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multiple near-optimal solutions
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Abstract

Stochastic dual dynamic programming (SDDP) is one of the few algorithmic solutions available to

optimize large-scale water resources systems while explicitly considering uncertainty. This paper

explores the consequences of, and proposes a solution to, the existence of multiple near-optimal

solutions (MNOS) when using SDDP for mid- or long-term river basin management. These is-

sues arise when the optimization problem cannot be properly parametrized due to poorly de�ned

and/or unavailable data sets. This work shows that when MNOS exists, 1) SDDP explores more

than one solution trajectory in the same run, suggesting di�erent decisions in distinct simulation

years even for the same point in the state-space, and 2) SDDP is shown to be very sensitive to even

minimal variations of the problem setting, e.g. initial conditions � we call this �algorithmic chaos�.

Results that exhibit such sensitivity are di�cult to interpret. This work proposes a re-optimization

method, which simulates system decisions by periodically applying cuts from one given year from

the SDDP run. Simulation results obtained through this re-optimization approach are steady-state

solutions, meaning that their probability distributions are stable from year to year.

Keywords: Stochastic dual dynamic programming (SDDP), Year-periodic re-optimization, Multi-

ple near-optimal solutions, Limited data availability, Zambezi River Basin, Chaos.

Key points

� SDDP results can be hard to interpret in the presence of multiple near-optimal solutions.

� A year-periodic re-optimization method is proposed to solve this issue.

� Limited data availability favors the presence of multiple near-optimal solutions.

1 Introduction

Stochastic dual dynamic programming (SDDP; Pereira, 1989; Pereira and Pinto, 1991) is an approx-

imate stochastic optimization algorithm to analyze multistage, stochastic, decision making problems

such as reservoir operation, irrigation scheduling, intersectoral allocation, etc. SDDP is one of the
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few algorithmic solutions available to handle large-scale problems, i.e. problems characterized by a

large state-space, while explicitly considering the hydrologic uncertainty. To achieve this, SDDP con-

structs a locally-accurate approximation of the decision making problem. As we will see later, this

approximation might be a source of concern when the decision making problem cannot be properly

parametrized.

Initially, SDDP was developed for short- and mid-term hydropower scheduling in hydropower-

dominated systems, e.g. in Brazil (Pereira, 1989; Pereira and Pinto, 1991; Maceira and Damázio,

2004) or in Norway (Rotting and Gjelsvik , 1992; Mo et al., 2001). It has then been extended to long-

term hydropower scheduling (e.g. Gjelsvik et al., 2010; Homem-de Mello et al., 2011; Bezerra et al.,

2012), where the planning horizon extends over several years. Furthermore, its ability to assess the

marginal value of water at each stage and place in the basin (Tilmant et al., 2008, 2012) has made

it useful for the hydro-economic analysis (Harou et al., 2009) of large river basins. SDDP enables

tackling varied issues including risk assessment (Tilmant and Kelman, 2007) or cost assessment of

noncoordinated irrigation development among riparian countries (Tilmant and Kinzelbach, 2012), the

restoration of a �ow regime through the coordination of multiple reservoirs (Tilmant et al., 2010) or

the integrated assessment of possible future developments in the Blue Nile River Basin (Goor et al.,

2010; Arjoon et al., 2014).

This work explores the consequences of the presence of multiple near optimal-solutions (MNOS)

when using SDDP to analyze water resources allocation problems with limited data. The existence

of MNOS has been demonstrated for multiple reservoir systems in the case of deterministic in�ow

sequences (Liu et al., 2011). Within an implicit stochastic optimization framework, �nding MNOS

enhances the �exibility of decision rules (Liu et al., 2014; Zhang et al., 2015), thus turning MNOS into

an opportunity. This work does not seek to search for MNOS but rather to analyze the existence of

MNOS with respect to the algorithmic structure of SDDP and the quality of the dataset.

Since SDDP is an approximate optimization algorithm, it can, in the presence of MNOS, potentially

switch between di�erent near-optimal decision rules at each stage where decisions must be taken. Such

a behavior would mean that a steady-state operating policy may not exist. In other words, since the

statistical distribution of in�ows is year-periodic, one would expect that the probability distribution of

simulated variables (storage, power production, etc) converges toward a year-periodic steady state.

The basic idea behind SDDP is to approximate the convex bene�t-to-go function by Bender's

cuts, mathematical objects that can be thought of as hyperplanes. The algorithm then simulates

reservoir operation decisions through the use of these hyperplanes approximating the true bene�t-to-go

functions. To deal with the convergence issue associated with MNOS, a year-periodic re-optimization

(YPRE) procedure, named after the very similar re-optimization approach (Tejada-Guibert et al.,

1993), is proposed. By repetitively imposing the consecutive cuts from a year-long period over the

whole planning period, YPRE yields steady-state solutions

This work also draws a link between limited data availability and the existence of MNOS. The

collection of data for both water supplies and demands is one of the challenges associated with the

modeling and analysis of large-scale water resources systems. This is especially the case in developing

countries where data availability is limited (or simply absent), and/or when not all stakeholders have

an incentive to provide the relevant data. For example, because demand curves (marginal net bene�t
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functions) in irrigated agriculture are rarely available, authors are left with no choice but to assume

horizontal functions whereby the marginal net bene�t is constant over the range of supplies (Wu and

Whittington, 2006). In the energy sector, the assumption that turbine e�ciencies remain constant

regardless of the head (Archibald et al., 1999; Cai et al., 2002; Wallace and Fleten, 2003; Tilmant and

Kelman, 2007; Goor et al., 2011) is both more computationally convenient and less data intensive

than variable e�ciency. Besides, the hydropower companies are assumed to be price takers, i.e. the

value of electricity is independent of their power output (Gjelsvik et al., 2010). In practice however,

representing the impact of hydroelectric production on electricity prices leads to more realistic reservoir

operation policies (Pereira-Cardenal et al., 2015).

These examples of limited data availability often translate into a less convex, and more linear,

problem formulation. This results in situations in which the marginal value of water is constant or

undergoes little variation when allocating large amounts to competing uses. These quantities may

then be allocated to either of the uses with scarcely any impact on the objective function, favoring

the existence of MNOS. This e�ect is sometimes compounded with the physical characteristics of the

system, such as the existence of large reservoirs where the head varies little despite large variations in

storage.

The rest of this work is as follows. Section 2 presents the SDDP algorithm as well as the case

study inspired from the Zambezi River basin in Africa. Section 3 then demonstrates how limited data

availability and the presence of MNOS pose challenges to the production of a steady-state solution.

Section 4 proposes YPRE to address these issues. Finally, Section 5 discusses some issues raised by

the work of Sections 2 to 4. Concluding remarks are given in Section 6.

2 Material and methods

2.1 Principle of the SDDP algorithm

For the sake of concision, this section gives a basic description of the SDDP algorithm, emphasizing

the aspects that are of interest for the present paper. For more details please see for instance Tilmant

et al. (2008).

2.1.1 Objective

SDDP is used to optimize the expected value of a bene�t function or a cost function over a given

planning horizon involving T stages (weeks, months). :

Z = E

[

T
∑

t=1

ft(xt,qt,ut) + ν(xT+1)

]

(1)

where E[.] is the expectation operator, ft(.) represents the bene�ts to be reaped from system operation

at stage t and ν(.) is a terminal value function. Vector xt is the system state, which typically includes

beginning-of-period storage st and previous in�ow qt−1; vector qt represents in�ow into the system

at stage t, and ut is the vector of all decisions to be taken to manage the system, e.g. electricity

generation, reservoir release and spillage, water withdrawals, etc. Problem (1) is optimized under a
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set of hydrological, physical and institutional constraints.

2.1.2 Decomposition into one-stage linear problems

SDDP breaks down the multi-stage non-linear problem (1) into a series of one-stage linear problems

which are solved recursively. This is made possible by assuming that both ft(.) and all the constraints

are linear functions, meaning that the overall problem (1) is convex. In practice, however, many water

resource management problems are non-convex. This is for example the case when pumping costs

are head-dependent (Davidsen et al., 2016), or where price is an endogenous variable in hydropower

scheduling problems (Mo et al., 2001; Kristiansen, 2004).

At stage t, the one-stage problem is solved for state xt, assuming current in�ows qt:

F (xt) = max
ut

{ft(xt,qt,ut) + Ft+1} (2)

where bene�ts from hydropower generation, bene�ts from other o�stream and instream uses, and

penalties all are expressed through linear inequality constraints. When data availability is limited,

a piecewise linear approximation of the hydropower production function (Goor et al., 2011) is an

improvement over the assumption that turbine e�ciency remains constant regardless of the head.

Ft+1 represents the bene�t-to-go function. It is bounded by L Bender's cuts, which are inequality

constraints:

Ft+1 ≤ al
t+1.xt+1 + βl

t+1 (3)

Cuts l = 1 . . . L form an approximation of the bene�t-to-go function at stage t. Similar to state xt+1

lumping together variables such as st+1 and qt, a
l
t+1 lumps together the vectors that represented

the marginal values of these variables in earlier presentations of SDDP (Tilmant and Kelman, 2007;

Tilmant et al., 2008).

The one-stage problem is also subject to physical constraints, such as water balance constraints,

upper and / or lower bounds on release and storage decisions.

SDDP then proceeds iteratively, after an initialization phase where a �rst sequence of state variables

xt is produced for t = 1 . . . T . This can be done by simulating system operations in a �myopic� way,

in the sense that it disregards future bene�ts. For each iteration there are two phases, and iteration

L (L ≥ 1) is as follows.

2.1.3 Backward optimization phase

The backward optimization phase builds the Benders' cuts de�ned in equation (3), recursively from the

last stage back to the �rst one. At a given stage t, there are L sampled states � same as the iteration

number. For each sampled state, an approximation of the value function is obtained by solving K

times the one-stage problem of equation (2):

F ∗(xt) =
1

K

K
∑

k=1

[

max
ut

{

ft(xt,q
k

t
,ut) + Ft+1

}

]

(4)
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where each qk
t
is called a backward opening. It is linked with qt−1 through a PAR(1) model that

also accounts for spatial correlation. Recall that the current state xt includes previous in�ow qt−1.

Coe�cients al
t+1 and βl

t+1 that de�ne Ft+1 in equation (3) come from the dual solutions to the K

one-stage linear problems of equation (4) at stage t+ 1. They can be interpreted as the derivatives of

the objective with respect to the state variables.

At each stage, Ft+1 is an upper approximation to the future bene�ts. Therefore, the backward

phase of SDDP yields an upper approximation Z to the objective function:

Z = F ∗(x0) (5)

where x0 is the initial state.

2.1.4 Forward simulation phase

In the simulation phase, SDDP uses M in�ow time-series (qm
t
)1≤t≤T , also called simulation sequences.

For each sequence and from an initial state x0, the one-stage linear problem of equation (2) is solved

recursively forward from stage 1 to stage T using the bene�t-to-go functions derived in the backward

optimization phase.

Thus, the forward simulation phase yields all the successive states xt and decisions ut for each of

the M simulation sequences. Since operations are at best optimal, we can de�ne a lower bound for

the optimum of the objective Z as follows:

Z =
1

M

M
∑

m=1

[

T
∑

t=1

ft(xt, q
m

t
, ut) + ν(xm

T+1)

]

(6)

Z is an estimate for the expected bene�ts using the cuts derived in the backward optimization phase,

and for M ≥ 30, a 95% con�dence interval for that value can easily be computed. If the upper

approximation Z falls in that con�dence interval, one can consider that SDDP has converged towards

an approximately optimal solution. After SDDP has converged, the results of the last simulation

phase can be exploited (allocation decisions, marginal water value) and their probability distribution

be traced out.

Otherwise, iteration L+1 of the algorithm is necessary. Then a new sequence of sample states has

to be added to the L existing sequences, to be used in the backward optimization phase of iteration

L+ 1. It comes from simulation results of the forward phase of iteration L, usually for a sequence of

historical in�ows. This additional sequence of states will help re�ne the approximations of equation

(3).

2.2 Illustrative case-study

In this work, the SDDP algorithm described in Section 2.1 is applied to a case-study of the Zambezi

River basin (Figure 1). It covers an area of 1.39 million km2 and is shared by eight riparian countries

(Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia, Zimbabwe). It is an important

regional water resources system in terms of energy generation and food production. Historically,

hydropower generation has been the largest economic use of water in the basin. It has also been a
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Figure 1: The Zambezi river basin: geographical situation and infrastructure.

factor of regional integration with the establishment of the Zambezi River Authority for the operation

of the Kariba reservoir, and the interconnection of most of the hydropower stations with the Southern

African Power Pool (SAPP). The second largest economic use of water is irrigated agriculture, which

mainly occurs in the lower and middle Zambezi. Despite the evaporation losses from the large man-

made reservoirs and irrigation consumptive uses, the Zambezi is still a largely open river basin (with

the notable exception of the Kafue, a tributary �owing through Zambia). Like many other regional

water resource systems, the development in the Zambezi River Basin requires careful planning to

simultaneously achieve water, food and energy security. The presence of rival and non-rival uses

associated with a complex topology make this basin sensitive to unilateral developments, therefore

increasing the risk of collateral damages downstream. This paper uses an intermediate development

scenario presented by Tilmant and Kinzelbach (2012), with both existing and planned infrastructure.

A schematic representation of the basin is provided by Figure 2, and the main characteristics of

infrastructure and irrigation areas can be found in Tables 1 and 2.

This case-study features some characteristics put forward in the introduction as contributing factors

to the presence of MNOS: A) both the marginal net value of water for irrigation and the marginal price

of hydropower are assumed to be constant, and B) presence of large reservoirs that display minimal

head variations even for some large variations in storage. These two large reservoirs have already

been built, and they are Kariba and Cahora Bassa, respectively at nodes 4 and 6 in Figure 2.

SDDP is run with a monthly time-step over a ten-year planning period, so that T = 120. Energy
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Figure 2: Schematic representation of the Zambezi River Basin.

Name Node number Capacity (MW) Storage volume (km3)
Kariba 4 1,980 180.6

Cahora Bassa 6 2,925 77.7
Kafue Gorge 11 1,500 9.5
Itezhitezhi 10 120 5.6

Mepanda Uncua 7 1,500 2.3
Batoka Gorge 3 1,600 1.7
Victoria Falls 2 108 0

Boroma 8 160 0
Nkula + Kedzani + Kapichira 14 279 0

Table 1: Hydropower plants in the chosen Zambezi case study, by decreasing storage capacity of
corresponding reservoir.

Name Node number Irrigated area (×103 ha)
Upper Zambezi 1 77

Zimbabwe 4 116
Mupata 5 1
Delta 9 120

Upper Kafue 10 97
Kafue Flats 11 40

Luangwa River 14 108
Shire River 231 160

Table 2: Irrigated in the chosen Zambezi case study. Figures correspond to scenarios of future devel-
opments as reported in Tilmant et al. (2012) and Tilmant and Kinzelbach (2012).
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Scenario Cahora Bassa (km3) Kariba (km3)
S1 57.0 154.7
S2 56.9 154.8

Table 3: Initial storage di�erences that de�ne scenarios S1 and S2, used to highlight the existence of
algorithmic chaos.

prices are �xed at 40$/MWh. Similar to Tilmant and Kinzelbach (2012), the net bene�t from irrigation

is estimated as 500$ per ha and per year. Some environmental constraints have been added, by imposing

an environmental pulse of 7, 500m3/s in February in the Delta (node 9), as recommended in World

Bank (2010a); and a smaller pulse in the Kafue Flats (upstream of node 11) of 300m3/s in March.

The penalty for not meeting thee requirements is set at 30$ per 1, 000m3, a price within the range

given in Tilmant et al. (2012) for the valuation of environmental bene�ts.

3 Challenges to producing a steady-state solution

3.1 Evidence: algorithmic chaos

Robustness of simulation results to small variations in inputs is a crucial issue in modeling, e.g.,

hydrological modeling (e.g. Schulz et al., 1999; Perrin et al., 2003). Yet, this section document how

with SDDP, di�erences in average output trajectories can sometimes be extremely large for minimal

variations in input.

This phenomenon is demonstrated through a minimal change in the initial storage of the two major

reservoirs between two scenarios S1 and S2. All other SDDP inputs, including the K = 20 hydrological

backward openings and the M = 30 simulation sequences, are identical. In scenario S1, initial storage

is set at 60% of live storage capacity in all reservoirs. In scenario S2, the initial quantity stored in

the system is the same, but initial storage is increased by 0.1km3 (0.06% of total storage capacity) at

Kariba (node 4) and decreased by the same amount at Cahora Bassa (node 6). This modi�cation is

three orders of magnitude below both the live and total storage capacity of these reservoirs. Other

reservoirs have the same initial storage in both scenarios, so that the only di�erences between scenarios

S1 and S2 are summarized in Table 3.

SDDP is run for both S1 and S2, while being programmed to stop when the upper bound Z falls

within the 95% con�dence interval of the lower boud Z. S1 and S2 converged after 8 and 10 iterations,

respectively. Cuts from SDDP runs of scenarios S1 and S2 are then applied to a hundred synthetic

ten-year time series representative of current regional climate, a sample large enough to prevent a

large bias in the results. After that, storage trajectories and mean storage values obtained for the

same simulated sequences can be compared in Figure 3 for Kariba. The di�erence in mean storage

gets two orders of magnitude greater than the initial di�erence in storage, a remark that holds true

for some of the individual storage trajectories.

Moreover, these results are not an artefact of scenarios converging after di�erent numbers of itera-

tions; rather they arise during the SDDP run. At each iteration, a sequence of states (xt) is added to

the pool of sample states, and these states include storage values. S1 and S2 use the same sequence

of historical �ows to generate new sequences of sample states; yet, the maximal di�erence between
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Figure 3: Comparaison of end-of-period storage levels at Kariba for the base-case scenario (S1), and
scenario S2 in which 100hm3 of initial storage have been transferred upstream from Cahora Bassa
(node 6) to Kariba (node 4).
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Figure 4: Di�erences between S1 and S2 in state sampling during the SDDP run. (a) Maximal
di�erence between two sampled storage values at Kariba for each iteration (log scale). (b) Sampled
storage trajectories at Kariba during iteration 7 of the respective SDDP runs.

sampled storage values at Kariba starts increasing markedly starting at iteration 5, and by iteration 7

storage trajectories are very di�erent (Figure 4).

Minimal changes in sample states between runs for S1 and S2 gradually translate into di�erent

approximations of the bene�t-to-go function. In the presence of MNOS, these di�erent approximations

can lead to di�erent operation policies, and therefore into larger changes in state trajectories � and in

sampled states. Using an analogy with physics where the term of �chaos� is used to describe sensitivity

to initial conditions (Rössler , 1976), this paper calls �algorithmic chaos� the phenomenon observed in

Figures 3 and 4. Indeed, �chaotic� behavior is not a staple of large scale water resources systems, but

appears along with iterations of the SDDP algorithm.

3.2 Consequences

Very small di�erences in inputs leading to excessively large di�erence in simulation outputs are not

an automatic occurrence with SDDP. Rather, the case documented in Section 3.1 proves that such

situations can happen, and therefore, that limited data availability can make SDDP results hard to

interpret. For instance, comparing results from two distinct scenarios can prove challenging.

Besides, in Figure 3, storage probability distributions change from one year to the next. This issue

applies to all simulated quantities, including economic outputs from the exploitation of water resources.

For instance, judging from this year-to-year variability of mean simulated power production (Figure

5), the actual probability distribution of annual power production at Kariba cannot be deduced from

the empirical simulation results of any given year, nor of any sequence of several years. By using cuts

generated by SDDP runs from both S1 and S2 on samples of synthetic time series of di�erent sizes, we

also veri�ed that results from Figures 3 and 5 do not depend on the number of such time series used
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Figure 5: Simulated mean annual power production for each simulation year at Kariba for scenarios
S1 and S2, with its 95% con�dence interval (CI).

to get the probability distribution of simulation results. What is more, a run with the same inputs as

S1, but with K = M = 100 also yielded a strong year-to-year variability of outputs, further suggesting

that hydrological sampling is not to blame for the failure to produce steady-state conditions.

The case presented in this section uses a ��at� bene�t-to-go function ν(xm

T+1
) at the end of the

algorithm's horizon, which means that in equation (3), we have aT+1 = βT+1 = 0. In other words,

storage is set to have no value at the end of a simulation. This provides an incentive for SDDP to take

decisions that tend to shortsightedly empty reservoirs near the end of the horizon in order to produce

electricity. This end-e�ect adversely a�ects the year-periodicity of the results. However, test results

show that applying cuts from a �rst run at the �nal period, therefore arti�cially increasing the length

of the planning period, does not �x that issue.

Results from this section give insights as to why the problem of �nding a representative year cannot

be �xed merely by �ne-tuning the boundary conditions at the beginning and end of the planning period.

On one hand, the presence of algorithmic chaos means that modifying these limit conditions may have

unpredictable e�ects on simulation results. On the other hand, both algorithmic chaos and the strong

year-to-year variability of simulated power production levels in Figure 5 show that issues are not

caused by inappropriate boundary conditions. Otherwise, the e�ect of these conditions would be felt

considerably less during the middle years of the simulation, e.g., years 5 and 6.
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3.3

4 Producing a steady-state near-optimal solution

4.1 Year-periodic re-optimization

In order to avoid the challenges due to the presence of di�erent decision rules from year to year, year-

periodic re-optimization (YPRE) is introduced in order to simulate management decisions every year

using the cuts generated at a single year denoted y. For instance, the cuts from January of year y shall

be used for every January of the simulation period. The same is true from the February cuts from

year y, and so on. The �nal boundary condition is provided by the cuts from December of year y.

The performance of YPRE with the cuts from year y should not be worse than simulation results

from SDDP, and this comparison should not be biased by the initial and �nal conditions. Thus after

an SDDP run, the performance of YPRE and that of SDDP can only be compared over stages that

are towards the middle of the simulation period (upper half Figure 6). Within this exploitable period,

any sequence of consecutive cuts spanning a year is a suitable candidate for y. This is why cuts

from a suitable stage � e.g., a December month in the case of a monthly time step � can serve as a

�nal condition for a second SDDP run, thus extending the exploitable period (lower half Figure 6).

This makes the exploitable period larger and the comparison between SDDP and YPRE results more

meaningful.

The procedure for YPRE is presented by Figure 7. Finding the year y which cuts should be used

for YPRE is not an objective of this work. One can select y that maximizes the expected value of

system-wide bene�ts. Yet, this supposes that all sequences of cuts spanning a year should be tested,

which can be computationally expensive. For instance, let us consider a ten-year simulation period

with a monthly time step (T = 120), and assume that the exploitable period starts at the beginning

of the fourth year (τ = 37 on Figure 6) and ends at T . Then, there are seventy-three candidates for y.

This number can be reduced to seven by considering only a subset of these candidates, e.g., any set of

consecutive periods spanning a year. Yet, y can also be chosen through a totally di�erent rationale.

For instance, in the backward phase of SDDP, in�ows are sampled using a PAR(1) model while using

the historical �ow record as antecedent �ow. Therefore, one can select a year with average historical

in�ows because sampling may be more representative of hydroclimatic conditions.

Regardless of the methodology for selecting year y, results are exploited after verifying either that

YPRE with that year outperforms the reference SDDP run, or that there is no such possible choice for

y. Application to a few di�erent case-studies suggests that it is generally possible to �nd simulation

years such that the YPRE outperforms the sequence of all cuts generated by SDDP. An intuitive

explanation to this is that the cuts generated by SDDP for di�erent simulation years are unequal

approximations of the optimal expected value of future bene�ts. Then, operating the system by using

the same superior cuts at all simulation years may be better than using a mix of superior and inferior

cuts as when simulating the system in the forward (re-optimization) phase of SDDP.
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Figure 6: Extension of the exploitable period of an SDDP run.

13



Figure 7: Procedure for year-periodic re-optimization (YPRE).
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Figure 8: System-wide operational bene�ts over the last eight simulation years using YPRE, for each
of these simulation years. Results from the second SDDP run are used as a base 100.

4.2 Application to the Zambezi case-study

The procedure for YPRE using SDDP is applied to the Zambezi case-study with the same settings as

in Section 3, using the same hundred synthetic time-series as in Section 3.1 to test the performance

of di�erent sets of cuts. First, two SDDP runs are performed consecutively as to have an exploitation

period that is as large as possible: it starts at the beginning of the fourth year and extends to the

�nal stage T = 120. Then, y is chosen as the civil year whose cuts yield the best performances, so

the performance of each year is measured on the last seven years on the simulation period. System

performance varies depending on the simulation year y used for YPRE, and is sometimes greater than

with the cuts from the second SDDP run (Figure 8).

Cuts from the simulation year y = 7 outperform those of other civil years as well as those from

the second SDDP run, so they are used in order to assess how YPRE addresses the issues outlined

in Section 3. After a transition period due to initial storage conditions throughout the basin, the

probability distribution of storage at Kariba becomes year-periodic (Figure 9), and so is any statistic

derived from that distribution, such as the empirical value of the mean storage level. This is the case

for all other simulated hydro-economic quantities. For instance, the mean annual power production at

Kariba stabilizes around 7,500 GWh, and at almost 65 TWh for the whole basin (Figure 10). Those

results are consistent with recent studies on the Zambezi (World Bank , 2010b). The year-to-year

variations of production are within the 95% con�dence interval, and they are particularly negligible

when compared to the uncertainty associated with limited data availability. Therefore with YPRE,
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Figure 9: 10-year storage trajectories and mean storage at Kariba after YPRE.

one can use the probability distribution of results from any simulation year towards the end of the

simulation period.

5 Discussion

One might wonder whether using cuts from a single year is an ad-hoc solution, since the exploitable

period is much longer. Yet, this kind of cut aggregation is actually far from straightforward, which

explains why it is outside the scope of this paper, and should rather be addressed by later work. Recall

that equation (3), which gives bene�t-to-go function Ft+1 under the form of L inequality constraints

written as Ft+1 ≤ al
t+1.xt+1 + βl

t+1. These L inequality constraints must be satis�ed simultaneously,

but only one of them is active for each state xt+1. In dual programming, what really matters for decision

making at a given state is the vector al
t+1 belonging to the active inequality constraint. Decisions taken

equate present and future marginal bene�ts from water use. Then, even though aggregating di�erent

years means increasing the number of inequality constraints, only one of them will be active for each

state. Therefore, aggregating is only meaningful if it is done in a way where the active constraint is

the one whose coe�cients of al
t+1 are closest to the �true� marginal value of water at that state.

Yet, the constant coe�cient βl
t+1 largely controls which equation may be active. Since it is the

constant part of the future bene�ts, its value decreases at each stage. Therefore, if one aggregates all

cuts without modifying with the β coe�cients, only the cuts from the year when these coe�cients are
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Figure 10: 10-year storage trajectories and mean storage at Kariba after YPRE.
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smallest (the last year) will be considered. Relating constant coe�cients β from di�erent years with

each other is challenging because of the year-to-year irregularity which we demonstrate in Section 3,

and which is the very reason to propose YPRE in the �rst place.

Besides, this work has highlighted how the presence of MNOS could pose di�culties when using

SDDP to analyze water resources allocation problems with scarce data. However, the presence of

MNOS in water resources system may also be viewed as an opportunity. For instance, Liu et al. (2011)

state that the search for MNOS o�ers more �exibility than that of a single optimum; besides, the

search for a single optimum ought to be replaced by that of a limited number of alternatives that

can later be compared, possibly using criteria that were not accounted for in the objective function

to be optimized (Loucks and van Beek , 2005). For instance, the presence of MNOS in a deterministic

hydropower production problem enables the exploration of the solutions to �nd which are best for the

reliability and safety of the production units (Liu et al., 2012). In this work, a NOS is given by a

sequence of Bender's cuts that covers a year, and that lies within a desired range of any other solution,

e.g., one percent. This tentative de�nition can be viewed as a step towards �nding a set of MNOS

with a desired tolerance in an explicit stochastic context, even though actually �nding all the solutions

lies outside the scope of this work.

A connection between the presence of MNOS and the concept of equi�nality has been suggested

in previous research (Liu and Cai , 2010). Equi�nality is a term that exists in hydrological modeling

(Beven, 1993; Schulz et al., 1999; Beven, 2006) to describe how di�erent model parameters lead to

similar goodness-of-�t against observed data during the calibration phase. In that case, parameter

values chosen by the modelers can be viewed as decision variables, while goodness-of-�t is quanti�ed

through an objective to optimize. This is in a sense very similar to the case of MNOS described in this

paper, since these are described by bene�t-to-go functions that serve as a basis for taking decisions.

These functions lead to very similar values of the objective over the whole horizon [1, T ], even though

the sequence of decision rules can lead to very di�erent simulated trajectories in the same conditions.

6 Concluding remarks

In the presence of MNOS, approximate optimization algorithms such as SDDP can have an unstable

and unpredictable behavior if the problem cannot be adequately parametrized. This was illustrated

through a model of the Zambezi River Basin. SDDP proved unstable because it contradicted the trivial

prediction that simulation results had to be year-periodic if the inputs were. It proved unpredictable

through the discovery of algorithmic chaos. These two traits are related to the fact that SDDP relies

on a state sampling that is unpredictable itself, and leads to explore di�erent near-optimal policies in

a single run.

YPRE, obtained by iterating cuts from simulation year y over the whole planning period, �xes

this instability issue. It proposes policies that are unchanged from one year to the next, and that

therefore lead to periodic probability distribution of all system-related quantities. Results suggest that

it is relatively straightforward to select cuts that are among the better near-optimal policies, because

YPRE using these cuts can outperform the simulation results obtained using SDDP. YPRE should not

be thought of as the only possible way to circumvent the di�culties posed by limited data availability.
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For instance, the objective can be made more convex by specifying convex demand curves for water

demand and hydropower production. However, this would imply for modelers to make more complex

assumptions which they would have to then justify.
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