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Abstract

Background: Parametric modelling of survival data is important and reimbursement decisions may
depend on the selected distribution. Accurate predictions require sufficiently flexible models to
describe adequately the temporal evolution of the hazard function. A rich class of models is available
among the framework of generalised linear models (GLMs) and its extensions, but these models are
rarely applied to survival data. This manuscript describes the theoretical properties of these more
flexible models, and compares their performance to standard survival models in a reproducible case-
study.
Methods: We describe how survival data may be analysed with GLMs and its extensions: fractional
polynomials, spline models, generalised additive models, generalised linear mixed (frailty) models and
dynamic survival models. For each, we provide a comparison of the strengths and limitations of these
approaches. For the case-study we compare within-sample fit, the plausibility of extrapolations and
extrapolation performance based on data-splitting.
Results: Viewing standard survival models as GLMs shows that many impose a restrictive assumption
of linearity. For the case-study, GLMs provided better within-sample fit and more plausible
extrapolations. However, they did not improve extrapolation performance. We also provide guidance
to aid in choosing between the different approaches based on GLMs and its extensions.
Conclusions: The use of GLMs for parametric survival analysis can out-perform standard parametric
survival models, although the improvements were modest in our case-study. This approach is currently
seldom used. We provide guidance on both implementing these models and choosing between them.
The reproducible case-study will help to increase uptake of these models.

Keywords
survival analysis, time to event, generalised additive models, dynamic survival models, generalised
linear mixed models, splines, fractional polynomials, frailty models
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1 Introduction

In many medical studies the outcome of interest is the time until an event occurs. Examples
include mortality, disease progression, or hospital admission. To aid with decision-making the
hazard function is estimated from parametric models. A prominent example is health technology
assessment (HTA), which aims to quantify both the benefits to patients and the costs a healthcare
system would occur if a treatment were funded [1]. To allow for fair comparisons across different
treatments it is important that all relevant benefits and costs are quantified, which often requires
use of a lifetime horizon [2]. However, time-to-event (TTE) data with complete follow-up are
rarely available. As such, parametric models may be used to extrapolate model-outcomes to a
lifetime, and hence obtain estimates of mean TTE (such as mean survival) [3, 4].

Standard one and two parameter models are available, including the exponential, Weibull,
Gompertz, log-logistic and lognormal [5]. However, these models may not be sufficiently flexible
to capture complex, time-varying hazards [6, 7]. In Section 2 we introduce generalised linear
models (GLMs) and show that standard survival models may be expressed as GLMs. This
provides insight into the limitations of the standard models: they all impose an assumption of
linearity. More flexible parametric models that relax this assumption are required. A number of
these have been proposed within the framework of GLMs and its extensions, but to-date they
are seldom used to analyse TTE. These are described in Sections 3 and 4, with an overview in
Section 5. An application of these is described in in Section 6, which demonstrates that the GLM-
based models can provide superior within-sample estimates and more plausible extrapolations
than standard survival models. Concluding remarks are provided in Section 7.

This manuscript has two aims. The first is to propose the use of GLMs for the analysis of
TTE data. This includes flexible GLMs such as fractional polynomials (FPs) and restricted cubic
splines (RCS), which are closely related to Royston-Parmar (R-P) models. The second aim is
to present generalisations to GLMs: generalised linear mixed models (GLMMs) [8], generalised
additive models (GAMs) [9] and dynamic generalised linear models (DGLMs) [10, 11].

2 Analysing time-to-event data within a generalised linear modelling
framework

2.1 Standard survival models as linear models

The framework of GLMs extends (generalises) the standard linear model to response variables
with distributions in the exponential family, including Normal, Poisson, Binomial, Gamma and
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Kearns et al 3

Inverse Gaussian distributions [12]. An advantage of GLMs is that they provide a unified
framework - both theoretical and conceptual - for the analysis of many problems, including
linear, logistic and Poisson regression [13]. A random variable Y belongs to the exponential
family of distributions if its probability density (or mass) function can be written as:

f(yt; θ) = exp[a(y)b(θ) + c(θ) + d(y)] (1)

where a(y) and d(y) are functions of the data, whilst b(θ) and c(θ) are functions of the distribution
parameter θ and assumed to be twice differentiable. Equation (1) may also include other
parameters, which are treated as nuisance parameters [13]. Examples for the Normal, Poisson
and Binomial distributions are provided in Table 1. For these, a(y) = y.

Table 1. Normal, Poisson and Binomial distributions as members of the exponential family

Distribution b(θ) c(θ) d(y)

Normal µ

σ2 - µ2

2σ2 −
1
2
log(2πσ2) −y2

2σ2

Poisson log θ −θ − log y!

Binomial log( π

1−π
) n log(1− π) log

(

n

y

)

µ and σ
2 are a mean and variance, π is a probability, n the

number of trials and
(

n

y

)

=
n!

y!(n−y)!
is the binomial coefficient.

For a TTE GLM, the observed outcome is the number of deaths during an interval: yt. This
is linked to the at-risk population at time t (denoted by τt) using a distribution from the
exponential family. Use of the Poisson distribution assumes that yt = τt × λt where λt is the
hazard at time t. Alternatively, use of the Binomial distribution assumes that yt = τ1 × pt where
pt is the cumulative probability of death. Model specification is [12]:

Observation model: E[yt] = µt × τt, yt ∼ exponential family distribution (2a)

Response function: µt = h(xT
t β) (2b)

where E[·] denotes the expected value, bold font denotes a vector, and:

β is a vector of parameter coefficients to be estimated from the data,

xt is a covariate, assumed known (with transpose xT
t ), and

h() is a one-to-one response function which maps the linear predictor (xT
t βt) to µt. Its

inverse is known as the link function, and is denoted as g().

Model parameters may be obtained via maximum likelihood estimation. The general expression
for the logarithm of the likelihood is:

logL =

N
∑

t=1

Lt =

N
∑

t=1

ytb(θt) +

N
∑

t=1

c(θt) +

N
∑

i=t

d(yt)
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Where N is the number of time-intervals. For the Poisson and Binomial models, this becomes:

Poisson: logL =

N
∑

t=1

[yt log(θt)− θt − log(yt!)] (3a)

Binomial: logL =

N
∑

t=1

[

yt log

(

πt

1− πt

)

+ nt log(1− πt) + log

(

nt

yt

)]

(3b)

In summary, a GLM may be specified by three components:

1. The distribution from the exponential family, as defined in equation (1),

2. the response (or link) function, and

3. the covariate vector.

For survival analyses, options for µt include the (cumulative) survival function, its complement
the (cumulative) failure function, the hazard function, and the cumulative hazard function - see
[5, 14] for more details. Depending on the specification, we can express standard survival models
as a linear model: µt = β0 + β1xt. Table 2 provides these specifications. The log-logistic and
lognormal distributions have a cumulative function as their outcome. It would not be sensible to
model such an outcome as a constant value which demonstrates why there is no single-parameter
special case of these models. In contrast, the Weibull and Gompertz distributions model a non-
cumulative outcome, so it is possible to model this as a single value, resulting in the exponential
model.

Table 2. Specification of standard survival models as generalised linear models

µt Distribution Response function Covariate Model

Hazard Poisson Exponential None Exponential
Hazard Poisson Exponential Time Gompertz
Hazard Poisson Exponential Log(time) Weibull

Cumulative Failure Binomial Logistic Log(time) Log-logistic
Cumulative Failure Binomial Inverse probit Log(time) Lognormal

An important aspect of survival data is that there is typically censoring of observations.
Censoring occurs because for standard models the outcome is the time of the event occurring, and
for some individuals the event is not observed (so it is censored). Within the GLM formulation,
time changes from being the outcome to a covariate, so there are no censored observations.
Information on censoring is included by calculating the ‘at-risk’ sample, and including this
information in the model. For models with a binomial distribution there is an explicit parameter
for the sample size. For models with a Poisson distribution, information on the sample size may
be incorporated as an ‘offset’ term.
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2.2 Limitations with linearity

The assumption of linearity may not always be realistic. For example, for overall survival the
hazard of all-cause mortality will increase over time due to patient ageing. In contrast, frailty
effects may result in disease-specific mortality decreasing over time (as those with an increased
hazard will die sooner, leaving those with a lower hazard). The impact of treatment on survival
may also vary over time: there may be an initial elevated risk of death due to adverse events;
treatment-related toxicities may increase other-cause mortality over time, treatment stopping
rules and trial inclusion criteria may have an effect [15]. These considerations motivate the need
for more flexible survival models, which are considered within the GLM framework in the next
two Sections.

3 Relaxing the assumption of linearity

We briefly describe flexible models that may be applied to survival data within a GLM
framework, more details are provided in the Appendix. Without loss of generality, y is used
to denote either a random variable or the observed data.

3.1 Fractional polynomials

FPs represent the outcome as a sum of polynomial terms; increasing the number of terms (the
order of the FP) increases the flexibility of the model. A closed-test procedure may be used to
identify the order. For a single variable, an ith order FP is defined as:

E(yt) = FP(i) = β0 +

i
∑

j=1

βjx
pj (4)

where the set of powers pj is pre-specified, and may include fractional powers (hence the name
fractional polynomials). FPs include linear models as special cases, so depending on specification
may include one of the standard models from Table 2. Some limitations with FPs are that they
may not have sufficient power to detect non-linearity, and they can be sensitive to extreme values
in the data. This sensitivity occurs because FPs are global models: β values are assumed to be
constant over time.

3.2 Restricted cubic splines and Royston-Parmar models

A cubic spline represents a continuous function as a series of piecewise cubic polynomials [14],
hence relaxing the assumption of global time effects. Model flexibility is based on the number of
piecewise intervals (equivalently, the number of ‘knots’). For extrapolation, the cubic polynomial
from the last interval may be used, or it may be restricted to a linear function: this latter
assumption results in an RCS. An example specification is provided in the Appendix.
R-P models use RCSs, but not in the GLM framework. Typically the outcome is the log
cumulative hazard, which is monotonic. However, model estimates are not guaranteed to be
monotonic, so implausible values may result.
As they are not global models, splines may over-fit local ‘noise’ in the data [16], and there is in
general no closed test procedure for choosing between different models.

Prepared using sagej.cls
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4 Extensions to the generalised linear model

This section provides a brief overview of extensions to GLMs, with more details in the Appendix.

4.1 Generalised linear mixed models

A GLMM extends the GLM by incorporating random effect terms, which can help to quantify
the impact of unmeasured covariates and provide more realistic estimates of uncertainty. An
example of an FP(2) with a random-effect (denoted by bt) is:

E(yt) = FP(2) = β0 + bt + β1x
p1 + β2x

p2 , bt ∼ N(0, ψ2)

GLMMs are also referred to as frailty models [17]. In theory, any GLMmay be extended by adding
a random term as shown above. The main limitation with GLMMs is that as the random effects
are not observed, there may be difficulties in model specification and parameter estimation.

4.2 Generalised additive models

A GAM is a GLM in which one or more of the covariates are modelled as a set of basis functions
[18]. For example, a univariate GAM is defined as:

E(yt) =

q
∑

j=i

bj(t)βj = f(t)

Where bj(t) is the jth basis function, and q is the dimension of the basis function. Higher values
of q result in more flexible models. Both FPs and RCSs may be viewed as GAMs. The main
extension provided by a GAM is that model complexity is penalised during parameter estimation
(via shrinkage of the β). GAMs with a cubic spline basis have theoretical justification as being
approximate ‘smoothest interpolators’ [9] - see the Appendix for more details. Limitations of
GAMs will depend on the basis function used. For example, if a spline is used, the limitations
of these will still apply.

4.3 Dynamic generalised linear models and dynamic survival models

In a DGLM model coefficients (β) are allowed to vary over time. When applied to TTE data,
DGLMs are known as dynamic survival models (DSMs) [19]. Specification is (compare with
Equation 2a):

Observation model: E[yt] = µt × τt yt ∼ exponential family distribution (5a)

Response function: µt = h(xT
t βt) (5b)

Transition model: βt = Fβt−1 + ζt (5c)

Initial conditions: β0 ∼MVN(b0,Z0) (5d)

where MVN denotes a multivariate Normal distribution, F is a function describing how the
coefficients evolve over time, and ζt is an error term - see the Appendix for further details.
DGLMs may be viewed as combining GLMs with time-series methods. In particular, parameter
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estimates may be based on minimising the error of within-sample extrapolations. This makes
these models particularly appealing when the primary objective of the analysis is extrapolation.
The main limitations with DGLMs are identifying suitable initial values, and convergence of
algorithms to estimate model coefficients [20, 19].

5 Theoretical comparison of approaches

Five different modelling approaches were considered: FPs, splines, GAMs, GLMMs, and DGLMs.
The frailty terms from a GLMM may be combined with either of the other four models. The
following prompts are provided to aid with choosing between the different approaches.

What is the primary objective of the analysis? If the main objective is in generating
extrapolations, this implies the use of a DGLM, as this is the only one of the models
for which parameter estimation is based on minimising forecasting error. If instead the
main objective is to provide estimates of the observed data, then any of the approaches
may be used.

Fractional polynomials or spline-based models? Spline-based models may be preferred
on theoretical grounds, as being approximate smoothest interpolators, whilst there are
a number of limitations with the use of FPs (see the Appendix). This suggests the use of
a spline-based model in preference to an FP within a GLM framework, with the latter as
a form of sensitivity analysis.

To penalize during or after estimation? Parameter estimation with a GAM automatically
penalises for model complexity, which helps to avoid over-fitting. Alternatively, information
criteria may be used. There are a number of different information criteria that could be
used, whereas GAMs have a specific objective function. The choice between these is likely
to be study specific: sometimes there may be good reasons to use a specific information
criteria, whilst in others the more automated approach of a GAM may be preferred.
For both approaches it is not possible to use significance tests to choose between model
specifications.

Are there any subject matter considerations? For example, there may be reason to
believe that there are important unmeasured confounders, which suggests incorporating
random effects. Or it may be thought that there will be important local fluctuations in
this hazard, which suggests the use of either a spline or dynamic model in preference to
the global FPs.

6 Empirical comparison of approaches

6.1 Dataset

We use a freely available dataset to demonstrate both the limitations of assuming linearity and
the use of more flexible models. Analyses were performed in R; the code used is available as
supplemental material. Hence the case-study is fully reproducible.
The data are on the survival of individuals following a diagnosis of breast cancer, and from a
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study conducted by the German Breast Cancer Study Group [21, 22]. Individuals with primary
node positive breast cancer were recruited between July 1984 and December 1989. Events
are defined as either death (from any cause) or cancer recurrence. Data are available for 686
individuals, of which 299 experienced an event during follow-up. The maximum follow-up
was 7.28 years, with mean follow-up of 3.08 years. Use of GLMs requires that individual-level
data are restructured in the form of life tables. Samples of the individual-level data and the
corresponding (monthly) life table are provided in Tables 3 and 4, respectively. For Table 3, an
event indicator of one denotes that an event occurred (otherwise the indicator is zero, and the
outcome is time to censoring).

Table 3. A sample of the breast cancer data

Patient ID Outcome time (years) Event indicator

1 0.0219 0
...

...
...

15 0.1973 1
...

...
...

220 1.9562 1
221 1.9644 0
...

...
...

678 6.7288 1
...

...
...

686 7.2849 0

Table 4. Data from Table 3 restructured for Poisson regression

Month Sample size Events (µ) Censorings At risk (τ) Hazard (λ)

(0, 1) 686 0 7 682.5 0
(1, 2) 679 0 3 677.5 0
(2, 3) 676 1 4 674 0.001
...

...
...

...
...

...
(22, 23) 477 5 3 475.5 0.011
(23, 24) 469 7 4 467 0.015
(24, 25) 458 8 12 452 0.018
...

...
...

...
...

...
(87, 88) 1 0 1 0.5 0

As described in Section 2.2, the assumptions of linearity imposed by standard two-parameter
survival models may be unrealistic. To highlight this, we show model estimates against the
observed data in Figure 1 for each model (the one-parameter exponential model is not shown as
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it would only be appropriate if both the Weibull and Gompertz estimates had no slope). The
specification of the x and y axis is such that the model estimates form a straight-line. Figure 1
shows that the linear estimates generally provide a poor visual description of the data, with the
best description arising from the lognormal model.
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Figure 1. Breast cancer case-study: observed and modelled hazard
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6.2 Methods

We considered five broad classes of model:

FP models. We considered FP(2) models, with the complexity of the chosen model based on
the closed-test procedure, and the chosen powers based on minimising AIC.

Generalised linear mixed models. We fit FP models as described above, but we also
included frailty terms.

Spline-based models. Both RCS models and GAMs were considered. For the RCS model
between 1 and 5 internal knots were considered, with the choice based on minimising
AIC. For the GAM we considered two approaches to selecting the dimension of the basis
function: one used a fixed (arbitrary) value of 11 (v1), the other was based on minimising
AIC (v2). These two approaches were considered as some penalisation for over-fitting is
included during model-fitting, so it is unclear if model choice based on AIC is required. For
all models, the knots were placed at equally-spaced percentiles of the observed uncensored
death times [21].

Dynamic models. We examined three specifications: local-level, local-trend, and local-level
with global trend. There was no need to base model choice on minimising AIC (as the
data used to estimate the model parameters are separate to the objective function, which
is based on minimising one-step ahead forecasts).

Standard survival models. Eight survival models were considered: exponential, Weibull,
Gompertz, gamma, log-logistic, lognormal, generalised gamma, and generalised F. Results
are displayed for the three best fitting models (based on AIC). Note that the generalised
gamma and generalised F models have three and four parameters respectively, so are more
flexible than the standard survival models of Table 2.

The above choice of models was designed to be representative of the variety of different
approaches possible, but not exhaustive. All of the models used the natural logarithm of time
as the only covariate of interest (with the exception of the Gompertz, which uses time). All of
the GLM-models assumed a Poisson distribution with an exponential response function.

6.3 Goodness of fit

Goodness of fit (GoF) measures how well the statistical model describes the observed data.
It should be distinguished from predictive ability, which measures how well the model predicts
external data (such as future observations). One measure of GoF is Akaike’s information criterion
(AIC), which is defined as:

−2 logL+ 2k (6)

where L is the model likelihood and k is the number of parameters in the model [23]. Because
the likelihood is multiplied by a negative number, lower AIC values are to be preferred.
A number of variants on AIC have been proposed [23, 24]. An empirical study by Hyndman and
colleagues [24] compared five GoF measures, and noted that they all performed similarly. Further,
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Burnham and Anderson note that the AIC has strong theoretical motivation [23], whilst Jackson
and colleagues note that the AIC is preferable when models are used to represent complex
phenomena (such as survival processes) [25]. Due to having both empirical and theoretical
support, the AIC shall be used in this manuscript. Any GoF measure should be used in
combination with subject-matter considerations. In addition, estimates of the hazard function
were visually compared to the observed hazard function.
The AIC measures GoF to the observed data. It is unknown if models with a good within-

sample fit provide good extrapolations [14]. To measure the extrapolation performance of the
models we split the dataset into two parts. The first part considered events occurring within
the first three years, censoring all events after three years (half of the sample were at-risk of
an event at three years). Extrapolation performance was defined as the sum of squared errors
(SSE) between the model-estimate of the hazard and the observed hazard (calculated for monthly
intervals) for the remaining follow-up:

(

λ̂t − λt

)2

, t ∈ {37 to 88 months} (7)

6.4 Results

Table 5 provides GoF values for each model and estimates of lifetime mean life expectancy. Two
AIC values are provided: one using the entire dataset, the other using the first three years. The
number of parameters is provided as a measure of model complexity: the two GAMs do not have
an integer number of parameters, as parameter effects are shrunk during model estimation. Plots
of the estimated hazard function for each model are displayed in Figure 2 for the observed data.
Corresponding extrapolations are given in Figure 3. As the best-fitting two-parameter standard
survival model (based on all the available data), the lognormal is provided as a black reference
line on all panes.

6.4.1 Within-sample goodness of fit All of the more flexible models provide lower AIC values
than the lognormal, although in general differences between values are small, and cannot be
tested for statistical significance. Visually, all of the models provide a good fit to the observed
data in Figure 2, although there is variation in the degree to which local fluctuations are captured.
Of the 11 models, the lowest AIC values arose from two DSMs. However, the third DSM had the
highest AIC of all the flexible models. This suggests that the extension to dynamic models can
lead to an improved GoF, but there is no guarantee that this will always occur. The next best
AIC values arose from the three spline-based models, which all had very similar GoF. However,
the two approaches to GAM estimation did result in markedly different models: the one with
automated fitting was more complex (with almost three times as many parameters) than the one
based on minimising AIC, whilst also providing a better absolute fit (based on log-likelihood).
Of the three standard survival models, the two generalised models (gamma and F) both provided
similar GoF, and both improved on the two-parameter models. Fit for the two FPs was similar
to that for the generalised gamma and generalised F survival models, and lower than that for
the spline-models. The inclusion of random effects had a negligible impact on the AIC.
Flexible parametric modelling of the hazard provides insight into how it varies over time. The
GAM (v1) and DSMs were slightly better at capturing local fluctuations in the hazard rate.
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This is most notable at approximately 1 and 1.5 years. However, as the most flexible models
considered, there is a danger that these local fluctuations represent noise. If this is the case then
the best-fitting models may be over-fitting the data, with no guarantee that this will lead to
improved extrapolations.

6.4.2 Extrapolation goodness of fit When fitting the 11 models to the first three years, the
ranking of the models was generally the same as for the full dataset, with the local level model
providing the lowest AIC, and the lognormal one of the highest. An exception is the DSM with
drift, which changes from having the second lowest AIC to the second highest. GoF to the
observed data did not predict extrapolation performance. For example, the lognormal and local
trend models both had the highest AIC values but the lowest SSEs. As with the AIC values, in
general there was little difference between SSE values. An exception is the DSM with a drift,
which provided poor extrapolations as it predicted an increasing trend.
In general the results in Table 5 demonstrate that there is little difference between the

competing models, both for within-sample and extrapolated GoF. However, Figure 3 shows that
resulting extrapolations (beyond the full data follow-up) can vary markedly by model. Differences
begin at about four years, and are likely to be due to the small patient numbers. For example, at
five years the sample size at risk is 113, at six years it is 34 and at seven years it is three. When
choosing between the models, it is very important to assess the plausibility of the extrapolations
with clinical experts, noting the outcome definition used. For this case-study the mean age of
the sample is 53 years and the outcome is death from any cause or cancer recurrence. The mean
survival for German women of this age was 32.6 years in 2000 (the oldest year for which there is
data). This acts as an upper-bound on the likely survival of this sample, as women with breast
cancer are likely to have worse survival than the age-matched general population, and cancer
recurrences would further reduced the estimated survival. Of the 11 models considered, only
the four which predicted an increasing extrapolated hazard (DSM with drift, GAM with default
settings, both FPs) gave a lifetime mean survival less than this.
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Table 5. Breast cancer case-study: log-likelihood and information criteria for the models

Model Log-likelihood Parameters AIC: full Data AIC: years 1-3 SSE: years 4-7 Life Expectancy

Local level -142.72 3 291.45 168.48 3.84 37.62
Local level with drift -142.09 4 292.19 180.25 18.58 23.41
GAM v2 -150.63 3.84 308.94 172.08 4.01 37.12
RCS -150.55 4 309.10 172.12 4.05 35.46
GAM v1 -144.05 10.66 309.42 173.89 3.81 14.13
Generalised Gamma -153.03 3 312.06 175.31 3.78 43.40
FP with random effects -152.13 4 312.27 173.54 4.25 15.70
FP -153.42 3 312.84 172.51 4.29 15.40
Generalised F -152.97 4 313.94 174.40 4.01 43.87
Local level local trend -152.36 5 314.71 180.68 3.76 41.61
Lognormal -157.55 2 319.11 179.42 3.73 40.64

AIC: Akaike’s information critera. FP(2): Second-order fractional polynomial. SSE: Sum of squared errors (× 10,000)
For derivation of SSE values see section 6.3
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Figure 2. Breast cancer case-study: observed and modelled hazard
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Figure 3. Breast cancer case-study: extrapolated hazards
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7 Discussion

A wide variety of flexible parametric models may be used to analyse and extrapolate TTE data
within a GLM framework, along with its extensions to GAMs, GLMMs and DGLMs. These
include FPs, spline based models and DSMs. An advantage of the GLM-based models over
standard survival models is that they can be made arbitrarily flexible as required to match
the complexity of the observed hazard function (for example, increasing the order of an FP or
the number of knots in a RCS). In contrast, to obtain more complex standard survival models,
different specifications are required (such as moving from a Weibull to a generalised gamma
model). Further, two of the GLM-extensions (GAMs and DGLMs) penalise for over-fitting as
part of parameter estimation [20, 9], thus removing much of the subjectivity over model choice.
To our knowledge, this is the first time that all of these approaches have been compared at both
a theoretical and an applied level, with recommendations to aid in choosing between the models.

The case-study demonstrated that it is straightforward to perform a TTE analysis within
a GLM framework and that results are at least as good as, and often superior to, those from
standard survival models. However, differences in GoF were typically small, and in this example
there was no relationship between within-sample GoF and extrapolation performance. A strength
of the case-study is that we considered a variety of different statistical models, some of which
are currently infrequently used in survival analyses [3, 19]. The fully reproducible nature of the
case-studies shall help to increase the uptake of these more advanced methods.
There were marked differences in the extrapolations from each model, and hence estimates
of lifetime mean survival. Using external evidence, only the extrapolations from one each of
the DSMs and GAMs along with both FPs were plausible, whilst the best three standard
survival models all provided implausible extrapolations. This highlights a further benefit of the
GLM-approach, as it increases the potential to identify models which simultaneously provide
good within-sample fit and plausible extrapolations. Formally incorporating such evidence is an
important area of on-going research [26, 27]. However, this task is often non-trivial. For example,
external datasets may exist but they may not be fully generalizable to the decision problem. This
could be due to differences in the patient population, the healthcare system, or the time-period.
Hence this external dataset may need to be adjusted, and assumptions shall be required about
how the observed data relate to the external dataset.

Parametric analysis of TTE data typically has up to two objectives: to obtain a parsimonious
description of the observed data, and/or to predict outcomes for the unobserved future
(extrapolation). More work is required into the relative strengths and weaknesses of the
alternative models in both settings. For example, for the best-fitting FP model, inclusion of
random effects had a negligible impact on the AIC. Further research is required to see if this
is a general phenomenon, or if more nuanced modelling would lead to a more substantive
improvement in fit, or that these enhancements would be beneficial for other observed hazard
patterns. The case-study also highlights that a within-sample measure of GoF cannot be used
to choose between models for extrapolation, as has been observed previously [28, 29, 27]. The
case-study expands on these findings as it compares global models (FPs and survival models),
piecewise models (spline-based models), and local models (DSMs). Further work on model choice
when used for extrapolation could build upon the work of forecasting competitions [30].
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The case-study had limitations. First, we compared models based on AIC (within-sample)
and SSE (extrapolations). We were not able to test the differences for statistical significance.
For AIC, there is some guidance on what differences may be important, but this only holds
for nested models [23]. Whilst the more flexible models generally improved within-sample fit,
they did not improve extrapolation performance. In addition, for many analysts, use of the more
flexible models will come at an additional ‘cost’ as there will be a need to understand both the
theoretical details (strengths and limitations) of the method, as well as how to implement the
model. The guidance of section 5 and the reproducible case-study should help to reduce these
costs, although they will still be a factor when choosing between the difference models.
The use of a single case-study may also be viewed as a limitation. It is unclear if the (generally)
superior GoF provided by DSMs and GAMs generalises to other settings. The results for the
three DSMs illustrate an important caution against generalisation: if only the two DSMs without
a local trend were considered then DSMs would provide the best-fitting models. In contrast, if
only the DSM with a local trend were considered than we would conclude that their fit is not
as good as spline-based models. The GoF of the DSM with drift also varied markedly between
using the full dataset and using the first three years of data. More experience with these different
models and their performance for different sample sizes and follow-up times is required before
firm conclusions can be made about which (if any) will provide more accurate estimates.

Conclusion

Parametric modelling of the hazard function allows for predictions of future outcomes. Standard
survival models may be insufficiently flexible to reflect the complexities of observed hazard
patterns. The GLM framework and its extension to GAMs, GLMMs and DGLMs can provide
insight into the structure of standard one- and two-parameter models, and their assumptions
of linearity. In addition to providing more flexible models (as we have demonstrated here), it
also allows for a rich class of model specifications via different combinations of the outcome,
distribution and response function - although this comes at the cost of needing to understand
how and when to implement these models. We have provided guidance to aid with choosing
between these models. Further, spline-based GLMs provide a useful alternative to R-P models:
with appropriate response function these models cannot estimate implausible negative hazards,
unlike R-P models. A motivating and fully reproducible case-study has demonstrated that
these currently under-used approaches can sometimes provide better GoF and more plausible
extrapolations than standard survival models.
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