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 24 

Abstract 25 

 26 

Meta-analyses synthesise available data on a phenomenon to get a broader understanding of its 27 

determinants. This work proposes a two-step methodology. 1) Based on a broad dataset of 28 

residential water demand studies, it builds a meta-regression model to estimate mean and 29 

standard deviation of price elasticity of residential water demand. 2) The resulting meta-model 30 

serves as a basis for implementing an approach that directly simulates the range of price 31 

elasticities resulting from policy-relevant combinations of its determinants. This simulation 32 

approach is validated using the available dataset. Despite evidence of low average price elasticity, 33 

the scenarios simulated using our meta-regression estimates show that increasing block rate 34 

tariffs are associated with higher price elasticity, and stresses the importance of using state-of-35 

the-art methodologies when evaluating the price response. This completes other methodological 36 

insights obtained from the meta-analysis itself. Policy implications on the use of pricing to bring 37 

about water savings are discussed.  38 

 39 

Keywords: price-elasticity, residential water demand, discontinuous prices, meta-analysis 40 

 41 

Key points 42 

1) Meta-analysis of residential water price elasticity from largest database yet. 43 

2) Resulting statistical model used to formulate a simulation approach 44 

3) Approach validated using available dataset. 45 

4) Approach can give a primary estimate of the efficiency of new pricing policies 46 

5) Approach shows the impact of tariff structure and estimation methodology 47 

 48 

Data availability 49 

We are committed to make available along with the paper the dataset we developed and we used 50 

to carry out the analyses here reported.  51 

Dataset name: Meta-dataset on water demand  52 

Short description:  53 

“Meta-dataset on water demand” is a dataset that contains hand collected data about primary 54 

studies published from 1963 to 2013 which have tried to estimate the residential water demand 55 

and water price elasticity in particular. Observations are at single estimate level. They are 615, 56 

coming from 124 primary studies. The research paper describes the variables included in the 57 
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dataset with the relative sources. The dataset is useful for replication purposes. Moreover, making 58 

it available would facilitate accumulation and processing of future empirical evidence. 59 

Developers: 60 

The dataset was assembled by building on data made available by Dalhuisen et al. (2003), which 61 

comprise 51 primary studies published before 2001. Some additional 73 primary studies were 62 

added to obtain the final dataset.  63 

The final dataset was assembled by Riccardo Marzano (riccardo.marzano@polimi.it) with 64 

contributions from Silvia Padula and Charles Rougé.  65 

Form of repository: Spreadsheet 66 

Size of archive: 188 KB 67 

Software required: MS Office 68 

Access form: (here the link to the repository where the dataset will be available)  69 

mailto:riccardo.marzano@polimi.it
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1. Introduction  70 

Pricing is an appealing instrument to bring about water savings. The increasing emphasis of 71 

water policies on “putting the right price tag on water” (EC, 2012) and the shift to discontinuous 72 

pricing structures such as increasing block rates (IBRs) are two instances of current attitudes 73 

toward water pricing, which is aimed at promoting water conservation while maintaining equity 74 

and affordability (Rogers et al., 2002). This paper offers a synthesis on the existing evidence on 75 

the response of households to water prices by means of a meta-analysis. Contrary to previous 76 

studies on this topic, it also goes beyond by validating an exploratory simulation approach based 77 

on meta-analysis results. It then uses this approach to produce supplementary insights regarding 78 

some of the determinants of price response such as tariff structure. There are three main 79 

motivations for this effort.  80 

First, severe droughts have recently hit a few US states and Latin American countries, and 81 

episodes of water shortage have occurred in Asia and also in Europe (Kummu et al., 2010; 82 

MacDonald, 2010). The debate on water use efficiency and the implementation of conservation 83 

policies has grown in scope and urgency as a result, as it has been extended to more geographical 84 

locations, including countries traditionally unaffected by large-scale water shortage events.  85 

Second, and despite the ongoing debate involving policymakers, scientists and citizens on 86 

water conservation, policy remedies are unclear. On the one hand, demand management has 87 

emerged as a cost-effective complement or even as an alternative to supply-side solutions – the 88 

expansion of infrastructure capacity. On the other hand, command-and-control policies such as 89 

use restrictions or mandatory retrofit programs seem to be less cost-effective than price measures 90 

in the short and long run (Olmstead & Stavins, 2009; Escriva-Bou et al., 2015). 91 
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Finally, despite an extensive literature focusing on estimating the price elasticity of water 92 

demand, it remains unclear whether, to what extent and under which circumstances, consumers 93 

respond to changes in the price of water. This is particularly true when pricing structures move 94 

from traditional two-part tariffs with a uniform, steady and generally low uniform rate to more 95 

complex pricing structures, such as increasing or decreasing block rates, drought prices, or time-96 

of-use prices.  97 

In the absence of a definitive, consensus answer emerging on these issues, syntheses are 98 

helpful. Several reviews have been written on the estimation of the residential water demand, 99 

including Arbués et al. (2003), Grafton et al. (2011), House-Peters & Chang (2011), Nauges & 100 

Whittington (2009), Worthington & Hoffman (2008). Over the years, literature has enlarged the 101 

spectrum of adopted methodologies. This, in turn, has led to a better handling of the uncertainties 102 

and nonlinearities that exist between water consumption and its determinants, and more 103 

generally, a better understanding of the complex spatial and temporal patterns of water usage.  104 

A quantitative alternative to reviews are meta-analysis methods, which have become widely 105 

used in the economics and management literature (Stanley & Jarrell, 1989; Moeltner et al., 2007; 106 

Geyskens et al., 2009; Nelson & Kennedy, 2009; Tunçel & Hammitt, 2014). Meta-analysis 107 

allows statistical evidence from different studies to be combined to obtain a quantitative and 108 

systematic overview on the effect size of interest, and to derive common summary statistics with 109 

corresponding confidence intervals. This technique generally results in increased statistical 110 

power, and can result in improved parameter significance and accuracy compared to primary 111 

studies alone. This allows the researcher to provide more reliable within-sample predicted values 112 

of the dependent variable under a particular set of conditions. Moreover, a meta-regression 113 

analysis (MRA) makes it possible to test hypotheses about the relationships between the effect 114 

size of interest and some primary study-specific factors in order to identify what causes study-to-115 
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study variations in empirical results. In doing so, it may offer suggestions on how to improve 116 

primary data, study design, and model specifications and techniques.  117 

Three previous meta-analyses provided summary statistics of water price elasticity. Espey et 118 

al. (1997) used a sample of 124 price elasticity estimates from 24 journal articles produced 119 

between 1967 and 1993. They reported a mean water price elasticity of -0.51. Dalhuisen et al. 120 

(2003) extended the previous sample and ran their meta-regression on 296 estimates taken from 121 

51 studies produced between 1963 and 2001. They obtained a sample mean of -0.41. Sebri (2014) 122 

focused on 100 studies produced between 2002 and 2012 and obtained a mean value of -0.365. 123 

The bulk of the literature indicates that water demand is price inelastic, and few studies have 124 

reported price elasticity estimates larger than -0.25, i.e. smaller in absolute value (see Renwick & 125 

Archibald, 1998; Martínez-Espiñera & Nauges, 2004). 126 

Nevertheless, these systematic reviews highlighted the high heterogeneity that affects water 127 

demand studies. They rely on data at different disaggregation levels, both over time (annual, 128 

monthly and daily data) and over space (household versus municipality or country data). They 129 

focus on either average or marginal prices. They make use of very diverse demand specifications 130 

and estimation techniques.  131 

This work goes beyond the meta-analysis on residential water price elasticity recently carried 132 

out by Sebri (2014) in two respects. First, this analysis is based on a sample of 124 primary 133 

studies produced from 1964 to 2013, whose size in terms of studies is considerably larger than 134 

that of the one used in previous available meta-analyses. In fact, it considers a publication time 135 

span that bridges both Dalhuisen et al. (2003) and Sebri (2014). We estimate a meta-regression 136 

model that is robust to heteroskedasticity stemming from the variation in precision of sampled 137 

price elasticity estimates. As in previous meta-analyses on the same topic, our specifications 138 

include a wide array of study- and location-specific factors (data characteristics, methodologies, 139 
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socio-economic factors, tariff structures, and so on). Our specifications are also robust to the 140 

presence of outlier values. 141 

Second, in this paper, we go beyond the meta-regression model by formulating, validating and 142 

demonstrating a simulation approach that extrapolates the meta-analysis model to evaluate the 143 

plausible range of price elasticity estimates for set values of some of the meta-model 144 

specifications, which we call scenarios. We simulate scenarios aimed at directly answering 145 

policy-relevant questions where a meta-analysis can only tell whether the question is worth 146 

asking. For instance, the meta-analysis shows that using DCC models (discrete-continuous 147 

choice; Hewitt & Hanemann, 1995; Olmstead et al., 2007; Olmstead, 2009) to analyze the price 148 

response with increasing block rates (IBR) leads to values of price elasticity that are greater in a 149 

statistical sense. Yet, this is not a direct quantification of how price elasticities are affected by 1) 150 

tariff structure and 2) methodological choices. The simulation approach we propose provides this 151 

quantification. Besides, it makes it possible to explore the impact of combined impacts of several 152 

variables, whereas a meta-regression model can only yield insights on the influence of individual 153 

variables.    154 

The rest of the paper is organised as follows. Section 2 reviews the studies conducted on water 155 

demand. Section 3 presents the data and describes the methodology for the meta-analysis. Section 156 

3 reports the results of our meta-regression model. Then, Section 4 builds on these results to 157 

formulate, validate and exploit a scenario simulation approach. Section 5 concludes and discusses 158 

the implications of the findings. 159 

2. Meta-analysis: data and methodology 160 

The selection process for the primary studies pertaining to the meta-sample is presented first 161 

(Section 2.1). Then, the data (Section 2.2) and methods (Section 2.3) used in the meta-sample are 162 



8 

 

presented and analyzed. This leads to the model used in this meta-analysis, which is then 163 

introduced (Section 2.4). 164 

2.1. Building the meta-sample 165 

The 51 studies included in the dataset from Dalhuisen et al. (2003) were completed by relying 166 

upon two previous review articles on the estimation of residential water demand (i.e. Arbues et 167 

al., 2003; Worthington & Hoffman, 2008) along with a complementary search protocol based on 168 

the following steps. First, we identified a list of keywords that were kept as simple as possible for 169 

the sake of inclusiveness. These keywords were: (1) water, (2) demand and (3) price elasticity. 170 

Second, we conducted a Boolean search and explored the following online databases: (1) Scopus, 171 

(2) ISI Web, (3) RePEc, (4) ScienceDirect, (5) Springer, (6) Wiley, (7) Social Science Research 172 

Network (SSRN), (8) the National Bureau of Economic Research (NBER), and (9) the Centre for 173 

Economic Policy Research (CEPR). Third, we read the abstracts of all articles we obtained from 174 

the queries in order to eliminate those not relevant to the topic. Upon completion of the first three 175 

steps we ended up with a list of 352 articles, which we further filtered based on two criteria. On 176 

one hand, we selected only those articles that made use of econometric techniques, a common 177 

approach since the seminal paper by Howe & Linaweaver (1967), to estimate the residential 178 

water demand. Studies using any other methodology to estimate water price elasticities were 179 

screened out. On the other hand, we included only price elasticities of residential water demand. 180 

When primary studies included residential and non-residential water demand estimates, we 181 

discriminated among various estimates reported in the same study in order to select only those 182 

using data pertaining to residential consumption.  183 

The above described screening process yielded 73 articles which were added to the extant 184 

sample of 51 studies used by Dalhuisen et al. (2003), which also included 12 unpublished studies 185 
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that were kept in our sample. Therefore, our final dataset includes 124 papers produced from 186 

1963 to 2013 comprising 615 estimates of water price elasticities obtained using data from 31 187 

countries (see Figure 1). A coding protocol was designed to operationalise the information 188 

gathered from the sampled studies. Two of the coauthors read all the papers to ensure a reliable 189 

coding of the effect size and all the meta-analysis explanatory variables. A list of the sampled 190 

studies and information coded in the meta-analysis is available upon request.  191 

 192 

Fig. 1a - Distribution of the sampled water demand studies over publication year. 193 

 194 

Fig. 1b - Distribution of the sampled water demand studies over demand locations. 195 

 196 
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 197 

2.2. Data used in primary studies 198 

For approximately 64% of the sample, panel data has been used to estimate water demand. 199 

Although early water demand studies using panel data date back to the eighties (see Hanke & de 200 

Mare, 1982), this approach has become more popular in the last few decades (Dandy et al. 1997; 201 

Nauges & Thomas, 2003; Mansur & Olmstead, 2012). Panel data are commonly used to take into 202 

account household heterogeneity, and they are essential to estimate long-run price elasticities. 203 

Time series data (e.g., Agthe & Billings, 1980; Ruijs et al., 2008) constitute only about 15% of 204 

our meta-sample, whereas cross-section data (e.g. Gottlieb, 1963; Foster & Beattie, 1981; 205 

Hajispyrou et al., 2002) are used to estimate the remaining 20% of the sampled price elasticities. 206 

Aggregated data hide diverging microeconomic effects, and their use can produce biased 207 

estimates, highlighting the interest of data disaggregation over both time and space. Yet, whereas 208 

household-level data are needed to control for all relevant household characteristics, only a few 209 

studies (Dandy et al., 1997; Olmstead et al., 2007; Mansur & Olmstead, 2012) have actually been 210 

able to use them. Most studies resort to aggregated cross-sectional or panel data across a number 211 

of municipalities in a region, and then analyze the price elasticity of demand in a spatially 212 

disaggregated way. Likewise, daily water consumption data would be ideal to disentangle the 213 

effect of price variations on consumption from those of other time-varying determinants such as 214 

weather conditions, yet studies using daily data are even more sporadic than those based on 215 

household-level data (see Olmstead et al. 2007; Grafton & Ward, 2008). Most primary studies 216 

rely on monthly or annual data.         217 

Household-level data has been exploited to estimate only about 36% of the sampled price 218 

elasticities, whereas other estimates rely on aggregate data. Daily data are even more uncommon 219 

(8% of the estimates), as data is more frequently (53%) disaggregated on a monthly basis. 220 
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To estimate residential water demand, the most relevant variable to be measured, together 221 

with water consumption, is the price of water. Water tariffs often have complex structures that 222 

represent a trade-off between multiple objectives such as equity, public acceptability, 223 

transparency and the sustainability of service provision.  As far as tariff schemes are concerned, 224 

approximately 42% of observations refer to price elasticities estimated in locations where 225 

increasing block rates (IBR) were in place. Decreasing block rates (DBR) are far less frequent 226 

and account for less than 6% of our observations. When tariff structures are discontinuous, the 227 

average and marginal prices generally differ. Some authors assume that what actually defines the 228 

price effect is the consumer's perception of it, and that this is best represented by the average 229 

price (e.g. Nauges & Thomas, 2000; Gaudin et al., 2001; Schleich & Hillenbrand, 2009). Others 230 

prefer marginal prices, and then have to deal with the added difficulty that with IBR and DBR 231 

tariffs, marginal prices differ among users according to consumption (Dandy et al., 1997; 232 

Hajispyrou et al., 2002; Martínez-Espiñeira, 2002; Nauges & Van Den Berg, 2009). Several ways 233 

to tackle challenges linked with price effect estimation consist in introducing an intermediary 234 

variable, such as Nordin’s difference variable (Nordin, 1976) or Shin’s price perception variable 235 

(Shin, 1985). Over 36% of price elasticities in the meta-sample are estimated by using the 236 

average price (Grafton et al., 2011), whereas the marginal prices are present in 52% of water 237 

demand estimates. Almost half of those (24% of the meta-sample) include a difference variable to 238 

control for the income effect imposed by discontinuous tariff structures. 239 

In most water demand studies, price elasticity is estimated controlling for other factors that 240 

can influence water consumption. The most common among them are climate and seasonal 241 

factors, income, household characteristics and urban configuration.   242 

Weather and seasonal factors are taken into account in 73% of the demand estimates through 243 

one or more variables measuring temperature (44%), rainfall (61%), evapotranspiration rate 244 
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(11%) and season (11%). Indeed, water consumption usually shows a marked seasonal pattern. 245 

Summer price elasticities are usually larger than winter ones, as discretionary water uses like 246 

outdoor use are more price-sensitive than non-discretionary uses, and they are typically related to 247 

summer activities (Billings & Agthe, 1980; Nieswiadomy & Molina, 1989; Griffin & Chang, 248 

1991; Hewitt & Hanemann, 1995; Hoffman et al., 2006). Less than 10% of the price elasticities 249 

are obtained using only summer data, while winter data are used in approximately 7% of the 250 

cases.  251 

Water bills often represent a small fraction of household income, at least in most developed 252 

countries (Arbués et al., 2003). Therefore, although water is considered a normal good (positive 253 

income elasticity), the water demand has almost universally been found to be income-inelastic in 254 

the literature (see, for instance, Dandy et al., 1997; Gaudin et al., 2001). This remark is 255 

accentuated by the difficulty to gather data on household income – provided data themselves are 256 

collected at household level – and by the fact that only short-run elasticity values are measured in 257 

most studies (approximately 90% of our estimates), whereas retrofitting – the installation of 258 

water efficient devices – is a long-run income-related effect of price variations. Furthermore, 259 

discontinuous volumetric rates encompass changes in consumer surplus that result in reducing the 260 

income effects. Since income is so important in predicting water consumption levels, it is not 261 

surprising that it has been controlled for in 79% of our sampled price elasticity estimates. 262 

Population density and household characteristics are relevant in water demand studies. Per-263 

household consumption increases with household size but per-capita consumption decreases 264 

(Arbués et al., 2004). Urban configuration, including land zoning (e.g. single-family residential 265 

or commercial), total building area, and density of residential developments, also has an influence 266 

on total water consumption (Shandas & Parandvash, 2010). Similarly, household composition is 267 

a relevant factor to consider. For instance, both elder and younger inhabitants may exhibit a 268 
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higher level of water consumption for discretionary uses, gardening for the former, and frequent 269 

laundering and more water-intensive outdoor leisure activities for the latter (Nauges & Thomas, 270 

2000). Variables that reflect both the proportion of the population over 64 years and under 19 271 

years of age can therefore be included (Martínez-Espiñeira, 2003). Household characteristics 272 

such as total number of bedrooms, architectural type (i.e., detached or semidetached) and 273 

presence of a garden might also impact water demand (Fox et al., 2009). Population and 274 

household characteristics are captured by variables measuring population density (in 5% of the 275 

estimates) and household size (in more than 41% of the estimates).  276 

 277 

2.3. Methods used in primary studies 278 

Recall that our meta-sample only contains studies that use econometric modeling to estimate 279 

water demand. The functional forms used are diverse, but even though the most natural approach 280 

is to estimate a linear water demand model (Chicoine & Ramamurthy, 1986; Nieswiadomy & 281 

Molina, 1989), the most recurrent functional form is the double-log, where both water 282 

consumption and price are log-transformed. The log-transformation is a convenient way to deal 283 

with skewed variables; what is more, the coefficient of the price variable in a log-log model is the 284 

price elasticity of the water demand. Models where only water consumption or price is log-285 

transformed are also used (Hughes, 1980; Arbués et al., 2004).     286 

The estimation methodologies present in the meta-sample include ordinary least squares 287 

(OLS; e.g., Billings & Agthe, 1980; Chicoine et al., 1986; Hewitt & Hanemann, 1995; Martínez-288 

Espiñeira, 2003; Schleich & Hillenbrand, 2009) and several instrumental variable approaches 289 

(IV) , with specific emphasis on two- and three-stage least squares (2SLS and 3SLS). All of these 290 

techniques can be used with data collected at one or at a few points in time, such as cross-291 

sectional and panel data. Time series, instead, may require more sophisticated approaches, such 292 
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as vector autoregressive models and co-integration techniques (Martínez-Espiñeira, 2007). OLS 293 

is by far the most used estimator in the meta-sample (55% of the estimates).    294 

An innovative approach, used in three sampled primary studies is the discrete/continuous 295 

choice (DCC) model (Hewitt & Hanemann, 1995; Olmstead et al., 2007; Olmstead, 2009). DCC 296 

is a methodology that deals with the endogeneity of price to water consumption arising in 297 

discontinuous tariff schedules such as IBR or DBR. It models the observed demand of water as 298 

the outcome of 1) a discrete choice of the block in which consumption takes place and 2) a 299 

perception error which may place consumption on a different block than intended by the 300 

consumer if it is large. Its main weakness is the assumption that consumers are well-informed 301 

about the tariff structure. 302 

 303 

2.4. Model and estimation technique 304 

The dependent variable of our empirical meta-regression model is represented by the water 305 

price elasticities (݁݌௝௜) reported in each study. We use two vectors of study- and location-level 306 

characteristics as independent variables. The resulting model is as follows: 307 ݁݌௝௜ = ௝ߚ  + σ ௞x௝௜௞ߙ + σ ௦z௝௜௦ߛ + ௝݁௜ௌ௦ୀଵ௄௞ୀଵ         j=1,2,…,L; i=1,2,…,Nj                              (1) 308 

where ߚ௝ is the baseline value of the residential water price elasticity, net of any study- and 309 

location-specific effect, xij and zij encompass the K study-specific and S location-specific 310 

characteristics, the j indexes L included studies and the i indexes Nj estimates reported in each 311 

study, respectively. The baseline ߚ௝ is indexed by j because we allow for heterogeneity across 312 

studies. ݁௝௜ is a stochastic disturbance.  313 

Price elasticity estimates may vary considerably in precision leading to heteroskedasticity 314 

issues. Therefore, applying conventional ordinary least squares (OLS) to the estimation of 315 
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equation (1) can potentially lead to biased estimates of the coefficients’ standard errors. To 316 

mitigate heteroskedasticity, weighted least squares (WLS) have been adopted. When using WLS, 317 

inverse variances should be used as weights in the estimation procedure. Unfortunately, since our 318 

data miss most of the standard errors that are needed to compute the inverse variance matrix, we 319 

use a standard approach in meta-regression analysis whereby we proxy standard errors with a 320 

monotonic transformation of the sample size associated to each reported price elasticity estimate 321 

(Horowitz & McConnell 2002; Stanley & Rosenberger 2009).     322 

The study- and location-specific characteristics included in the meta-analysis model of 323 

equation (1) are those identified as relevant in explaining variations in price elasticity estimates, 324 

such as demand specification and functional form, data characteristics, estimation techniques, and 325 

so on. The complete list of the independent variables used in the MRA and their descriptions are 326 

presented in Table 1. The operationalization of most of these variables is analogous to those of 327 

previous meta-analyses in the field (Dalhuisen et al., 2003; Sebri, 2014).  328 

 329 

Table 1 - List of independent variables in MRA and their descriptions. 330 

 331 

Panel A – Demand specification variables 
Variable category 
(baseline) 

Variable name Variable description 

Type of price elasticity Long-run =1 if long-run elasticity is estimated 
(short-run elasticity) Segment =1 if segment elasticity is estimated 
Price measure Marginal price =1 if the marginal price is used as a price measure  
(average price) Shin price =1 if the Shin price is used as a price measure 
Conditioning variables Number of variables Number of conditioning variables 
 Lagged consumption =1 if lagged consumption included in demand specification 
 Evapotranspiration rate =1 if evapotranspiration rate included in demand specification 
 Season =1 if season is controlled for in the demand specification  
 Household size =1 if household size included in demand specification 
 Population density =1 if population density included in demand specification 
 Income =1 if income level included in demand specification 
 Commercial uses =1 if commercial use is controlled for in demand specification 
 Temperature =1 if temperature included in demand specification 
 Rainfall =1 if rainfall included in demand specification 
 Difference variable =1 if difference variable included in demand specification 
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Functional form Log price =1 if the specification is semi-logarithmic (x is logarithmic) 
(linear) Log consumption =1 if the specification is semi-logarithmic (y is logarithmic) 
 Double log =1 if the specification is double logarithmic 
 Flexible =1 if the specification is flexible 

 332 

Panel B – Data variables 
Variable category 
(baseline) 

Variable name Variable description 

Disaggregation overtime Daily data =1 if the primary study relies on daily data  
(annual data) Monthly data =1 if the primary study relies on monthly data 
Disaggregation overusers 
(aggregate data) 

Household data =1 if the primary study relies on household-level data 

Data period Summer data =1 if the primary study uses summer data 
(cross-season data) Winter data =1 if the primary study uses winter data 
Data structure Time-series data =1 if the primary study relies on time-series data 
(cross-section data) Panel data =1 if the primary study relies on panel data 

 333 

Panel C – Methodology variables 
Variable category 
(baseline) 

Variable name Variable description 

Estimator IV =1 if the instrumental variable (IV) approach is used 
(OLS) 2SLS =1 if the two stages least squares (2SLS) approach is used 
 3SLS =1 if the three stages least squares (3SLS) approach is used  
 DCC =1 if the discrete-Continuous choice approach is used  
 334 

Panel D – Publication variables 
Variable category Variable name Variable description 
Publication status Published =1 if the primary study is published  
 Publication year Publication year 
 335 

Panel E – Location-specific variables 
Variable category 
(baseline) 

Variable name Variable description 

Socio-economic 
indicator 

GDP per capita Gross Domestic Product per capita 

Water tariff scheme IBR =1 if customers are subjected to increasing block rates (IBR) 
(flat rate) DBR =1 if customers are subjected to decreasing block rates (DBR) 
Location US =1 if the location is in the United States  
(other parts of the world) Europe =1 if the location is in Europe 

 336 

3. Results 337 

3.1. Descriptive statistics 338 

Figure 2 shows the typical funnel plot commonly used in meta-analyses, where the sample 339 

size on the y-axis is the number of observations used to estimate the price elasticity (x-axis) in 340 
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each primary study. In the absence of publication bias, studies based on larger samples have near-341 

average elasticity, whereas studies based on smaller samples are spread on both sides of the 342 

average, creating a roughly funnel-shaped distribution. In this respect, it is worth recalling that 343 

we have included also unpublished studies in our meta-sample.1 The funnel plot justifies the 344 

adoption of WLS to mitigate the heteroskedasticity that arises from differences in precision 345 

associated with the price elasticity estimates.  346 

 347 

Fig. 2 - Funnel plot of price elasticity over sample size.  348 

 349 

The average water price elasticity estimate is -0.40, with a standard deviation of 0.72 and a 350 

median of -0.34. Fifty-three out of 615 estimates are smaller than -1, i.e. refer to elastic water 351 

demands. The most price-elastic estimated water demand reports a price elasticity of -7.47. 352 

Thirty-two out of 615 observations are positive, indicating that demand increases with price. 353 

                                                           
1 Unpublished studies include working papers that have not been accepted for publication yet. When existing, we 
have always included a published version of the study.    
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These positive values will be carefully handled in the MRA because they are not consistent with 354 

standard micro-economic theory. 355 

 356 

Fig. 3 - Estimated price elasticities over the publication year (Figure 5a-b) and over the data 357 

collection year (Figure 5c-d) with 95% confidence interval bands computed before and after the 358 

year 2000.  359 

 360 

Price elasticity estimates from the post-2000 studies are closer to the overall mean value 361 

(Figure 3a-b).  This convergence in the most recent estimates is also confirmed when the price 362 
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elasticities are plotted against the data collection years (see Figure 3c-d). The use of more 363 

standardized estimation techniques partly explains this decrease in inter-study variance. 364 

Table 2 reports the descriptive statistics of the independent variables included in the model 365 

described in equation (1). Sixty-eight primary studies (397 observations) used data collected in 366 

the United States, whereas 26 studies (111 observations) are based on European datasets.2 On 367 

average, water demand is estimated in high income locations (the mean value of GDP per capita 368 

is 25,300 US dollars).  369 

 370 

Table 2 - Descriptive statistics. 371 

 372 

Variable Mean Sd Max Min 

Long-run .0992 .2992 1 0 

Segment .0425 .2019 1 0 

Marginal price .5213 .4999 1 0 

Shin price .0236 .1520 1 0 

Number of variables 8.169 13.67 206 0 

Lagged consumption .1497 .3570 1 0 

Evapotranspiration rate .1035 .3049 1 0 

Season .1083 .3110 1 0 

Household size .4189 .4938 1 0 

Population density .0525 .2233 1 0 

Income .7898 .4078 1 0 

Commercial uses .0350 .1840 1 0 

Temperature .4350 .4962 1 0 

Rainfall .6035 .4896 1 0 

Difference variable .2299 .4211 1 0 

Log price .0252 .1568 1 0 

Log consumption .0173 .1306 1 0 

Double log .5423 .4986 1 0 

Flexible .0835 .2768 1 0 

Daily data .0835 .2768 1 0 

Monthly data .5260 .4997 1 0 

Household data .3669 .4823 1 0 

Summer data .0945 .2927 1 0 

Winter data .0677 .2515 1 0 

Time-series data .1480 .3554 1 0 
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Panel data .6346 .4819 1 0 

IV .0457 .2089 1 0 

2SLS .0756 .2646 1 0 

3SLS .0094 .0968 1 0 

DCC .0205 .1417 1 0 

Published .8976 .3034 1 0 

GDP per capita 25,086 9,929 59,065 762.1 

IBR .4031 .4909 1 0 

DBR .0567 .2314 1 0 

US .6520 .4767 1 0 

Europe .1748 .3801 1 0 
 373 

3.2. Main results from the meta-analysis model 374 

Table 3 presents the results of the model referring to equation (1). The dependent variable is 375 

the price elasticity reported in each estimate of each primary study included in the meta-sample.  376 

The table reports the results of the WLS (columns 1-3) and panel generalised least squares 377 

(GLS, column 4) estimations obtained using the square root of the sample size as analytical 378 

weights (Stanley & Rosenberger, 2009). In fact, the studies included in the meta-dataset report 379 

multiple estimates, depending on whether they use different subsamples, specifications, 380 

estimators and so on. We correct the standard errors by clustering the estimates within studies 381 

(columns 1-3) to account for data dependency across estimates from the same study. An 382 

alternative approach applies panel data estimators to a panel that observes multiple estimates for 383 

single studies (Rosenberger & Loomis 2000; Stanley & Doucouliagos 2012). 384 

 385 

Table 3 - WLS and panel GLS estimates. 386 

 WLS  Panel GLS 

 (1) (2) (3)  (4) 

GDP per capita   .0088  .0040** 

   (.0115)  (.0018) 

US   -.0521  -.0531 

   (.3235)  (.0624) 

Europe   .0405  .0395 
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   (.3574)  (.0542) 

IBR  -.0528 -.0456  -.1130** 

  (.0600) (.0505)  (.0445) 

DBR  .5569* .5567  .0401 

  (.3334) (.3432)  (.1105) 

Long-run -.0084 -.0129 -.0361  -.0768 

 (.1028) (.0963) (.0738)  (.0657) 

Segment -.0036 .0464 .0477  .0696 

 (.4936) (.4848) (.4957)  (.1954) 

Marginal price .1963 .1777 .1852  .1262*** 

 (.1281) (.1200) (.1228)  (.0390) 

Shin price 1.022** .7647 .8143  .0576 

 (.4216) (.4838) (.5531)  (.1746) 

Number of variables .0112*** .0117*** .0123***  .0054*** 

 (.0021) (.0021) (.0022)  (.0014) 

Lagged consumption -.0503 -.0454 -.0274  -.0711 

 (.1056) (.1008) (.0801)  (.0556) 

Evapotranspiration rate -.0006 -.0291 -.0277  .0099 

 (.2345) (.2100) (.2263)  (.0617) 

Season .3009** .2697** .2684*  .0280 

 (.1331) (.1267) (.1424)  (.0528) 

Household size -.2367 -.1923 -.1575  -.0316 

 (.2659) (.2455) (.2635)  (.0305) 

Population density .0959 .0872 .1421  .0631 

 (.2651) (.2549) (.3074)  (.0595) 

Income .2917 .2124 .2721  .0635 

 (.3631) (.3474) (.3219)  (.0472) 

Commercial uses .7604*** .6964*** .6816***  .3192*** 

 (.2330) (.2007) (.2052)  (.0783) 

Temperature -.0247 -.0558 -.0854  .0216 

 (.1871) (.1692) (.1918)  (.0366) 

Rainfall .1630 .1994 .1247  .0191 

 (.2256) (.2000) (.2032)  (.0436) 

Difference variable .2364 .2542 .2704  .0247 

 (.3048) (.2948) (.3198)  (.0516) 

Log price .8797 .9449 1.078  .0661 

 (.8271) (.8004) (.8294)  (.1517) 
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Log consumption .3716 .3772 .3715  .4569*** 

 (.4049) (.4229) (.4154)  (.1294) 

Double log -.2587 -.2027 -.1777  -.1252*** 

 (.2188) (.2020) (.2188)  (.0378) 

Flexible -.0204 -.0075 .0001  -.0205 

 (.1935) (.1966) (.2427)  (.0543) 

Daily data -.0441 .0141 .0089  -.0114 

 (.3646) (.3434) (.3451)  (.0612) 

Monthly data -.2064 -.1988 -.1593  -.0194 

 (.2262) (.2145) (.2126)  (.0506) 

Household data .0844 .0685 .0256  -.0696* 

 (.1045) (.1879) (.2005)  (.0379) 

Summer data -.2380 -.2711* -.2715*  -.1054*** 

 (.1454) (.1388) (.1526)  (.0373) 

Winter data .0867 .0543 .0538  .1137*** 

 (.1345) (.1274) (.1452)  (.0380) 

Time-series data .0518 .0295 .2093  .1462** 

 (.4651) (.4465) (.4785)  (.0680) 

Panel data -.2262 -.1770 -.0634  .0014 

 (.3688) (.3654) (.2971)  (.0652) 

IV -1.437* -1.441* -1.512*  -.1983 

 (.8012) (.8013) (.8131)  (.1604) 

2SLS -.2410 -.2133 -.2229  -.0946* 

 (.2174) (.2076) (.2167)  (.0488) 

3SLS 1.791** 1.253 1.262  .5108* 

 (.8164) (.8506) (.8640)  (.2780) 

DCC -.5121** -.5060** -.5577**  -.2291** 

 (.2448) (.2425) (.2478)  (.1068) 

Published -.0940 -.1321 -.2073  -.1348*** 

 (.2948) (.2663) (.3053)  (.0497) 

Constant -.3712 -.3600 -.6642  -.3325*** 

 (.6997) (.6895) (.8140)  (.1080) 

Observations 
615 615 598  598 

Studies 122 122 117  117 

The table reports the results of the WLS (columns 1-3) and panel GLS (column 4) estimations obtained using the 387 

square root of the sample size as analytical weights. The dependent variable is the price elasticity reported in each 388 

estimate of each primary study included in the meta-analysis. Depending on the specification, the models control for 389 
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study-level characteristics, tariff schemes, location of the water demand and gross domestic product per capita. 390 

Standard errors (clustered by studies) are reported in parentheses. *, **, and *** denote significance at 10%, 5% and 391 

1%, respectively. 392 

 393 

 Column (1) reports the estimates that refer to a specification which includes only study-level 394 

characteristics. The variables that control for the tariff scheme faced by customers, i.e. IBR and 395 

DBR, are included in the specification reported in column (2). The location (US and Europe) and 396 

GDP per capita are also added in column (3).   397 

The results reported in Table 3 provide some insights into the sources of variation in price 398 

elasticity estimates. If the most thorough specification in column (3), which was obtained through 399 

WLS, is considered, three variables show highly statistically significant coefficients. First, the 400 

Number of variables employed in the specification of the water demand is found to have a 401 

positive effect on the estimated price elasticity. The coefficient is statistically significant at the 402 

1% level, since when more variables are included in the model specification, the analyst obtains a 403 

less elastic water demand. Second, the presence of Commercial uses also results in a less elastic 404 

water demand, with statistically significance at the 1% level. Third, consistently with Dalhuisen 405 

et al. (2003), other things being equal, primary studies that rely upon the DCC approach – always 406 

applied to cases with IBR in our sample – show a more price-elastic water demand. In this case, 407 

the coefficient is negative and statistically significant at the 5% level. The three coefficients are 408 

also statistically significant in the specifications reported in columns (1) and (2). The statistical 409 

significance at the 5% level of DCC suggests that as far as DCC can be considered as the most 410 

sophisticated methodology available to estimate water demand under discontinuous prices, IBR 411 

should be considered an effective tool for water conservation.   412 

The application of the DCC approach remains statistically significant in the panel GLS 413 

estimates (column 4) along with the number of variables included in the specification and the 414 



24 

 

inclusion of a variable that takes into consideration the commercial uses. In addition, the results 415 

in column (4) suggest that the use of the Marginal price as a price measure may lead to a less 416 

elastic water demand, compared with those obtained using average prices. This suggests that 417 

users are more sensitive to average than marginal price. As far as the functional form is 418 

concerned, the double-logarithmic (Double log) specification is associated with a more elastic 419 

water demand, whereas the Semi logarithmic specification is conducive to lower price elasticities. 420 

All of the aforementioned effects are statistically significant at the 1% level. Reliance on Time-421 

series data leads to smaller price elasticity estimates (more inelastic water demand) with a 422 

statistical significance level of 5%. A possible explanation is the impossibility to exploit 423 

household-level heterogeneity in the water demand estimation. According to the panel results, the 424 

season in which the data were collected is statistically significant in explaining variations in the 425 

price elasticity estimates. In particular, studies relying on Summer data show a more elastic water 426 

demand, whereas Winter data are more likely to be associated with a less elastic water demand. 427 

As far as the location-specific variables are concerned, GDP per capita is found to be statistically 428 

significant at the 5% level in explaining a less elastic water demand, as economic theory would 429 

predict. Moreover, IBR is found to be conducive to a more elastic water demand (with statistical 430 

significance at the 5% level).  431 

 432 

3.3. Outlier analysis 433 

As shown in Section 3.1, the range of price elasticity estimates from primary studies is very 434 

large. There are observations whose price elasticity is positive in contradiction of basic micro-435 

economic theory, and others that show an extremely elastic water demand. These outliers raise 436 

concerns both about the reliability of these estimates, and about their potential influence on the 437 

meta-regression results. Therefore, we estimate a probit model that predicts the probability of 438 
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belonging to the outliers’ group and find evidence that using panel data significantly decreases 439 

the odds of obtaining an outlier price elasticity estimate, whereas the water demand location (i.e. 440 

location-specific features) does not have any statistically significant impact (results are 441 

untabulated but available upon request).    442 

In order to rule out the possibility that our estimates may be biased considerably by the 443 

presence of these outlier values, we re-estimate the model on different subsamples. Table 4 444 

reports the results of WLS estimations after having dropped positive price elasticities (column 1), 445 

and after having dropped positive price elasticities and trimmed 1% (column 2) and 2% (column 446 

3) of the observations on the left tail of the price elasticity distribution.  447 

 448 

Table 4 – Outlier-robust estimates. 449 

 Outliers excluded 

 (1) (2) (3) 

GDP per capita .0032 -.0001 -.0008 

 (.0057) (.0058) (.0058) 

US .2723 .3078 .3217 

 (.2023) (.1989) (.1979) 

Europe .5073** .4635* .4732** 

 (.2221) (.2213) (.2187) 

IBR -.0102 -.0082 -.0098 

 (.0370) (.0367) (.0372) 

DBR .2466** .2511* .2537* 

 (.1244) (.1284) (.1315) 

Long-run .0568 .0591 .0554 

 (.0835) (.0843) (.0825) 

Segment -.2171 -.2051 -.2042 

 (.1489) (.1655) (.1677) 

Marginal price .0212 .0390 .0426 

 (.0706) (.0678) (.0671) 

Shin price .0983 .1169 .1156 

 (.1301) (.1352) (.1374) 

Number of variables .0031*** .0028*** .0028*** 
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 (.0010) (.0010) (.0010) 

Lagged consumption -.1322 -.1293 -.1237 

 (.0807) (.0823) (.0807) 

Evapotranspiration rate .2064** .1680* .1502* 

 (.0960) (.0882) (.0862) 

Season .2915*** .2900*** .3028*** 

 (.0914) (.0897) (.0870) 

Household size .1087 .1225 .1348 

 (.0997) (.1025) (.1036) 

Population density .2254 .1919 .2017 

 (.2302) (.2195) (.2203) 

Income -.0253 -.0914 -.0978 

 (.1394) (.1492) (.1506) 

Commercial uses .8610*** .8277*** .8195*** 

 (.1822) (.1841) (.1840) 

Temperature -.1555* -.1832** -.1924** 

 (.0809) (.0810) (.0813) 

Rainfall .1695 .1949* .2093* 

 (.1239) (.1170) (.1145) 

Difference variable -.3338** -.2853** -.2671** 

 (.1288) (.1245) (.1209) 

Log price -.5236*** -.5606*** -.5568*** 

 (.1531) (.1580) (.1600) 

Log consumption .0610 .0908 .1071 

 (.2222) (.2279) (.2311) 

Double log -.3548*** -.3194*** -.3040*** 

 (.0885) (.0870) (.0860) 

Flexible -.0790 -.0413 -.0269 

 (.1186) (.1180) (.1172) 

Daily data -.2492 -.2308 -.2205 

 (.1565) (.1526) (.1530) 

Monthly data -.0263 -.0760 -.0736 

 (.1220) (.1210) (.1199) 

Household data -.1161 -.1106 -.1092 

 (.1183) (.1191) (.1197) 

Summer data -.2601** -.2587** -.2447** 

 (.1110) (.1088) (.1066) 
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Winter data .0673 .0684 .0821 

 (.1046) (.1015) (.0982) 

Time-series data .8271*** .7256** .7428** 

 (.2878) (.2944) (.2928) 

Panel data .0347 -.0014 -.0008 

 (.1671) (.1674) (.1688) 

IV .2789** .2586* .2502* 

 (.1324) (.1363) (.1359) 

2SLS .0180 .0016 -.0034 

 (.0732) (.0728) (.0730) 

3SLS .1220 .1736 .1929 

 (.2326) (.2486) (.2512) 

DCC -.2245* -.2524* -.2619** 

 (.1321) (.1291) (.1272) 

Published -.6516*** -.6335*** -.6324*** 

 (.1218) (.1236) (.1249) 

Constant -.1493 -.0072 -.0300 

 (.2804) (.3111) (.3089) 

Observations 
567 560 555 

Studies 117 117 117 

The table reports the results of the WLS estimations obtained using the square root of the sample size as analytical 450 

weights after having dropped positive price elasticities (column 1), and after having dropped positive price 451 

elasticities and trimmed 1% (column 2) and 2% (column 3) of the observations on the left tail of the price elasticity 452 

distribution. The dependent variable is the price elasticity reported in each estimate of each primary study included in 453 

the meta-analysis. Standard errors (clustered by studies) are reported in parentheses. *, **, and *** denote 454 

significance at 10%, 5% and 1%, respectively. 455 

 456 

Results reported in Table 4 make our main findings more robust. Applying the DCC approach, 457 

including more variables in the specification, and controlling for the commercial uses, are three 458 

methodological features that retain statistical significance on estimated water price elasticities. In 459 

addition, some coefficients that are statistically significant in our panel estimations (but not in our 460 

full sample WLS estimations) are proved to be so in the outlier-robust WLS estimates as well. 461 

This is the case of Double log, Time-series data and Published, for which the outlier-robust 462 

estimates are even stronger than in the panel model; the Double log and Published specifications 463 
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are associated with a more elastic water demand whereas the opposite is true for Time-series 464 

data. Concerning the Published specification, this is a clear evidence of publication bias that we 465 

were not able to discern through the visual aid provided by the funnel plot, simply because we 466 

had no way to distinguish between published and unpublished studies. On the contrary, after 467 

having dropped less reliable estimates that were likely to significantly drive our main results, the 468 

preference for studies that found a more elastic water demand has been detected.  469 

4. Simulation approach 470 

4.1.  Rationale and description 471 

Our meta-sample can be also exploited through the formulation of scenarios aimed at 472 

obtaining predictions of water price elasticity in different contexts and under alternative pricing 473 

policies. In what follows, a scenario simulation is a model prediction obtained using the 474 

estimated coefficients and setting the independent variables at values corresponding to the 475 

scenario’s assumptions. The justification for developing this methodology is two-fold. On one 476 

hand, it can inform demand management policies by providing quantitative estimates of price 477 

elasticity for well-defined scenarios. On the other hand, scenarios can explore the combined 478 

impact of several variables on price elasticity. Although individual coefficients of meta-479 

regressions may not be statistically significant, changes in the corresponding variables used as 480 

inputs to the simulation of the scenario may still play a significant role when jointly 481 

implemented.  482 

We cannot directly propose a meta-regression model as a simulation tool. Given the large 483 

number of included regressors, overfitting would be a concern when using such a model for 484 

predictive purposes (see e.g., Harrell, 2015: p. 72). For that reason, we use a three-step procedure 485 

aimed at taking advantage of our meta-sample in a scenario simulation setting. First, starting 486 
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from the outlier-robust meta-model of Section 3.3, we eliminate the least relevant variables to 487 

select a more parsimonious linear model. Second, we validate the obtained restricted model. 488 

Finally, we use the validated model to obtain scenario simulations exploring the combined 489 

impacts of tariff structure, seasonality, and estimation methodology. 490 

 491 

4.2. Model selection and validation 492 

Model selection has been performed via stepwise regression technique with a backward 493 

elimination approach, which is a part of the broad family of the General-to-Specific modelling 494 

approaches (Hocking, 1976). Backward elimination starts with the full meta-regression model, 495 

then iteratively drops independent variables whose p-values are higher than a chosen threshold 496 

and re-estimates the resulting restricted model, until all p-values are under the threshold 497 

(Kennedy & Bancroft, 1971). We chose 0.2 as our p-value threshold, and eliminated the 498 

independent variable with the highest p-value at each iteration. The stepwise regression led to 499 

dropping the following variables in this order: Longrun, Segment, Marginal Price, Shin Price, 500 

Income, Population Density, Log Consumption, Flexible, Monthly data, Household data, Panel 501 

data, 2SLS, 3SLS and GDP per capita.  502 

The selected model has been cross-validated by using studies published before 2000 as 503 

“ training set” and those published after 2000 as “ test set” (Arlot & Celisse, 2010). This procedure 504 

entails the following sub-steps: i) estimating the predictive model using the training set; ii) 505 

obtaining model predictions relative to observations in the test set; iii)  regressing observed price 506 

elasticities against predictions using the test set; iv) testing that predictions are able to explain the 507 

observed values, i.e., the relative coefficient is statistically significant at the conventional 508 

significance level. In order to cope with heteroskedasticity we use WLS both in steps i) and iii). 509 

The model is validated at a 5% statistically significance level. This suggests that the selected 510 
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model exhibits good predictive performance and can be accordingly used to produce reliable 511 

scenario simulations. Table 5 shows the estimates of the predictive model. 512 

 513 

 514 

 515 

Table 5 – Predictive model estimates. 516 

Dependent variable: Price elasticity 

IBR -.0235 

 (.0429) 

DBR .3495*** 

 (.1078) 

Summer data -.2828*** 

 (.1026) 

Winter data .0441 

 (.0959) 

US .1963 

 (.1680) 

Europe .4184** 

 (.1933) 

Number of variables .0026*** 

 (.0009) 

Lagged consumption -.0731*** 

 (.0140) 

Evapotranspiration rate .1395* 

 (.0798) 

Season .2635*** 

 (.0839) 

Household size .0737 

 (.0535) 

Commercial uses .8922*** 

 (.0811) 

Temperature -.1785** 

 (.0786) 

Rainfall .1657** 

 (.0837) 

Difference variable -.2424** 
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 (.1200) 

Log price -.4273*** 

 (.1270) 

Double log -.2630*** 

 (.0769) 

Daily data -.1201 

 (.1035) 

Time-series data .6615*** 

 (.2163) 

IV .2103** 

 (.0905) 

DCC -.2689** 

 (.1207) 

Published -.6011*** 

 (.0587) 

Constant -.1078 

 (.2219) 

Observations 
572 

Studies 122 

The table reports the results of the WLS estimations obtained using the square root of the sample size as analytical 517 

weights after having dropped positive price elasticities and trimmed 2% of the observations on the left tail of the 518 

price elasticity distribution. The dependent variable is the price elasticity reported in each estimate of each primary 519 

study included in the meta-analysis. Standard errors (clustered by studies) are reported in parentheses. *, **, and *** 520 

denote significance at 10%, 5% and 1%, respectively. 521 

 522 

4.3. Insights from the simulation approach 523 

After having validated the predictive model, we illustrate the approach by simulating selected 524 

scenarios and comparing the relative price elasticities. Scenarios are simulated by setting all the 525 

independent variables at their means, except for those measuring the tariff structure and the 526 

season during which the water demand has been estimated. Thereafter, we exploit meta-data 527 

variation to produce simulated price elasticities conditional on tariff structure, season, and 528 

estimation methodology – focusing on the use of DCC. Table 6 shows the scenario simulation 529 

results. 530 
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 531 

 532 

 533 

 534 

 535 

 536 

Table 6 – Scenario simulations.  537 

Predicted variable: Price 

elasticity 

   

 Price elasticity Standard error 95% conf. inter. 

All seasons    

Linear -.3692*** .0194 [-.4075;-.3308] 

DBR -.0211 .1060 [-.2309;.1888] 

IBR -.3941*** .0236 [-.4408;-.3473] 

IBR (with DCC) -.6615*** .1188 [-.8967;-.4263] 

Summer    

Linear -.5913*** .0763 [-.7423;-.4403] 

DBR -.2432** .1226 [-.4859;-.0005] 

IBR -.6162*** .0798 [-.7743;-.4581] 

IBR (with DCC) -.8837*** .1341 [-1.149;-.6182] 

Winter     

Linear -.2644*** .0691 [-.4012;-.1276] 

DBR .0837 .1440 [-.2013;.3687] 

IBR -.2893*** .0664 [-.4207;-.1578] 

IBR (with DCC) -.5567*** .1200 [-.7943;-.3192] 

Observations 555 555 555 

Studies 117 117 117 

The table reports the results of scenario simulations based on the validated predictive model. The predicted price 538 

elasticities are obtained by setting all the variables at their means, except for those measuring the tariff structure and 539 

the season. Standard errors (clustered by studies) and 95% confidence intervals are also reported. ** and *** denote 540 

significance at 5% and 1%, respectively. 541 

 542 
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The validated model simulates price elasticities across seasons under linear DBR and IBR 543 

tariff schedules. In the latter case, we compare estimates obtained with and without the DCC 544 

approach, which, on the one hand, properly deals with the endogeneity of price with respect to 545 

water demand, but, on the other hand, rests on the assumption that households are fully informed 546 

about the tariff structure, including block sizes and prices within each block (Olmstead et al, 547 

2007).  548 

Simulated results lead to the following conclusions. First, predicted price elasticities are close 549 

to the sample mean value reported in the Section 3.1 overall, particularly under the linear tariff 550 

schedule (-0.37). Second, the water demand is found to be more price-elastic during summer than 551 

winter months. Price elasticity goes up (in absolute value) by 0.33 when switching from winter to 552 

summer periods. Third, DBR makes water demand less price-elastic. Under DBR the water 553 

consumption seems not to respond to price unless we focus on summer months. Fourth, IBR is 554 

associated with more elastic water demand, provided that water demand is estimated using a 555 

DCC approach. According to our simulations, price elasticity reaches the value of -0.88 when 556 

DCC is employed to estimate the water demand in locations exposed to IBR. This means that 557 

under IBR, if the water demand is properly estimated (and customers are fully informed about the 558 

functioning of the tariff mechanism), it turns out to be price elastic or close to.  559 

5. Discussion  560 

This analysis extends previous meta-analyses in two respects. First, it exploits a larger sample 561 

of primary studies (more than double than that of Dalhuisen et al., 2003, 20% larger than that of 562 

Sebri, 2014) spanning over a longer time period and includes recent analyses that make use of 563 

more advanced methods and better datasets. Second, it uses the resulting meta-regression model 564 

to implement a simulation approach to explore price elasticities under different scenarios. A 565 
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salient finding from this approach is that the more sophisticated the statistical analysis methods - 566 

i.e. when they deal with the endogeneity of price to water consumption – the  more elastic the 567 

water demand in IBRs schemes. This finding suggests that IBRs may be more effective than 568 

traditional ones in bringing about water savings. It also stresses the importance of the estimation 569 

methodology. In fact, endogeneity issues are relevant when estimating water demand under non-570 

linear pricing: price elasticities estimated using OLS can be shown to be positively (negatively) 571 

biased under IBRs (DBRs) schemes (see Hewitt & Hanemann, 1995). This result is so far based 572 

on a limited number of observations (13) as only three primary studies in the sample used DCC. 573 

This finding highlights the effectiveness of managing water demand using pricing schemes 574 

more sophisticated than a two-part tariff with a uniform volumetric charge. On the one hand, the 575 

reasons for this finding should be investigated. Previous studies have shown that differences in 576 

the average magnitude of prices across locations adopting IBRs and uniform rates are not 577 

responsible for differences in observed elasticities (see Olmstead et al., 2007). Behavioral 578 

reaction to the water price structure, for instance due to increased attention to price, could be a 579 

more plausible explanation. On the other hand, the result is interesting because technological 580 

innovations, most notably smart meters that can measure consumption at a sub-hourly timescale 581 

and provide real-time feedback to the users through online consumer portals, are bound to 582 

increase interest in more complex pricing schemes (Cominola et al., 2015). Such tariffs would be 583 

dynamic, i.e., prices could vary over short time intervals (Rougé et al., in press). For instance, 584 

scarcity pricing could help manage demand when water becomes scarce (e.g. linked to available 585 

reservoir storage) by adjusting prices on a weekly or monthly basis, thus sending users a signal of 586 

the true resource value (Grafton & Kompas, 2007; Pulido-Velazquez et al., 2013; Macian-587 

Sorribes et al., 2015); residential prices would be adjusted every week or month as the situation 588 

evolves. Similarly, peak pricing could modulate sub-daily prices to help shift consumption away 589 
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from periods of peak demand in the morning and evening, leading to substantial financial savings 590 

for water utilities (Rougé et al., in press). In that latter case, the possibility to substitute peak uses 591 

with off-peak uses may lead to a more price-elastic peak demand (Cole et al., 2012). 592 

     Besides, the assumption that consumers have appropriate information about tariff structure, 593 

essential for the DCC model, is bound to see its validity increase with smart metering, as it brings 594 

about new ways for utilities to engage with their customers (Fraternali et al., 2012; Harou et al., 595 

2014; Koutiva & Makropoulos, 2016). More generally, the high-resolution data generated by 596 

smart metering may also enable to verify the assumptions behind estimation methodologies, and 597 

to propose even more sophisticated model that would be able to provide more accurate price 598 

elasticity estimates. 599 

Conversely, when the tariff includes a uniform volumetric charge, the finding from previous 600 

meta-analyses that residential water demand is price inelastic is confirmed, even though the study 601 

also confirms that the elasticity of demand is always significantly different from zero. In addition, 602 

price elasticity is likely to increase for higher prices. Our meta-dataset does not include data on 603 

water prices charged in locations where the water demand has been estimated, but there are 604 

reasons to expect a certain degree of heterogeneity in price elasticity across price levels. This 605 

highlights the need for further study of the potential role of dynamic residential water pricing for 606 

managing water scarcity and promoting water conservation in urban water supply.  607 

This meta-analysis offers several guidelines for future research on the price response of water 608 

demand. First, it highlights the importance of using panel data, which significantly reduce the 609 

probability of obtaining outlier values when estimating water price elasticity. Second, it shows 610 

that water price elasticities differ significantly depending on the season. This underscores the 611 

importance of using cross-season data, and of controlling for the season during which data have 612 

been collected. Third, it stresses the value of using disaggregated data, both over time and across 613 
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users. Finally, it draws attention to the relevance of considering the non-linearity of the price 614 

structure when estimating water demands. 615 

6. Conclusions 616 

Meta-analysis is a powerful tool to summarise previous statistical evidence on water price 617 

elasticity, and to get an overall picture of the impacts of heterogeneity in study designs and study 618 

characteristics on the variations of empirical estimates. This study confirmed this; for instance, its 619 

results stressed that including more variables in the specification and controlling for the 620 

commercial uses of water lead to a less elastic water demand, suggesting that the specification 621 

choices are not neutral with respect to price elasticity estimates. 622 

Yet, meta-analyses are not fit for answering direct questions on the range of plausible price 623 

elasticities under given conditions. These are relevant questions when it comes to summarising 624 

previous demand studies to inform demand management policies, as debate rages on the potential 625 

role on water pricing. This is why this work has also validated and demonstrated a simulation 626 

tool designed to serve just that purpose.  It has shown that when customers face IBRs and the 627 

water demand is estimated by relying on state-of-the-art methodological approaches, the 628 

predicted water price elasticity is higher in absolute value. Yet, the DCC methodology that leads 629 

to these more elastic estimates also has weaknesses. This stresses the policy implications of 630 

understanding which methodologies are the most appropriate to evaluate the price response, and 631 

in which circumstances.  632 

  633 
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