, Diyala, and Adhaim) observations are from gauge records

reported in (Saleh, 2010), with a time period that overlaps the simulation period. Euphrates at Turkish Border,

Total Tigris, and Euphrates + Tigris at outlet are from historical gauge records reported in previous studies

(Beaumont, 1998). These records capture a time of lower water withdrawal, so are expected to more closely

resemble naturalized discharge, but they do not overlap the simulation period.

3.3. Best-Case Water Allocation in the T-E Basin

Inflows, evapotranspiration and returnflowsareobtained throughLDA (section3.2). Themodeling framework

uses LDA-obtained inflow time series to adjust a first-order periodic autoregressive model (1) that accurately
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Figure 4. Expected versus simulated power production for the main reservoirs in this study.

captures the variability aswell as the spatial and seasonal persistenceof river discharges throughout thebasin.

This is consistent with the assumptions on variability from section 2.2.

Considering lag-1 persistence leads to having a hydrological state variable for each of the 28 lateral inflow

nodes, adding to the 17 state variables that correspond to each of the reservoirs. Given the scale of this

system, SDDP-YPRE (section 2.4; Rougé & Tilmant, 2016), implemented here as described in the reference

provided, is one of the few available solutions to simulate the system’s management. In this work, 1,000

monthly time series of 10 years each are used for the reoptimization, with the purpose of minimizing the

influence of sampling error in analyzing the results. As a result, each run takes around 2 hr and 15 min

to complete.

The characteristics of the reservoirs, run-of-river plants, and irrigation sites considered in this study can be

found in the supporting information. The latter has been determined by using the monthly average of the

2001–2008evapotranspiration and returnflowestimatesderived in section3.2. Twoadditional steps, detailed

in the supporting information (sections S3.3 and S3.4), are needed to transform these estimates into demand

estimates. First, conveyance losseshave tobeestimatedas a fractionof on-field application. Then, adistinction

has to bemade betweenwithdrawals fromwater bodies hydrologically connected to the T-E andwithdrawals

from fossil aquifers that do not reduce T-E runoff but inject return flows into the network.

SDDP relies on the economic valuation of water for hydropower and irrigation requires that amonetary value

be assigned to these uses. In the absence of data available throughout the river basin, those valuations rely on

economic assumptions. Thus, the average energy price is assumed to be around 60 USD/MWh, which is the

variable cost of a gas-fired power plant, a technology that is likely to be at the margin in the region. Irrigation

being considered as a constraint in the model, unmet demands are penalized by a unit cost that far exceeds

the value of water for hydropower.

3.4. Validation of the Best-Case Model

To ensure that the best-case basin model provides a lower bound to vulnerability, assumptions minimizing

both variability and its impacts—with a lower bound on demand and a cooperative allocation—have been

made in section 2.2. Yet the model’s average behavior must also be validated .

The expected (or nominal) annual hydropower production is the only proxy that is available throughout

the basin. It reflects both basin hydrology and the management of available water resources to productive

ends. It is usually computed for feasibility studies for hydropower plants. Ideally, historical productions should
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Figure 5. Impacts of infrastructure development on the probability
distribution of annual flows at the border between Turkey and Syria on the
Euphrates.

have been used instead, but they were not available for this study. Valida-

tionwas conducted using averages of annual values for the last year of the

10-year reoptimized simulations, since the first years of those simulations

are influenced by the initial storage conditions. It was performed using

two scenarios, one assuming no-irrigation demand and another assuming

full irrigation demand, because feasibility studies in the region tend to not

account for how irrigation lowers the availability of water for hydropower,

unless irrigation development predates dam construction.

Figure 4 compares nominal with average simulated productions for 16

of the 17 reservoirs in our model of the T-E basin—the expected pro-

duction could not be found for the smallest, Al-Adhaim—and the two

biggest run-of-river plants, Birecik (Turkey) and Tishreen (Syria). For both

the full and no-irrigation scenarios, the same run produced the results for

all reservoirs. Results from the no-irrigation scenario fall within 10% of the

expected production for all reservoirs except two, confirming that feasi-

bility studies were mostly done before developing irrigation. Differences

may be attributed to limited data on the rule curves of the reservoirs, to

climatic variability between 1982 and 2011 naturalized estimates and the

period of reference for those studies and to the fact that feasibility studies ignored the potential impacts of

all other developments upstream of these reservoirs.

The two exceptions are Seymareh and Karkheh, two recent reservoirs that came online in 2011 and 2001

in the Karkheh river basin in Iran. In both cases, results with irrigation match closely the expected pro-

duction. Therefore, it is reasonable to assume that the development of irrigation may predate that of the

feasibility studies.

The next section analyzes results from the full irrigation scenario.

4. Best-Case Scenario Results

Water allocation simulatedwith SDDP-YPRE and the assumptions from section 2.2 provides a lower bound on

vulnerability. In that first scenario, there is enoughwater and reservoir storage to ensure over 99% reliability at

all irrigation nodes on themain branches of the Tigris and Euphrates and 90% reliability in other branches (see

supporting information section S3.4). Vulnerability identification focuses on border (section 4.1) and outlet

flows (section 4.2).

4.1. Border Flows

The basin’s vulnerability to low-flow years can be studied through the probability distribution of flows at key

nodes in the river network, such as the crossing of national borders (A–C in Figure 1), for example, at the

Turkey-Syria border on the Euphrates river (Figure 5). The comparison of natural and altered flows reveals the

extent of upstreamhuman interventionson theflow regimeand the risksposed todownstreamwater users. In

particular, two impacts are apparent in Figure 5, (1) irrigated agriculture and to a lesser extent, reservoir evap-

oration, significantly lower discharge, and (2) reservoir storage capacity reduces the variability of discharge

on a year-to-year basis because it exceeds average annual flow.

This has an impact on the respect of international agreements/unilateral commitments such as the one in

1987 between Turkey and Syria, which stipulates minimum flow of 500 m3/s or 15.75 km3/year. So far and in

this best-case scenario, infrastructure development upstream of these borders has only marginally increased

the probability of not respecting the annual target, as it increased from 1% to 4% entering Syria (Figure 5). Yet

downstream countries are vulnerable to an increase in upstream demand—due to irrigation—or a decrease

in supply—due to climate change. Indeed, the current probability of being within 5 km3 of the annual

threshold is 44% at that border.

To further analyze the respective impacts of lower discharge and large storage capacity on border flows,

we propose two metrics that compare the cumulative distribution functions (CDFs) of natural and altered

flows—comparing empirical CDFs is being increasingly used to assess sensitivity (Chaney et al., 2015;

Fenwick et al., 2014). On one hand, the difference in the average annual flow reflect the impacts of irrigation
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Figure 6. Average natural and altered annual and monthly flows and associated variability quotients chi, at the border crossings (A to C in Figure 1). Red lines
signal � = 1, no change in variability.

(and reservoir evaporation). On the other hand, the following quotient � compares the spread of natural and

altered flows and, therefore, the impacts of storage on variability:

� =
∫ ∞

0 |Fa(x) − 1(x> ā)|
∫ ∞

0 |Fn(x) − 1(x> n̄)|
, (5)

where a andn refer to altered and natural flows, respectively; ā and n̄ are their means; F is the CDF, and
1 is the characteristic function with values 1 if the condition that defines it is met and 0 otherwise. These
two impacts mirror those of development on annual flows at all three borders in the T-E basin (Figure 6a).
Impacts are largest at the Syria-Iraq border on the Euphrates, where little natural runoff is added compared
to the Turkey-Syria border upstream compared with the additional irrigation withdrawals, amounting to
a 42% reduction from the natural flow average. What is more, additional storage capacity in Syria (Tabqa
Dam, node 101) adds to the flow regulation capacity, lowering � from 0.80 to 0.58. Development of the
Tigris side in Turkey has comparatively minimal impact on annual flow variability (� = 0.90) and reduced
discharge (10%).

When it comes tomonthly flows (Figures 6b–6d), the effects of storage on altered flows become apparent on

both the mean flows and the variability quotients � . Across all three border crossings, reservoirs store water

during the snowmelt season (March to June) to release it for hydropower generation and downstream irriga-

tion during the summer. Variability is suppressed (� < 1) as reservoirs refill, with the exception of panel (d)

where there is too little upstream storage on the Tigris in Turkey to dampen variability in June. It is enhanced

(� > 1) as they empty, adjusting downstream releases according to whether this is a dry or wet year. Thus,

reservoirs also are a positive externality for downstream countries, since they store excess water during wet

months (and years) to release it when demand for irrigation is highest with respect to natural supply, in

summer months (and in dry years). Yet the weak difference in summer flows at the Syria-Iraq border on the

Euphrates shows that upstream irrigation is depleting water availability downtream.
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Figure 7. Comparison of outlet flows with outflows from Tharthar Lake.

4.2. Outlet Flows

The baseline best-case run also allows us to identify the precariousness of

the current situation of the basin during summermonths. Indeed, Figure 7

shows that then, flows from the basin outlets—both Shatt Al-Basra and

Shatt al-Arab (256 in Figure 2, D in Figure 1)—are significantly lower than

outflows fromTharthar Lake (E in Figure 1), a regulated lake set in a depres-

sion in central Iraq (Sissakian, 2011). This indicates that without this large

(86 km3 of storage) storage facility, there could be a supply deficit in on

the Euphrates side where almost all Tharthar outflows go in our simula-

tions. This use of Tharthar Lake waters for irrigation in the Euphrates basin

is documented in the literaturewhere it is brandedasproblematic because

of the lake’s high salinity (Beaumont, 1998; Rahi &Halihan, 2010). Note that

these references only report these water transfers but do not prove that

they might be needed to meet water demands.

Another indication that the basin is closing in summer months is that for

at least 20% of the July to September months, outlet flows are equal to

the return flow from the most downstream irrigation node. These outlet

flows distributions are simulated assuming coordinated basin-wide man-

agement aimedat satisfying all irrigationdemands. In reality, it is likely that

demands are not fullymet during dry years, leading to higher outlet flows.

Yet this doesnot change thediagnosis that demands are close toor greater

than supply in summer months, and it is coherent with observation that

outlet flows are dwindling (Abdullah et al., 2015).

5. Results: Additional Scenarios

The previous section identified two key vulnerabilities on the Euphrates

side of the basin. On one hand, there is a sensitivity of Euphrates flows

at the Turkey-Syria border (A in Figure 1) to supply-demand changes,

which might affect downtream flow availability, and specifically the abil-

ity of Turkey to meet its minimum flow commitment. On the other hand,

downstream irrigation demands on the Euphrates side are dependent on

transfers of saline water.

Building on the baseline scenario, noted A0 from now on, additional sce-

narios are explored (Table 1). In one set of scenarios, additional irrigation

demands are created in Turkey (nodes 3 and 4 in Figure 2) in the Euphrates

side of the basin—still well below the provisional irrigation totals if all of

the planned irrigation developments come online in that area (Kolars &

Mitchell, 1991; Tilmant & Kelman, 2007). Those scenarios are noted A. Note

that these are net demand increases, that take return flows into account.

In a second set of scenarios, the network is amended by deleting the

link betzeen nodes 238 and 299 in Figure 2 so that Tharthar Lake has no

outlet. Those scenarios are noted B. Note that all scenarios are run with

Table 1

Additional Scenarios

Water withdrawals Baseline network No Tharthar outlet (link 238–299)

Baseline irrigation at nodes 3–4 A0 B0

+1-km3 net irrigation at nodes 3–4 A1 B1

+2-km3 net irrigation at nodes 3–4 A2 B2

+3-km3 net irrigation at nodes 3–4 A3 B3

Note. Node numbers refer to the network from Figure 2.
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Figure 8. (a–e) Euphrates flow indicators at the Turkey-Syria border, and their sensitivity to increased irrigation in Turkey.

SDDP-YPRE using the same vulnerability-minimizing assumptions as A0, and simulation results feature the

same 1,000 time series that are 10-year long with a monthly time step.

Section 5.1 investigates impacts of type A scenarios on border flows, then section 5.2 investigates impacts of

type B scenarios on irrigation shortages in the Euphrates, which reflects this part of the basin’s dependence

on saline water transfers. Finally, section 5.3 compares all scenarios with basin-wide Euphrates side metrics

and historical flows.

5.1. Sensitivity to Additional Irrigation (Scenarios A)

Impacts of Turkey demand increases on Euphrates border flows are summarized in Figure 8. Average annual

flowsdecrease in amanner thatmatches the additionalwithdrawals (panel a), and since storage capacity stays

the same, it becomes easier to store smaller quantity ofwaters inwet years and keep them for dry years, which

lowers � (panel b). Concerning the reliability of meeting treaty obligations, the sensitivity to supply-demand

changes suggested by Figure 5 is confirmed (panel c), with the nonrespect probability jumping from 4% to

almost 30% from A0 to A3. Dry season flows are those that suffer the most from decreased water availabil-

ity (panels d and e), suggesting that the reliance of downstream irrigation on saline water transfers during

Figure 9. Exceedence probabilities of irrigation demand shortages in the whole Euphrates basin, under scenarios B0
to B3 (no saline water transfers). (a) Probabilities on a given year and (b) probabilities conditional on shortage
the previous year.
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Figure 10. Results for the whole Euphrates basin, from reoptimization using the cuts (benefits-to-go functions) obtained
from running SDDP-YPRE in each scenario defined in Table 1, with historical flows 1982–2011. Only 1987–2011 is shown
to leave out the warmup period.
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summer months would be increased by supplemental irrigation developments. Further investigation of this

is the focus of type B scenarios.

5.2. Euphrates Dependence on Saline Water (Scenarios B)

Irrigation shortages in type B scenarios are better interpreted as reliance on saline water transfers. Figure 9a

confirms the sensitivity of downstream irrigation to new irrigation developments in the Turkish portion of

the Euphrates. Note that the average deficit (on all 1,000 simulations) roughly doubles in each scenario, from

0.15 km3 in B0, to 0.32 km3 (B1), 0.63 km3 (B2), and 1.31 km3 for scenario B3. This is not proportional to the

increases in upstream irrigation demand across these scenarios. What is more, panel (b) results from Figure 9

suggest that irrigation deficits tend to be clustered in consecutive years. Both results demonstrate the rel-

evance of accounting for storage and variability at a monthly time step over multiple years, instead of an

(average) annual balance model over a single year.

5.3. Historical Comparisons

We applied the cuts (benefits-to-go functions) obtained from running SDDP-YPRE in each scenario to the

whole historical streamflow record described in section 3.2, and used the 25 last years of those simulations

(after a five-year warmup period) to investigate several metrics across scenarios in the whole Euphrates por-

tion of the basin (Figure 10). The 2007–2009 droughtwas the only time the Khabur node 197—the only node

not directly connected to themain course of the Euphrates in ourmodel (Figure 2), while also at the epicenter

of that drought—saw a water shortage in all scenarios. Yet the chronology of panels (a) to (c) suggests that

this droughtwas not exceptional for the Euphrates flows, anobservation corroboratedby Eklund&Thompson

(2017) who report an actual greening of areas irrigated by the main branch of the Euphrates during that

2007–2009 drought period, including in the Harran Plain (node 12). At any rate, that drought was short

compared to a series of average-to-below-average years during the 1990s, which have more severe impacts

both on the reliance on saline water transfers (type B scenarios on panel c), and on hydropower production

(panel b). Given that irrigation areas are based onmaps circa 2004–2005 (section 3.2), this poses the question

whether irrigation developments between 2000 and the drought (Eklund & Thompson, 2017) created a

scarcity situation that may been felt less acutely in the 1990s, when demands were lower. Panels (d) to (g)

show25-year aggregated results across all eight scenarios anddemonstrate the sensitivity of all four displayed

indicators on supplementary irrigation developments in Turkey.

6. Discussion and Conclusions

There is a consensus in the water community that cooperation on the management of transboundary water

resources is both desirable and sometimes urgently needed. It is desirable to ensure the economic develop-

ment and stability of a region; it is urgently needed in river basins experiencing closure where downstream

riparian countries are vulnerable to unilateral management actions taken by their upstream neighbors. Not

surprisingly, the most difficult situation is found in closing or closed transboundary river basins where basic

cooperation, such as the exchange of hydrologic data, does not take place. In that case, downstream ripar-

ian countries can turn to quantitative modeling methods to anticipate future supplies. These methods can

enable them to detect and quantify upstream interventions and then assess their downstream impacts.

This paper illustrates the use of such quantitative methods to identify key vulnerabilities in a data-scarce,

politically unstable river basin: the Tigris-Euphrates. Using state-of-the-art remote sensing andhydrologic and

hydroeconomic modeling, along with a set of appropriate assumptions, best-case vulnerabilities to changes

in the flow regime due to irrigation withdrawals and reservoir storages are quantified. The very existence of

the identified vulnerabilities is therefore more difficult to challenge by any riparian country, regardless of its

position in the basin.

When applied to the T-E, the method points to two key vulnerabilities on the Euphrates side of the basin:

(i) cross-border flows at the Turkey-Syria border are vulnerable to changes in storage in the Turkish reser-

voirs and (ii) irrigation schemes in Iraq are dependent on transfers of saline water from the Thartar lake.

How these vulnerabilities should be addressed is beyond the scope of this manuscript. Rather, the proposed

method is limited to their (hopefully uncontested) identification and quantitative assessment. This in turn,

provides a factual basis regarding the status of the basin and (hopefully) should clear up the political space

of unsubstantiated narratives.
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Due to the limited space available, the analysis is presented for one infrastructure network (supplies and

demands) corresponding to the current situation in the basin. Such analysis would certainly be enriched if

carefully constructed scenarios representingpotential futureswere investigatedwith theproposed approach.

This approach also does not explicitly consider water quality problems, for example, salinity, even though

these are often present when water resources are being overexploited. For instance, in the T-E, current very

low summer discharge in the Shatt al-Arab has been found to lead to saline intrusion as far as 92 km inland

(Abdullah et al., 2016).
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