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Abstract

Nanocrystalline anatase titanium dioxide is an efficient electron transport material

for solar cells and photocatalysts. However, low coordinated Ti cations at surfaces

introduce low lying Ti 3d states that can trap electrons, reducing charge mobility.

Here, a number of dopants (V, Sb, Sn, Zr, Hf) are examined to replace these low

coordinated Ti cations and reduce electron trapping in anatase crystals. V, Sb and Sn

dopants act as electron traps, while Zr and Hf dopants are found to prevent electron

trapping. We also show alkali metal dopants can be used to fill surface traps by

donating electrons into the 3d states of low coordinated Ti ions. These results provide

practical guidance on the optimization of charge mobility in nanocrystalline TiO2 by

doping.

Introduction

Titanium dioxide (TiO2) is an important and widely used semiconductor and photocata-

lyst,1–7 which is extremely useful for a range of applications including, dye sensitized solar

cells,8,9 water splitting,10–12 pollution abatement,13,14 and CO2 reduction.
15–17 The inexpen-

siveness, abundance, and superior electron transport properties of TiO2 make it appealing for
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these applications.18–20 There are a number of TiO2 polymorphs that have different electronic

transport properties, while the rutile phase is the most thermodynamically stable phase, the

anatase phase (a-TiO2) is the more catalytically active material, and most studied.21–24 In

solar energy applications, a-TiO2 is used as a transport material where the electron mobility

is critical to the performance of the device, whereas for water splitting a-TiO2 is irradiated

with light, generating electron-hole separated charge carriers.2,25 The transport of electrons

(e−) and holes (h+) for both applications is vital to the efficiency of a-TiO2, where facet de-

pendent migration from bulk a-TiO2 to the surfaces can occur.26,27 Ideally for water splitting

separation of electrons and holes is required, however charge recombination and annihilation

can occur which is detrimental to conductivity.26,28–31 The charge carriers can also localize on

native cation/anion lattice sites (self-trapping) at surfaces, defects, dislocations, interfaces

or indeed within the bulk material, affecting their mobility throughout TiO2, which greatly

affects its performance as an electron transport material for energy applications.

The self-trapping of electron and hole charge carriers in anatase TiO2 affects electron

transport, charge recombination rates and overall device efficiency. Shallow traps lie close to

the conduction or valence band edges and mediate transport in TiO2,
32 while deeper traps

in the band gap promote carrier recombination.33 Electrochemical and photoluminescence

studies provide valuable insights into the nature of traps in metal oxide samples.34–37 There

is no direct evidence to suggest that electron trapping occurs in bulk a-TiO2, but electron

trapping does occur at surfaces of anatase TiO2.
37–39 Surface trapped electrons have first or-

der steady state kinetics with slow hopping from trap to trap.36 The surface states associated

with trapped electrons have a distinct Fermi level from that of the bulk material, which leads

to a non-uniform Boltzmann distribution resulting in barriers to detrapping.39 The nature

of the electron traps on different exposed surfaces of nano-crystalline anatase TiO2 remains

unclear, where the trapping of the photogenerated electrons, and their hole counterparts, is

facet dependant with their spatial separation, distribution and density of traps on specific

facets playing a key role.26,29,34–36 Indeed the trapping of electrons at different surface facets
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are found to interact differently with adsorbates, such as O2 and H2O, facilitating differ-

ent reaction mechanisms to suggest that the affinity to trap electrons influences the facet

reactivity and charge transfer.38–40

The focus of this paper is build on previous work examining electron trapping at the

anatase surfaces, and identify suitable dopants than can either remove or nullify electron

traps on nano-crystalline a-TiO2. Experimental studies investigating electron trapping have

alluded to surface traps being present on nano-crystalline anatase TiO2 from two sources;

oxygen vacancy formation, and/or low coordinated Ti cations on the surface.37,41,42 Our

recent work using hybrid density functional theory (DFT) calculations have shown that

electron trapping does not occur in the bulk of anatase TiO2,
43 and further calculations

showed that there were no electron trapping surface states on the defect free, pristine low

index surfaces,44 however using the a-TiO2 (103) stepped surface as an example, we showed

that low coordinated Ti cations contributed to electron trapping. Our work is in agreement

with DFT calculations using a Hubbard +U (DFT+U) correction which have modelled the

behaviour of excess electrons in TiO2 showing that a carrier free description of electrons

occupying conduction band states (i.e. no electron trapping) is accurate,45 but in contrast

to other previous DFT+U work.46–50 Our calculations challenge the convention that low

index pristine surfaces contain electron trap states on facets of a-TiO2, and suggest that

undercoordinated Ti cations from surface defects are a more stronger contributing factor

than point defects for electron trapping. These low coordinated Ti cations introduce defect

states lying at the bottom of the conduction band that can trap excess electrons, but do not

generate any additional electrons in the system,44,51–54 whereas point defects such as oxygen

vacancies introduce filled defective states that cannot trap additional electrons.50,55–58

In the present study hybrid DFT calculations are used to investigate substitutional doping

of the low coordinated Ti cations on a-TiO2, and show that they can remove the surface

states at the bottom of the conduction band associated with electron trapping. In our

previous work, electron trapping occurs on the (103) surface and this is used as a model to
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demonstrate that doping can remove electron traps. Typically doping in a-TiO2 is carried

out to improve the TiO2 as a photocatalyst various chemical modifications to change the

electronic structure for TiO2 to adsorb in the visible light spectrum. Some examples of

improving the photoconductivity of TiO2 in such a way include nitrogen,59–63 transition

metal,64,65 sulphur,66–68 carbon,69,70 boron,71 lanthanide,72 zirconium,73–75 and flourine.76

Although many doping studies in the literature are focused on altering the band gap of

TiO2 for photocatalysis, there have been few that specifically examine the influence dopants

have on electron traps in anatase TiO2 nanocrystals. Our focus therefore is to go beyond

the conventional thinking of doping TiO2 by this approach, and examine candidates on the

(103) surface that will remove electron traps. We find that dopants such as V, Sb and Sn

trap additional electrons similar to Ti, while Zr and Hf species do not trap excess electrons

and we show why these species are suitable candidates to remove electron traps. We also

demonstrate that electron donating alkali metals (Li, Na, K, Rb, Cs) can fill the surface

traps, and are another approach to remove electron traps from a-TiO2

Computational Methodology

Hybrid density functional theory (DFT) calculations using the generalized gradient approx-

imation (GGA) were carried out using the CP2K simulation package.77 Exact Hartree-Fock

(HF) exchange is mixed into the exchange-correlation functional (hybrid-DFT) to overcome

the issue of the self-interaction error (SIE) that is well known in DFT. We use a truncated

PBE0 hybrid-DFT exchange-correlation functional that includes long range corrections to

the interaction potential (PBE0-TR-LRC) with a global 1

r
dependence. This defines a range

of separations in the electron integrals to implement the HF exact exchange, and standard

PBE is used outside of this defined range. The truncation radius (Rc) must be smaller than

half the distance of the lattice vectors to ensure that there is no interaction between neigh-

bouring cells, and we set our radius to 6.00 Å shown previously to give converged structural
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and electrical properties.43 The percentage of HF exact exchange to include in these calcu-

lations was parameterized by satisfying Koopmans’ condition to within 0.05 eV for electron

and hole polarons in bulk TiO2 anatase (yielding α = 10.5% ) which gives a band gap within

3% of the experimental value.43 Triple ζ basis sets were used for both titanium and oxygen

for accurate calculations,78,79 and the Goedecker-Teter-Hutter (GTH) pseudopotentials for

both species available within CP2K.80–82 A multi-grid approach for mapping products of

Gaussians onto a real-space integration grid is used in CP2K, where the wide and smooth

Gaussian functions are mapped onto a coarser grid, and the electron density is mapped onto

the finest grid. The plane wave energy cut-off, a reference grid which controls the Gaussian

mapping onto the multi-grid, is set to 60Ry. Five multi-grids are used, and the plane wave

cut-off is sufficiently converged at 600Ry for the finest level of the multi-grid. The electronic

properties of the electron trapped in each surface will be detailed by spin density, partial (l

quantum number decomposed) electronic density of states (PEDOS). The number of elec-

trons for each species is determined using Bader’s atoms in molecules (AIM) approach,83

implemented by Henkelman et al..84–87 All structural images and spin density plots are vi-

sualised using the VESTA software.88,89 Further details on our computational method and

set-up are detailed in the Supporting Information.

Results

The optimized (103) surface is shown in Fig. 1. The (103) surface is terminated with

four coordinated Ti cations (Tisurf ) and two coordinated O anions, while the sub-surface

layers have six coordinated Ti cations (Tisub) and three coordinated O anions similar to

bulk anatase TiO2. Surface Tisurf cations and O anions have bond lengths ranging from

1.69Å to 1.98Å . The Ti cations in the bulk region of the slab (Tibulk) have similar bond

lengths (<1% deviation) to the optimized anatase TiO2 bulk, and can be used as a reliable

reference for calculating electron trapping energies. The partial decomposed (species and
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angular momentum) electronic density of states (PEDOS) plots for Ti cations in different

environments in the surface slab are also shown in Fig. 1. The band gap for both the surface

and bulk regions is 3.12 eV, and in good agreement (<3%) of the experimental band gap

(3.2 eV). The most noticeable difference between the Tisurf and Tibulk cations, is the large

Ti 3d peak at the bottom of the conduction band (CBM) associated with the Tisurf cations

that is absent for Tibulk cations. The presence of states associated with the Tisurf cations at

the CBM will have implications for electron trapping in the (103) surface of anatase TiO2.

The calculated Bader charge for the Tisurf ions is 9.8 electrons (e−) or a charge of +2.2

since our Ti potential contains 12 valence electrons. For Tisub and Tibulk the Bader charge

is 9.7 e− (+2.3), and the O surface anions have a charge of 7.2 e− or -1.2 since there are 6

valence electrons in the potential. Both Ti cations and O anions have a spin of 0.0µβ.

As shown from our previous work,44 the only site capable of trapping an excess electron

is the Tisurf cation, as shown in Fig. 1 (b), while all other sites in the sub surface and bulk

regions prefer delocalised electronic solutions similar to bulk a-TiO2.
43 The electron trapped

at this site reduces Ti4+ to Ti3+ as we see a decrease in the Tisurf charge from +2.2 to +2.0,

which some further charge spread across neighbouring ions. The presence of the trapped

electron increases the spin on the Ti cation from 0.0 to 0.74µβ. The geometric structure

around the reduced Ti cation becomes distorted with surface bond lengths increasing by 0.1

- 0.15Å . The calculated trapping energy is +0.07 eV with respect to the delocalised solution

in the bulk of the slab implying that electrons would prefer to be delocalised in the bulk

crystal than trapped at low coordinated surface Ti atoms. The trapping of electrons at these

sites can be considered to be kinetically trapped, as observed by experiment,36 but being

thermodynamically unfavourable. The PEDOS shows that the electron trap is a shallow

donor, where the occupied Ti 3d defect peak is 0.45 eV below the CBM. This peak was

previously seen at the conduction band edge (Fig. 1 (a)) and the trapped electron fills this

state.

The dopants we initially consider to passivate the Tisurf electron trap are V, Sb, Sn, Zr

6



Figure 1: (a) The (103) surface slab and calculated PEDOS for different Ti cations, and (b)
the local geometry of an electron trapped at a surface Ti atom and the associated PEDOS.
The blue and red spheres are the lattice sites for the Ti cations and O anions, while the
green and red lines are the Ti 3d and O 2p projected DOS.
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and Hf (that all have a stable +4 oxidation state). Zr and Hf are of particular interest as

these species are known to be polaronic materials in their parent MO2 oxides.90–93 These

materials have contrasting polaronic behaviour, only hole trapping is seen in ZrO2 while both

electron, and hole trapping is observed in HfO2. This will allow a comparison between with

each other and other dopant species for examining their behaviour and effect on electron

trapping in TiO2. The dopants can replace the low coordinated Ti cations on the surface,

where the rationale is to remove the states at the CBM associated with electron trapping

(Fig. 1). The distribution of dopants were examined in different layers of the slab from

the surface (1) to the bulk region (4) as shown in Fig. 2, where the calculated relative

energies for each layer are given in Table 1. We find that there is a difference of around

0.2 eV between the different surface and sub-surface sites, suggesting that the dopants could

potentially replace either the four or six coordinated Ti cations. In the bulk region of the

slab, Sn, Zr and Hf have more favoured energies compared to the surface region, however,

although the thermodynamics may suggest that they are more stable there would be a large

experimental kinetic barrier to drive these dopants into a bulk region to replace Ti cations

in TiO2 nano-crystals, and thus the dopants would be expect to be in the surface region.

For the interest of this study we will focus on replacing the Tisurf cations.

Figure 2: The different lattice positions in the surface slab examined for the dopant distri-
bution.

After relaxation, all the dopants maintain the same geometry and coordination of the
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Table 1: The calculated energies relative to the surface site for the distribution of dopants
in the (103) slab as shown in Fig. 2.

Bond 1 (eV) 2 (eV) 3 (eV) 4 (eV)
V 0.00 +0.11 +0.32 +0.32
Sb 0.00 +0.21 +0.55 +0.55
Sn 0.00 -0.09 -0.54 -0.46
Zr 0.00 -0.11 -0.49 -0.29
Hf 0.00 -0.19 -0.44 -0.34

Ti cation site with changes to the bond lengths. The calculated metal-oxygen bond lengths

in the surface layer (M-Osurf ), and the sub-surface layer (M-Osub) are given in Table 2. All

dopants have longer bond lengths than Ti-O, with the largest change seen for the bonds

oriented towards the sub surface layer, where Sb and Zr show the greatest increase. The

dopants distort the local geometry on the surface, with changes in Ti-O bond lengths being

observed to the next nearest neighbour positions.

Table 2: The calculated bond lengths for the Ti-O surface bonds and the dopant-O bonds.

Bond M-Osurf (Å ) M-Osub (Å )
Ti-O 1.98 (x2) 1.83, 1.69
V-O 2.01 (x2) 1.82, 1.61
Sb-O 2.15 (x2) 1.99, 1.89
Sn-O 2.05 (x2) 1.98, 1.89
Zr-O 2.10 (x2) 1.96, 1.84
Hf-O 2.06 (x2) 1.92, 1.83

The calculated partial density of states (PDOS) for each of the doped surfaces are shown

in Fig. 3. There are significant differences in the electronic structure for the V and Sb

dopants when replacing a Tisurf ion. The V dopant has a +4 oxidation state with one

unpaired electron as shown by the occupied V 3d peak around 1 eV above the VBM, and

has a spin of 0.97µβ. Sb can adopt a +4 oxidation state in one phase of its parent oxides,94

and the Sb dopant has a +4 oxidation state when replacing the Ti cation with an unoccupied

Sb 5p state around 1 eV above the VBM (Fig. 3 (c)) and a spin of 0.36µβ, thus behaving

in a similar manner to Sb doping of SnO2.
95,96 The potentials for V and Sb have 13 and 5

electrons respectively, so using the calculated Bader values for the V and Sb dopants their
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charges are +2 and +3.8 respectively. The Sb dopant has a larger charge than either Ti or

V. Further inspection of the Bader charges and volumes shows that due to the larger ionic

radius of Sb some of the charge on Sb is incorrectly assigned to the surrounding oxygen

atoms. Accounting for this fact, the real Sb Bader charge is found to be around +2.2. The

Sn, Zr and Hf dopants have a +4 oxidation state similar to the Ti+4 cation, and do not

introduce any defect states in the band gap (Fig. 3 (c), (e), (f)), where their absence shows

that these dopants are isoelectronic to Ti. The charges for Sn, Zr and Hf dopants are +4.0,

+2.5 and +2.6. Similar to Sb, the Bader charge on the Sn ion is misleading due to its large

ionic radius. Accounting for the charge on the surrounding oxygen atoms the Sn dopant has

a charge of +2.4. All dopants have a spin of 0.0µβ.

Figure 3: (a) The local structure of the (103) surface and the calculated PEDOS plots for
(b) V, (c) Sn, (d) Sb, (e ) Zr and (f) Hf doped surfaces. The blue and red spheres are the
Ti and O ions, while the red and green lines are the p and d states.

In order to examine the electron trapping behaviour of these dopants, an additional
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electron is added in the presence of a precursor polaronic distortion around the Tisurf site

and optimized self consistently. The lowest energy configurations of the excess electron for

each dopant species are shown in Fig. 4. The addition of an electron to the V doped surface

leads to reduction of the V dopant (V4+ to V3+). The added electron becomes spin paired

with the previous unpaired electron on the V ion. There is an decrease in the charge of the

V ion from +2.0 to +1.7 resulting in a spin of -0.03µβ. The reduction of the V ion is 0.13 eV

more favourable than the delocalised solution in the bulk, and 0.22 eV more favourabale

than trapping at other Tisurf cations. A similar behaviour is seen for the Sn doped surface

when an electron is added. The electron preferentially traps on the Sn dopant in the a-TiO2

(103) surface over the Tisurf cations as shown by the spin density plot in Fig. 4 (b), with

a calculated trapping energy of -0.01 eV compared to the delocalised solution in the bulk,

and 0.01 eV more favoured than an electron trapped on a nearby Tisurf cation. There is

a decrease in charge of the Sn dopant from +2.4 to +1.7 and an increase in spin to 0.6µβ

indicating a reduction of Sn+4 to Sn+3. For the Sb doped surface, the addition of an electron

fills the unoccupied Sb 5p state on the Sb dopant. Reduction of surface Ti cations near the

Sb dopant was not energetically feasible and the electron always favoured migrating to fill

the unoccupied Sb 5p state on the Sb dopant. The charge decreases from +2.2 to +1.4,

and the spin decreases to 0.0µβ confirming the reduction of the Sb dopant. The calculated

energy to fill the unoccupied defect state is -0.001 eV compared to the delocalised solution

in the bulk indicating that the excess electron has no preference between the Sb dopant and

bulk. When an excess electron is trapped at the Tisurf cation beside a dopant species, it

will migrate under surface relaxation onto a dopant cation indicating that electrons are more

likely to be present on the dopant than the Tisurf cation suggesting these dopants act as

stronger trapping sites than surface Tisurf cations.

A different electron trapping behaviour is observed for the Zr and Hf doped (103) a-TiO2

surfaces. An additional electron will not localise on the the Zr or Hf dopant as seen for V,

Sn, and Sb, and the electron preferentially migrates to reduce another Tisurf cation as shown

11



Figure 4: The local geometry, spin density plot for electron trapping in (a) V, (b) Sn, (c)
Sb, (d) Zr and (e) Hf doped (103) surface slab. The blue and red spheres are the lattice sites
for the Ti cations and O anions, while the green iso-surface shows the location of the excess
electron (0.004 electrons/Å3).

in Fig. 4 (d) and (e). This occurs on next nearest neighbour sites for Zr doped surface, while

for Hf doped TiO2 the electron will migrate to the next chain of Tisurf cations. The reduced

Ti cation has an decrease in charge from +2.2 to +1.9. It was still energetically unfavourable

to localise an electron on the dopant using 25% HF exchange, and the electron migrated to

a low coordinated surface Ti, suggesting that electron trapping will never occur on the Zr

and Hf dopants. Trapping the electron on the doped Zr and Hf surfaces costs an energy of

+0.17 eV and +0.10 eV, respectively, relative to a delocalised electron in the anatase bulk

indicating that the presence of the dopant makes it less favourable for the electron to be

present at the surface. These dopant species do not trap electrons as there are no low energy

peaks at the CBM capable of accomodating extra electrons as shown by the PEDOS plots.

The calculated PEDOS plots given in Fig. 5 provide further evidence to the electron

trapping nature of the V, Sn and Sb dopants, while showing that no trapping occurs on Zr

and Hf dopants. The reduction of V and Sn dopants by trapping an excess electron is shown
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Figure 5: The calculated PEDOS plot for electron trapping in (a) V, (b) Sn, (c) Sb, (d) Zr
and (e) Hf doped (103) surface slab. The red and green lines are the p and d states.
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by the defect levels in the band gaps (Fig. 5 (a) and (b), where the excess electron on V

pairs with the previous unpaired electron (Fig. 3 (b)) having a deep defect level around 1 eV

below the CBM, while for Sn the extra electron occupies a Sn 5p defect level 0.25 eV above

the VBM. The presence of a Sn 5p defect level at the CBM suggests that further electron

trapping is likely on the Sn dopant. The absence of a defect peak in the band gap for the

Sb doped surface supports the filling of the unoccupied defect state by the excess electron.

For the Zn and Hf dopants, the shallow defect Ti 3d level around 0.45 eV below the CBM

is an indication of electron trapping on the Tisurf cations. Trapping does not occur on the

dopants as their d band states lie deep in the CB and a wider number of states near the

CBM is similar to bulk TiO2 suggesting that no electron trapping can occur.

Another approach to reduce electron trapping in anatase TiO2 is the introduction of

electron donating species to fill the electron surface traps. In order to examine this, we

introduced alkali metal (Li, Na, K, Rb, Cs) interstitials into the anatase (103) surface. Alkali

metal doped TiO2 is well studied, especially Li doped TiO2, where many experimental studies

have shown that alkali metal can easily be incorporated into TiO2 and show improvements in

conductivity over undoped TiO2.
97–100 Their effect however on electron traps in TiO2 has not

been considered, and is an interesting approach to consider to nullify the electron traps that

exist on anatase TiO2 crystals. In order to find the most energetically favoured interstitial

position, the metal ions were relaxed in various sites in the surface and sub-surface layers with

the relaxed geometry for the lowest energy position of each species shown in Fig. 6. There

appears to be an ionic radius size effect on the lowest energy configuration. The smaller Li

and Na ions reside in the subsurface layers, while the larger K, Rb and Cs ions prefer to

move from the sub surface layers and sit on the (103) surface. Rb and Cs interstitials are

large enough to form additional Rb/Cs-O bonds with the O anions in the step pulling them

away from the coordinated Ti cations, resulting in the Ti cation becoming three coordinated.

The calculated bond lengths for the alkali interstitials in the (103) surface are given in Table

3, where the increase in bond lengths with increasing ionic radius can be seen. The bond
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lengths for the large cations becomes too large for the surface to accommodate the interstitial

so K/Rb/Cs migrate to the surface edge in order to relieve any surface strains.

Figure 6: The local geometry of the alkali metal interstitials in the (103) surface slab for (a)
Li, (b) Na, (c) K, (d) Rb and (e) Cs. The blue and red spheres are the lattice sites for the
Ti cations and O anions, while the green, purple, magenta, pink and turquoise spheres are
the Li, Na, K, Rb and Cs interstitials. The position of the excess electron is shown by the
green spin density plot (0.004 electrons/Å3).

Table 3: The calculated bond lengths for the metal-oxygen surface bonds of the interstitial
ions along the a and c directions.

Bond a direction (Å ) c direction (Å )
Li-O 1.90 (x2) 2.12, 1.95
Na-O 2.18 (x2) 2.22, 2.14 (x2)
K-O 2.62 (x2), 2.79 (x2) 3.10
Rb-O 3.00 2.90 (x4)
Cs-O 3.06 3.10 (x4)

The spin density plots in Fig. 6 show that the neighbouring Tisurf cation contains

excess electron density donated from the presence of the alkali metal interstitial ion. The

alkali metal donates the electron to fill the electron trap state that resides at the bottom of

the CBM, reducing the Ti+4 to Ti+3. This electron donating process is supported by the

calculated PEDOS plots for Li and Na incorporation in TiO2 as shown in Fig. 7, where
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only the plots for Li and Na interstitials are shown since the PEDOS plots for the other

alkali metals have similar characteristics. There are negligible Li/Na 1/2 s states in the VB

suggesting that a small amount of electron occupation resides on the alkali metal, while the

occupation of the electron trap is seen with the presence of the defect peak around 1 eV from

the CBM on the Ti PEDOS. The reduction process for each surface is also supported by the

decrease in the Tisurf cation charge from +2.2 to +1.9, and an increase in the spin on the

reduced Ti cation from 0.0 to 0.88µβ.

Figure 7: The calculated PEDOS plots for (a) Li, and (b) Na doped TiO2. The blue, red
and green lines are the s, p, and d states, where the black dotted line shows the position of
the fermi level. The top of the valence band is aligned to 0 eV.

Discussion

Electron self trapping is harmful to the performance of TiO2 as an electron transport layer

in solar cell devices since the excess electrons from an external bias will trap at Ti cation

lattice sites reducing its efficiency. Reducing or removing these traps from TiO2 nano-

composites is of critical importance to ensure that electrons are allow to flow through the

medium without hindrance. We examined two approaches to reduce the contribution of low

coordinated surface Ti cations towards electron trapping in nano-crystals of anatase TiO2;

(1) substitutional doping to remove the Ti 3d states associated with electron traps, and (2)

introduction of electron donating interstitials to fill the associated Ti 3d electron trap states.

The examined dopants with stable variable oxidation states such as V and Sb were found

16



not to relieve electron trapping at the (103) surface. V introduced more electron traps to the

system as low lying V d states were introduced at the CBM, and could be further reduced

from V+4 to V+3. It is also more energetically favoured to carry out this reduction than

having electrons delocalised in the bulk system. The Sb dopant is also not a good candidate

to reduce electron trapping in the (103) surface as this dopant introduces unoccupied defect

states into the surface. These states act as electron traps in addition to the low coordinated

Ti cations. We also found that using Sn as a dopant to reduce electron trapping was not

viable as it was more favoured to reduce the Sn dopant than the Ti cations. Sn is more

electronegative than Ti and will have a tendancy to attract electrons, while the lower lying

Sn 5p states in the conduction band are more easily accessed than the Ti 3d states. From

our predictions it is therefore not advisable to use V, Sn or Sb as chemical modifications in

a-TiO2 for solar cell applications as these species further contribute to electron trapping. The

migration of Sn ions into a-TiO2 when examining a SnO2/TiO2 composite,101,102 can greatly

affect the electron transport efficiency since Sn will trap electrons, and thus preventing Sn

incorporation in a-TiO2 is desirable to maintain the photocatalytic activity and electron

transport properties.

Both Zr and Hf were found to be useful candidates to remove electron traps from the

(103) surface of anatase TiO2. These dopants removed the trapping states at the CBM

associated with electron trapping, as the Zr 4d and Hf 5d states are higher in energy.

The additional electrons could not localise on the Zr/Hf because of this, and it was more

energetically favourable to move to and reduce the low coordinated Ti cations. Increasing the

concentration of these dopants could eliminate more of the Tisurf electron traps leading to

improved mobility in a-TiO2. Using non-reducible dopants such as Zr is beneficial to reduce

electron trapping in anatase TiO2 since this species removes low lying electron trapping

states at the CBM. Experimental studies have eluded to Zr doping improving photocatalytic

properties of a-TiO2, and doping with Zr to remove electron traps is a perhaps a contributing

factor to this improvement.103–106
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The use of alkali metal candidates is also useful for removing electron traps from anatase

TiO2. These species donated electrons into the low coordinated Ti cations and filled the

electron trap states at the CBM. Any additional electrons into the anatase crystals would

therefore not get trapped since the states are now filled. Using electron donating species is

beneficial to reduce electron trapping in anatase TiO2.

Conclusion

In summary, hybrid-density functional theory was used to examine approaches to reduce

electron trapping in nano-crystals of TiO2. Low coordinated Ti cations on surfaces of anatase

TiO2 were found to greatly contribute to electron trapping since these species introduce low

lying Ti 3d states at the bottom of the conduction band. These states can then be filled

with additional electrons in the nano-crystal and the electrons become trapped at these

surface artifacts. A number of dopants were examined to replace these low coordinated Ti

cations and reduce electron trapping in anatase TiO2. Dopants such as V and Sb that can

achieve stable variable oxidation states were found to enhance electron trapping through the

introduction of additional defect states in the band gap or the bottom of the conduction

band. This is expected to reduce electron mobility in anatase TiO2 as these dopants would

act as electron traps in addition to the low coordinated surface Ti cations. We found that

Zr and Hf will improve electron mobility in anatase TiO2 as these species do not introduce

additional defect peaks or further d state peak traps at the bottom of the conduction band,

reducing the number of electron traps present in samples. Alkali metals are also expected to

improve electron transport in TiO2. These species can donate extra electrons into the low

lying Ti 3d states at the bottom of the conduction band associated with electron trapping. If

the traps are already filled by these alkali earth metal interstitials then additional electrons

into nano-crystals of anatase TiO2 are expected not to trap and thus reducing electron

trapping.

18



Supporting Information Available

Supporting Information Available: Further computational details and set up.

This material is available free of charge via the Internet at http://pubs.acs.org/.

Acknowledgement

K.P.M. and J.J.C acknowledge support from EPSRC (EP/K003151/1, EP/P006051/1 and

EP/P023843/1). This work made use of the facilities of Archer, the UK’s national high-

performance computing service, via our membership in the UK HPC Materials Chemistry

Consortium, which is funded by EPSRC (EP/L000202/1). This work also made use of

the facilities of N8 HPC Centre of Excellence, provided and funded by the N8 consortium

and EPSRC (EP/K000225/1). The Centre is coordinated by the Universities of Leeds and

Manchester. Work on this project also made use of the Viking Cluster, which is a high

performance compute facility provided by the University of York. All data created dur-

ing this research are available by request from the University of York Research database

(https://pure.york.ac.uk/portal/en/).

References

(1) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R.; Fornasiero, P.;

Murray, C. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Mor-

phology, Oxygen Vacancy Concentration, and Photocatalytic Activity. Journal of the

American Chemical Society 2012, 134, 6751–6761.

(2) Jian, P.; Gang, L.; Qing, L. G.; Hui-Ming, C. On the True Photoreactivity Order

of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie

International Edition 2011, 50, 2133–2137.

19



(3) Zheng, Z.; Huang, B.; Lu, J.; Qin, X.; Zhang, X.; Dai, Y. Hierarchical TiO2 Micro-

spheres: Synergetic Effect of {001} and {101} Facets for Enhanced Photocatalytic

Activity. Chemistry A European Journal 2011, 17, 15032–15038.

(4) Wang, Z.; Huang, B.; Dai, Y.; Liu, Y.; Zhang, X.; Qin, X.; Wang, J.; Zheng, Z.;

Cheng, H. Crystal Facets Controlled Synthesis of Graphene at TiO2 Nanocomposites

by a One-pot Hydrothermal Process. CrystEngComm 2012, 14, 1687–1692.

(5) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.;

Lu, G. Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets.

Nature 2008, 453, 638–641.

(6) Etgar, L.; Zhang, W.; Gabriel, S.; Hickey, S. G.; Nazeeruddin, M. K.; Eychmüller, A.;

Liu, B.; Grätzel, M. High Efficiency Quantum Dot Heterojunction Solar Cell Using

Anatase (001) TiO2 Nanosheets. Advanced Materials 2012, 24, 2202–2206.

(7) Nolan, M.; IwaszuK, A.; Lucid, A. K.; Carey, J. J.; Fronzi, M. Design of Novel Visible

Light Active Photocatalyst Materials: Surface Modified TiO2. Advanced Materials

2016, 28, 5425–5446.

(8) Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Fabrication of Highly-

Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano

Letters 2009, 9, 601–606.

(9) Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.;

Zakeeruddin, S. M.; Grätzel, M. Application of Highly Ordered TiO2 Nanotube Arrays

in Flexible Dye-Sensitized Solar Cells. ACS Nano 2008, 2, 1113–1116.

(10) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor

Electrode. Nature 1972, 238, 37–38.

20



(11) Khan, S. U.; Al-Shahry, M.; Ingler, W. B. Efficient Photochemical Water Splitting by

a Chemically Modified n-TiO2. Science 2002, 297, 2243–2245.

(12) Ni, M.; Leung, M. K.; Leung, D. Y.; Sumathy, K. A Review and Recent Developments

in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable

and Sustainable Energy Reviews 2007, 11, 401–425.

(13) Esterkin, C.; Negro, A.; Alfano, O.; Cassano, A. Air Pollution Remediation in a Fixed

Bed Photocatalytic Reactor Coated with TiO2. AIChE Journal 2005, 51, 2298–2310.

(14) Antonello, A.; Soliveri, G.; Meroni, D.; Cappelletti, G.; Ardizzone, S. Photocatalytic

Remediation of Indoor Pollution by Transparent TiO2 Films. Catalysis Today 2014,

230, 35–40.

(15) Rhatigan, S.; Nolan, M. CO2 and Water Activation on Ceria Nanocluster Modified

TiO2 Rutile (110). Journal of Materials Chemistry A 2018, 6, 9139–9152.

(16) Fronzi, M.; Daly, W.; Nolan, M. Reactivity of Metal Oxide Nanocluster Modified

Rutile and Anatase TiO2: Oxygen Vacancy Formation and CO2 Interaction. Applied

Catalysis A: General 2016, 521, 240 – 249.

(17) Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced Photocatalytic CO2-

Reduction Activity of Anatase TiO2 by Coexposed {001} and {101} Facets. Journal

of the American Chemical Society 2014, 136, 8839–8842.

(18) Reddy, K. M.; Manorama, S. V.; Reddy, A. R. Bandgap Studies on Anatase Titanium

Dioxide Nanoparticles. Materials Chemistry and Physics 2003, 78, 239 – 245.

(19) Sankapal, B.; Lux-Steiner, M.; Ennaoui, A. Synthesis and Characterization of Anatase-

TiO2 Thin Films. Applied Surface Science 2005, 239, 165 – 170.

(20) Tang, H.; Prasad, K.; Sanjinés, R.; Schmid, P. E.; Lévy, F. Electrical and Optical
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