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Abstract: A fundamental goal of ecology is to understand the spatial distribution of species.

For moving animals, their location is crucially dependent on the movement mechanisms they employ

to navigate the landscape. Animals across many taxa are known to exhibit directional correlation

in their movement. This work explores the effect of such directional correlation on spatial pattern

formation in a model of between-population taxis (i.e., movement of each population in response to

the presence of the others). A telegrapher-taxis formalism is used, which generalises a previously

studied diffusion-taxis system by incorporating a parameter T, measuring the characteristic time for

directional persistence. The results give general criteria for determining when changes in T will drive

qualitative changes in the predictions of linear pattern formation analysis for N ≥ 2 populations. As a

specific example, the N = 2 case is explored in detail, showing that directional correlation can cause

one population to ‘chase’ the other across the landscape while maintaining a non-constant spatial

distribution. Overall, this study demonstrates the importance of accounting for directional correlation

in movement for understanding both quantitative and qualitative aspects of species distributions.

Keywords: animal movement; correlated random walk; movement ecology; population dynamics;

taxis; telegrapher’s equation

1. Introduction

Understanding spatial distributions of animal species is a key concern for ecology, being of

fundamental importance for a wide range of applications including conservation efforts [1], quantifying

biodiversity [2], and invasive species research [3,4]. For mobile animals, decisions about where to move

drive their individual locations. Consequently there has been a huge amount of effort in recent years

to understand the causes and consequences of animal movement [5–7]. However, these movement

decisions have an effect not only on individuals’ locations but also on the spatial distribution of the

whole population [8]. To understand this individual-to-population upscaling in a non-speculative way

requires mathematical models that are built from the underlying movement processes of individuals [9].

Such models exhibit emergent phenomena on the population level that can be then quantified and

related concretely to the underlying mechanisms of individual movement (e.g., [10,11]).

One recent study in this general area examines how the movement responses between individuals

from N ≥ 2 different animal populations can drive spatio-temporal distribution patterns on temporal

scales whereby births and deaths are negligible [12]. This takes spatial ecology in a slightly different

direction to its tradition trajectory, whereby the combination of nonlinear birth-and-death terms (a.k.a.

kinetics) combine with diffusive or cross-diffusive movement to drive spatio-temporal patterns [13–17].

Instead, the study of [12] shows that inter-population taxis (a form of cross-diffusion) can drive a wide

range of complex patterns on its own, without the need for nonlinear kinetics.
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However, the study by [12] assumes that individuals move diffusively in the absence of

interactions. While this may be a reasonable approximation in many cases, in reality animals will

always display some directional correlation in movement [18,19], if only due to the significant

energetic costs of turning [20]. For some organisms, this correlation may only persist over quite

small spatio-temporal scales, in which case diffusion is a reasonable model [21,22]. However, if the

spatial scale of correlation is at a similar order of magnitude to the scale over which animals move in

the time between successive interactions, diffusive assumptions may be less valid [23].

Here, I address this issue of directional correlation by extending the model of [12] from a

diffusion-taxis system to a telegrapher-taxis system in 1D. The telegrapher’s equation accurately

models random movement with directional correlation in a 1D setting [24,25]. Moreover, it is a direct

generalisation of the diffusion equation, simply requiring the introduction of a characteristic time-scale

parameter, T, which is set to T = 0 in the diffusion limit.

The aim of this study is to examine the effect of introducing T > 0 on the linear pattern formation

properties of the model in [12]. These patterning properties separate parameter space into three

well-known categories [26]. First, patterns may not form at all from small non-constant perturbations of

the steady state, i.e., the system is stable to such perturbations. Second, small non-constant perturbations

of the steady state may grow over small times in a non-oscillatory fashion. This is classically known as

a Turing instability after [27]. Third, these perturbations may both grow in magnitude and oscillate,

which is sometimes known as a Turing-Hopf instability.

I give general criteria for when an increase T can cause a shift from one of these three patterning

regions to another. When this shift occurs, it holds for all T > T∗ where T∗ is a threshold persistence

time, which is quantified. As an example, I examine in detail the case N = 2 in the absence

of self-aggregation. Here, the diffusion-taxis model (T = 0) can either be stable to non-constant

perturbations or exhibit a Turing instability, dependent on the parameter values of the model.

Furthermore, the parameter regimes where the system falls into these two patterning regions is

known precisely [12]. However, the N = 2 and T = 0 case is never susceptible to a Turing-Hopf

instability unless a self-aggregation process is in play [28]. I show that when T is increased sufficiently

high, Turing-Hopf instabilities are possible without self-aggregation. Furthermore, they occur when

the populations are engaged in a “pursuit-and-avoid” situation, with one population exhibiting taxis

towards the other, and the latter exhibiting taxis away from the first. In contrast, for T = 0, this

pursuit-and-avoid situation is always linearly stable to non-constant perturbations.

2. The Modelling Framework and General Results

This work focusses on a system of N populations, each of fixed size (i.e., no births or deaths).

Individuals from each population move on a 1D landscape as biased, correlated random walkers

(i.e., those where there is both persistence in movement and bias in a particular direction). This bias

depends on the density of the various populations in the system, and is represented by a taxis term

up or down the density gradient of the various populations. The correlated aspect of movement is

modelled using a telegrapher’s equation formalism [24,25].

Denoting by ui(x, t) the spatial probability density function of population i at time t, the study

system is given by the following telegrapher-taxis equation for each population i (i ∈ {1, . . . , N})

T
∂2ui

∂t2
+

∂ui

∂t
= di

∂2ui

∂x2
− ∂

∂x

[

ui

N

∑
j=1

γij
∂

∂x
(K ∗ uj)

]

, (1)

where T ≥ 0, di > 0, γij ∈ R, and one can assume, without loss of generality, that the units are

dimensionless and d1 = 1. The case where T = 0 and γii = 0 for all i was studied in [12], and the

reader is referred there for details of the non-dimensionalisation process. The dynamics take place on

a unit line segment, [0, 1], with periodic boundary conditions
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ui(0, t) = ui(1, t), (2)

so locations, x, live in the quotient space [0, 1]/{0, 1}. In Equation (1), K(x) is an integrable function,

symmetric about x = 0 on the domain [0, 1]/{0, 1}, and K ∗ uj is the following spatial convolution

K ∗ uj(x, t) =
∫ 1

0
K(x − y)uj(y, t)dy. (3)

The inter-population taxis term, in the right-hand summand of Equation (1), can come about

through different biological mechanisms. The simplest is for the organisms in population i to sense

directly the gradient of population density, ∂
∂x (K ∗ uj), a mechanism that may be valid for very small

individuals such as single-celled organisms or swarming insects. However, for larger organisms, this

population gradient is more likely to be observed indirectly. For example, the deposition of marks

in the environment from population j (e.g., through scenting; [29,30]) may indicate the population

density, uj, across space. Similarly, memory of past interactions with individuals from population j can

act as a proxy for sensing the population density gradient [31,32]. In [12], the authors showed how all

of these biological mechanism can be modelled via the same taxis term, given in Equation (1).

The linear pattern formation properties of Equation (1) are analysed by perturbing the system

about the constant steady-state solution, ui(x, t) = 1 for all i, x, t. Specifically, let w(x, t) = (u1 −
1, . . . , uN − 1)′ = (u

(0)
1 , . . . , u

(0)
N )′ exp(σt + iκx), where u

(0)
1 , . . . , u

(0)
N ∈ R, κ ∈ R≥0 and σ ∈ C are

constants, and ′ denotes matrix transpose. By neglecting non-linear terms, Equation (1) becomes

(Tσ2 + σ)w = κ2M(κ)w, (4)

where M(κ) = [Mij(κ)]i,j is an N × N matrix with

Mij(κ) =

{

−di + γiiK̂(κ), if i = j,

γijK̂(κ), otherwise,
(5)

and K̂(κ) is the Fourier transform of K(x) on [0, 1]/{0, 1}.

Let λ1(κ), . . . , λN(κ) be the eigenvalues of M(κ) (which are not necessarily distinct). If T = 0 then

σ = κ2λi(κ) gives a solution to Equation (4) for some non-trivial vector w. From the perspective of

pattern formation, there are three regimes of interest. These are well-documented [26] but it is valuable

to summarise them briefly, for the purposes of introducing the key concepts and nomenclature used

throughout this work:

1. Stable. All eigenvalues have negative real part: Re(λi(κ)) < 0 for all i ∈ {1, . . . , N}, κ > 0,

2. Turing instability. The dominant eigenvalue (i.e., the one with the largest real part) is positive

and real, i.e., argmaxλi(κ)
[Re(λi(κ))] ∈ R>0,

3. Turing-Hopf instability. The dominant eigenvalue is not real but has positive real part,

i.e., argmaxλi(κ)
[Re(λi(κ))] ∈ {z ∈ C : Re(z) > 0, z /∈ R}.

The first of these states that the linear perturbation, w(x, t), will decay back to the homogeneous

steady state, the second that w(x, t) will grow at small times for certain wavenumbers, κ, in a

non-oscillatory fashion, and the third that w(x, t) will grow and oscillate at small times. These regimes

give an indication for the pattern formation properties of the system. In the Stable region,

the expectation is that spatial patterns do not form. In the Turing instability region, stationary patterns

are predicted to form, which are fixed over time. If there is a Turing-Hopf instability, patterns that

are in perpetual flux are expected to emerge. However, it is important to note that these are merely

predictions, arising from a linearisation of the system, and that it is possible for the non-linear terms to

cause different pattern formation properties asymptotically.
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The main aim of this work is to examine how the demarcation into the above three regimes

changes as T is increased from 0. When T > 0, for each i ∈ {1, . . . , N}, there are up to two values of σ

such that Tσ2 + σ = κ2λi(κ). Thus I define

σ±
i (κ, T) =

−1 ±
√

1 + 4Tκ2λi(κ)

2T
, (6)

for each i ∈ {1, . . . , N}, and note that σ±
i (κ, T) solves Equation (4) for each i. The main results from

this work are given in the following three theorems.

Theorem 1. In the case where the system is linearly stable for T = 0 (i.e., Re(λi(κ)) < 0 for all i ∈ {1, . . . , N},

κ > 0) one of two situations can occur:

1. If λi(κ) ∈ R for all i, κ, then Re(σ±
i (κ, T)) < 0 for all i, κ, T, so the system stays in the Stable regime for

all T > 0.

2. If there exist i and κ such that λi(κ) /∈ R then there exists some T∗ > 0 such that for all T > T∗, there is

a Turing-Hopf instability. In other words, for this value of i and κ, argmaxσi(κ,T)[Re(σi(κ, T)] ∈ {z ∈ C :

Re(z) > 0, z /∈ R} for all T > T∗. Furthermore, T∗ is the minimum T > 0 such that there exist i, κ with

Re(
√

1 + 4Tκ2λi(κ)) > 1.

Proof. For part (1), if λi(κ) ∈ R for all i, κ then, since Re(λi(κ)) < 0, the inequality 1 + 4Tκ2λi(κ) < 1

holds, so Re(σ±
i (κ, T)) < 0 for all i, κ, T.

For part (2), let i ∈ {1, . . . , N} and κ > 0 such that λi(κ) /∈ R. Assume, without loss of generality,

that Im(λi(κ)) > 0 (otherwise, pick the complex conjugate of λi(κ)). Then if Re(
√

1 + 4Tκ2λi(κ)) > 1,

the inequality Re(σ+
i (κ, T)) > 0 holds, so that there is a Turing-Hopf instability.

I now show that if T is arbitrarily large, the criterion Re(
√

1 + 4Tκ2λi(κ)) > 1 is always

satisfied. Here,

Re(
√

1 + 4Tκ2λi(κ)) ≈ Re(
√

4Tκ2λi(κ)). (7)

Now, arg(
√

4Tκ2λi(κ)) =arg(λi(κ))/2. Since Im(λi(κ)) > 0 and Re(λi(κ)) < 0,

the following holds

π/2 < arg(λi(κ)) < π. (8)

Therefore

0 < arg(
√

4Tκ2λi(κ)) < π/2,

so that Re(
√

4Tκ2λi(κ)) > 0. Hence Re(
√

1 + 4Tκ2λi(κ)) > 0 whenever T is sufficiently

large. Furthermore, Re(
√

1 + 4Tκ2λi(κ)) → ∞ as T → ∞, so there exists some Ti,κ
∗ such that

Re(
√

1 + 4Tκ2λi(κ)) > 1 for all T > Ti,κ
∗ . There may be more than one j ∈ {1, . . . , N} and κ > 0

such that λj(κ) /∈ R. Thus let T∗ be the minimum of T
j,κ
∗ over such j and all κ. Then T∗ satisfies the

requirements of the theorem.

Theorem 2. Consider the Turing instability case for T = 0 (i.e., argmaxλi(κ)
[Re(λi(κ)] ∈ R>0). For a given

κ, let λi(κ) be the dominant eigenvalue of M(κ). Then one of two situations can occur:

1. If Re(
√

1 + 4κ2Tλj(κ)) ≤
√

1 + 4κ2Tλi(κ) for all j then there is a Turing instability at wavenumber κ

and persistence time T.

2. If there is some j such that Re(
√

1 + 4κ2Tλj(κ)) >

√

1 + 4κ2Tλi(κ) then there is a Turing-Hopf

instability at wavenumber κ and persistence time T. Let T∗ be the minimum T > 0 such that
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Re(
√

1 + 4κ2Tλj(κ)) >

√

1 + 4κ2Tλi(κ) for some j. Then there is a Turing-Hopf instability for

all T > T∗.

Proof. For part (1), let κ, T > 0. If Re(
√

1 + 4κ2Tλj(κ)) ≤
√

1 + 4κ2Tλi(κ) for all j then σ+
i (κ, T) is

the dominant eigenvalue. Since λi(κ) ∈ R>0,
√

1 + 4κ2Tλi(κ) ∈ R>1 so σ+
i (κ, T) ∈ R>0 so there is a

Turing instability for these values of T and κ.

For part (2), suppose there exist j, T, κ with Re(
√

1 + 4κ2Tλj(κ)) >
√

1 + 4κ2Tλi(κ) and suppose

Re(
√

1 + 4κ2Tλj(κ)) ≥ Re(
√

1 + 4κ2Tλk(κ)) for all k. Then σ+
j (κ, T) is the dominant eigenvalue. It is

necessary to show that σ+
j (κ, T) is not real. Therefore, for a contradiction, suppose

√

1 + 4κ2Tλj(κ) ∈
R. Then λj(κ) ∈ R. However, λj(κ) ≤ λi(κ), since λi(κ) is the dominant eigenvalue of M(κ), so
√

1 + 4κ2Tλj(κ) ≤
√

1 + 4κ2Tλi(κ), which contradicts the assumption. Hence σ+
j (κ, T) /∈ R so there

is a Turing-Hopf instability for these values of T and κ.

Corollary. If there is some j such that Re(
√

λj(κ)) >
√

λi(κ) then there is a Turing-Hopf instability

at wavenumber κ for sufficiently large T.

Theorem 3. Consider the case where there is a Turing-Hopf instability for T = 0. Then there is a Turing-Hopf

instability for all T > 0.

Proof. Let i be such that λi(κ) is the dominant eigenvalue of M(κ) for some κ where there is a

Turing-Hopf instability for T = 0. Assume, without loss of generality, that Im(λi(κ)) > 0 (otherwise

choose the complex conjugate of λi(κ)). Since Re(λi(κ)) > 0, the inequality Re(1 + 4Tκ2λi(κ)) > 1

holds, so
√

Re(1 + 4Tκ2λi(κ)) > 1. Since 1 + 4Tκ2λi(κ) has positive real and imaginary part,
√

Re(1 + 4Tκ2λi(κ)) < Re(
√

1 + 4Tκ2λi(κ)). The latter follows from the following general calculation

for r > 0 and 0 < θ < π/2

√

Re(reiθ) =
√

r
√

cos(θ) <
√

r

√

cos(θ) + 1

2
=

√
r cos

(

θ

2

)

= Re(
√

reiθ). (9)

The inequality in (9) requires 0 < cos(θ) < 1, which follows from 0 < θ < π/2.

It follows that Re(
√

1 + 4Tκλi(κ)) > 1, and thus from Equation (6) that Re(σ+
i (κ, T)) > 0 for all

T > 0. To show that this is within the Turing-Hopf instability region, it is necessary to check that there

does not exist j such that both σ+
j (κ, T) ∈ R>0 and σ+

j (κ, T) > Re(σ+
i (κ, T)), since otherwise this is

the Turing instability region. For a contradiction, suppose such a σ+
j (κ, T) exists. Then

√

1 + 4Tκ2λj(κ) > Re(
√

1 + 4Tκ2λi(κ)) >
√

Re(1 + 4Tκ2λi(κ)) (10)

so 1 + 4Tκ2λj(κ) > Re(1 + 4Tκ2λi(κ)) so λj(κ) > Re(λi(κ)), which contradicts the fact that λi(κ) is

the dominant eigenvalue for the T = 0 case.

3. The Case of Two Interacting Populations (N = 2)

In this section, I look in detail at the specific example where N = 2 and γii = 0 for all

i ∈ {1, . . . , N}, to show how persistent movement can drive qualitative changes in pattern formation

properties even in this simple situation. In the case T = 0 (studied by [12]), the following holds

λ±(κ) =
−(1 + d2)±

√

(1 − d2)2 + 4γ12γ21K̂2(κ)

2
, (11)
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and it follows that the system for T = 0 is linearly stable to wave perturbations whenever γ12γ21 < d2.

When γ12γ21 > d2, the system can have a Turing instability, and always does in the limit K̂(κ) → 1,

where the spatial averaging given by K is arbitrarily small. The system never exhibits a Turing-Hopf

instability for T = 0 [12].

In the Turing instability case for T = 0, both the eigenvalues are real, so the conditions of

Theorem 2, part 2, are met. Thus there is a Turing instability for all T > 0. The case where γ12γ21 < d2,

however, is more interesting. Here, Theorem 1 states that a Turing-Hopf instability will occur for

sufficiently large T as long as λ±(κ) /∈ R, that is

(1 − d2)
2 + 4γ12γ21K̂2(κ) < 0. (12)

The first thing to notice about the condition given by (12) is that γ12 and γ21 need to be of opposite

signs. This means that one population tends to advect up the density gradient of the other, while the

second population retreats down the gradient of the first. This is termed a ‘pursuit-and-avoid’ situation

in [12]. In this situation, for T = 0, no patterns form: the populations each settle to a steady-state

distribution whereby they are uniformly distributed on the terrain. However, if T∗ is defined to be

the minimum positive real number such that there exists κ > 0 with Re(
√

1 + 4Tκ2λ+(κ)) > 1, then

Theorem 1 implies there is a Turing-Hopf instability whenever T > T∗.

To understand how T∗ depends on the parameters, I fix d2 = 1 and set γ = +
√−γ12γ21. (Notice

that γ ∈ R>0 since γ12 and γ21 are of opposite signs.) It is also necessary to pick a particular functional

form for K(x). This is a slightly delicate matter as it is not necessarily the case that the pattern

formation problem is well-posed for an arbitrary K(x). For example, if K(x) = δ(x) is used, where

δ(x) is the Dirac delta function, then, by Equation (6), the dominant eigenvalue is

σ+
i (κ, T) =

−1 +
√

1 − 4Tκ2 + 4Tiκ2γ

2T
. (13)

If T is fixed and κ is arbitrarily large, then Re(σ+
i (κ, T)) ≈ κRe(

√−1 + iγ/
√

T) → ∞ as κ → ∞.

Hence patterns can form for arbitrarily high wavenumbers, meaning the pattern formation problem

is ill-posed.

However, suppose instead that

K(x) =











exp
(

− x2

σ2

)

σ
√

πerf( 1
2σ )

, if −1/2 < x < 1/2

0, otherwise,

(14)

for some σ > 0, so that

K̂(κ) =
erf
(

1
2σ − iκσ

2

)

+ erf
(

1
2σ + iκσ

2

)

2erf
(

1
2σ

) exp

(−κ2σ2

4

)

. (15)

The case of interest is where σ is small, in which case the following approximation can be made

K̂(κ) ≈ exp

(−κ2σ2

4

)

. (16)

Then Equation (6) gives

σ+
i (κ, T) =

−1 +
√

1 − 4Tκ2 + 4Tiγκ2 exp(−κ2σ2/4)

2T
. (17)
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Now, notice that if T is fixed and κ is arbitrarily large, then

Re(σ+
i (κ, T)) ≈ κRe

(

√

−1 + iγ exp(−κ2σ2/4)√
T

)

→ 0, (18)

as κ → ∞. Therefore, with the Gaussian averaging kernel from Equation (14), the pattern formation

problem is well-posed, in the sense that patterns cannot form at arbitrarily high wavenumbers.

By Theorem 1, there is some T∗ such that there is a Turing-Hopf instability for all T > T∗.

Furthermore, this Theorem states that T∗ is the minimum T such that the following holds for some κ

f (κ) := Re[
√

1 − 4Tκ2 + 4Tiγκ2 exp(−κ2σ2/4)] > 1. (19)

In Figure 1a, f (κ) is plotted against κ for γ = 0.2, σ = 0.05, and varying values of T. This reveals

that T not only affects whether patterns form, but the range of wavenumbers for which patterns may

form. In this example, there is a Turing-Hopf bifurcation for value of T = T∗ somewhere between

T = 0.05 and T = 0.1.

The precise values of T∗ for a range of γ- and σ-values are plotted in Figure 1b,c. The γ parameter

encodes the strength of attraction/avoidance. Figure 1b,c shows that T∗ decays for increasing γ and

grows with the width of spatial averaging, σ.

0 20 40 60 80 100

κ

0.0

0.5

1.0

1.5

2.0

2.5

f(
κ
)

a)

T=0.01

T=0.05

T=0.10

T=0.50

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

1

2

3

4

5

T
∗

b)

σ=0.02

σ=0.05

σ=0.1

σ=0.2

0.0 0.1 0.2 0.3 0.4 0.5

γ

0.0

0.5

1.0

1.5

2.0

T
∗

c)

Figure 1. Critical value of T for pattern formation. In Panel (a), Equation (19) is plotted for γ = 0.2,

σ = 0.05, and various values of T. Where f (κ) > 1, there is a Turing-Hopf instability. In Panels (b,c),

the value, T∗, above which there is a Turing-Hopf instability for some κ and below which there is not,

is plotted for various values of σ and γ.

To understand the qualitative properties of the patterns that emerge from increasing T∗ past the

Turing-Hopf bifurcation point, the system in Equations (1)–(3) is solved numerically, with N = 2,

d2 = 1, γ = +
√−γ12γ21, and the Gaussian spatial averaging from Equation (14). In Figure 2,

the results of these numerics are shown for certain values of γ, σ and T. Here, rather than decaying to

the homogeneous steady state (T = 0), for higher T the populations move across the landscape while

maintaining a non-constant population distribution.
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Figure 2. Example numerics for N = 2. Numerical solutions of Equation (1) for N = 2, d2 = 1,

γ12 = 1, γ21 = −1, and K(x) as in Equation (14) with σ = 0.1. Both examples have random continuous

initial conditions, but forced to be symmetric about x = 0.5 to satisfy periodic boundary conditions.

In Panel (a), T = 0, and the initial perturbation of the constant steady state decays to the solution

u1(x, ∞) = 1. In Panel (b), T = 1. Here, the population u1 moves across the landscape, not settling to a

constant distribution.

4. Discussion

This study examines a telegrapher-taxis system of N populations to demonstrate how directional

correlation can drive pattern formation in systems of between-population taxis. General criteria are

given for switches in pattern formation regime driven by directional correlation and the N = 2 case is

examined in detail. These results demonstrate the importance of considering directional correlation

when seeking to understanding the spatio-temporal population distributions of moving organisms.

As our ability to capture data on animal movement is becoming increasingly sophisticated, better

understanding of how the details of animal movement can affect population dynamics is becoming

an ever-more pertinent question [6], with implications for a diverse range of ecological areas such as

connectivity dynamics [33] and conservation [34].

The model of [12], on which the present model is based, is closely related to aggregation and

chemotaxis models inspired by cell biology [35–38]. Although many such models only examine a single

population, there are various examples of two-population models [28,39], and some that incorporate

an arbitrary number of populations [40,41]. In the latter examples, the diffusion-taxis equations are

coupled via interactions with a diffusive chemical, different to the model studied here. While cells

lack the momentum of much larger organisms, directional correlation is known to be a factor in the

movement of cells in certain circumstances [42–44]. Therefore the results presented here suggest that

it is worth exploring how directional correlation may affect the pattern formation properties of such

aggregation and chemotaxis models.

Here, ecosystems are modelled on a constrained timescale whereby births and deaths are

negligible. However, it would be valuable to extend the model presented here to incorporate such

effects, via competition and/or predation terms (i.e., kinetics), and so explore the effect of directional

persistence over longer timescales. Adding directional persistence to models that incorporate kinetics

is non-trivial, though, and does not simply involve adding a second temporal derivative to a

reaction-diffusion-taxis model [45].
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Nonetheless, building such a system of reaction-telegrapher-taxis equations would enable

connection with cross-diffusion models (e.g., [16,17,46,47]). These are generalisations of reaction-

diffusion systems, whereby terms are added that allow for motion driven by the presence of foreign

populations. These terms include, but are not limited to, the taxis terms observed in the model

from Equation (1). However, incorporating directional correlation via a telegrapher’s term into a

cross-diffusive setting is much rarer (but see [48]) and the pattern formation properties of such systems

are not well-explored. Given the results presented here, it may be interesting to extend cross-diffusive

models in this way, to show how directional correlation may affect pattern formation in such models.

In summary, the simple but general results shown here demonstrate that directional correlation of

individuals’ movement can have a great effect on the spatio-temporal distribution of species. While I

have demonstrated this in a model of ecosystems relevant over relatively short timescales, where

births and deaths are minimal, it highlights a general principle that is little-studied and may have

much wider implications.
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