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Abstract: By measuring the phase retardance of a cervical extracellular matrix, our in-house 

polarization-sensitive optical coherence tomography (PS-OCT) was shown to be capable of 

(1) mapping the distribution of collagen fibers in the non-gravid cervix, (2) accurately 

determining birefringence, and (3) measuring the distinctive depolarization of the cervical 

tissue. A conical beam scan strategy was also employed to explore the 3D orientation of the 

collagen fibers in the cervix by interrogating the samples with an incident light at 45° and 

successive azimuthal rotations of 0-360°. Our results confirmed previous observations by X-

ray diffraction, suggesting that in the non-gravid human cervix collagen fibers adjacent to the 

endocervical canal and in the outermost areas tend to arrange in a longitudinal fashion 

whereas in the middle area they are oriented circumferentially. PS-OCT can assess the 

microstructure of the human cervical collagen in vitro and holds the potential to help us better 

understand cervical remodeling prior to birth pending the development of an in vivo probe. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. 
Further distribution of this work must maintain attribution to the author(s) and the published article�s title, 
journal citation, and DOI. 

1. Introduction 

Preterm birth (PTB), which is defined as birth before 37 weeks of gestation, is the leading 

cause of neonatal morbidity and mortality not attributable to congenital malformations 

worldwide. It accounts for more than 1 million deaths a year [1]. Across the world, more than 

15 million births are preterm every year, with prevalence rates that range from 5% to 18% [2�

4]. In the UK, around 8% of babies are born prematurely whereas in the US approximately 

12% of live births occur before term [5,6]. Despite advances in perinatal health, the incidence 

of PTB has continued to increase. Given the multifactorial etiology of PTB, diagnosis and 

prevention have proven difficult. However regardless of what triggers PTB, there seems to be 

common gradual changes in the stroma of the cervix. The cervix, which plays an essential 

part in maintaining a pregnancy to term, has to remain closed throughout gestation so that the 

fetus can develop in utero [7]. However, for birth to occur, it has to shorten, soften and dilate. 

This crucial remodeling process is required for uterine contractions to lead to delivery [8,9]. 

Since PTB requires premature cervical remodeling, improved understanding of this process is 

essential for the development of more accurate screening tools for PTB [10]. Such tools may 

also facilitate better targeted clinical interventions. Cervical remodeling begins several 

weeks/months before parturition, but its exact timing and processes have not yet been fully 

characterized in humans, most evidence stemming from studies on rodents [11]. Experiments 
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conducted on rat and human cervical biopsy tissues in the late 1980s using X-ray diffraction 

showed that collagen fibrils exhibited preferential orientation in the non-pregnant cervix: 

around the endocervical canal and in the outermost area, collagen fibers were mostly arranged 

longitudinally, whereas in the middle area, fibers were predominantly circumferential [12]. 

This orientation pattern is thought to be lost during pregnancy. Current evidence also suggests 

that cervical remodeling involves a change in the orientation, morphology and assembly 

rather than in collagen amount. However, current in vivo assessment of the remodeling of the 

cervix in women is confined to cervical length ultrasound measurement and digital 

examination approaches incapable of assessing the key molecular changes associated with 

extracellular matrix remodeling [9]. 

Several research imaging techniques have been employed to investigate cervical collagen 

microstructure, including X-ray diffraction, second harmonic generation (SHG) microscopy, 

magnetic resonance diffusion tensor imaging (MR DTI) and optical coherence tomography 

(OCT) [13�17]. However, none of these modalities has been successfully translated into the 

clinical setting due to inherent limitations to the technique. MR DTI, for example, is too slow 

for real-time processing; SHG holds limited imaging speed and does not perform well 

endoscopically, and OCT lacks accuracy to assess the collagen structure. An emerging 

technique, Full-field Mueller colposcopy, has also been developed for investigation of 

cervical microstructure [18�21]. This technique has regarded as a potential alternative to the 

current screening methods, e.g. histological diagnoses, due to the advantages of low cost, 

rapid imaging with wide field images and ready endoscope [19]. However, the technique of 

Full-field Mueller colposcopy is not in the mainstream clinic yet, and cannot provide depth-

resolved changes in tissue�s phase retardance, birefringence and relative fast axis orientation 

nor the thickness of the overlying epithelium. 

Polarization-sensitive OCT (PS-OCT) is a functional extension of OCT, which has the 

potential to be an appropriate tool for investigation of cervix or cervical remodeling in clinical 

studies. This is because PS-OCT not only shares the advantages of OCT, including high 

resolution (4-20 ȝm), high-speed 3-D imaging and easy integration with a catheter or a hand-

held probe, but it offers additional information such as the polarization state of backscattered 

optical light [22,23]. The polarization state can be used to measure tissue�s depth-resolved 

phase retardance, birefringence and relative fast axis orientation, which allows PS-OCT to 

differentiate anisotropic tissues, such as collagen fiber, muscle and tendon, from other 

structures [24]. In 2008, Lee et al demonstrated that PS-OCT could detect cervical 

intraepithelial cancer (CIN) on human cervical biopsies with a sensitivity of 94.7% and a 

specificity of 71.2% when results were correlated with histology [25]. However, little is 

known about the ability of PS-OCT to assess changes in the orientation of cervical collagen 

[26]. 

In this study, we sought to assess whether PS-OCT was capable of detecting changes in 

the alignment of cervical collagen fibers in vitro. Cervical cross-sections obtained from 

uterine specimens of patients undergoing hysterectomy for benign gynaecological conditions 

were fully scanned with PS-OCT. Additionally, the three-dimension (3D) orientation of 

collagen in the samples was assessed using a conical beam scan protocol, originally 

developed for studying collagen alignment in articular cartilage [27]. 

2. Methods

2.1 Configuration of PS-OCT

Our in-house PS-OCT for this study was developed based on the method reported by Al-Qaisi 

et al [28]. This system and its characteristics have already been described in our previous 

paper [27]. Here, we provide concise summaries of the PS-OCT configuration and its 

principle. The schematic diagram of PS-OCT is shown in Fig. 1. The light source of the 

system was a wavelength-swept laser (HSL-2000-10-MDL, Santec, Japan) with a center 

wavelength of 1315 nm, a full width at half maximum of 128 nm, a wavelength scanning rate 
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2.4 PS-OCT image processing 

Our image processing was carried out in MATLAB. The retardance ( ( ))
S

zδ  image was 

calculated as 
0; 0;

( ) arctan( ( ) ( )),
S V H

z A z A zδ =  where 
0;

( )
V

A z  and 
0;

( )
H

A z  indicate the amplitudes of 

the vertical and horizontal signals respectively. The apparent birefringence of the specimen 

( ),nΔ  which refers to the refractive index difference between the specimen ( ( )n  and the 

ordinary beams ( ( ),on  namely ,on n nΔ = −  was computed as: 

 0 ( )

2

Sd z
n

dz

λ δ

π
Δ =  (1) 

where z  is the physical depth into sample and 0λ  is the center wavelength of the light 

source. The true birefringence, defined as e on n− , can be expressed as following relationship 

[30]: 

 
2 2 2 2

1
cos ( )( )

e

o

o C e o

n
n n

n n nθ

 
 Δ = −
 + − 

 (2) 

Here, en  is the extraordinary refractive index and Cθ  is angle between the direction of light 

propagation and the optic axis of the fiber, i.e. the c-axis in optical terminology. For obtaining 

more precise values of the apparent birefringence, the phase retardances of 10000 A-scans 

(arranged in an XY grid of size 100 by 100) at each depth within the sample were averaged, 

and plotted as a function of depth to get the retardance slope of the birefringent tissue, e.g. 

( )Sd z dzδ . The slope was obtained by linear fitting method, and the birefringence values 

were calculated as illustrated in the Eq. (1). To visualize apparent birefringence, a 2D 

birefringence image was mapped out by the derivative of the retardance versus axial image 

depth after the retardance B-scan was smoothed using a 50 by 50 median filter. 

The depolarization of tissue was quantified on the basis of the theory developed by 

Götzinger et al [31]. The degree of polarization uniformity (DOPU), which can be regarded as 

a spatially averaged degree of polarization (DOP), was quantified for evaluation of tissue 

depolarization. DOPU was processed as follows. Firstly, a thresholding procedure was 

applied to the intensity data ( ),I  i.e. 2 2

0; 0;( ) ( ) ,V HI A z A z= +  for filtering out noise and low 

signal intensity. Secondly, the Stokes vector (S) was computed as [31]: 

 

2 2

0; 0;

2 2

0; 0;

0; 0;

0; 0;

( ) ( )

( ) ( )

2 ( ) ( ) cos

2 ( ) ( )sin

V H

V H

V H

V H

I A z A z

Q A z A z
S

U A z A z

V A z A z

φ

φ

 + 
  

−  = =    Δ
    Δ   

 (3) 

where I, Q, U, and V are Stokes vector elements, and then the Strokes vector elements were 

averaged by a 2D mean filter (a size of 15 by 6 pixels). Finally, the DOPU was processed in 

term of 2 2 2 ,m m mDOPU Q U V= + +  where ,mQ  mU  and mV  denote the averaged Stokes 

vector elements. 

2.5 H&E histology 

Three cervical specimens, previously scanned with PS-OCT were then fixed with 3.7% 

formaldehyde and stained with a modified H&E technique in order to better visualize 
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collagen fibers. Histological slides were subsequently assessed with an optical microscope 

(10X, LEICA DM750). 

2.6 Statistical analysis 

Collagen birefringence in the center, middle and edge areas was compared using ANOVA 

with Bonferroni correction. Collagen birefringence was also correlated with age, parity, mode 

of delivery, menopausal status and indication for surgery using Pearson�s correlation 

coefficient, ANOVA when the assumption of equality of variances was met and non-

parametric Kruskall-Wallis when the Levene�s test was significant. 

3. Results and discussion 

3.1 Intensity, retardance and birefringence images 

Whole in vitro cervical cross-sections were scanned with our in-house PS-OCT. We have 

included, as an example, intensity, retardance and birefringence images obtained from the 

middle region of one of the samples analyzed, and shown how they were computed into 

precise numerical values (Fig. 5). The intensity and retardance images were acquired using 

LABVIEW control software, shown in Figs. 5(a) and 5(b) respectively. In Fig. 5(a), the 

intensity image resulting from the difference of refractive index between various layers of 

tissue displays two discernible tissue layers. The superficial layer which presents 

comparatively lower intensity is assumed to be the cervical epithelium, and the deeper layer, 

the collagen content of the stroma. This assumption also enables to explain the retardance 

image, in which the cervical epithelium can be discerned as a blue band on the top due to its 

lack of birefringence. The thickness of the cervical epithelium can therefore be calculated 

immediately which could be of potential benefit in evaluating disorders such as cervical 

cancer [32] and the acquired human immunodeficiency syndrome [33]. Just underneath the 

epithelium layer, a significant increase of retardance is observed resulting from the 

birefringence of aligned collagen fibers. Compared with traditional modality, e.g. confocal 

fluorescence microscopy, which might cannot measure the epithelial thickness because the 

maximum imaging depth (<33 ȝm) is insufficient to cover all epithelial thickness [32], PS-

OCT has much larger imaging depth (~800 ȝm) to readily measure the thickness of 

epithelium. In our experimental results, the retardance image has the advantage to 

differentiate the epithelial and collagen layers than intensity image, because a part of intensity 

images is featureless. 

For generating a birefringence image, the gradient of retardance as a function of physical 

depth is computed after smoothing the retardance image using a median filter. The 

birefringence image is mapped out by the gradient of retardance, from which the collagen 

distribution can be inferred, shown in Fig. 5(c). The precise value of apparent birefringence of 

collagen is evaluated with a linear fitting method, shown in Fig. 5(d). In Fig. 5(d), the 

retardance at each particular depth within sample is laterally averaged to reduce speckle noise 

and plotted as a function of depth. The slope of collagen retardance, namely ( ) ,Sd z dzδ  is 

calculated by linear regression. The precise value of birefringence can be directly calculated 

from Eq. (1). In our example, the slope of the regression equation in Fig. 5(d) is 2.48 rad/mm, 

and the value of collagen birefringence is 
3 32.48 2 1.315 10 0.52 10 .π − −× × ≈ ×  Since the 

retardance increases linearly with depth within sample, it is expected that the birefringence of 

collagen stays constant with depth. Background noise is gradually dominated at the deeper 

depth, masking the linear increase of retardance. 
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equal in theory. To explain this discrepancy, we hypothesized that the c-axis of the collagen 

fiber is actually oriented at a polar angle tilted away from the normal axis. The polar and 

azimuthal angles of collagen fiber can be estimated by comparing simulated results of 

retardance images and real results in polar format. The estimation process and results are 

shown in Figs. 7(b), 7(c), and 7(d). 360 a-scans of phase retardance as a function of azimuthal 

angle are displayed in the traditional OCT format in Fig. 7(b), where each A-scan is fetched 

from each B-scan one by one over the azimuthal angle from 1° to 360°. These A-scans are 

extracted by a semi-automatic program to ensure every extracted A-scan corresponds to the 

center point of the plate rotation or close to the center point. This program runs on the 

assumption that the only center point of rotation has a constant altitude of sample surface in 

each B-scan due to the curved cervical surface. Therefore, the program is designed to find the 

360 A-scans which have small variation of the surface altitude in each B-scan. The 360 A-

scans are then converted to polar format, shown in Fig. 7(c), where the circle center and 

radius are sample surface and depth respectively. A simulated patterning of phase retardance 

in polar format is generated by a layered model based on the extended Jones Matrix calculus 

(EJMC) previously developed by our group [36], shown in Fig. 7(d). 

The general process of EJMC is introduced briefly here. In the EJMC model, the sample 

of biological tissue is treated as a multi-layered structure, and each layer is considered as a 

linear retarder with a constant fast axis orientation. In this case, the signal-pass Jones matrix 

of sample (P) is the product of Jones matrices of individual layer, which can be expressed as: 

 
1 0

( ) ( )
0

oz ii

ez ii

ik d

i iik d
i m

e
P R R

e
ψ ψ

−

−
=

 
 = −
 
 

∏  (4) 

Here, ( )iR ψ  is the rotation matrix that diagonalizes the layer Jones matrix (i.e. defines the 

apparent fast-axis of the layer), 
iozk  and 

iezk  are the z  component of the ordinary wave and 

extraordinary wave vectors, respectively, and id  is the thickness of i th layer. The details and 

formulas describing these terms (e.g. ( ),iR ψ  
iozk  and )

iezk  can be found in previous papers 

[37,38]. In brief, the Extended Jones Matrix Calculus of Gu and Yeh [38] is used to calculate 

( ),iR ψ  
iozk  and 

iezk  from the true birefringence of each layer, ,e on n−  and the polar and 

azimuthal angles of the layer c-axis and k-vector in the i th layer. Therefore, when we assume 

that the interface between the different layers has negligible specular reflection, the round-trip 

Jones Matrix of tissue ( )sampleJ  can be written as: 

 
'

T

sample R RJ T P PT=  (5) 

where RT  and 'RT  are the Fresnel reflection coefficients at the interface between air and 

sample surface. The light beam of PS-OCT (e.g. circularly polarized light) passing through 

individual layers of sample and then reflected back onto the detector can be modelled as: 

 
0;

0;

( ) 11
(45 ) ( 45 )

( ) 2

H

sample

V

A z
R QWP R J

A z i

   
= ° ⋅ ⋅ − ° ⋅ ⋅   

  
 (6) 

Here, QWP denotes the Jones Matrix of the quarter wave plate in PS-OCT system. 

Consequently, the depth dependent retardance ( ( ))S zδ  of sample detected by PS-OCT can be 

calculated as: 0; 0;( ) arctan( ( ) ( )).S V Hz A z A zδ =  The parameters of EJMC, including the 

ordinary refractive index, true birefringence and polar and azimuthal angles of collagen over 

the depth of the sample, can be set to find a simulated image which matches the pattern of the 
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Fig. 11. Averaged apparent birefringence of middle area as function of age. 

No other statistically significant differences were found between birefringence and (1) 

parity, (2) previous mode of delivery, (3) BMI, (4) indication for surgery, or (5) type of 

surgery. However, as our study was exploratory in nature and not particularly powered for 

any of these outcomes, further research is needed before a firm conclusion can be reached 

between optical and physiological variation in the non-gravid human cervix. 

4. Conclusion 

To the best of our knowledge, this is the first study to ever report on the phase retardance, the 

birefringence, the orientation of c-axis and depolarization of collagen fibers in human non-

gravid cervix using PS-OCT. We have been able to show some of the unique advantages of 

using PS-OCT to study the cervix, including its ability to (1) easily identify the cervical 

epithelium and measure epithelial thickness, (2) rapidly image the distribution of cervical 

collagen, (3) accurately determine birefringence, (4) estimate the 3D alignment of collagen 

fibers and (5) measure the distinctive depolarization of the cervical tissue. After interrogating 

20 cervical cross-sections from non-gravid women using PS-OCT, we found a significant 

higher birefringence in the middle area compared with the center and edge regions (p< 0.05). 

As previously seen in studies with SHG, we also identified a significant increase in the 

apparent birefringence of the middle area with age which could respond to a physiological re-

modelling in the cervical collagen fibers as the reproductive function of the cervix diminishes. 

All in all, we have shown that PS-OCT is capable of assessing the arrangement of cervical 

collagen objectively and accurately, thus holding promise as a potential tool to better 

understand cervical remodeling prior to birth. This in turn could lead to earlier identification, 

more timely prevention and better stratification of management of PTB pending the 

development of a hand-held probe. 
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