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improve function in stroke survivors:
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Abstract

This review evaluates the effectiveness of robotic and virtual reality technologies used for neurological rehabilitation in

stroke survivors. It examines each rehabilitation technology in turn before considering combinations of these technol-

ogies and the complexities of rehabilitation outcome assessment. There is high-quality evidence that upper-limb robotic

rehabilitation technologies improve movement, strength and activities of daily living, whilst the evidence for robotic

lower-limb rehabilitation is currently not as convincing. Virtual reality technologies also improve activities of daily living.

Whilst the benefit of these technologies over dose-controlled conventional rehabilitation is likely to be small, there is a

role for both technologies as part of a broader rehabilitation programme, where they may help to increase the intensity

and amount of therapy delivered. Combining robotic and virtual reality technologies in a rehabilitation programme may

further improve rehabilitation outcomes and we would advocate randomised controlled trials of these technologies in

combination.
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Introduction

Rehabilitation plays a vital role in improving the inde-
pendence and quality of life (QOL) of people with
acquired neurological conditions. The effectiveness of
current multidisciplinary rehabilitation strategies is well
established for people with acquired neurological con-
ditions.1,2 However, many individuals are still left with
residual disability that affects their ability to function in
daily life.3 There is great interest in exploring novel
rehabilitation technologies to augment conventional
therapies to reduce neurological disability and improve
function.

Acquired neurological conditions are the commonest
cause of severe disability acquired during adulthood.
Stroke is the most common of these, affecting 16 mil-
lion people a year globally.4,5 The number of stroke
survivors living in the UK is expected to more than
double by 2035, as the estimated cost to the UK econ-
omy rises from £26 billion a year to £75 billion,6

making this a major challenge for the future. Stroke
related lower-limb impairment impacts on the ‘mobil-
ity’ domain of QOL, and upper-limb impairment on all
other QOL domains.7 Hence, rehabilitation of stroke
survivors is of vital importance.

One of the major limitations of conventional rehabili-
tation programmes is an inadequate dose of rehabilita-
tion therapy, in terms of repetition and intensity.
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Patients often receive insufficient rehabilitation therapy
after an acquired neurological condition.8 The current
evidence suggests that there is a high practice threshold
required to achieve significant upper-limb functional
improvements.9 This threshold is achievable in
humans10 to deliver the repetition and intensity that
are thought to be important in experience-dependent
plasticity.11 Pollock et al. found moderate quality evi-
dence of benefit from a high dose of task practice but
not for a low dose.12 There is hope that new approaches
to rehabilitation could increase the therapy dose.

The use of novel rehabilitation technologies to deliver
these increased doses is a rapidly growing field.
Rehabilitation technology development has been identi-
fied as a priority area for research by the Medical
Rehabilitation Research Coordinating committee
(USA).8 There are a wide range of technologies with
applications in rehabilitation including robotic and vir-
tual reality technologies, assistive devices, neuroprosth-
eses and even smartphone applications.8 Rehabilitation
technologies are defined as ‘those whose primary purpose
is to maintain or improve an individual’s functioning and
independence, to facilitate participation and to enhance
overall well-being’.13 Rehabilitation technologies there-
fore overlap partially with robotics but also encompass
non-robotic technologies, e.g. environmental control sys-
tems and communication devices. This review focuses on
the application of robotic and virtual reality technologies
in stroke survivors.

Robotic technologies

A robot is ‘a machine capable of carrying out a complex
series of actions automatically’.14 Robotic technologies
in rehabilitation are an established and rapidly growing
field. Robotic technologies in rehabilitation encourage
motor re-learning with the goal of reducing impair-
ment.15 Robotic technologies offer numerous potential
advantages over conventional therapies, chief among
these being the ability to provide high-intensity repetitive
training.

A Cochrane systematic review16 found high-quality
evidence of a benefit of upper-limb robotics (e.g.
MIME, Bi-Manu-Track and ARMin) on activities of
daily living ADL, arm function and arm muscle
strength, although the effect size is small and hetero-
geneity among studies substantial. These findings are
consistent with Ferreira et al., whose recent systematic
review found a benefit of upper-limb robotics compared
to conventional therapy on motor control and strength,
but not on other measures of body function or struc-
ture; ADL outcomes were not analysed.17 Another
recent systematic review by Veerbeek et al. also found
a benefit of upper-limb robotics (when compared to
conventional therapy) on motor control and strength

but no benefit on ADL.18 This may be explained by the
inclusion of more studies with over twice the number of
participants in the Mehrholz et al. Cochrane review16

ADL analysis in comparison to the Veerbeek et al. ana-
lysis,18 as evidenced by a similar standardised mean dif-
ference value but a wider confidence interval in the
Veerbeek review. However, a subgroup analysis for
dose by Veerbeek et al. found a statistically significant
benefit of robotics on ADLs for non-dose-matched trials
but not for dose-matched trials18; unfortunately, there
was no sensitivity analysis on dose matching in the
Cochrane review16 to explore the impact on their find-
ings. Rehabilitation dose is known to be very important;
indeed, sub-group analysis by Ferreira et al. demon-
strated an impact of the number of treatment sessions
and treatment volume on the effects seen.17 We therefore
conclude that upper-limb robotics improve ADLs at
least as much as conventional therapy, but there is cur-
rently insufficient evidence of superiority.

A systematic review of robotics for lower-limb
rehabilitation, including the Lokomat and Gait
Trainer devices, demonstrated that the use of electro-
mechanical-assisted gait-training devices in combin-
ation with physiotherapy increases the chance of
walking independently after stroke.19 However, the
devices were not shown to improve walking velocity
or distance walked in 6 min. The greatest benefits in
independence in walking and walking speed were
achieved by participants who were non-ambulatory at
the start of the study and in those for whom the inter-
ventions were applied early post-stroke.

The evidence so far suggests that it is unlikely that
robotic systems will provide additional benefit over
conventional rehabilitation methods with exactly
equivalent amount and intensity of therapy.20

However, even if that is true, there is still a place for
robotic systems, as in most settings, it is simply not
feasible to provide such a high dose of intensive con-
ventional rehabilitation therapy due to a lack of
resources, especially a lack of therapist time. There
might be concern amongst some therapists that robotic
developments are a threat to their jobs; however, this is
not the case, as these robotic systems still need setup,
programming and monitoring. Instead, these systems
will enable therapists to use their time more efficiently
by supervising several individuals simultaneously to
achieve better rehabilitation outcomes, effectively max-
imising the benefit of the limited therapist resource.21

Concerns about the costs of robotic devices must
also be put into perspective. Whilst devices are
undoubtedly costly at the present time, one needs to
consider the cost savings of therapist time, where
patients use robotic systems independently, as well as
wider economic benefits related to productivity gains.
Furthermore, with such a proliferation of devices, it is
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likely that competition and mass-production will even-
tually drive prices down. There are also some low-cost
robotic devices in early stages of research.22 A formal
up-to-date cost-effectiveness analysis is lacking;
however, work from 2011 suggested that the cost-
effectiveness of robotic devices was comparable to
that of conventional therapy.23

Virtual reality technologies

Virtual reality (VR) involves using interactive simula-
tions produced by computer technology to allow users
to engage in environments that closely resemble the
real-world. VR can be used for simulated independent
practice at higher doses than that could be achieved
through conventional therapy.12 These technologies
therefore share some of the benefits of robotics in
terms of increasing training intensity and repetitions,
and reducing therapist time. The typical portrayal in
the lay media of VR is usually that of a so-called
‘immersive’ VR, with a head-mounted screen.24

However, low immersion systems involving a simple
flat screen are much more commonplace. Indeed, com-
mercially available video gaming systems have been
adapted for use in VR rehabilitation.25

The provision of visual and often multi-sensory feed-
back is a key attribute of VR technologies. Individuals
who have survived neurological injuries such as a
stroke often have sensory impairments, including in
proprioception, and therefore have lost some of the
normal feedback associated with a typical motor
action.12 It is recognised that feedback plays an import-
ant role in skill acquisition26 and is an essential element
in experience-dependent plasticity.27 In motor learning,
it is important to receive feedback not just on the end
results – ‘success or failure’ – but on movement per-
formance28; this is possible with the use of VR
technologies.

VR can also help with patient engagement and
motivation.29 Psychological problems are common
after stroke and SCI,30,31 and strategies that focus on
patient engagement are important for successful
rehabilitation.8 The level of engagement affects the
degree of active participation which in turn can
improve outcomes. Mekki et al. demonstrated that
when individuals were given both feedback on their
walking speed and competition against virtual oppon-
ents, there was increased muscle activity.32 Laver et al.
in their review of VR technologies recommended that
future studies evaluate the impact of VR on patient
motivation and engagement.33

There is growing interest in VR technologies, with
35 new trials published in just a two-year period.33

The most up-to-date Cochrane review found a signifi-
cant benefit to upper-limb function with a moderate

effect size (standardised mean difference 0.49, 95% con-
fidence interval 0.21–0.77) when VR was used as an
adjunct to usual care but not when compared to
dose-controlled conventional therapy.33 However,
there was a small benefit in ADLs with VR technology,
which increased to a moderate benefit when therapy
was not dose-controlled. Thus, whilst VR may not be
superior to conventional rehabilitation therapy, it
could be a useful adjunct to increase therapy duration
and intensity.

Combination technologies

It is important to remember that rehabilitation is a
multi-disciplinary and multi-modal endeavour and not
a ‘one size fits all’ intervention. A combination of inter-
ventions may be better suited to treat the multifactorial
nature of the disability associated with neurological
conditions, such as motor and sensory impairments,
cognitive problems and psychological issues. Veerbeek
et al. recommend that robotic therapy is seen not as a
‘standalone therapy’, but is integrated into a compre-
hensive rehabilitation programme.17

The combination of VR and robotic technology is
particular interesting as it can theoretically activate
more of the neural circuits involved in motor learning,
and hence promoting neuroplasticity.34,35 A number of
controlled trials have investigated the combination of
VR and robotic technologies in upper-limb rehabilita-
tion. Thielbar et al. investigated the use of a robot-
assisted finger training system linked to the movements
of a virtual hand and found a significant improvement
in upper-limb activity and task performance compared
to controls.36 Byl et al. examined a robotic orthosis in a
virtual training environment and found no between-
group differences.37 Unfortunately, not only did both
studies have very few participants but both used a con-
trol group of physical therapy only, which makes it
impossible to determine if any benefits identified are
related to the combination technology or simply one of
its components, e.g. the robotics. Klamroth-Marganska
et al. looked at the effects of the exoskeleton robot
ARMin, which provides intensive task-specific training
in a virtual environment, as compared to conventional
therapy and found a small benefit in the Fugl – Meyer
upper-extremity scale which was not clinically signifi-
cant.38 Whilst this trial had a moderate sample size, it
again compared the combination technology to physical
therapy only. There are currently no randomised con-
trolled trials (RCTs) of dual VR-robotic technology
combinations for upper-limb rehabilitation with a
single technology control group.

Early work by Mirelman et al. with participants with
lower-limb impairments found that in individuals given
combination VR and robotic therapy, compared to
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robot therapy alone, there was a significant increase in
walking speed and distance.39 Furthermore, individuals
reported less fatigue in the sessions, required shorter
rest time and fewer therapist cues, despite the number
of repetitions being the same. Uçar et al. examined the
effectiveness of the Lokomat device, a treadmill and
lower-limb robotic exoskeleton combination together
with a virtual reality screen display, as compared to
conventional therapy.40 They found a significant
improvement in the Timed Up and Go test and the
Ten Metre Walk test in the intervention group as com-
pared to the control group.

It is important to be clear about what is not true
combination technology. Many trials of upper-limb
robotics have included some form of visual feedback
via a computer screen. Kutner et al. showed a series
of LEDs on a screen and participants had to extend
their hand up to the target LED.41 Kahn et al. used a
screen to display the target angles for arm ‘yaw and
pitch’ along with the actual ‘yaw and pitch’ angles of
the participant’s arm.42 Masiero et al. used the screen
to show a virtual arm with arrows indicating the direc-
tion that participants should move their arm.43

The common theme in all these cases is that, whilst
technology is used to provide simple visual feedback,
participants are not engaging in environments that
closely resemble the real world, and hence this does
not meet the criteria for virtual reality technology.

Outcome assessment

Assessment of rehabilitation outcomes is complex, due
to in part to the personalised nature of rehabilitation,
as well as the need to assess outcomes across the
International Classification of Function, Disability
and Health (ICF) domains.12 Whilst we need to
ensure we are measuring the correct markers in our
research,8 determining what patients want remains
ill-defined.44 There is certainly no consensus among
academics on what the best outcome measures are – a
recent systematic review of upper-limb outcome meas-
ures in stroke rehabilitation found 48 different outcome
measures used in these studies with only 15 outcome
measures used in more than 5% of the studies.45 Sivan
et al. looked specifically at upper-limb outcome meas-
ures for robotic rehabilitation and found that whilst
most studies have measured outcomes at the impair-
ment level, this does not necessarily translate into meas-
urement of limitation of activity or restriction of
participation.46 They proposed a systematic framework
for selecting measures based on time since stroke and
extent of arm weakness. Some authors, however, argue
against activity and participation measures, as these
can be improved with compensatory mechanisms and
as such the actual motor impairment is not being

assessed.9 Geroin et al. found no consensus on lower-
limb robotic rehabilitation outcomes, with 45 outcome
measures in use, many of which have poor psychomet-
ric properties.47

Psychometric evaluations of cognitive outcome
measures are less common, despite the fact that cogni-
tive impairment is common as a result of both age8 and
neurological conditions such as stroke,48 and that cog-
nitive impairment affects an individual’s ability to func-
tion in daily life.49 Many trials have excluded patients
with cognitive impairments, which is disappointing
given the potential for VR technologies in particular
to improve cognition.33 Moreover, very few trials
have assessed QOL or cost-effectiveness, although
evaluation of both is essential, for a new rehabilitation
intervention to be adopted in a publicly-funded health
care system.44 Robust evidence is required to be able
to justify to healthcare commissioners why they
should fund new rehabilitation technologies. A recent
Cochrane review made a recommendation that future
trials should include measures of ADL, QOL and
cost-effectiveness.19

Discussion

There is high-quality evidence that upper-limb robotic
technology improves muscle strength, motor function
and ADLs. There is evidence from subgroup analyses
that greater numbers of treatment sessions and greater
treatment volume are related to motor outcomes.18

This is consistent with the findings of Pollock et al.,
who suggested a greater benefit for higher dose ther-
apy.12 Robotic lower-limb rehabilitation increased the
odds of individuals walking independently but did not
affect walking velocity or the distance walked in 6 min.
We would urge caution in the interpretation of the
independent walking findings, as this analysis was sig-
nificantly flawed, with the majority of studies seeing no
change in walking independence between the start and
end of the study.

Upper-limb VR rehabilitation compared to conven-
tional therapy improves ADLs but not upper-limb
motor function. Whilst the ADL benefit is small when
VR is compared to dose-controlled conventional ther-
apy, this increases to a moderate benefit when not dose
controlled. This suggests a potential role for VR as an
adjunct to increase total therapy time and therefore
rehabilitation benefit.

Robotic technology when combined with VR may
offer some benefits in patients with lower-limb impair-
ments by increasing walking speed and distance,
although this is based on the findings of a single small
trial. The studies which looked at combined robotic and
VR rehabilitation of the upper-limb show mixed
results, with one small trial finding a treatment benefit,
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another small trial no benefit and a third larger trial a
small treatment benefit which is not clinically relevant.
Interpretation in each of these studies is hampered by
the lack of a single technology control group. Whilst
the literature on combination technologies is currently
limited, this is a promising area of research worthy of
further investigation. It can often be difficult to deter-
mine from reading studies whether the reported ‘virtual
environment’ used meets the criteria for virtual reality
technology. Therefore, we would encourage authors to
provide enough information on their intervention for
this judgement to be made.

This literature review has examined the effectiveness
of robotic and VR technologies on neurological
rehabilitation. One limitation of this review is the fail-
ure to examine other forms of technologies with appli-
cations in rehabilitation. Secondly, although the
intention of this review is not to limit itself by neuro-
logical diagnosis, the majority of the published litera-
ture concerns stroke survivors, which tends to be
representative of the neurological rehabilitation litera-
ture as a whole.

This review has examined the effectiveness of
rehabilitation technologies on stroke survivors only;
hence, generalisability to patients with other neuro-
logical conditions may be limited. We would encourage
research on other patient groups to confirm applicabil-
ity of the findings in stroke survivors to a wider popu-
lation. Another limitation is that whilst there are a
wealth of studies of robotic-enhanced rehabilitation,
there is great variability between studies in terms of
participants’ characteristics, rehabilitation regime, ther-
apy duration and intensity. Most are also small in
size. Some consistency between studies would help; a
starting point would be agreement on the use of out-
come measures.

In summary, there is high-quality evidence that
upper-limb robotic technology is as effective as dose-
controlled conventional therapy at improving ADLs,
motor function and strength; the evidence for robotic-
enhanced lower-limb rehabilitation is currently not as
convincing. There is a small benefit in ADLs with VR
technologies as compared to dose-controlled conven-
tional therapy; however, no significant difference
for upper-limb function, gait speed or balance.
Nevertheless, both technologies can be beneficial as
part of a broader rehabilitation programme and may
help to improve the intensity and amount of rehabili-
tation delivered. There is a need for RCTs of combined
VR and robotic technologies, although we would also
advocate the exploration of other technology combin-
ations. RCTs should assess a range of outcomes corres-
ponding to the ICF framework but should endeavour
to include measures of ADL, cognition, QOL and cost-
effectiveness.
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