
Received July 17, 2019, accepted August 2, 2019, date of publication August 21, 2019, date of current version October 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936620

Using Machine Learning to Optimize
Web Interactions on Heterogeneous
Mobile Systems
LU YUAN 1, JIE REN 2, LING GAO1,3, ZHANYONG TANG 1, AND ZHENG WANG4
1Northwest University, Xi’an, China
2Shaanxi Normal University, Xi’an, China
3Xian Polytechnic University, Xi’an, China
4University of Leeds, Leeds, U.K.

Corresponding authors: Jie Ren (renjie@snnu.edu.cn) and Ling Gao (gl@nwu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902229 and Grant 61872294, and in
part by the Natural Science Basic Research Program of Shaanxi Province under Grant 2019JQ-271.

ABSTRACT The web has become a ubiquitous application development platform for mobile systems. Yet,
web access on mobile devices remains an energy-hungry activity. Prior work in the field mainly focuses
on the initial page loading stage, but fails to exploit the opportunities for energy-efficiency optimization
while the user is interacting with a loaded page. This paper presents a novel approach for performing energy
optimization for interactive mobile web browsing. At the heart of our approach is a set of machine learning
models, which estimate at runtime the frames per second for a given user interaction input by running the
computation-intensive web render engine on a specific processor core under a given clock speed. We use
the learned predictive models as a utility function to quickly search for the optimal processor setting to
carefully trade responsive time for reduced energy consumption. We integrate our techniques to the open-
source Chromium browser and apply it to two representative mobile user events: scrolling and pinching
(i.e., zoom in and out). We evaluate the developed system on the landing pages of the top-100 hottest
websites and two big.LITTLE heterogeneous mobile platforms. Our extensive experiments show that the
proposed approach reduces the system-wide energy consumption by over 36% on average and up to 70%.
This translates to an over 17% improvement on energy-efficiency over a state-of-the-art event-based web
browser scheduler, but with significantly fewer violations on the quality of service.

INDEX TERMS Interactive mobile web browsing, machine learning, energy optimization.

I. INTRODUCTION
In recent years, portable mobile devices like smartphones
and tablets have become the dominant personal computing
platform [1]. Concurrent to this mobile computing evolution
is the wide adoption of web technology as a development
platform for many mobile applications like web browsing,
social networking, news reading and online banking. Indeed,
the web has become a major information portal for mobile
systems and accounted for two-thirds of the mobile traffics
in the US [2].

Energy and performance optimization for mobile web
browsing is an open problem. Like many other mobile

The associate editor coordinating the review of this article and approving
it for publication was Yuedong Xu.

applications, the performance-energy trade-off is a critical
issue for interactive mobile web browsing, because users
expect a degree of responsiveness when browsing a webpage,
but also want low energy consumption when interacting with
their battery-powered devices.

Recently, efforts have been made to improve the energy
efficiency for mobile web browsing by focusing on the initial
page loading phase [3], [4]. These prior approaches exploit
the performance-energy elasticity provided by the hetero-
geneous multi-core hardware design to trade page loading
time for lowered power consumption. Although impressive
results were shown, such approaches do not consider the
impact of user interactions after the initial page loading stage.
However, as we will show later in the paper, user interactions
can account for a large portion of power consumption for

139394 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7301-0352
https://orcid.org/0000-0003-3183-7228
https://orcid.org/0000-0002-4333-2334

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

mobile web browsing and thus cannot be ignored for energy
optimization.

Some of the more recent studies like PES [5] and
eBrowser [6] have attempted to address the energy opti-
mization problem for interactive mobile web browsing.
While promising, they have critical drawbacks. Specifically,
PES employs an analytical model to choose the operat-
ing frequency of the processor to reduce energy consump-
tion. Developing an effective analytical model requires deep
knowledge of the underlying hardware and the application
domains [7]. As a result, PES offers a poor hardware porta-
bility because tuning a model for a new hardware platform
could involve significant overhead. While eBrowser avoids
the pitfall of using an analytical model, it performs energy
optimization by simply dropping some of the user events
(which is not ideal as it can miss some important user inputs)
and does not explore the rich optimization space offered by
the increasingly popular heterogeneous multi-core design.
Since heterogeneous multi-cores like ARM big.LITTLE [8]
have become the de facto design choice for mobile systems,
eBrowser leaves much room for improvement.

In this work, we aim to close the gap of energy optimization
for interactive mobile web browsing. Our goal is to design
an adaptive scheme to unlock the potential of heterogeneous
multi-cores to better perform energy optimization for inter-
active mobile web browsing. Our key insight is that a slight
delay in responding to a user input might be imperceivable
to or acceptable by the user [9], but this provides chances
for reducing the energy consumption of a mobile system –
by running the computation-intensive rendering process on
right processor with an appropriate (but not necessarily the
highest) clock speed. In other words, if we can carefully
trade the processing time to provide ‘‘just good enough’’
responsiveness, we can then reduce the energy consumption
of the entire system without significantly compromising the
quality of service (QoS).

While intuitive, translating this idea to build a practical sys-
tem is not trivial. The key challenge here is how to develop an
effective scheme that can be portable across different mobile
platforms. Given the diversity of today’s mobile devices and
the constantly evolving nature of hardware design – where
the number of processor cores and capabilities of a mobile
device are likely to change from one generation to the other –
it is important to make sure whatever strategies we developed
today can be easily ported to and deliver good performance
on a new hardware architecture tomorrow.

We address the portability issue by employing machine
learning to automatically learn how to best configure the
underlying heterogeneous multi-core hardware for a given
web page to meet the QoS requirement for a specific user
and event. Our machine-learning models are automatically
built offline using training web pages, and the learned models
can be applied to any new, unseen web content. This auto-
matic learning-based scheme removes the need for manually
rewriting an analytical model every time the hardware has
changed. By reducing the expert involvement, our approach

thus reduces the cost of model construction and offers a better
generalization ability and performance portability.

To evaluate our approach, we have developed a working
prototype1 based on Chromium [10] – the open-source back-
bone of many mainstream web browsers including Google
Chrome and Microsoft Edge-for-ARM64. We apply the
developed system to the landing pages of the top-100 popular
websites ranked by www.alexa.com [11] and consider
two representative mobile interactions: scrolling and pinch-
ing (i.e., zoom in and out). We evaluate our work on two
distinct heterogeneous mobile platforms: Odroid Xu3 and
Jetson TX2. Experimental results show that our approach
consistently outperforms the state-of-the-art on all evaluation
metrics, by delivering over 17% more energy reduction but
with fewer QoS violations.

In summary, the key contribution of this paper is a new
approach for optimizing interactive mobile web browsing
on heterogeneous multi-core mobile platforms. Compared to
existing solutions, our approach has the benefits of being
low-cost for model construction and portable across hardware
architectures. We show that these benefits do not come at
the cost of performance penalties. By contrast, our approach
delivers consistently better performance over the state-of-the-
art across web content and evaluation platforms.

II. RELATED WORK
Our work lies at the interaction of the following five areas but
qualitatively differs from prior works within each area.

A. ENERGY OPTIMIZATION
Energy and power optimization for embedded and mobile
systems is an intensely studied field. There is a wide range
of activities on exploiting compiler-based code optimiza-
tion [12], [13], runtime task scheduling [14], [15], or a
combination of both [7] to optimize different workloads for
energy efficiency. Other relevant work in web browsing opti-
mization exploits application knowledge to batch network
communications [16], [17], and parallel downloading [18],
which primarily target the initial page loading phase. Our
work is complementary to prior works by targeting the low-
level optimization, and we do so by utilizing the hardware
configuration knobs to perform energy optimization during
the interacting phase.

B. OPTIMIZATION FOR WEB ACCESS
Our work is closely related to research on optimizing web
browsing. Prior works have shown that by carefully choosing
the processor frequency, one can reduce the energy consump-
tion for the initial page loading phase [3], [4], [19]. PES [5]
and eBrowser [6] are most closely related to our work.
PES employs an analytical model to choose the optimal
processor frequency and does not consider the impact of
web content to the responsive time. Developing an effective

1We stress that our techniques can be applied to not only web browsers
but also many mobile applications that use web rendering technology.

VOLUME 7, 2019 139395

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

analytical model requires insight knowledge of the underly-
ing hardware [7], which makes it difficult for the approach to
be adopted by new hardware architectures. Our work avoids
this pitfall by using machine learning to automatically learn
a portable approach for how to best optimize for interactive
events. Furthermore, we show that web content can have a
significant impact on the processor response time, and cannot
be ignored. For this reason, our approach explicitly cap-
tures and models the impact of web content. Like eBrowser,
our approach also trades responsive time for energy effi-
ciency. Unlike eBrowser, we perform energy optimizations
through dynamic voltage and frequency scaling (DVFS) and
task scheduling, while eBrowser achieves this by dropping
events via a simple sleeping mechanism. In other words,
eBrowser does not utilize the hardware configuration knobs
provided by a big. LITTLE architecture design. As a result,
our work is complementary to the event dropping mecha-
nism of eBrowser. A recent work [20] proposed a phase-
aware power management scheme to control the processor
power state of different web browser phases like loading and
touching. This approach considers a fixed response latency
threshold for a given phase. Unlike [20], we offer a more
flexible, personalized approach by considering the impact
of web content on the user perceive latency and the diverse
expectations across different users.

Our work builds upon and directly benefits past founda-
tions onwebworkload characterization [21], [22]. Other stud-
ies exploit the interplay between the web server and browser
client to improve rendering speed and user experience [23],
[24], or reconstruct the web browser architecture [25], [26].
These works are thus orthogonal to our approach.

C. TASK SCHEDULING
As heterogeneous multi-cores are becoming the norm of
computing systems, how to effectively schedule application
tasks on such architectures have attracted intensive atten-
tion. There is considerable work on designing better heuris-
tics or models to schedule application tasks for performance
and energy optimization [27]–[30]. Our work targets an
important domain of mobile web browsing. It builds upon
these past results to develop a novel approach to exploit
the characteristics of application workloads and hardware
to better optimizing interactive mobile web browsing. The
main advantage of our machine learning based approach over
a hand-crafted model or heuristic is the better portability -
machine learning enables one to automatically build a model
for a new hardware design to adapt to the change of hardware.

D. MACHINE LEARNING FOR SYSTEM OPTIMIZATION
Machine learning has quickly emerged as a powerful design
methodology for systems optimization. Prior works have
demonstrated the success of applying machine learning for
a wide range of systems optimization tasks, including mod-
eling personal preference on wearables [31], human activity
recognition [32], [33], code optimization [12], [34]–[36],
task scheduling [37]–[39], processor resource allocation [40],

and many others. These prior works provide strong evidence,
showing that machine learning is a rigorous methodology
for searching and extracting application knowledge that can
be transferred and reused in unseen settings for systems
optimization. In this work, we employ machine learning
techniques to develop an automatic and portable approach
to optimize interactive mobile web browsing for energy effi-
ciency. We want to highlight that our work does not seek
to advance the machine learning algorithm itself; instead,
it exploits and applies a well-established method of statisti-
cally reasoning to tackle an important systems optimization
problem, in a way that has not been attempted.

E. HETEROGENEOUS MOBILE MULTI-CORES
Heterogeneous asymmetric chip-multiprocessor (ACMP)
architecture is now commonplace on mobile
systems [41]–[43]. Recent examples in this space include the
ARM big.LITTLE architecture [44]. Such design is adopted
by major mobile hardware vendors including Qualcomm,
Samsung, Huawei and Apple. The big.LITTLE architecture
incorporates a performance-tuned high-end processor and
an energy-tuned low-end processor, where each processor
provides a range of frequency settings to trade performance
for power consumption. By providing a wide array of latency
and energy tradeoffs, this approach is claimed to deliver
a 3x energy saving over the typical daily use profile of
a smartphone with no loss of perceived performance [45].
However, the hardware potential can only be unlocked by the
application software. The challenge for software optimiza-
tion is that while the energy benefits of choosing the right
heterogeneous core may be large, but mistakes can seriously
hurt the user experience [41]. This paper proposes a software-
based approach to exploit the optimization space opened up
by a heterogeneous multi-core design, specifically targeting
interactive mobile web browsing – an area that is largely
unexplored to date. Rather than developing a hand-crafted
approach that requires expert insight into the relative costs
and idiosyncrasies of a particular heterogeneous multi-core,
we develop an automatic technique that is independent of a
particular platform.

III. BACKGROUND
A. PROBLEM SCOPE
Mobile web browsing includes two distinct phases [20] for
initial page loading and responding to user inputs. During
the page loading phase, web content will be fetched and
parsed to construct a Document Object Model (DOM) tree
for rendering. Because a web page often cannot fit into a
single screen view on a smartphone, only the currently visible
area will be rendered by the browser at a given moment.
In the user interaction phase, the web browser responds to
user events (e.g., scrolling) to render and update the visible
viewport accordingly. In this paper, we solely focus on the
later interacting phase. We consider two typical mobile inter-
active events: scrolling and pinching, but our approach can be
applied to other user gestures too.

139396 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 1. Energy consumption (a) and time (b) for loading 100 webpages
and responding to scrolling in a WiFi network. The min-max bar shows
the variance across webpages. User interactions often lead to longer
running and more energy consumption over the initial page loading
phase, which thus cannot be ignored for energy optimization.

B. HARDWARE ARCHITECTURE
Our work targets the ARM big.LITTLE heterogeneous multi-
core design, the de facto hardware architecture for modern
mobile systems. The big.LITTLE integrates an energy-tuned
CPU processor (little) with a faster but more power-hungry
processor (big). Such heterogeneous design gives the flexibil-
ity for the software to choose a processor core to run a given
task depending on the energy and time constraints.

Specifically, our work is evaluated on two representative
ARM big.LITTLE implementations: Odroid Xu3 and Jet-
son TX2, which integrate two different generations of the
big.LITTLE architecture. We provide further details of our
hardware platforms when describing our experimental setup
in Section VI.

IV. MOTIVATION OF THE WORK
To show the need for interactive mobile web browsing opti-
mizations, we measured the energy spent by the Chromium
browser for responding to scrolling events when processing
the landing page of the top-100 hottest websites ranked by
alexa.com. We automatically generate scrolling events to
ensure all content of each page is shown on the screen, but
ensure that each scrolling session only leads to a full-screen
update. In this experiment, we use an Jetson TX2 mobile
development board, which integrates a Cortex-A57 (big CPU
cluster) and a Denver2 (little CPU cluster) CPUs, and a
NVIDIA Pascal GPU.

Figure 1 compares the average energy and time spent dur-
ing the loading and the interacting phases when browsing a
webpage. Themin-max bars of the diagram show the variance
across different pages. For each page, we profile the time and
energy multiple times until the 95% confidence interval is
within a range of 5% variances to ensure the measurement
is statistically sound. Note that our measurement excludes
time and energy during idle time. Interactions on average are
94% (up to 3x) longer and consume 44% (up to 3.5x) more
energy than the initial page loading phase. This huge disparity
between energy consumption and processing time suggests
that previous work which only focuses on the initial page

FIGURE 2. FPS (a) and Averaged energy consumption (b) during the
interactive phase when browsing the landing page of cnn.com on Jetson
TX2. A bar shows the measured FPS and energy when running the
computation-intensive render process on the big or little cluster with a
specific processor clock frequency.

loading phase would miss a massive opportunity for energy
optimization.

This work aims to trade response time for reduced
energy consumption. To elaborate on our point, consider
now Figure 2 which shows the energy consumption and
frames per second (FPS) under different CPU clock frequen-
cies for the landing page of cnn.com on Jetson TX2. In this
example, we map the computation-intensive render process
to run on a big or a little CPU cluster under different clock
frequencies, and the rest browser processes to run on the other
cluster. Running the render process on the big cluster always
gives a higher FPS over the little counterpart under the same
processor clock frequency. However, it is not always energy-
efficient to use the big processor cluster. Our user study pre-
sented in Section VI-E shows that the FPS strongly correlates
to the minimum acceptable responsiveness of a user, but a
typical user would be unable to tell the difference between
30 FPS and a higher screen update rate for web browsing.
This finding is in line with the observation presented in a prior
study on mobile user experience [9]. This suggests that we
can run the render process on the little cluster with 1.5 GHz
instead of the big cluster or a higher processor frequency.
Such a setting already gives a ‘‘good enough’’ FPS of 31 for
this example but uses 36% less energy compared to running
the render process on the big cluster with the same frequency.

The question here is that ‘‘what is the optimal2 processor
setting to use?’’. The right answer depends on which CPU
cluster (big or little) we choose to use and at what frequency
the CPU cluster will operate on. The choice also depends on
the incoming user event rate and the web content, because
they determine how long it will take to update a screen
view. Unfortunately, choosing the right processor setting is
not trivial as an inappropriate setting can lead to either an
unacceptable FPS (spoiling the QoS) or unnecessarily higher
energy consumption (wasting battery life). In the next section,
we will describe how to develop an adaptive scheme based

2In this work, the optimal processor setting is a CPU cluster (little or big
in our case) with a specific clock frequency for running the render process,
which gives the largest energy saving but also delivers the minimum accept-
able FPS for a given user.

VOLUME 7, 2019 139397

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 3. Training predictive models. Our models are training off-line so
that the user does not pay the profiling cost during runtime deployment.

on machine learning to maximize energy reduction without
necessarily compromising the QoS.

V. OUR APPROACH
A. OVERVIEW
The core of our approach is a set of regression models trained
offline, each is tuned for a specific user event. The trained
models are then used to make predictions for new, unseen
webpages. The model estimates the FPS under a specific
processor frequency, by taking into consideration the web
content to be rendered, and the incoming user event and event
rate. The predictive model is used as a utility function to
quickly search for the optimal processor setting. Predictions
are made based on a set of numerical values, or feature values,
described in Section V-C.3.

Some prior works on optimizing the webpage loading fol-
low a constrained based approach to use a classifier to choose
from a set of processor frequencies [3], [4]. However, these
methods can only apply to the set of FPS and frequencies
seen in the training data, due to the nature of classification
algorithms. We avoid this drawback by employing a uncon-
strained based approach – our regression-based model can be
used for arbitrary processor frequencies (even those that were
not presented during training), because the model takes the
frequency as an input.

B. PREDICTIVE MODELING
Our model for determining the optimal processor setting is a
collection of artificial neural networks (ANNs). We choose
ANNs because they deliver better and more robust perfor-
mance than alternative classification techniques like support
vector machines and decision trees (see Section VII-F).

We follow the classical 3-step supervised learning to build
and deploy our models: (i) generate training data and problem
modeling, (ii) train a model on training data, (iii) and use the
model on unseen data. We describe each of the steps in detail
in the following subsections.

C. TRAINING DATA GENERATION AND PROBLEM
MODELING
1) TRAINING DATA GENERATION
Figure 3 illustrates the process for training an ANN model,
which applies to all machine-learning models we evaluate
in this work. Our models are built offline using training
webpages. In this work, we apply cross-validation by using a
corpus of 80 different webpages for training and 20 different
webpages for testing (see Section VI-D), which are collected

FIGURE 4. Our FPS predictor is a multi-layer neural network. The input to
the network includes a web-feature vector of real values, the measured
incoming event rate, a label indicates the big or little processor cluster
and real value of the processor speed. The network outputs a real value
of the estimated FPS for the given web content with an input event rate
under a specific processor setting.

from the landing page of the top-100 hottest websites ranked
by alexa.com (see also Section VI-B). For each training
webpage, we generate different training scenarios by varying
the duration and speed of a target event which is recorded and
replayed by a script we developed, we also extract their web
feature values from theDOM tree constructed during the page
loading phase. In each training scenario, we exhaustively
execute the rendering process under 14 different processor
settings and record the achieved FPS.

More specifically, we automatically generate 8, 960 train-
ing samples for each target gesture of one user by varying the
process setting, event rates and initial viewports (14 processor
settings × 8 event rates × 80 different training webpages).
We found this set of training data to be sufficient for our
model structure.

2) MODEL STRUCTURE
Figure 4 depicts the architecture of our models, which is a
fully connected, feed-forward ANN with five hidden layers,
where each hidden layer has 80 neurons. The model structure
is determined empirically – we wrote a script to try different
model structures and choose the best-performing one from
our training dataset. In Section VII-F, we provide a quantified
analysis on various structures.

Our model takes as input the web feature values, a mea-
sured event rate, a label indicates where to run the render
process (big or little) and the clock speed of a given CPU
cluster. It produces the estimated FPS as a real value. Our
output layer is a linear regression function and we use the
rectified linear unit (ReLU) activation function for the hidden
layers. We empirically evaluated three commonly used acti-
vation functions, Sigmoid, Tan and ReLU. The result shows
that ReLU gives the best performance in our training dataset.
Recent studies in the machine learning community also sug-
gest that ReLU can better avoid the vanishing gradient prob-
lem [46]. We stress that keeping the network structure simple
is essential for achieving fast prediction and for learning an
effective model from a relatively small training dataset.

3) MODEL FEATURES
One of the key aspects in building a successful predictor is
finding the right features to characterize the program space

139398 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

TABLE 1. Raw web features used in the work.

and the input. Our model takes in three sets of inputs, a vector
of web feature values, a numerical value for the input event
rate, a label of the CPU cluster (big or little) and the clock
frequency of the CPU cluster (a real value). Web features
are used to capture the workload characteristics, and the
event rate and CPU frequency settings directly affect the
resultant FPS.

To determine what web features are important for charac-
terizing the input web content, we started from 1,084 raw fea-
tures that can be collected at runtime fromGoogle Chromium.
Table 1 groups our raw web features into categories. The
features were chosen based on previous work on optimizing
mobile web browsing [4], as well as our intuitions.

a: FEATURE REDUCTION
To learn a useful model, supervised learning typically
requires the number of training samples to be an order of
magnitude larger than the number of model inputs (i.e., fea-
tures). Given that our training dataset size (i.e., 80 webpages)
is less than the number of raw features, we need to find ways
to reduce the dimensionality of the feature space. We do so
by first applying Principal Component Analysis (PCA) [47]
to the raw features, and then choosing the top 49 princi-
pal components (PCs) which account for around 95% of
the variance of the original feature space. We record the
PCA transformation matrix and use it to transform the raw
features of the new webpage to PCs during runtime deploy-
ment. PCA is a standard statistical method for reducing the
dimensionality of data. By reducing the feature dimension,
we are also improving the generalizability of our models, i.e.
reducing the likelihood of over-fitting on our training data.

b: FEATURE NORMALIZATION
Before passing the extracted feature values to a machine
learning model, we normalize or scale each of the features
to a common range (between 0 and 1) to prevent the range
of the order of the feature value is a factor in its importance.
Scaling features does not affect the distribution or variance of
their values. To scale the features of a new webpage during
deployment, we record the minimum and maximum values
of each feature in the training dataset and use these to scale
the corresponding features. If an extracted value of an unseen
webpage is outside the min-max range, we clip it to the range.

c: CONTRIBUTIONS OF RAW FEATURES
To obtain some insights for the usefulness of each raw feature,
we apply the Varimax rotation [48] to the feature space after
applying PCA. This technique quantifies the contribution of
each feature to each PC in terms of variances. Figure 5 shows

FIGURE 5. Top 7 most important raw web features after applying varimax
rotation and their contributions to the variances in the PCA space.

the top 7 dominant features based on their contributions to
the PCs. Features like the webpage size and the number of
DOM nodes make significant contributions to the PCA space
and are hence considered to be important. This is not sur-
prising because the larger the webpage size and the number
of DOM nodes are, the more processing time will be. Other
features, like # CSS rules, and # Tag.img, also make great
contributions to the variance on the PCA space. This because
they determine how the webpage should be presented and
how do they correlate to the rendering overhead. By employ-
ing an automatic feature selection and tuning process, our
approach has the advantage of having better portability when
targeting a new hardware architecture where the cost of web
processing and the importance of web features may change.
Later in Section VII-D, we provide a further analysis on the
feature importance via a Hinton diagram.

D. MODEL TRAINING
The feature values of the target web content, the event speed,
and the processor frequency together with the measured FPS
are passed to a supervised learning algorithm to learn anANN
for each targeting event. The learning algorithm then tries to
update theweights of theANN to closelymap themodel input
to the measured FPS.

Our models are trained using back-propagation with
stochastic gradient descent (SGD). For a set of training exam-
plesX1 . . .Xn, the SGD algorithm tries to find a set of network
parameters 2 that minimize the output of a loss function:

2 = argmin
2

1
n

n∑
i=1

` (Xi,2) (1)

where loss function ` (x,2) computes the mean squared log-
arithmic error between the model’s outputs, x̂, and expected
values, xi:

` =
1
n

n∑
i=1

(log(xi + 1)− log(x̂i + 1))2 (2)

VOLUME 7, 2019 139399

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 6. Using the trained predictive model to find the optimal processor configuration during the interactive phase.

Algorithm 1 Processor Setting Search Engine
Result: copt : desired processor setting
Input: FPSmin: minimum acceptable FPS;
Input: r : event rate;
Input: C[0..N − 1]: available processor settings, sorted

by frequencies from low to high;
1 low = 0;
2 high = N-1;
3 while low <= high do
4 mid = (low + high)/2;
5 FPSpred = pred(C[mid], ...);
6 if FPSpred > FPSmin then
7 high = mid - 1;
8 else if FPSpred < FPSmin then
9 low = mid + 1;
10 else
11 return copt = C[mid];
12 end
13 end
14 FPSlow = pred(C[low], ...);
15 FPShigh = pred(C[high], ...);
16 /*Return the closest FPS setting*/
17 return copt = (FPSlow − FPSmin) <

(FPSmin − FPShigh)?C[low+ 1] : C[high];

We choose this loss function because it penalizes
underestimates more than overestimates. This reduces the
chance of QoS violations due to an underestimated FPS
target. Our model is trained using the Adam learning
algorithm [49].

In this work, we train an ANN for each type of events.
Since we target two types of events, scrolling and pinch-
ing, we build two ANNs. It is to note that an alternative
is to have a single model for all event types. However,
this strategy offers little flexibility for updating and exten-
sion as doing so would require retraining the whole model
when targeting a new event. Furthermore, this alternative
strategy not only will incur expensive re-training overhead
but also is likely to be less effective than a specialized
model [50].

E. MODEL DEPLOYMENT
Our models are implemented in the Python scikit-learn
machine learning package. The trained models are encapsu-
lated in a Python library to be invoked by the web browser
(via a browser extension in our prototype) for any webpage
that is not seen in the training phase. For this work, we have
developed a working prototype based on the Chromium. Our
implementation requires small changes to the web browser -
in total, we have modified around 700 lines of code.

Figure 6 shows how the trained models can be used dur-
ing the interactive phase to determine the processor clock
frequency. Feature values are extracted from the DOM tree,
during the page loading phase after the downloaded web
contents are parsed to construct the DOM tree. The extracted
feature values are re-used throughout the interactive stage
unless the DOM tree has changed significantly due to e.g.,
content reloading. Specifically, if there is more than 30%
difference in the number of nodes between the previous and
the current DOM trees, we will update the feature values
by performing feature extraction on the current DOM tree.
The prediction and frequency configuration will be triggered
if one of the targeting user input is detected. To make a
prediction, we first choose a model for the input event. The
chosen model is then used to estimate the achieved FPS under
different processor settings to find out the optimal setting.
The predicted setting is passed to the runtime scheduler to
perform task scheduling and hardware configuration.We note
that the runtime scheduler only reconfigures the hardware if
the predicted setting is different from the current one.

Our model also takes as input the event rate. This is calcu-
lated based on a sampling window of 200 ms. This window is
also used to smooth the input event speed. We found that all
the interactive sessions captured in our user study fit into this
window. Furthermore, we do not predict future event rates,
but a change of the event rate in the next sampling window
might trigger a reconfiguration of the processor settings.

We also note that a frequently changed event rate might
affect the response time and energy savings. However,
we found that this rarely happens (during an interactive ses-
sion) for the two events we target (scrolling and pinching).

The pseudocode in Algorithm 1 describes our binary-
search-based processor setting search algorithm. The search

139400 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

TABLE 2. Mobile platforms used in evaluation.

engine uses the predictivemodel (line 5), pred , to quickly find
a desired processor setting, copt , from a range of available
options, C[]. The goal is to find a processor configuration
which hopefully will lead to an FPS that is as close as possible
to theminium acceptable FPS,FPSmin. It is possible that none
of the predicted FPS values, FPSpred , exactly matches the
minimum acceptable FPS, FPSmin. In this case, we return
the one that gives the closest FPS value (line 17), but we
always choose the next higher frequency setting, C[low+ 1],
to increase the likelihood for meeting FPSmin. In the extreme
case, we might choose to use the highest clock frequency
provided by the hardware.

It is also worth mentioning that the overhead of feature
extraction, model prediction, and processor frequency search-
ing and configuration is small. It is less than 10 ms which is
already included in our experimental results.

VI. EVALUATION SETUP
We now describe our experimental setup and evaluation
methodology.

A. HARDWARE AND SOFTWARE PLATFORMS
We evaluate our approach on two distinct mobile platforms:
an Odroid Xu3 and a Jetson TX2. Table 2 gives detailed infor-
mation about the evaluation platforms. Both platforms imple-
ment the widely used ARM big.LITTLE mobile architecture
but with different CPU generations and frequency setting
knobs. The Odroid Xu3 implements the Exynos 5410 SoC
that was released in 2014, and thus represents a low to
medium endmobile spec. It is to note a recent study published
in 2019 [51] suggests that 75% of today’s smartphones still
use a CPU design that was released before 2013. Therefore,
including Odroid Xu3 in our evaluation ensures that our
approach is evaluated on a platform that presents a wide
range of mobile devices. In contrast to Odroid Xu3, the Jetson
TX2 integrates a more recent SoC (released in 2017), and has
larger RAM and more powerful CPUs. Therefore, it repre-
sents a higher end, more recent smartphone spec.

We use the onboard energy sensors provided by both sys-
tems to measure the power consumption of the entire system.
These sensors and power meters have been proven to be
accurate in prior work [4].

For systems software, our evaluation systems run
Ubuntu 16.04 with the big.LITTLE enabled scheduler.3

3Because Chromium for Android does not support extensions, we imple-
mented our approach on the Linux version that shares the same code base as
the Android Chromium and compare to the Android default interactive CPU
frequency governor. However, our techniques can be built directly into the
Chromium browser for Android, and we leave this as our future work.

FIGURE 7. The cumulative distribution function (CDF) for the number of
DOM nodes (a) and size of web content (b) of the 100 webpages used in
evaluation.

We implemented our approach in Google Chromium
(ver. 73.0) which is compiled using the gcc compiler (ver. 7.2)
with default compilation options provided by the Chromium
using the ‘‘release’’ version.

B. WEB WORKLOADS
Throughout this work, we use the landing page of
the top 100 hottest websites (as of April 2019) from
www.alexa.com. We use the mobile version of a website
if available. Figure 7 shows the CDF of the number of DOM
nodes and web content sizes. The DOM node and webpage
sizes range from small (4 DOM nodes and 40 KB) to large
(over 8,000 DOM nodes and 6 MB). The wide distribution
of webpages indicates that our test data cover a diverse set of
webpages. Overall, we test our approach on 16,000 samples
(100 webpages× 20 users× 8 event rates), representing one
of the largest-scale experiments seen to date on mobile web
browser optimizations.

C. BASELINE AND COMPETITIVE APPROACH
1) BASELINE
As a baseline, we use interactive as the default CPU
frequency governor. This is a standard power management
policy used by the Android system for interactive applica-
tions. We use the default setting of the interactive governor,
described as follows. The governor samples the CPU load
within a window of 80 ms. It raises the frequency if the
CPU utilization is above 85%; after that, it waits for at
least 20 ms before re-sampling the CPU to decide whether
to lower or raise the frequency.

2) STATE-OF-THE-ART
We compare our approach against eBrowser [6], the most
closely related recent work. eBrowser reduces the energy
consumption for a given user event by putting the rendering
process into sleep for some time. This essentially reduces

VOLUME 7, 2019 139401

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

the number of events to be processed as some of the user
events within an interaction window will be dropped by
the browser during sleep. eBrowser uses a linear regression
model to model the acceptable event rate on a per-user basis.
However, it requires statistical data to be sent to a remote
server to learn a model and relies on the operating system
for power management. By contrast, our approach does not
drop user events (as doing so could miss important inputs)
and actively participates in power management by using the
knowledge of the web workloads to determine the processor
configuration. We control the FPS by adjusting the processor
running frequency. For example, a higher CPU frequency will
enable the system to process more frames per second.We port
the open source implementation of eBrowser4 to the latest
version of Chromium used in our experiments.

D. EVALUATION METHODOLOGY
1) PREDICTIVE MODEL EVALUATION
We use five-fold cross-validation in our experiments. Specif-
ically, we partition our 100 webpages into 5 sets where each
set contains 20 webpages. We keep one set as the validation
data for testing our model, and the remaining 4 sets for
training data to learn a model. We repeat this process five
times (folds) to make sure that each of the 5 sets used exactly
once as the validation data. We then report the averaged
accuracy achieved across the 10 validation sets. This is a
standard evaluation methodology, providing an estimate of
the generalization ability of a machine-learning model in
predicting unseen data.

2) EVALUATION METRICS
In our evaluation, we use two metrics: energy reduction and
QoS violation. Energy reduction is normalized to the energy
measurementwhen using theinteractiveCPUgovernor.
QoS violation is calculate as δ/FPSmin, where δ is the number
of FPS falls below the minimum acceptable FPS, FPSmin.
If the resulting FPS is greater than the minimum acceptable
FPS, we consider there is no QoS violation (but this may lead
to higher energy consumption when reporting energy saving).

3) MEASUREMENTS
To measure energy consumption, we developed a lightweight
runtime to take readings from the onboard energy sen-
sors at a frequency of 100 samples per second. We then
matched the energy readings against the timestamps in an
interactive window to calculate the energy consumption. For
the FPS, we develop a web extension to record the num-
ber of request calls processed by the browser per second,
by counting the number of invocations of the Chromium
window.requestAnimationFrame() API.

4) PERFORMANCE REPORT
Unless state otherwise, we report the geometric mean across
experimental settings. We note that geometric mean has been

4 https://github.com/cloud-ecnu/ebrowser-1

FIGURE 8. The minimum acceptable FPS across 100 webpages, 20 users
and eight event rates (measured by the number of pixels per second
touched by the finger). The ‘‘whisker’’ of a box shows the variance across
webpages and users. The minimum acceptable FPS changes across event
rates, webpages and users, suggesting an adaptive optimization scheme
is needed.

shown to be better at minimizing the impact of performance
outliers over arithmetic mean, and is a preferred metric for
performance reporting [52]. To collect run-time and energy
consumption, we run each approach on a testing input repeat-
edly until the variance under a 95% confidence per input is
smaller than 2%. This repeat running strategy is essential for
obtaining statistically sounded results. Finally, to isolate the
impact of network latency, all the testing webpages are down-
loaded and loaded from the disk. We also disable the cache of
the web browser to ensure consistent results across different
runs of the same page.We consider this is a reasonable setting
as our work focuses on the interactive phase where most of
the content would have already been downloaded.

E. QUANTIFYING QOS
To quantify the QoS during web interactions, we con-
ducted a user study. Our user study involved 20 participants
(10 females) who were the students at our institution during
the time this workwas conducted. The participants were at the
age group of under 30 and are a frequent user of web-related
mobile applications. In our experiment, we automatically
replay the user interactions on 100 webpages for each of the
targeting gestures (scrolling and pinching) under eight event
rates (quantified by the number of pixels per second touched
by the finger). In this user study, we display the content
under various on-screen update speed (measured by the FPS).
We then ask each user to score the experience using a Likert
Scale of 5 scores, where a score of 0, 3 and 5 being very
dissatisfied, acceptable and very satisfied respectively.

Figure 8 plots the minimum acceptable FPS for scrolling
and pinching, averaging across testing webpages and users.
The mini-max bar shows the variation across different users.
The x-axis shows the eight event rates used in the evaluation.
We stress that our approach can be applied to an arbitrary
event rate as the measured event rate is part of the model’s
input. Our user study suggests that the FPS strongly correlates
to the QoS. For the same user, the acceptable QoS for a

139402 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 9. Average (a) and the distribution of energy reduction (b), as well as the distribution of QoS violations (lower is better) over the interactive
CPU governor across 100 webpages for meeting the QoS targets across 20 users. Our approach achieves over 12% more energy saving but with less
frequent QoS violations.

given event-rate for a gesture corresponds to more or less
the same FPS (with a standard deviation of less than 4.4).
However, the minimum acceptable FPS varies across users
and events, indicating adaptive optimization is required.
Note that our observations are in line with the findings
reported by eBrowser [6] and we do not claim novelty in this
aspect.

In our experiments, we use the results of this user study
as the minimum acceptable FPS guidelines. When reporting
QoS violations, we measure the performance of each scheme
for each testing page under each user-specific acceptable
FPS. For reproducibility, in our experiments, we automati-
cally generate eight different event rates for each testing page
using a script. We then report the performance of energy
saving and QoS violations across 100 webpages, 20 user-
specific minimum acceptable FPS settings and eight event
rates.

VII. EXPERIMENTAL RESULTS
In this section, we first report the overall results of our
experiments, showing that our approach consistently outper-
forms the state-of-the-art across hardware architectures and
evaluation metrics. We then provide details on the working
mechanism of predictive modeling, including the prediction
accuracy and distribution, feature importance, overhead and
alternative modeling techniques.

As a highlight, our key findings are:

• Our approach delivers consistently more energy saving
but with a lower QoS violation when comparing to
the state-of-the-art on both of our evaluation platforms
(Section VII-A).

• Our approach gives consistent good performance for
predicting the resultant FPS under a given processor
setting, with a low average prediction error of less than
15% (Section VII-B).

• We provide a detailed analysis of the working mech-
anism of our approach to justify the design choices
(Sections VII-D to VII-F).

A. OVERALL PERFORMANCE
Figure 9a compares the energy reduction of our approach
against eBrowser on Odroid Xu3 and Jetson TX2, where the
baseline is the default interactive CPU frequency gov-
ernor. The min-max bars show the variance of energy reduc-
tion. By trading responsiveness for energy, both approaches
were able to lower the energy consumption for processing
user events. eBrowser gives an average energy reduction
of 36.9% and 22.6% on Odroid Xu3 and Jetson TX2 respec-
tively. By exploiting the processor frequency and heteroge-
neous architecture design, our approach gives a higher energy
saving of 47.6% (up to 70%) and 36.4% (up to 60%) on
Odroid Xu3 and Jetson TX2 respectively. These translate to
an improvement of 17% and 17.8% on energy reduction over
eBrowser on Odroid Xu3 and Jetson TX2 respectively.

Figure 9b shows the distribution of energy reduction across
testing webpages for each of our evaluation platforms. The
min and max bars represent the highest and the lowest energy
reduction found across 100 webpages for meeting the QoS
metric of 20 users. Our approach consistently outperforms
eBrowser not only with a larger averaged energy reduction
but also with a better improvement for 80% of the webpages.
On only 20% of the webpages, our approach gives marginally
lower energy savings (less than 10%), but our approach does
not miss or drop any user event like eBrowser.

Figure 9c compares the QoS violation of our approach
against eBrowser on both evaluation platforms for scrolling
and pinching.We observe a higher QoS violation for pinching
over scrolling. This is because scrolling often lasts longer
than pinching, which offers more room for scheduling and
predictions. While eBrowser can reduce the energy consump-
tion by processing fewer user inputs, it incurs an average QoS
violation of 19.5% (up to 52.3%) and 19% (up to 47.5%) on
Odroid Xu3 and Jetson TX2 respectively. By contrast, our
approach has a lower QoS violation of less than 12.5% and
16% on Odroid Xu3 and Jetson Tx2 respectively. This sug-
gests that our approach can reduce energy consumption while
can maintain a higher level of QoS compared to eBrowser.

VOLUME 7, 2019 139403

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 10. The distribution of processor configuration chosen by an
oracle approach, our approach and eBrowser. Our approach chooses the
low-power processor frequencies more often than eBrowser, which gives
higher energy savings.

FIGURE 11. A Pareto efficiency diagram shows the QoS-energy tradeoff
given by different scheduling policies when interacting with the landing
page of cnn.com (Section IV). Energy consumption is normalized to the
interactive CPU governor. Our approach gives the best trade-off.

In an attempt to explain the performance gains of our
approach over eBrowser, we compare the distribution of
the processor frequency settings chosen by our approach,
eBrowser and an Oracle approach. The Oracle approach is
a theoretical perfect approach that always gives the optimal
processor setting. We determine the optimal processor setting
by profiling all possible configurations on each webpage.

Figure 10 shows the results on each platform. The x-axis of
the diagrams shows a processor configuration on a hardware
platform, and the y-axis shows how often a configuration
is chosen in our evaluation dataset. The processor configu-
rations are sorted by their power consumption, from low to
high. As can be seen from the diagram, eBrowser is in favor
of high-power processor configuration because it relies on
the interactive CPU governor to control the CPU frequency.

FIGURE 12. The FPS prediction errors. The thick line shows where 50% of
the data lines and the white dot shows the median value. Our approach
gives a low prediction error of less than 15% on both platforms.

By contrast, our approach often chooses a low-power proces-
sor configuration when possible. By exploiting webworkload
characteristics to actively exploiting the frequency control
knobs offered by the heterogeneous hardware design, our
approach thus leads to better performance over eBrowser.

Finally, Figure 11 shows the Pareto efficiency of our
approach, eBrowser, the Interactive and Ondemand
CPU governor5 when processing the landing page of
cnn.com (see Section IV). From the diagram, we see that
our approach gives the best trade-off among all schemes for
trading responsive time for energy reduction.

B. FPS PREDICTION ACCURACY
The violin plots in Figure 12 show the error rate for FPS
value prediction for scrolling and pinching under the most
frequently used processor setting of each platform. The error,
e, is calculated as:

e =
|FPSmeasured − FPSpred |

FPSmeasured

where FPSmeasured and FPSpred are the measured and pre-
dicted FPS respectively.

In the diagram, the thick line shows where 50% of the
data lines. The white dot is the position of the median. Our
predictive models are highly accurate in predicting the FPS,
with a mean error of less than 15% on both evaluation plat-
forms. The prediction accuracy can be further improved by
providing to the learning algorithmmore training data, which
also permits the use of a larger number of features to better
capture the application behavior. Nonetheless, our approach
can give good results using as few as 80 training webpages.

C. PROCESSOR SETTING DISTRIBUTION
The heat maps in Figure 13 depict how frequent a proces-
sor setting is chosen for pinching and scrolling on each of
our evaluation platforms. In the diagram, we use the nota-
tion <Rendering CPU cluster-frequency, frequency of the

5While Ondemand favours energy savings but it leads to significant QoS
violations and is rarely used for interactive applications.

139404 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 13. How often (as percentages) a processor configuration is
considered to be optimal by our model. There is no single configuration
that is considered to be optimal for more than 20% of the testing
scenarios, suggesting the need for an adaptive scheme.

other CPU cluster> to denote a processor configuration. For
example, a configuration of < A7 − 0.2, 0.6 > on Odroid
Xu3 means that the render process running on the A7 core
(little cluster) at 200Mhz and the remaining processes run on
the A15 core (big cluster) at 600MHz; similarly, a configu-
ration of < A57 − 1.1, 0.8 > on Jetson TX2 means that the
render process runs on the A57 core (big cluster) at 1.1GHz
and the remaining processes run on the Denvor2 core (little
cluster) at 800MHz.

As can be seen from the diagram, there is no single pro-
cessor configuration is considered to be optimal for more
than 20% of our testing scenarios, and the frequency for a
configuration to be optimal varies across hardware platforms.
The results reinforce our claim that a single ‘‘one-size-fits-
all’’ model is unlikely to deliver good performance across
hardware architectures. Our work avoids this drawback by
developing a portable approach using machine learning.

D. FEATURE IMPORTANCE
In an attempt to visualize what features are important for
predicting the FPS, we plot a Hinton diagram in Figure 14.
In the diagram, the larger the box, the more significantly a
particular feature contributes to the prediction accuracy on
a given platform. The importance is calculated through the
information gain ratio. It can be observed that HTML tags
and attributes (e.g. webpage size, #DOM nodes, DOM tree
depth) and style rules are useful when determining the pro-
cessor configurations on both platforms, but the importance
varies across hardware architectures. We also observe that
some features, likeHTML tag.IMGandHTML tag.Script, are
useful for Odroid XU3 and are less important for Jetson TX2,
which because Odroid Xu3 takes longer to process images
and JavaScript over Jetson TX due to its less powerful compu-
tation capability. This diagram suggests a generic, platform-
independent optimization model [5] is unlike to be effective
across a diverse set of architectures.

FIGURE 14. The Hinton diagram illustrates the importance of selected
features for FPS predictions. The feature importance can vary across
platforms, suggesting the need for an adaptive scheme.

FIGURE 15. Breakdown of runtime overhead. Our approach incurs little
runtime overhead.

E. OVERHEAD BREAKDOWN
Figure 15 gives a breakdown of the runtime overhead of
our approach (which was already included in our exper-
imental results). The overhead of our approach including
feature extraction, prediction and searching, and task map-
ping and processor configuration. Feature extraction typically
only needs to perform once after the DOM tree has been
constructed. Task migration and processor frequency setting
account for the majority of the overhead, but is less than 0.3%
of the end-to-end turnaround time. Such a small overhead can
be easily amortized by improved energy efficiency. We note
that the user does not experience the training overhead as
training data generation and learning were performed off-
line.

F. ALTERNATIVE PREDICTIVE MODELING TECHNIQUES
We compare our ANN-based FPS predictor and two widely
used regression techniques: linear regression (LR) and sup-
port vector regression (SVR). For a fair comparison, we train
and evaluate all techniques on the same dataset. Figure 16
shows the mean prediction error given by each modeling
technique. Our approach gives the most accurate prediction
results with the least mean error across testing web pages,
which is 77% and 91% lower than the LR and SVR counter-
parts respectively.

Figure 17 shows how the FPS prediction error changes
when different numbers of hidden layers are used for our
ANN model. Increasing the number of layers leads to a
slightly improved prediction accuracy, but it reaches a plateau
after five layers. Using more than five layers would lead to a
drop in accuracy, which is mainly attributed to our relatively
small training dataset. In this paper, we choose an ANN of
five layers as it gives the smallest prediction error and does
not require a large training dataset to learn.

VOLUME 7, 2019 139405

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

FIGURE 16. The mean FPS prediction error of our ANN-based approach,
LR and SVR. Our approach gives the lowest mean prediction error.

FIGURE 17. Mean FPS prediction errors with different number of neural
hidden layers.

VIII. DISCUSSIONS AND FUTURE WORK
Our work represents a new attempt for energy-efficient
mobile web interactions through the use of machine learning.
Like many research works, there is room for further work and
improvements. In this section, we discuss a few points on how
we can improve the work.

A. PERFORMANCE PORTABILITY
A practical problem of a supervised learning approach is how
to ensure the model can target a wide range of devices and
users. While retraining the model using data collected from
the deployment environment can help to re-target an exist-
ing model to a new environment, this can incur significant
overhead for training data collection. Our future work will
investigate how to quickly port a decision model to a new
environment.

B. MULTI-TASKING MOBILE WORKLOADS
Our work assumes the user is interacting with one webpage
at a time. This is a reasonable assumption for mobile appli-
cations as unlike desktop PCs, there is typically only one
foreground task which the user is dealing with; background
programs onmobile devices are typically put into a suspended
(sleeping) or closed status. Nonetheless, our approach can
be extended to a multi-tasking computing environment that
consists of multiple concurrently running workloads. This
can be achieved by triggering our scheduler when a web view
is presented to the user.

C. NETWORK LATENCY
Our work focuses on the interactive stage after a page has
been loaded and processed to construct the DOM tree. Hence,

we do not consider the impact of network latency. It is
possible that a user interaction might trigger a new down-
load activity, e.g., loading a new image. This is not explic-
itly modeled by our approach. However, there is work on
energy optimization for page loading, which considers the
impact of networks [4]. Such work is orthogonal to our
approach. Extending our work to consider the impact of
network latency during user interactions is our future work.

D. IMPACT OF GPU FREQUENCY SETTINGS
Our work does not model the impact of GPU frequency.
Instead, we rely on the default GPU frequency governor to
do so. However, our approach can be extended to dynam-
ically adjust the GPU frequency. This would require us to
collect empirical data to learn how the GPU frequency set-
ting affect the FPS. Training data collection and learning
can be performed automatically in the same way as we did
throughout the work, and our methodology for model training
and deployment can remain unchanged. We leave this as our
future work.

E. DYNAMIC CONTENT
Our techniques were evaluated on static web content pri-
marily consist of HTML files and images, which remain
the dominant content for mobile web applications. To target
dynamic content such as JavaScript content or video stream-
ing, we will need new features to capture the workloads and
a mechanism for constant monitoring and frequency adjust-
ment. Given the dynamic nature of the problem, it might be
interesting to investigate whether a reinforcement learning
based approach [53] can be better capture the behavior of the
application domain.

F. IMPACT OF DISPLAYS
Our work does not leverage the correlation between the web
content and on-screen displays to further reduce energy con-
sumption. Nonetheless, our approach can be easily integrated
with a display-based energy optimization scheme (which uti-
lizing the color and brightness settings to save energy), as the
processor setting, in general, is independent on the colors
and brightness of the screen. We investigate such a holistic
approach in our future work.

IX. CONCLUSION
This paper has presented a novel machine learning based
approach for optimizing interactive mobile web browsing.
At the heart of our approach is a set of machine-learning-
based regression models for predicting the resultant FPS
under a given task to core and processor frequency setting.
The predictive models are first trained offline using training
web pages and then used at runtime as a cost function to
quickly search for the optimal processor setting for new,
unseen web content. We demonstrate that by carefully trad-
ing the responsive time, one can significantly reduce the
energy consumption during the interaction phase of mobile
web browsing. We show that such energy reduction can

139406 VOLUME 7, 2019

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

be achieved without significantly compromising the user-
perceived latency or QoS.

We apply our approach to two representative mobile inter-
active events. We implement our methods in the open-source
Chromium web browser, and thoroughly evaluated the devel-
oped system on two distinct heterogeneous mobile plat-
forms using the landing pages of top-100 popular websites.
Experimental results show that our approach outperforms
the state-of-the-art across webpages and evaluation platforms
and criteria. On average, our approach reduces the energy
consumption by over 17% over the state-of-the-art, and it
achieves this with fewer QoS violations.

REFERENCES
[1] D. Chaffey. (2018). Mobile Marketing Statistics Compilation. [Online].

Available: https://www.smartinsights.com/mobile-marketing/mobile-
marketing-analytics/mobile-marketing-statistics/

[2] G. Sterling. (2015).Morgan Stanley: No, Apps Aren’t Winning. The Mobile
Browser Is. [Online]. Available: https://marketingland.com/morgan-
stanley-no-apps-arent-winning-the-mobile-browser-is-144303

[3] J. Ren, L. Gao, H. Wang, and Z. Wang, ‘‘Optimise Web browsing on
heterogeneous mobile platforms: A machine learning based approach,’’ in
Proc. INFOCOM, May 2017, pp. 1–9.

[4] J. Ren, X. Wang, J. Fang, Y. Feng, D. Zhu, Z. Luo, J. Zheng, and Z. Wang,
‘‘Proteus: Network-aware Web browsing on heterogeneous mobile sys-
tems,’’ in Proc. 14th Int. Conf. Emerg. Netw. Exp. Technol., Dec. 2018,
pp. 379–392.

[5] Y. Feng and Y. Zhu, ‘‘PES: Proactive event scheduling for responsive and
energy-efficient mobile Web computing,’’ in Proc. Int. Symp. Comput.
Archit. (ISCA), Jun. 2019, pp. 66–78.

[6] F. Xu, S. Yang, Z. Zhou, and J. Rao, ‘‘eBrowser: Making human-mobile
Web interactions energy efficient with event rate learning,’’ in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 523–533.

[7] Z. Wang and M. O’Boyle, ‘‘Machine learning in compiler optimization,’’
Proc. IEEE, vol. 106, no. 11, pp. 1879–1901, Nov. 2018.

[8] ARMLtd. Arm Big.Little. [Online]. Available: https://www.arm.com/why-
arm/technologies/big-little

[9] V. Seeker, P. Petoumenos, H. Leather, and B. Franke, ‘‘Measuring QoE of
interactive workloads and characterising frequency governors on mobile
devices,’’ in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
Oct. 2014, pp. 61–70.

[10] (2019). The Chromium Projects. [Online]. Available: https://www.
chromium.org/

[11] (2019). Alexa. [Online]. Available: http://www.alexa.com/topsites
[12] Z. Wang, D. Grewe, and M. F. P. O’Boyle, ‘‘Automatic and portable map-

ping of data parallel programs to openCL for GPU-based heterogeneous
systems,’’ ACM Trans. Archit. Code Optim., vol. 11, no. 4, Jan. 2015,
Art. no. 42.

[13] K. Moran, C. Bernal-Cárdenas, M. Linares-Vásquez, and D. Poshyvanyk,
‘‘Overcoming language dichotomies: toward effective program compre-
hension for mobile app development,’’ in Proc. 26th Conf. Program Com-
prehension, May 2018, pp. 7–18.

[14] B. Taylor, V. S. Marco, and Z. Wang, ‘‘Adaptive optimization for openCL
programs on embedded heterogeneous systems,’’ in Proc. 18th ACM
SIGPLAN/SIGBED Conf. Lang., Compil., Tools Embedded Syst., 2017,
pp. 11–20.

[15] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, ‘‘Adaptive
deep learning model selection on embedded systems,’’ in Proc. 19th
ACM SIGPLAN/SIGBED Int. Conf. Lang., Compil., Tools Embedded Syst.,
Jun. 2018, pp. 31–43.

[16] W. Hu and G. Cao, ‘‘Energy optimization through traffic aggrega-
tion in wireless networks,’’ in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 916–924.

[17] D. Li, Y. Lyu, J. Gui, and W. G. Halfond, ‘‘Automated energy optimization
of HTTP requests for mobile applications,’’ in Proc. 38th Int. Conf. Softw.
Eng., May 2016, pp. 249–260.

[18] A. Sehati and M. Ghaderi, ‘‘Energy-delay tradeoff for request bundling on
smartphones,’’ in Proc. IEEE INFOCOM, May 2017, pp. 1–9.

[19] Y. Zhu and V. J. Reddi, ‘‘High-performance and energy-efficient mobile
Web browsing on big/little systems,’’ in Proc. IEEE 19th Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2013, pp. 13–24.

[20] N. Peters, S. Park, D. Clifford, S. Kyostila, R. Mcllroy, B. Meurer,
B. Meurer, and S. Chakraborty, ‘‘Phase-aware Web browser power man-
agement on HMP platforms,’’ in Proc. Int. Conf. Supercomput., Jun. 2018,
pp. 274–283.

[21] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh, ‘‘Who
killed my battery?: Analyzing mobile browser energy consumption,’’ in
Proc. 21st Int. Conf. World Wide Web, Apr. 2012, pp. 41–50.

[22] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi,
‘‘Deconstructing the energy consumption of the mobile page load,’’ ACM
Meas. Anal. Comput. Syst., vol. 1, no. 1, Jun. 2017, Art. no. 6.

[23] M. Butkiewicz, D.Wang, Z.Wu,H.V.Madhyastha, andV. Sekar, ‘‘Klotski:
ReprioritizingWeb content to improve user experience onmobile devices,’’
in Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 439–453.

[24] R. Netravali and J. Mickens, ‘‘Prophecy: Accelerating mobile page loads
using final-state write logs,’’ in Proc. 15th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), pp. 249–266, 2018.

[25] F. Qian, S. Sen, and O. Spatscheck, ‘‘Characterizing resource usage for
mobile Web browsing,’’ in Proc. 12th Annu. Int. Conf. Mobile Syst., Appl.,
Services, Jun. 2014, pp. 218–231.

[26] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao, ‘‘Rethinking energy-
performance trade-off in mobile Web page loading,’’ in Proc. 21st Annu.
Int. Conf. Mobile Computing Netw., pp. 14–26 ACM, 2015.

[27] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, ‘‘StarPU: A
unified platform for task scheduling on heterogeneous multicore architec-
tures,’’ Concurrency Comput., Pract. Exper., vol. 23, no. 2, pp. 187–198,
Feb. 2011.

[28] S. Mittal and J. S. Vetter, ‘‘A survey of CPU-GPU heterogeneous comput-
ing techniques,’’ ACM Comput. Surv. (CSUR), vol. 47, no. 4, Jul. 2015,
Art. no. 69.

[29] K. Chronaki, A. Rico, M. Casas, M. Moretó, R. M Badia, E. Ayguadé,
J. Labarta, and M. Valero, ‘‘Task scheduling techniques for asymmetric
multi-core systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 2074–2087, Jul. 2016.

[30] E. Castillo, L. Alvarez, M. Moreto, M. Casas, E. Vallejo, J. L. Bosque,
R. Beivide, and M. Valero, ‘‘Architectural support for task dependence
management with flexible software scheduling,’’ in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 283–295.

[31] A. Krause, A. Smailagic, and D. P. Siewiorek, ‘‘Context-aware mobile
computing: Learning context- dependent personal preferences from a
wearable sensor array,’’ IEEE Trans. Mobile Comput., vol. 5, no. 2,
pp. 113–127, Feb. 2005.

[32] T. Plötz and Y. Guan, ‘‘Deep learning for human activity recognition in
mobile computing,’’ Computer, vol. 51, no. 5, pp. 50–59, May 2018.

[33] J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang, ‘‘CrossSense:
Towards cross-site and large-scale WiFi sensing,’’ in Proc. 24th Annu. Int.
Conf. Mobile Comput. Netw., Nov. 2018, pp. 305–320.

[34] Z. Wang and M. F. P. O’Boyle, ‘‘Partitioning streaming parallelism for
multi-cores: A machine learning based approach,’’ in Proc. 19th Int. Conf.
Parallel Archit. Compilation Techn. (PACT), Sep. 2010, pp. 307–318.

[35] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, ‘‘End-to-end deep
learning of optimization heuristics,’’ in Proc. 26th Int. Conf. Parallel
Archit. Compilation Techn. (PACT), Sep. 2017, pp. 219–232.

[36] C. Lindong, J. Fang, S. Chen, C. Xu, and Z. Wang, ‘‘Optimizing sparse
matrix–vectormultiplications on an armv8-basedmany-core architecture,’’
Int. J. Parallel Program., vol. 47, no. 3, pp. 418–432, Jun. 2019.

[37] D. Grewe, Z. Wang, and M. F. P. O’Boyle, ‘‘A workload-aware mapping
approach for data-parallel programs,’’ in Proc. 6th Int. Conf. High Perform.
Embedded Archit. Compil., Jan. 2011, pp. 117–126.

[38] M. K. Emani, Z. Wang, and M. F. P. O’Boyle, ‘‘Smart, adaptive mapping
of parallelism in the presence of external workload,’’ in Proc. IEEE/ACM
Int. Symp. Code Gener. Optim. (CGO), Feb. 2013, pp. 1–10.

[39] D. Grewe, Z. Wang, and M. F. P. O’Boyle, ‘‘OpenCL task partitioning in
the presence of GPU contention,’’ in Proc. Int. Workshop Lang. Compil.
Parallel Comput., 2013, pp. 87–101.

[40] Y. Wen, Z. Wang, and M. F. P. O’Boyle, ‘‘Smart multi-task scheduling for
OpenCL programs on CPU/GPU heterogeneous platforms,’’ in Proc. 21st
Int. Conf. High Perform. Comput. (HiPC), Dec. 2014, pp. 1–10.

[41] D. Lo, T. Song, and G. E. Suh, ‘‘Prediction-guided performance-energy
trade-off for interactive applications,’’ in Proc. 48th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Dec. 2015, pp. 508–520.

VOLUME 7, 2019 139407

L. Yuan et al.: Using Machine Learning to Optimize Web Interactions on Heterogeneous Mobile Systems

[42] B. Gaudette, C. Wu, and S. Vrudhula, ‘‘Improving smartphone user expe-
rience by balancing performance and energy with probabilistic QoS guar-
antee,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Mar. 2016, pp. 52–63.

[43] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, ‘‘CALOREE: Learn-
ing control for predictable latency and low energy,’’ in Proc. 23rd Int. Conf.
Archit. Support Program. Lang. Operating Syst., Mar. 2018, pp. 184–198.

[44] W. Seo, D. Im, J. Choi, and J. Huh, ‘‘Big or little: A study of mobile
interactive applications on an asymmetric multi-core platform,’’ in Proc.
IEEE Int. Symp. Workload Characterization, Oct. 2015, pp. 1–11.

[45] Big.Little Technology. [Online]. Available: http://www.arm.com/products/
processors/technologies/biglittleprocessing

[46] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, vol. 30, Jun. 2013, p. 3.

[47] G. H. Dunteman, ‘‘Principal components analysis,’’ Tech. Rep., 1989.
[48] B. F. Manly and J. A. N. Alberto, Multivariate Statistical Methods: A

Primer. Boca Raton, FL, USA: CRC Press, 2016.
[49] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-

mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[50] V. S. Marco, B. Taylor, B. Porter, and Z. Wang, ‘‘Improving spark
application throughput via memory aware task co-location: A mixture of
experts approach,’’ in Proc. 18th ACM/IFIP/USENIX Middleware Conf.,
Dec. 2017, pp. 95–108.

[51] C.-J. Wu et al., ‘‘Machine learning at Facebook: Understanding inference
at the edge,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2019, pp. 331–344.

[52] W. Ertel, ‘‘On the definition of speedup,’’ inProc. Int. Conf. Parallel Archit.
Lang. Eur., 1994, pp. 289–300.

[53] R. S. Sutton, and A. G. Barto, Introduction to reinforcement learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

LU YUAN was born in 1995. She received the
B.S. degree in computer science from Northwest
University, China, in 2017, where she is currently
pursuing the master’s degree in computer science.
Her research interests include mobile computing
and mobile energy efficiency.

JIE REN was born in 1988. He received the Ph.D.
degree in computer architecture from Northwest
University, China, in 2017. He is currently an
Assistant Professor with the Computer Science
Department, Shaanxi Normal University. His cur-
rent research interests include the areas of mobile
computing and performance optimization.

LING GAO was born in 1995. He received the
B.S. degree in computer science from Northwest
University, China, in 2017, where he is currently
pursuing the master’s degree in computer science.
His research interests include mobile computing
and mobile energy efficiency.

ZHANYONG TANG received the Ph.D. degree
in computer software and theory from Northwest
University, where he is currently an Associate
Professor with the School of Information Science
and Technology. His research interests include net-
work and information security, software security
and protection, localization, and wireless sensor
networks.

ZHENG WANG received the Ph.D. degree in com-
puter science from the University of Edinburgh,
in 2011, under the supervision of the Academic
Advisor Prof. M. O’Boyle. He is currently with
Infolab21, Lancaster University, Lancaster, U.K.
His current research interests include the areas of
parallel compilers, runtime systems, and the appli-
cation of machine learning to tackle the challeng-
ing optimization problems within these areas.

139408 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	ENERGY OPTIMIZATION
	OPTIMIZATION FOR WEB ACCESS
	TASK SCHEDULING
	MACHINE LEARNING FOR SYSTEM OPTIMIZATION
	HETEROGENEOUS MOBILE MULTI-CORES

	BACKGROUND
	PROBLEM SCOPE
	HARDWARE ARCHITECTURE

	MOTIVATION OF THE WORK
	OUR APPROACH
	OVERVIEW
	PREDICTIVE MODELING
	TRAINING DATA GENERATION AND PROBLEM MODELING
	TRAINING DATA GENERATION
	MODEL STRUCTURE
	MODEL FEATURES

	MODEL TRAINING
	MODEL DEPLOYMENT

	EVALUATION SETUP
	HARDWARE AND SOFTWARE PLATFORMS
	WEB WORKLOADS
	BASELINE AND COMPETITIVE APPROACH
	BASELINE
	STATE-OF-THE-ART

	EVALUATION METHODOLOGY
	PREDICTIVE MODEL EVALUATION
	EVALUATION METRICS
	MEASUREMENTS
	PERFORMANCE REPORT

	QUANTIFYING QOS

	EXPERIMENTAL RESULTS
	OVERALL PERFORMANCE
	FPS PREDICTION ACCURACY
	PROCESSOR SETTING DISTRIBUTION
	FEATURE IMPORTANCE
	OVERHEAD BREAKDOWN
	ALTERNATIVE PREDICTIVE MODELING TECHNIQUES

	DISCUSSIONS AND FUTURE WORK
	PERFORMANCE PORTABILITY
	MULTI-TASKING MOBILE WORKLOADS
	NETWORK LATENCY
	IMPACT OF GPU FREQUENCY SETTINGS
	DYNAMIC CONTENT
	IMPACT OF DISPLAYS

	CONCLUSION
	REFERENCES
	Biographies
	LU YUAN
	JIE REN
	LING GAO
	ZHANYONG TANG
	ZHENG WANG

