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ABSTRACT In this paper, we introduce an intelligent light detection and localization (LiDAL) system
that uses artificial neural networks (ANN). The LiDAL systems of interest are MIMO LiDAL and
MISO IMG LiDAL systems. A trained ANN with the LiDAL system of interest is used to distinguish a
human (target) from the background obstacles (furniture) in a realistic indoor environment. In the LiDAL
systems, the received reflected signals in the time domain have different patterns corresponding to the
number of targets and their locations in an indoor environment. The indoor environment with background
obstacles (furniture) appears as a set of patterns in the time domain when the transmitted optical signals are
reflected from objects in LiDAL systems. Hence, a trained neural network that has the ability to classify
and recognize the received signal patterns can distinguish the targets from the background obstacles in a
realistic environment, especially given the mobility of targets (humans) which distinguishes them from static
obstacles (furniture). The LiDAL systems with ANN are evaluated in a realistic indoor environment through
computer simulation.

INDEX TERMS Neural network, ANN, optical indoor localization, VLC systems, people detection,
counting, localization.

I. INTRODUCTION
Visible light communication (VLC) is part of optical wireless
communication (OWC) that uses light as a carrier to modu-
late the information signal in the visible spectrum (380nm
to 780nm) [1]–[4]. VLC systems are becoming more pop-
ular everyday due to their inherent advantages over radio
frequency (RF) systems. The advantages include a large
unregulated spectrum, low complexity of transceiver units,
freedom from fading, confidentiality and immunity against
interference from electrical devices [5]–[8]. VLC systems can
support indoor high data rate communication [6], [8] under-
water communication [9], [10], LED to LED communica-
tion [1], [11] and indoor user localization [12], [13]. In [14],
a light sensing system using VLC (LiSense) was proposed to
track human gestures and reconstruct human skeleton move-
ments. The LiSense system makes use of 324 photodetector
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array placed on the floor to sense the beacon signals sent
from the light sources (VLC transmitters) to recover the
human shadow pattern created by individual VLC transmit-
ters. A laser radar in conjunction with VLC system was
introduced in [15] to provide vehicle to vehicle ranging and
VLC communication.

People detection and counting in an indoor environ-
ment (such as in offices, exhibition halls and shopping
malls) can provide useful information for different applica-
tions [16]–[18]. For example, human presence detection is
valuable for security purposes. Also knowing the number
of people in a supermarket may have an important practical
use in terms of marketing, management, optimization and
maintaining a high quality of service.

Human sensing (i.e. human detection and counting) in
an indoor environment is a very challenging endeavour for
many reasons; (i) sudden changes may occur in the envi-
ronment conditions. For instance in an outdoor environment,
RADAR signals can be affected by rain or fog while for
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an indoor environment passive infrared (PIR) sensors can
be activated wrongly by heat currents from heating and air
conditioning [19]–[21]; (ii) the reflected signal from the
background is very similar to the one reflected by a person,
thus separating a person from the background is an essential
requirement for human sensing in a realistic environment.
Also, for RADAR and LADAR sensing systems, the reflected
received signal suffers from multipath propagation leading
to fooling the sensing system and to false person detec-
tion (phantom detection) [19]; and (iii) people behaviour
is unpredictable with a high degree of similarity such as
walking in random paths that may change suddenly result-
ing in a serious challenge to localize and track individuals
correctly [19].

Ultra-wideband (UWB) RADAR systems with a trans-
mitted signal bandwidth greater than 500 MHz have been
introduced to detect, localize and track humans in the indoor
environment [20], [22], [23]. The UWB carrier signal with a
typical frequency range of 3.1 GHz to 5.3 GHz can penetrate
walls, furniture and human body [24]. This enables UWB
RADAR systems to support various applications such as
human movement detection through-walls for security appli-
cations and biomedical applications (i.e. monitoring human
vital signs) [25], [26]. In UWB RADAR, detection of the
target (human) depends on the target motionwhere the human
movement causes changes in frequency, phase and time
of arrival.However for UWB radar employed in an indoor
environment, the effects of signal scattering and absorption
by obstacles significantly impair the performance of UWB
indoor radar [19], [20].

Binary sensors such as Passive Infrared (PIR) sensors,
break beam and binary Doppler sensors have been used to
detect human presence and rely on the human motion [19],
[27], [28]. The main drawback of binary sensors is their large
false detection. For example, the PIR system is temperature
dependent, thus any change in the environment tempera-
ture leads to a vast number of detection failures. Doppler
shift sensors use the concept that signals reflected from a
mobile object suffer a frequency shift depending on the
object’s speed. The Doppler shift sensor can provide a speed
measurement of the detected human unlike the PIR sensor.
In [29] a one dimensional Doppler radar was proposed to
detect stationary humans relying on the motion of human
breathing lungs. A laser radar (LADAR) has been used to
detect people based on their shape through extracting high
resolution two and/or three dimensional snapshots of the
environment [30], [31]. In [32] a single 360-degree LADAR
system was introduced to detect and track people in an indoor
environment. However, the main disadvantage is the system
complexity, eye safety due to the laser beam and the relatively
long time needed to scan the environment with high resolu-
tion which may lead to miss detecting humans walking at a
fast pace.

A light detection and localization (LiDAL) system was
proposed in [33] for detection, counting and localization in
an indoor setting. The LiDAL system focuses on human

sensing to provide people with spatio-temporal indoor local-
ization information. It carries out presence detection, count-
ing, localization and tracking. In this application, people can
be distinguished from the background due to their dynamic
characteristics that arise from their activity (siting/standing)
and motion (walking), while stationary people are unde-
tectable [33].

In this paper, we expand the work proposed in [33] for peo-
ple detection, counting and localization using LiDAL systems
namely; MIMO LiDAL and MISO IMG LiDAL systems.
We introduce an intelligent LiDAL system that uses artificial
neural networks (ANN). Based on our observations in the
LiDAL systems introduced in [33], the received reflected
signals in the time domain have different patterns correspond-
ing to the number of targets and their locations in an indoor
environment. The indoor environment with obstacles (furni-
ture) appears as a set of patterns in the time domain when
the transmitted optical signals are reflected from objects in
MIMO LiDAL systems. The patterns appear in the spatial
domain in the imaging receiver pixels in MISO IMG LIDAL
systems. When targets enter the environment, they add to/
change the temporal and spatial reflection patterns in the
room. Therefore, a trained neural network that has the ability
to classify and recognize the received signal patterns can
distinguish the targets from the background obstacles in a
realistic environment.

The main contributions of this paper are as follows:
(i) we have introduced for the first time an ANN and
used it to learn the radar-like reflections induced by our
LiDAL systems and used the ANN for localization and
counting of targets; (ii) we used human mobility patterns
with the trained ANNs to distinguish humans from sta-
tionary obstacles (furniture); (iii) we introduced two main
new ANN based systems: MIMO-LiDAL ANN and IMG-
LiDAL ANN and compared their performance showing that
the IMG-LiDAL ANN outperforms the other systems in
this paper and other LiDAL systems (iv) we determined the
impact of changes in the environment (furniture locations)
on the ANN systems showing their robustness, but also their
limits.

This paper is divided into section as follows: Section II
considers the design of the MIMO LiDAL and MISO LiDAL
systems. Section III introduces the ANN training used in the
LiDAL systems. Section IV presents the simulation setup,
the target mobility model and realistic indoor environment.
Section V presents the results and discussion. Finally, con-
clusions are drawn in Section VI.

II. LiDAL SYSTEMS
In this section, we introduce the configuration of the MIMO
LiDAL system and the MISO IMG LiDAL system which
were proposed in [33]. In addition, we present distinguishing
methods namely; background subtraction method and cross
correlation for mobile target distinguishing from the back-
ground obstacles (furniture).
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FIGURE 1. MIMO LiDAL System.

A. MIMO LiDAL SYSTEM
The MIMO-LiDAL system is used to detect, count and local-
ize targets [33]. The system consists of multiple LiDAL trans-
mitters and multiple LiDAL receivers. The MIMO-LiDAL
system employs a single photodetector receiver collocated
with each VLC transmitter (luminaire, light source) which
represents a transceiver unit (TRX). The MIMO-LiDAL sys-
tem has eight transceiver units placed in the room ceiling as
can be seen in Fig. 1. Each transceiver unit covers a circular
optical detection zone with a radius of 1.25m. The transceiver
units are spaced by 2m [33]. In the MIMO LiDAL sys-
tem considered, the total number of optical detection zones
was 8. The MIMO-LiDAL system is designed to resolve
the ambiguity of target detection and localization by imple-
menting collaboration between the neighbouring transceiver
units [33]. The target localization is tackled by joint use of
three transceiver units working together through three sys-
tem scans (three consecutive listening (frame) times). The
MIMO-LiDAL listening time is divide into N time slots
where the time slot width is 2ns (equal to the transmitted pulse
width) which enables a 1R = 30 cm target detection resolu-
tion for MIMO LiDAL system as reported in [33]. A time of
arrival (TOA) technique is used to calculate the target range
from a transceiver unit [33]. The target range calculation is
based on the trip time of the reflected pulse from the target
and the speed of light. The three ranges obtained from the
transceiver units are used with a triangulation method to
determine the intersection of the (circles) ranges resulting in
an estimated target location on the detection floor [33].

B. MISO IMG LiDAL SYSTEM
The MISO IMG LiDAL system is used to detect, count
and localize targets. The system employed multiple LiDAL
transmitters units with a single imaging receiver. In theMISO
IMG LiDAL system, the imaging receiver was placed in the
centre of the room’s ceiling as can be seen in Fig. 2 [33].
In MISO IMG LiDAL system design, the imaging receiver
has an array of (8 columns × 16 rows) pixel receivers [33].

FIGURE 2. MISO IMG LiDAL System.

The MISO IMG LiDAL system forms an image of NP = 128
pixels where every pixel receiver covers a narrow optical
detection zone. The benefits of the massive number of pixels
are in enabling spatial selection to separate the targets in
multiple narrow optical zones. Thus the MISO IMG LiDAL
system can: (i) eliminate the ambiguity of target detection and
localization and (ii) minimize the interference resulting from
the reflections of the background obstacles [33]. In the MISO
IMG LiDAL system, the target detection resolution 1S was
0.5m (i.e. the LiDAL system is able to separate two targets
at a distance of 0.5m) [33]. The MISO IMG LiDAL system
employs a direction of arrival (DOA)method to determine the
target location where the image of the target in the pixels that
cover the optical zones determines the target location [33].
It is worth mentioning that, the imaging receiver of 128 pixels
was divided into 8 groups with 16 pixels per group [33]. Each
group of receiver pixels (GRP), works separately with one
transmitter during the MISO IMG LiDAL scan (snapshot).

C. BACKGROUND SUBTRACTION METHOD (BSM)
The background subtraction method (BSM) was introduced
and examined in [33]–[35]. In this method, the received
reflected signals during multiple radar scans are subtracted
in order to distinguish the moving target. The BSM relies
on the fact that the received signal from the background
obstacles (furniture) is stationary (time-invariant) and the
received signal reflected from the target is time-variant due
to its motion. It is worth mentioning that subtracting two or
more received signals leads to enhancing the variance of the
white Gaussian noise. Moreover, the performance of BSM is
significantly degraded in case the mobile target moves in the
horizontal distance where its signal reflections arrive at the
same time during radar scans resulting in miss-distinguishing
the mobile target [34]–[36].

D. CROSS CORRELATION METHOD (CCM)
The cross-correlation method (CCM) was proposed and
examined in [33]. In this method, the mobile target can be
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FIGURE 3. Block diagram of the LiDAL neural network.

distinguished relative to the stationary background obstacles
by correlating the received reflected signals through multi-
ple LiDAL snapshot measurements in order to monitor the
change due to target mobility. It is worth mentioning that
the cross-correlation method has better performance than
the Doppler method in terms of detecting the change of
targets of interest when the targets move at low speed [37].
Also, the cross-correlation has the benefit of detecting weak
received reflected signals and is more robust in the presence
of noise [33], [38].

III. NEURAL NETWORK FOR LIDAL SYSTEMS
In this section, we introduce the ANNwith theMIMOLiDAL
andMISO IMG LiDAL systems. Many algorithms have been
employed to train artificial neural networks. The backpropa-
gation (BP) algorithm is one of the most popular approaches
that have been used to train neural networks due to its effi-
ciency and simplicity [39]–[41]. In this paper, a supervized
learning algorithm with backpropagation is deployed to train
multi-layer neural networks.

In the MIMO LiDAL systems investigated in this paper,
we employed an ANN in each light unit (transceiver) and
therefore this ANN covers one optical zone. This ANN has to
measure one of the three distances needed to localize a target.
The other two distance measurements (bistatic or monostatic
measurements) are then carried out by uploading different
weights in the ANN.

The received reflected signals were sampled at a sampling
rate of 1/TMIMOsa , and the samples were grouped into Nslot
time slots. The number of input nodes in the ANN is equal to
the total number of samples taken, with each group of samples
(ie each group of ANN nodes) labelled as a time slot. The
time slot duration is Ts and therefore, the total number of
input nodes in theANN isNMIMO

in = N slot

(
Ts/TMIMOsa

)
as can

be seen in Fig. 3. The output of the ANN has Nslot nodes,
where the output of each node is a one or zero indicating
the presence or absence of a target in that time slot. Hence,
the ANN is firstly trained in the given optical zone in the
presence of furniture (obstacles) and the absence of targets,
resulting in an all zero output. The ANN is then trained in the
presence of single or multiple targets, with the supervision
indicating the time slot that has a target (one).

FIGURE 4. ANN receiver for MIMO LiDAL system.

For the MISO-IMG-LiDAL system, the number of ANNs
used to cover the entire room is equal to Ltx , the number of
active transmitters, ie the number of ‘groups of pixels’ (see
Fig. 5) [33]. For example, in the room in Fig. 2, Ltx = 8,
thus 8 ANNs are needed in the room. The total number of
pixels in the imaging receiver isNP, and therefore the number
of pixels observed by each ANN is NP/Ltx . A snapshot /
image is taken by the imaging receiver every T IMGsa which is
our sampling period here. Note that the input to the ANN
should have more than a single time sample per pixel to
result in improved robustness against variations in the envi-
ronment. In the MIMO LiDAL system, Ts/TMIMOsa samples
were taken per time slot to help the ANN deal with chan-
nel and environment (obstacles) impairments. The imaging
receiver pixels see 1S = 0.5m on the room floor, while
MIMO LiDAL system has 1R = 0.3m on the floor [33].
Therefore, we increased the number of samples taken by the
MISO-IMG-LiDAL system by a factor1S/1R. For fairness,
we also set the sampling rate in the two systems to the same
value, T IMGsa = TMIMOsa . Hence, the number of input nodes in
the MISO-IMG-LiDAL ANN, N IMG

in , is

N IMG
in =

Ts
TMIMOsa

1S
1R

NP
Ltx

(1)

The MISO-IMG-LiDAL ANN has NP/Ltx outputs where
each output represents a pixel and indicates in a binary fash-
ion the presence or absence of a target in the FOV of that
pixel. Next we will introduce the methods used in training
the ANNs.

A. THE NEURAL NETWORK TRAINING PROCESS
The neural network consisted of an array of inputs (input
layer), hidden neurons (hidden layer) and one output layer as
shown in Fig. 3. The number of hidden neurons is important
in determining the performance of the neural network. For a
neural network consisting of a vast number of hidden neurons,
the following observations hold: (i) it is possible to over-fit,
(ii) the neural network complexity increases (iii) the ANN
learns the exact training samples and this reduces its ability
to recognize new signal patterns [41], [42]. On the other hand,
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FIGURE 5. ANN receiver for MISO IMG LiDAL system.

a neural network with a few hidden neurons may have a lim-
ited learning memory with inadequate performance (under-
fitting) [42]. In this paper, we considered a pruning approach
in order to optimize the number of hidden neurons (Nm) [43].
The number of hidden neurons is calculated as [44]:

Nm =
(Nin + Y )

βi
(2)

where Y is the number of output neurons (Y =

NP/Ltx or Y = Nslot for the MISO-IMG-LiDAL and
MIMO-LiDAL systems respectively), Nin is the number of
the input neurons (given by N IMG

in or NMIMO
in for the MISO-

IMG-LiDAL and MIMO-LiDAL systems respectively) and
β is an arbitrary pruning factor (here β ∈ [1, 2 . . .Nin] [44]).
The training process uses the following steps:

i. Provide inputs to the neural network made up of the
input samples Xi, the initial number of hidden neurons
Nm for a given βi, the initial weights (wij), connecting
the input layer and the hidden layer, the initial weights
(wjk ) connecting the hidden layer and the output layer;
and provide the initial biasing input weights Lj andMk .

ii. Calculate the outputs of the hidden neurons associated
with the inputs Xi,weightswij and biasing weights (Mk )
and apply the result as an input to the neuron activation
function resulting in [45], [46]:

Nj = S

( Nm∑
i=1

wijxi + Lj

)
j ∈ [1, . . .Nm] ,

i ∈ [1, . . .Nin] (3)

where S is the node activation function, and a sigmoidal
function was used, S(t) = 1

1+e−t .
iii. Calculate the predicted output value (Yk ) depending

on the outputs of the hidden neurons (Nmj ) and their

weights wjk with basing weights (M k ), where the out-
put Yk can be written as [46]:

Yk =
m∑
j=1

Njwjk +Mk k ∈ [1, . . .Y ] (4)

iv. Calculate the error associated with the predicted (yk )
considering the actual number of targets (ANk ).

e =
Y∑
k=1

Ak − yk (5)

v. Optimize the weights and biasing. In our approach,
we used the Levenberg-Marquardt algorithm (LMA)
which is known to be a stable, fast and efficient algo-
rithmwith slow error convergence 45], [47]. According
to LMA all the network connection weights and biasing
weights are updated as defined in [48], [49]:

wn+1 = wn −
[
JTn Jn + µr I

]−1
Jnen (6)

whereµr is the learning coefficient, I is identity matrix
and J is the Jacobian matrix which is calculated as
in [48], [49].

vi. Evaluate the error when the new updated weights are
used. If the current error is still greater than the required
value, update the learning cycle then return to step
(ii) with new weight values and learning coefficients.

vii. Update the pruning factor (β i) then return to step (i).
We trained the neural network for about 500 learning iter-

ations (epochs) and the learning rate µr was 0.05. Larger
learning rates can lead to faster convergence. We settled on
this smaller value to increase accuracy albeit at the cost of
convergence rate. We noticed that beyond 500 learning iter-
ations, the convergence error of the neural network was not
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significant. We tested a different number of hidden neurons
using the pruning approach to find the optimal number of
hidden neurons Nm which was 15 and 27 for the MIMO-
LiDAL and MISO-IMG-LiDAL systems respectively. The
mean square error in the training phase was about 10−5

validated through 20% of the snapshots.
During the system set-up, the neural network can be trained

in situ in the scene, i.e. in the environment where it is to be
used. Neural network retraining for any indoor environment
can be done through scanning the pulse reflection patterns in
the environment in the absence of any targets to determine
the obstacles’ (furniture) reflection patterns. Targets are then
inserted in the environment and the new reflection patterns in
the presence of the targets are determined, thus training the
ANN.

Fig. 4 presents the proposed block diagram of the ANN
receiver for MIMO LiDAL systems. The controller conducts
the targets detection and localization process as follows:

1) The control signal activates the transceiver unit of
LiDAL to (i) transmit an optical pulse signal from the
transmitter Tx (n), and (ii) activates the receiver Rx (n)
to collect the reflected signal.

2) The receiver Rx (n) listens to the reflected signal in
an observation widow of duration T . A trained ANN
is activated to process the received signal to detect
the targets’ presence and their ranges and update the
counter as can be seen in Fig. 4.

3) For target localization, the controller finds theN neigh-
bouring LiDAL transmitters. We considered N =

2 [33], the neighbouring transmitters are Tx (n+1), and
Tx (n+2) as can be seen in Fig. 4 in conjunctionwith the
receiver Rx (n). The three trip times (one from Tx (n),
and two from neighbouring Tx (n+ 1), and Tx (n+ 2))
are then used to determine the targets’ locations using
TOA.

4) Target elimination follows where the targets located in
the overlap zones are counted only once in the MIMO
LiDAL system (see Fig. 1). Due to position errors,
duplicate targets are eliminated then the counter is
updated accordingly.

Fig. 5 shows the proposed schematic ANN receiver dia-
gram for MISO IMG LiDAL systems. The controller coordi-
nates the targets detection and localization process as follows:

1) The controller activates a transmitter Tx(n) which sends
an optical pulse, and also activates the group receiver’s
pixels GRP(n) to collect the reflected signals.

2) The controller then updates the value of n, and if Ltx >
n step (1) is repeated, where Ltx is the number of active
transmitter units (Ltx = 8) of the MISO-IMG-LIDAL
system [33].

3) A trained ANN is used to process the received reflected
signals from each group of receiver pixels to detect and
count the targets.

4) Finally, pixel identification is employed to estimate the
target location by using DOA method.

IV. SIMULATION SETUP AND RESULTS
In this section, we evaluate the performance of the ANN
LiDAL systems. In [33] we considered four scenarios: (i) a
baseline scenario which represents an empty room that has
no furniture and with fully mobile users, ie targets. This is
the least demanding environment / scenario; (ii) a challenging
localization environment / scenario where there are obstacles
in the form of furniture, but the users are fully mobile; (iii) a
harsh localization environment scenario where obstacles in
the form of furniture are present and in addition the users are
nomadic, ie not fully mobile. Here the users move and then
stay stationary at points of interests (for example desk areas)
before becoming mobile again. This is the most challenging
environment or scenario as it is hard to distinguish users or
people from furniture; (iv) a case study, which represents a
scenario made up of a room where people arrive and depart.
In this paper we selected scenario (iii) from [33] as it is the
most challenging scenario to compare the different LiDAL
distinguishing, localisation and counting methods versus our
ANN methods. The four scenarios are compared in [33].
We have avoided reproducing scenarios (i), (ii) and (iv)
as these are less demanding scenarios and so as to avoid
repetition.
We start by assessing the performance of ANN, BSM and

CCM in terms of target distinguishing when the environment
changes, ie when the locations of furniture change and con-
sider a single target in this case. We then proceed to report
results for the ANN-MIMO-LiDAL and ANN-MISO-IMG-
LiDAL systems with multiple targets and compare these
results to the results reported in [33].
For target mobility, we have considered the directed ran-

domwalk with obstacle avoiding which was proposed in [33].
In this model, the target walks freely inside the realistic
environment in all directions except directions that lead to
background obstacles such as furniture [33].
We have considered a realistic office environment which

was reported in [33]. The environment consists of a furnished
room, with dimensions of 4 m (width) × 8 m (length) ×
3 m (height). The reflection factors for the walls and ceil-
ing were 0.8 and 0.3 respectively. The furniture consists
of four office desks (1.54 m (width) × 0.76 m (length) ×
0.75 m (height)) and one bookshelf (3 m × 0.8 m ×
2 m) [33]. The office desks and bookshelf materials were
finished-wood with a reflectivity factor of 0.55 and diffuse
reflections [26].
The average target of interest (human) dimensions

15 cm× 48 cm× 170 cm (depth×width× height) were con-
sidered [33]. The target reflection was considered a Gaussian
random variable with a mean of 0.72 and a standard deviation
of 0.3 [33].

To evaluate the counting and localization performance of
the different LiDAL systems two key metrics are defined:
(i) Themean absolute percentage error (MAPE)which is used
to quantify the counting accuracy, and (ii) the distance root
means square error (DRMSE) which is used to quantify the
localization accuracy [33].
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FIGURE 6. Simulation room setup with monostatic LiDAL.

The pedestrian movement speed affects the performance
of the LiDAL methods. Higher pedestrian mobility leads
to improved performance, especially in terms of target dis-
tinguishing as studied on [33]. In particular, the nomadic
user in [33], which is the scenario studied in this paper,
has the worst performance in terms of target distinguishing.
Our ANN methods have however produced a relatively low
distinguishing error of 8% in this case as Fig. 7 shows. In the
BSM there is high sensitivity to the learning rate due to
the added noise that results from the subtraction process.
The learning rate µr was set 0.05 which results in slower
convergence, but also lower final error where the mean square
error was 10−5. The value of the learning rate was set through
experimentation using 20% of the development data set.

A. SINGLE TARGET DISTINGUISHING
We have evaluated the performance of the trained neural
network when it distinguishes a single target in a realistic
environment, as shown in Fig. 6. The evaluation is conducted
in two scenarios, the first scenario included a static realistic
environment where the background obstacles (furniture) are
fixed over the simulation time with a single nomadic target
that moves at a speed of 0.5m/s. The second scenario consid-
ered a dynamic realistic environment where the positions of
some of the background obstacles (furniture) change over the
simulation time in the presence of a nomadic target. A mono-
static LiDAL system (collocated transmitter and receiver)
was used in the room setup as shown in Fig. 6. In addition,
we have considered the pathway model proposed in [33] for
target mobility with eight interesting locations (LD = 8) in
the room in Fig. 45. Five snapshot measurements per second
were collected to capture the target movement during the
5 minutes simulation time. The total number of recorded
snapshot measurements was 1500.

MAPE was evaluated for the scenario described above
and shown in Fig. 6, where the number of targets is one,
however, a large number of snapshot measurements were

FIGURE 7. BSM, CCM and ANN target distinguishing error.

taken as above, while the target moves. The ANN reports
target results for each snapshot. The BSM and CCM used
two consecutive snapshots. Fig. 7 presents MAPE results,
referred to here as the average (over the 1500 snapshot exper-
iment) false distinguishing error for the first scenario, ie the
static environment. The ANN was pre-trained and optimized
for the room shown in Fig. 6. As can be noted in Fig. 7,
the ANN has better performance with 8% error compared to
CCM and BSM which have 11% and 19% error respectively.
Note that for BSM and CCM, LiDAL systems, an optimum
detection threshold was derived in [33] taking into account
the randomness due to the user clothing and cloth texture,
ie reflection coefficient, the randomness due to the user vari-
able cross-section at different orientations, the user location
and the noise in the environment due to background induced
shot noise attributed to lighting and the receiver noise. The
optimum threshold was derived in [33]. Also note that in this
experiment, there is a single moving target, the furniture is
stationary and the percentage error reflects the ability of the
methods to distinguish a moving target from furniture over
the large number of snapshots considered.

The BSM has the worst performance due to the impact
of target presence and movement on the reflections from
the background furniture and the particular sensitivity of
subtraction to such changes. The ANN and CCM perform
better, however, this method fails to distinguish the target only
when target-furniture ambiguity occurs. In other words, when
the distance between the target and furniture is less than the
LiDAL resolution of 0.3m and at the same time, the target
remains stationary, (nomadic), for more than 5 snapshots in
our experiment. The CCM performance can be improved if
the number of processed snapshots is increased to accommo-
date target mobility behaviour, however, this may slow the
target detection process in LiDAL systems.

Fig. 8 shows the average false target distinguishing error
percentage for the second scenario, ie a dynamic envi-
ronment. We simulated the impact of the change in the
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FIGURE 8. False target distinguishing error in a dynamic environment.

FIGURE 9. Counting MAPE of LiDAL systems using a trained neural
network in a realistic environment.

environment, ie change in furniture configurations as can be
seen in Fig. 6 where the furniture positons were changed
in each simulation. Note that, the ANN was calibrated and
optimized before and after the target presence, but the furni-
ture locations remained fixed throughout the training phase.
As can be noted in Fig. 8, the ANN has the best performance
up to 40% change in the locations of furniture (tables in this
case). If the furniture locations change by a larger percentage,
the CCM performs better. This is attributed to the fact that a
change in the furniture locations affects the CCM once only,
ie when it happens. Beyond that point, the furniture remains
static in its new position and the CCM is thus able to track
the moving target. The ANN fails as the environment is now
significantly different to that over which it was trained. The
sensitivity of the BSM is high throughout as explained earlier.
The ANN has an error of 35% with 100% change in the
environment. This 100% change in our case means that the

TABLE 1. Simulation parameters.

two tables move from their initial positions at the centre of
the room where they are each separated by 0.5m from the
centre point of the room, to new locations next to the walls,
a 2m movement for the 1.5m × 0.9m table. The BSM and
CCM performed better than the ANN at 100% change in the
environment, with a maximum error of 27% and 13% for
BSM and CCM respectively.

B. LiDAL SYSTEMS WITH ANN
We tested the performance of the MIMO-LiDAL and MISO-
IMG-LiDAL systems with ANN, BSM and CCM. Table 1
illustrates the simulation parameters of LiDAL systems. For
fair comparison, we have considered the simulation envi-
ronment and simulation parameters proposed in [33]. The
LiDAL systemswere evaluated in a scenariowhich represents
‘a challenging localization environment’ reported in [33]. It is
worth mentioning that in challenging localization environ-
ments, there are multiple moving targets that move contin-
uously such as pedestrians, and there are stationary obstacles
(furniture) [33]. The ANN was trained in the environment in
the absence of targets and then in their presence. In addition,
we used the simulation approach illustrated in Table 2 to
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TABLE 2. Simulation flow and data collections for ANN training.

simulate and collect data (snapshot measurements) for the
neural network training for both MIMO-LiDAL and MISO-
IMG LiDAL systems. We set the number of iterations to
Itr = 250 with 10 snapshots per iteration with imax = 15.
Following Table 2, the LiDAL simulation starts by select-

ing a given number of targets, initially one target, increasing
to K targets in the room. For the given number of targets
selected, each iteration then selects a random reflection coef-
ficient for each target (colour and texture of cloths for the
target [33]), a random location for the target and random
noise are generated at the target location. This is followed by
applying the mobility pattern selected for the target using the
mobility models in [33]. A number of snapshots are captured
at each iteration, 10 snapshots in this paper. Finally, the
LiDAL detection algorithm is applied. In this case MIMO-
LiDAL ANN or IMG-LiDAL ANN. The iterations are then
incremented up to the maximum number of iterations of
interest; to consider and average over a large number of
realizations (250 iterations or realizations were considered in
this paper). The number of targets is then increased by one
and the entire process is repeated as shown in Table 2 until the
maximum number of targets is reached, which is 15 targets
/ humans, in this paper in the 8 m × 4 m × 3 m room
considered. The MAPE and DRMSE are then calculated.

The performance evaluation thus used 250 iterations per
target, 10 snap shots per iteration and 15 targets in the study,
ie a data set made up of 37,500 snap shots (equivalent to
images) of the room were used for the evaluation. The train-
ing data set had 10,000 snapshots and while developing the
algorithms, a data set of similar size was used to select and
tune the ANN parameters.

Fig. 9. shows the counting MAPE results for LiDAL sys-
tems that include and exclude ANNs. The LiDAL systems
that do not employ ANNs, use CCM, the better of the two
distinguishing methods. It can clearly be seen in Fig. 9 that
the counting MAPE of ANN MIMO-LiDAL is 2% which
is significantly lower than the corresponding value, 16%,

FIGURE 10. CDF of DRMSE of the MIMO LiDAL and IMG LiDAL systems
with CCM and ANN.

for MIMO-LiDAL with CCM and the sub-optimum receiver
reported in [33]. Furthermore, the performance of MISO
IMG-LiDALwith ANN improves, with a maximum counting
error of 1%.

Fig. 10 shows the cumulative distribution function of the
DRMSE positioning error for the MIMO-LiDAL system and
MISO IMG LiDAL with ANN and CCM. As can be noted,
the 95% CDF confidence interval is at 0.5m and 0.42m
positioning error for MIMO-LiDAL system with CCM and
ANN respectively, while the average DRMSE is 0.37m and
0.4m respectively.

It should be observed that overall, the DRMSE values
in MISO-IMG-LIDAL are smaller than the corresponding
values in MIMO-LiDAL. In the MISO-IMG-LiDAL system,
at the 95% confidence interval, Fig. 10, the DRMSE are
0.23m and 0.2m forMISO-IMG-LIDALwith CCMandANN
respectively, whereas the average values of DRMSE are 0.2m
and 0.18m for CCM and ANN respectively.

It is worth noting that there are two types of error in
our LiDAL systems: Distinguishing errors and localiza-
tion/positioning errors. The ANN LiDAL systems we intro-
duced outperform the other systems in terms of both forms
of error. The distinguishing error reflect the ability of the
method used to identify human targets from stationary targets
(furniture) based on human mobility. Fig. 7 shows that the
ANN LiDAL system has better performance with 8% distin-
guishing error compared to CCM and BSM which have 11%
and 19% error respectively. The other form of errors, namely
localization/positioning errors are induced by the multipath
reflections due to visible light, shot noise induced by visible
light sources and the receiver noise. These are measured
using MAPE and DRMSE. Fig. 9 shows that the use of ANN
with MIMO-LiDAL and IMG-LiDAL reduces MAPE to 2%
and 1% contrasted with 16% MAPE for MIMO-LiDAL with
CCM. This is a significant reduction in MAPE.
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Similarly, Fig. 10 shows that at the 95% confidence inter-
val, DRMSE is reduced through the use of ANN from 0.5m
to 0.42m for the MIMO-LiDAL system; and from 0.23m to
0.2m in the IMG-LiDAL system. The DRMSE is thus also
reduced.

Our ANNs with one hidden layer have produced signifi-
cant performance improvements as shown above. It should
be noted that the introduction of deep neural networks in
conjunction with LiDAL is of great interest. The addition
of further hidden layers can enable such ANNs to learn the
mobility pattern of users better and hence potentially reduce
the distinguishing error below the current value of 8% (note
that it is 16% for the non-ANNmethods). Care has to be taken
however in such cases where deep neural networks are used
so as not to ‘over-learn’ the room configuration and human
mobility patters presented by the training data.

We have added the following clarification in page 7:
It should be noted that we have used the ANNs in this

paper as classifiers as they are among the most versatile
classifiers. Future work should consider the use of other
classifiers including for example support vector machines
(SVMs), logistic regression, decision trees and k-nearest
neighbors and deep neural networks. An extensive compar-
ison between these classifiers in different problems can be
found here [50]–[52].

V. CONCLUSIONS
This paper presented new localization systems that employ
artificial neural networks with MIMO LiDAL and MISO
IMG LiDAL systems for people detection, counting and
localization. The results of intelligent LiDAL systems with
the trained neural network show that significant improve-
ment in the counting and localization are achieved compared
with traditional LiDAL systems with distinguishing methods
namely; BSM and CCM.

The best performance for our LiDAL systemswas obtained
when an ANN with forward backward propagation was used
for target detection. The MIMO-LiDAL system with ANN in
scenario 2 reduced the counting MAPE to 2% from the 16%
associated with the MIMO-LiDAL system. In the MISO-
IMG-LiDAL system the use of the ANN reduced the count-
ing MAPE from 12% to approximately 1%. Furthermore,
we studied the impact of training the ANN on a given room,
and subsequently changing the furniture locations in the
room. In a monostatic configuration with a single target,
the counting MAPE was below 11% for up to 40% change
in the room furniture locations showing high ANN robust-
ness. For furniture location changes beyond 40%, the CCM
performs better than ANN as it is able to adapt to the new
furniture locations, unlike the ANN which is pre-trained. It is
highly likely though that typical changes in room furniture
locations will be below 40%, and if above this level, the ANN
can include new self-training routines.
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