
This is a repository copy of Estimation of valvular resistance of segmented aortic valves 
using computational fluid dynamics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/149359/

Version: Accepted Version

Article:

Hoeijmakers, M.J.M.M., Soto, D.A.S., Wächter-Stehle, I. et al. (4 more authors) (2019) 
Estimation of valvular resistance of segmented aortic valves using computational fluid 
dynamics. Journal of Biomechanics, 94. pp. 49-58. ISSN 0021-9290 

https://doi.org/10.1016/j.jbiomech.2019.07.010

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Estimation of Valvular Resistance of Segmented Aortic

Valves Using Computational Fluid Dynamics

M.J.M.M. Hoeijmakersa,b,∗, D.A. Silva Sotoc, I. Wächter-Stehled, M.
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Abstract

Aortic valve stenosis is associated with an elevated left ventricular pressure and

transaortic pressure drop. Clinicians routinely use Doppler ultrasound to quan-

tify aortic valve stenosis severity by estimating this pressure drop from blood

velocity. However, this method approximates the peak pressure drop, and is

unable to quantify the partial pressure recovery distal to the valve. As pressure

drops are flow dependent, it remains difficult to assess the true significance of

a stenosis for low-flow low-gradient patients. Recent advances in segmentation

techniques enable patient-specific Computational Fluid Dynamics (CFD) sim-

ulations of flow through the aortic valve. In this work a simulation framework

is presented and used to analyze data of 18 patients. The ventricle and valve

are reconstructed from 4D Computed Tomography imaging data. Ventricular

motion is extracted from the medical images and used to model ventricular con-

traction and corresponding blood flow through the valve. Simplifications of the

framework are assessed by introducing two simplified CFD models: a truncated

time-dependent and a steady-state model. Model simplifications are justified for

cases where the simulated pressure drop is above 10 mmHg. Furthermore, we

propose a valve resistance index to quantify stenosis severity from simulation re-

sults. This index is compared to established metrics for clinical decision making,

i.e. blood velocity and valve area. It is found that velocity measurements alone

do not adequately reflect stenosis severity. This work demonstrates that com-

bining 4D imaging data and CFD has the potential to provide a physiologically

relevant diagnostic metric to quantify aortic valve stenosis severity.

Keywords: Aortic valve stenosis, Heart valve disease, Hemodynamics,

Computational fluid dynamics, Patient-specific
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1. Introduction1

Aortic valve stenosis (AS) is the narrowing of the aortic valveaorta at the2

location of the aortic valve and disturbs impedes blood flow into the systemic3

circulation. Once developed, AS consistently increases with age, and it is [1] R 1.5.4

estimated that 2.8-3.9% of the population older than 70 years of age suffer from5

some form of AS (Eveborn et al., 2012; Nkomo et al., 2006). AS is often caused6

by calcification of the Aortic Valve (AV) leaflets, resulting in a stiffer valve that7

impedes the opening and closing function of the valve. Hence, in systole, the8

valve may not open completely, and a large pressure difference is required to9

maintain flow. If left untreated, AS may eventually lead to heart failure.10

AS obstructs flow from the ventricle into the aorta, and a large effective11

pressure difference is required to maintain cardiac output. The drop in pressure12

is an indicator for the severity of AS. However, non-invasive diagnostic quanti-13

tative evaluation of the pressure drop is challenging. Hence, in current clinical14

practice other indirect metrics are used. At present, the main criteria to judge15

AS severity are: the mean transaortic pressure drop; maximum velocity of the16

jet (vmax), and the Aortic Valve Area (AVA) by continuity equation (Chambers,17

2016; Nishimura et al., 2014; Baumgartner et al., 2016). All these metrics are18

routinely obtained by echocardiography. However, vmax and the mean pres-19

sure drop are both flow-dependent, and may conflict with AVA measurements20

for 20-30% of patients with severe AS (Eleid et al., 2013). Typically, these21

diagnostic measures conflict for cases with low-flow/low-gradient AS. For this22

patient group it remains difficult to assess whether AS is significantly present23

(Vogelgesang et al., 2017).24

Echocardiography is inexpensive, readily available and easy to perform, and25

an established method to derive metrics indicative of stenosis severity. When26

echocardiography results are inconclusive, Computed Tomography (CT) or car-27

diac Magnetic Resonance Imaging (MRI) can be used to derive additional in-28

dicators, e.g the aortic diameter or amount of calcification (Chun et al., 2008).29

Furthermore, CT and cardiac MRI enable detailed three-dimensional recon-30
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structions of the full-heart anatomy. Moreover, segmentation methods from31

cardiac CT and MRI images have improved considerably over the past years32

(Ecabert et al., 2008, 2011; Grbic et al., 2012; Ionasec et al., 2010). Further-33

more, recent developments see high-quality valve models incorporated into ex-34

isting segmentation frameworks (Weese et al., 2017). These detailed 3D models35

of the AV can be used in combination with 3D Computational Fluid Dynamics36

(CFD) to evaluate the hemodynamic performance of the patient-specific valve37

(Weese et al., 2017). However, in order to quantify the load on the ventricle,38

extending the CFD model to include the (contracting) Left Ventricle (LV) may39

yield information on the true significance of the stenotic valve.40

In systole, a healthy valve opens completely, and imposes little to no re-41

sistance to blood flow. However, flow through the diseased valve is similar to42

flow through an orifice. Blood is accelerated into the orifice, and pressure is43

converted to kinetic energy. When blood enters the Ascending Aorta (AA), it44

is decelerated, and pressure is partly recovered. (Fig. 1). Pressure is not com-45

pletely recovered due to viscous losses, including those from turbulence. This46

results in an effective pressure drop between the LV and AA. To quantify the47

relative contribution of the valve to the effective pressure drop, a valve resistance48

index is proposed:49

IVR =
∆PV

∆PE

(1)

This index quantifies the pressure loss due to the presence of the valve (∆PV )50

with respect to the total effective pressure loss between the LV and AA (∆PE).51

For healthy valves, pressure is expected to recover approximately to the same52

pressure level as in the Left Ventricular Outflow Tract (LVOT). When the cross-53

sectional area of the AA exceeds that of the LVOT, blood velocity (and kinetic54

energy) in the AA decrease. Consequently, (static) pressure may recover be-55

yond LVOT pressure. However, for diseased valves, it is expected that only a56

(small) part of pressure is recovered, and excessive viscous and turbulent losses57

dominate. [2] R 1.7.58
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The main aim of this work is to evaluate the valve resistance index pro-59

posed in Equation 1 with clinically accepted measures, such as, vmax and the60

AVA. Additionally, the CFD model with the contracting left ventricle is used61

to evaluate the accuracy of simplified valve-only CFD models and Bernoulli ap-62

proximations. For this purpose, the workflow described by Weese et al. (Weese63

et al., 2017) is extended to include both the AV and contracting ventricle.64

2. Materials and Methods65

2.1. Aortic Valve Anatomies66

Cardiac CT segmentation data was obtained from an anonymized dataset67

used in a previous study (Weese et al., 2017). Original images were acquired68

using electrocardiogram-gated CT angiography with 10% intervals of the elec-69

trocardiographic R-R interval. CT images had an in-plane resolution of 0.31-70

0.68 mm and slice thickness of 0.34-0.70 mm. Segmented anatomical structures71

include the LV, LVOT and AV. Fig. 2B shows a typical segmented anatomy at72

different phases of the cardiac cycle.73

A single Structured Surface models of the LV and AV throughout systole was74

were generated for each patient with a Shape Constrained Deformable Model75

(SCDM). The authors refer to Ecabert et al. or Weese et al. for a detailed76

description of the SCDM (Ecabert et al., 2008, 2011; Weese et al., 2017). The77

surface model was built from the image at mid-systole was selected, and de-78

veloped into the CFD model. This model had the valve in the most open79

position, typically at 20% or 30% of the electrocardiographic R-R interval. The80

structured surface model consisted of 3094 vertices and 6169 triangles with an81

average edge length of 2.6 mm (Fig. 2B). The geometric AVA was estimated82

from the structured surface model by a projection method (Weese et al., 2017).83

All segmentation surface models throughout the cardiac cycle were then con-84

verted into binary masks, covering the LV and LVOT, to facilitate registration.85

[3] R 1.6.86
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2.2. Image Registration87

Each consecutive segmented binarized image pair was registered using The88

Sheffield Image Registration Toolkit (Barber & Hose, 2005). The resulting 3D89

discrete mapping fields morphed one image onto the next. The Sheffield Image90

Registration Toolkit produced smooth, non-linear registration maps with sub-91

pixel accuracy. To compute the 3D mappings between the images, the Sheffield92

Image Registration Toolkit uses an intensity-based linear least-squares algo-93

rithm, iteratively applied to handle large displacements. The 3D registration94

map was spatially interpolated to the vertices of the surface model at mid-95

systole. This yielded a set of iso-topological surface models in the R-R interval96

This yielded a set of surface models in the R-R interval with the same topology97

as the surface model at mid-systole. Registration was done on the binarized98

segmented images, hence no information on the motion of the AV and AA was99

available. For this reason, and for CFD stability the mean rigid motion of the100

model was removed from the overall model motion. Velocity vectors ~v for each101

vertex n of the surface model were a function of time and computed from the102

consecutive iso-topological surface models by:103

~vn(t) =
~xn(t+∆t)− ~xn(t)

∆t
(2)

With ~x the position of vertex n at time t in the cardiac cycle. Vertex positions104

are sparse in time, and were interpolated using cubic splines.105

2.3. Mesh Generation106

Volumetric meshing was performed with ANSYS Fluent Meshing R17.2 (AN-107

SYS Inc, Canonsburg, Pennsylvania, United States). Structured surface models108

were truncated by a manually defined plane two to five mm proximal to the valve109

annulusbase and orthogonal to the valve axis (Fig. 2C). The outflow boundary110

was extended by 3.5 times the diameter of the AA. The inflow boundaries of the111

truncated models were extended by 1.5 times the LVOT diameter. The volume112

was filled with tetrahedra in the core, and ten layers of pentahedra elements113
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inflated from the wall. Element sizes were chosen based on a mesh sensitivity114

study, and ranged between 0.5-2.5 mm. Maximum element edge length in the115

LV was constrained to 2.5 mm. Edge lengths in the proximity of the AV were116

constrained to 0.5 mm to capture valve features.117

2.4. Computational Methods118

Fluid flow is governed by the Navier-Stokes equations. For moving grids,119

the integral form of the continuity equation for a control volume Ω with surface120

Γ can be written as.121

∂

∂t

∫
Ω

ρdV +

∫
Γ

ρ(~v − ~vg) · ~ndA = 0 (3)

With ρ the density of blood, ~v the velocity vector, ~vg the velocity of the (bound-122

ary) grid, and ~n the normal vector to the surface Γ. Similarly, the momentum123

equation can be written as:124

∂

∂t

∫
Ω

(ρ~v)dV +

∫
Γ

ρ~v(~v − ~vg) · ~ndA = −

∫
Γ

pI · ~ndA+

∫
Γ

τ · ~ndA (4)

Where p is the pressure, I the identity tensor, and τ the viscous stress tensor.125

A diffusion based smoothing method was applied for grid motion.126

∇ · (γ∇~vg) = 0 (5)

γ =
1

dα
(6)

With ~vg the grid velocity, γ the diffusion coefficient and d the normalized dis-127

tance to the boundary. For all simulations α = 1 and resulted in skewed grid128

motion towards the interior, i.e. elements in the interior deformed more. The129

boundary conditions (Fig. 3) for the diffusion equation were:130
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ΓAA,ΓSinus,ΓAV : ~vg = 0

ΓLV OT : ~vg = f(s)~vn(t)

ΓLV : ~vg = ~vn(t)

f(s) is a ramp function that linearly scaled boundary velocity to zero in the131

LVOT as a function of the position s in the LVOT, i.e. f(s) = 1 proximal to132

the LVOT, and f(s) = 0 distal to the LVOT.133

Blood was modeled as an in-compressible fluid with a density of 1050 kg·m-3
134

and dynamic viscosity of 0.004 Pa· s. No-slip boundary conditions were as-135

sumed at the walls, and at boundary Γout pressure is set to zero. The governing136

equations were solved with ANSYS Fluent R17.2 (ANSYS Inc, Canonsburg,137

Pennsylvania, United States). Simulations were executed on the ACC Cyfronet138

AGH Prometheus Supercomputer (Academic Computer Centre Cyfronet, AGH139

University of Science and Technology, Kraków, Poland). Each simulation was140

assigned one compute node with 24 CPU’s.141

2.4.1. Transient Models142

For the transient models a (bounded) central difference scheme was used for143

the advection and diffusion terms. The transient term was integrated with a144

second order backward difference approximation. Convergence criteria at each145

time-step were set at 0.05 for locally scaled residuals of x-, y-, z-velocity, and146

continuity. Sub-grid turbulent dissipation was modeled with Large Eddy Sim-147

ulation and the Wall Adapting Local Eddy-Viscosity model (Nicoud & Ducros,148

1999). Time steps were defined as 1/10000th of the cardiac cycle. Vertex ve-149

locities were spatially interpolated from the structured surface model onto the150

re-meshed surface of the computational domain by an inverse distance-weighted151

interpolation using eight nearest neighbors of the structured model. Stroke vol-152

ume was pre-computed with a discrete form of Gauss’s theorem (Hughes et al.,153

1996) for the structured and re-meshed surfaces. Vertex velocities of the refined154

computational mesh were scaled to match the stroke volume of the structured155
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surface model. The time-dependent grid velocity was applied to the boundary156

of the LV and LVOT. For the truncated model, the pre-computed flow wave-157

form was used as a time-dependent plug-flow boundary condition. To test [4] R 1.1 &

1.2

158

whether diastolic filling of the ventricle had to be simulated, five cardiac cycles159

were simulated for case 11. Results in Table 1 demonstrate that diastolic filling160

had a negligible (< 1%) effect on the observed peak-systolic pressure drop and161

valve resistance index. Hence, diastolic filling was neglected, and only a single162

systolic cycle was simulated to restrict the computational burden. [5] Note

that a

slightly

larger

timestep

and coarser

mesh was

used to facil-

itate reason-

able simu-

lation times

- hence re-

sults differ

slightly from

the original

simulations

163

2.4.2. Steady-state Model164

Peak flow-rate was obtained from the pre-computed flow waveform, and165

prescribed as a boundary condition for the truncated steady-state model. Tur-166

bulence is modeled with the Shear Stress Transport k−ω model (Menter, 1994).167

2.5. Post-Processing168

A centreline with equally spaced points (0.1mm intervals) was defined for169

each surface model with the Vascular Modelling Toolkit (Antiga et al., 2008).170

Pressure was evaluated on the centreline, and the effective (∆PE) and valve171

(∆PV) pressure-drops were computed. These pressure drops were used to com-172

pute the valve resistance index IVR (Equation 1). Furthermore, Bernoulli esti-173

mates (∆PB = PLVOT−PVC) and simplified Bernoulli estimates (∆PSB = 4v2VC)174

were computed from the simulation results. Note that vVC is the velocity at the175

vena contracta, and corresponds to vmax. The point on the centreline closest176

to the truncation plane was used to evaluate PLVOT. The vena contracta was177

identified by inspecting the centreline, i.e. where pressure was lowest.178

3. Results179

The workflow described in Fig. 2 was used on retrospective CT datasets of180

18 patients with non-calcified and (partially) severely calcified tricuspid AV’s181

(Fig. 4). Projected AVA ranged between 0.90.88 and 4.34.35 cm2 (Table 2).182

Image derived maximum flow rate at peak systole ranged between 178 and 635183
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ml/s, and simulated velocities in the vena contracta range between 0.88 and184

5.36 m/s. The effective pressure drop ∆PCLV
E ranges between 2.5 and 102.5185

mmHg. Net pressure drops across the aortic valve range between: -2.3 mmHg186

and 91.5 mmHg for the full model; -1.4 mmHg and 89.5 mmHg for the truncated187

transient model; 0.4 mmHg and 89.8 mmHg for the steady-state model. ∆PCLV
B188

and ∆PCLV
SB range between 1.0-103.2 mmHg and 3.1-115.1 mmHg. The valve189

resistance index lies between -0.40 and 0.96. The local pressure gradient in the190

LVOT was between -0.77 and -0.07 mmHg/mm191

Fig. 5 illustrates the CFD results of a healthy (case 8) and a stenotic valve192

(case 17). The healthy case exhibits a lower jet velocity through the AV than193

the stenotic case. For the stenotic valve a distinct jet is formed, and turbulent194

structures develop. The jet is wider and not as pronounced for the healthy valve.195

Pressure contours demonstrate that the the effective pressure drop between196

the LV and AA is about 9 mmHg for the healthy case and approximately 110197

mmHg for the stenotic case. in the healthy case. The effective pressure drop is198

substantially larger (approximately 110 mmHg) for the stenotic valve.199

Fig. 6 visualizes the relationship between vmax and the proposed valve resis-200

tance index. When assessing AS severity by vmax, 12 cases would be considered201

healthy, one case as having a mild stenosis, and three as having a moderate202

stenosis. Two cases would be classified as having a severe stenosis. Cases 15203

and 16 would be classified as having no or a mild stenosis. However, both exhibit204

large valve resistance indices of 0.84 and 0.86 respectively, of similar magnitude205

as the clearly stenotic cases 13 and 17. Furthermore, it is observed that case 18,206

actually has the largest valve resistance index, but would have been classified as207

moderate with vmax as criteria. Healthy valves exhibit valve resistance indices208

close to or below zero. Furthermore, an inverse linear relationship between geo-209

metric AVA and valve resistance index may be observed; when AVA decreases,210

the valve resistance index increases. (Fig. 6).211

Fig. 7A and 7B qualitatively demonstrate the differences between each of212

the CFD models. Unsteady flow phenomena distal to the AV are observed.213

Flow patterns for the transient models are similar, but local discrepancies in214
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the velocity field can be noticed. Unsteady flow patterns propagate far into the215

AA for this particular stenotic case.216

Qualitatively the shape of the jet and the pressure contours are similar prox-217

imal to and in the immediate vicinity of the valve for the steady-state and218

transient models (Fig. 7). However, flow structures distal to the valve are less219

well-matched. This is expected because the jet has not had time to develop fully220

in space for the transient models. Despite the loss of fidelity in the detailed flow221

fields, the steady-state model captures the overall pressure drop adequately.222

Pressures proximal to the AV, in the vena contracta and distal to the AV are223

approximately the same for all models.224

Differences in ∆PV of 0.3±1.33 and 0.9±1.63 are found between the tran-225

sients models, and truncated steady and full model respectively (Fig. 8A and226

B). A bias of 0.7±1.07 mmHg is observed between both truncated models (Fig.227

8C). The simplified Bernoulli and full 4D CFD model are in poor agreement: a228

bias of 11.3±6.6 mmHg (Fig. 9B). At low flow the simplified Bernoulli equation229

gives a poor estimate for the peak-systolic effective pressure-drop. Bernoulli230

estimates demonstrate a bias of 6.6±3.27 mmHg compared to the full model. In231

general, discrepancies from the full model predominantly occur at low pressure232

pressure drops (Fig 8 and 9). E.g., the relative difference between ∆PCLV
V and233

∆PTT
V for case 6 is 140%. In contrast, a relative difference of only 2% is found234

for case 17.235

4. Discussion236

This paper presents a medical image-based CFD framework to simulate flow237

across a patient-specific AV. A valve resistance index is defined, and compared238

to measures typically used in the clinic to demonstrate the frameworks poten-239

tial value. Additionally, the effect of model simplifications on pressure-drop240

computations are presented.241
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4.1. Sample characteristics242

Computed geometric AVA’s (Table 2) suggest that the current sample con-243

tains 11 healthy or mildly stenosed cases, six moderate cases, and one severe244

case (Nishimura et al., 2014). When considering vmax as severity index, it is245

found that 12 cases can be classified as healthy, one as mild, three as moderate,246

and two as having a severely stenotic valve. Unfortunately, no echocardiography247

or cardiac catheterization data was available to clinically classify the patients.248

Nevertheless, computed velocities, pressure-drops and AVA correspond well to249

values reported in literature (Chambers, 2016; Baumgartner et al., 1999). For250

example, cardiac catheterization and echocardiography measurements in AS pa-251

tients by Yang et al show systolic pressure drops between the LV and AA up252

to 129 mmHg for patients with (echocardiography derived) AVA’s of 0.4 cm2
253

(Yang et al., 2015). Furthermore, the same study reports echocardiography254

based peak-systolic vmax measurements of 2.3 - 5.2 m/s. The reported upper255

limits for ∆PE and vmax in this study are 103 mmHg and 5.4 m/s, and thus256

respect the limits typically reported in literature.257

4.2. Valve Resistance Index258

The valve resistance index is a measure of how much pressure is lost due to259

the presence of the AV. This index can be interpreted as a percentage, e.g. an260

index of 0.60 means that 60% of pressure loss can be attributed to the AV. Figure261

6 demonstrates that healthy valves (cases 1-9) have valve resistance indices of262

around zero, i.e. any pressure lost around the AV is fully recovered in the AA.263

For some cases, recovered pressure even exceeds pressure in the LVOT (cases264

1-3). This can be explained by the fact that the cross-sectional area of the265

AA is typically two to three times larger than the cross-sectional area of the266

LVOT (see Table 2). Due to the larger cross-sectional area, velocity in the AA267

will be lower, and more kinetic energy is converted back into static pressure.268

Hence, pressure may recover beyond that of the LVOT, leading to a negative269

valve resistance index Therefore, a healthy valve, in its open position, exerts [6] R 1.7.270

no additional load on the left ventricle at peak systole. For severely stenotic271
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valves, the valve dominates the effective pressure drop (cases 17 and 18), i.e.272

approximately 90% of the effective pressure drop is attributed to the AV. This is273

in line with numerical results presented by Traeger et al (Traeger et al., 2015).274

Although not the main aim of their work, their illustrations suggest that a valve275

with an area of 0.9 cm2 (Gorlin derived) may exhibit a valve resistance index276

of approximately 0.9 at flow rates of 200 and 400 ml/s.277

Figure 6 clearly demonstrates the inability of vmax to identify a stenosis278

consistently. Due to low-flow, cases 15 and 16 demonstrate a vmax that would279

be considered normal, or mildly stenotic in clinical practice. However, the valve280

resistance index for these cases reveals that - similar to other stenotic valves -281

the effective pressure drop is dominated by the AV. A disproportional amount282

of the pressure loss is due to the presence of the valve. Such a conclusion can283

not be drawn from vmax (Fig. 6) and ∆PE measurements alone. Hence, for284

cases where AVA and vmax conflict, indistinct cases the valve resistance index285

may provide relevant information on stenosis severity.286

4.3. Comparison CFD Models287

Qualitatively, no major differences are observed between the transient mod-288

els (Fig. 7). Similar (turbulent) structures are formed distal to the AV where289

the jet breaks down, and pressure is recovered. Steady-state simulations demon-290

strate averaged velocity and pressure distributions, and do not capture local flow291

disturbances in detail. Nevertheless, steady-state simulations capture the global292

pressure drop across the AV within reasonable limits. Both truncated models293

provide acceptable estimates for the pressure drop across the AV. At low pres-294

sure drops (<10 mmHg) the truncated models overestimate the pressure drop295

considerably in the relative sense. An artificial plug-flow assumption at the296

inflow boundary may not be appropriate for the low-gradient cases. Indeed,297

velocity profiles in the LVOT are not plug-like (Garcia et al., 2011). Work298

by Bruening and colleagues shows that significant overestimation of the pres-299

sure drop can occur when assuming a plug-flow velocity profile opposed to a300

patient-specific flow profile from 4D velocity-encoded MRI (Bruening et al.,301
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2018). However, differences between the full and truncated transient model are302

small in this study, and the added accuracy of the full model may therefore not303

outweigh the additional computational cost.304

The simplified Bernoulli equation - derived from echocardiography measure-305

ments in the clinic - overestimates the pressure drop substantially. Overestima-306

tion of the pressure drop is a well known problem with the Simplified Bernoulli307

equation. Both numerical (Casas et al., 2015; Donati et al., 2017) and pa-308

tient studies (Baumgartner et al., 1999) have demonstrated this overestimation.309

It should be noted that vmax is directly obtained from the simulated velocity310

field. Clinically, measurements are done with echocardiography, and additional311

sources of errors are likely, such as: poor spatial resolution, misalignment of the312

probe, or probe settings (Lui et al., 2005).313

4.4. Limitations Imaging and Geometry314

Segmentation with the SCDM is at the moment only possible for tri-cuspid315

AV’s. Substantial segmentation errors are expected for bicuspid valves. Weese316

et al (Weese et al., 2017) showed that segmentation works in presence of calci-317

fications. However, strong calcifications are likely to influence segmentation ac-318

curacy and blood flow. Hence, a thorough evaluation of segmentation accuracy319

is required. For example, it may be necessary to map patient-specific calcifica-320

tions onto the shape constrained deformable model. Further inaccuracies may321

be introduced by the registration process. [7] R 1.4.322

Segmentation is performed on electrocardiography triggered CT images at323

10% intervals of the R-R curve. It is assumed that the temporal resolution is324

sufficient to capture the (fully) open state of the AV. Poor temporal resolution325

may also cause over- or underestimation of flow-rate. Mitral regurgitation is326

not quantified, and patient flow-rates are likely overestimated. For example,327

patients with severe Mitral valve regurgitation may see a regurgitant fraction of328

more than 50% (Zoghbi et al., 2017).329
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4.5. Limitations CFD330

No valvular fluid-solid interaction is considered in this study due to the nu-331

merical challenges and lack of patient-specific material properties. It is expected332

that only local intraventricular and aortic flow fields are influenced. It is not333

expected that peak-systolic pressure drops and vmax are affected. Work by As-334

torino et al. supports this choice. Their work suggests that modeling the valve335

in the fixed open position yields an acceptable approximation for flow at peak336

systole, opposed to simulating the fully coupled fluid-solid interaction (Astorino337

et al., 2012).338

The multi-cycle simulations that were performed on case 11 lacked the339

patient-specific mitral valve. As such, end-diastolic flow patterns may not be340

physiologically correct. For example, a recent study showed that mitral valve341

opening dynamics and shape substantially influence end-diastolic vortex forma-342

tion (Vasudevan et al., 2019). Whether the single-cycle approach is still accept-343

able in the presence of the segmented mitral valve has not been investigated.344

345

5. Conclusion346

An image-based CFD workflow of the AV and heart anatomy is presented.347

This workflow allows for the computation of a valve resistance index, that quan-348

tifies the contribution of the AV to the effective pressure drop from the LV to349

the AA. It is demonstrated that this index has the potential to complementhas350

the potential to outperform existing measures, such as, vmax and the geomet-351

ric AVA for patients that demonstrate discordant grading. Furthermore, it is352

shown that simplified CFD models provide a reasonable estimate of the aortic353

valve pressure drop at a given flow rate. However, at low-flow conditions simpli-354

fications to boundary conditions may not be justified, and more physiologically355

accurate inflow boundary conditions should be considered.356
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Figures482

Figure 1: Top: schematic of the Left Ventricle (LV), Left Ventricular Outflow Tract (LVOT),

Aortic Valve (AV), Vena Contracta (VC) and Ascending Aorta (AA). Bottom: typical pressure

along the centreline. ∆PV: net pressure drop across the AV. ∆PE: effective pressure drop

between the LV and AA. ∆PB: Bernoulli estimate, i.e. the maximum pressure drop across

the valve, ∆PSB: simplified Bernoulli estimate from VC velocity. Mitral Valve (MV) and Left

Atrium (LA) are added for anatomical reference.

Table 1: Pressure drop results over multiple cardiac cycles for case 11

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

PLV [mmHg] 6.86 6.90 6.89 6.88 6.94

PLVOT [mmHg] 3.42 3.44 3.43 3.43 3.49

IVR [-] 0.499 0.499 0.498 0.498 0.503

Note: simulations performed with a time-step of 1 · 10−3s to limit simulation times.

[8] added

this table

to justify

simulating a

single cycle

483
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Figure 2: Illustration of the workflow from A) the Shape Constrained Deformable Model

framework (Ecabert et al., 2011; Weese et al., 2017); B) Segmented aortic valve and left

ventricle and corresponding structured surface modelmesh; C) image registration and mesh

truncation; D) 4D CFD Model of the AV and contracting ventricle, 3D truncated transient

model, and 3D truncated steady-state model.
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Figure 3: Boundary and domain definitions. Boundaries ΓLV (light gray line) and ΓLV OT

(dark gray line) are deforming. ΓAV , ΓSinus, ΓAA (black lines) and Γout (dashed line) are

static boundaries, i.e. ~vg is zero. Boundary motion is scaled to zero in the LVOT by a ramp

function f(s), with s the position in the LVOT
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Figure 4: Axial view of the segmented AV for all cases. Cases 1-9 have a IVR < 0.25, cases

10 and 11 0.25 < IVR < 0.75, and cases 12-18 a IVR > 0.75. Case numbering corresponds to

Table 2.
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Figure 5: Volume renders of velocity (A) and contour plots of pressure (B) at peak systole for

a healthy valve (left - case 8) and a stenotic valve (right - case 17).
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Figure 6: Left: CFD derived vmax vs. valve resistance index. Severity classifications are based

on guidelines (Nishimura et al., 2014). Healthy: vmax < 2.6 m/s. Mild: 2.6 m/s < vmax <

2.9 m/s, moderate: 3.0 m/s < vmax < 4.0 m/s, severe: vmax > 4.0 m/s. Right: Geometric

AVA vs. valve resistance index. Healthy/Mild: AVA > 1.5 cm2, moderate: 1.0 cm2 < AVA <

1.5 cm2, severe AVA < 1.0 cm2. Furthermore, cases are separated in groups, IVR < 0.25 (◦),

0.25 < IVR < 0.75 (×) and IVR > 0.75 (△). Note that the reported AVA is the geometric

projected AVA, and not the effective orifice area (by echocardiography) as reported in the

guidelines (Nishimura et al., 2014).
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Figure 7: Volume render of velocity magnitude (A) and pressure contours (B) for each of the

CFD models.
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Figure 8: Comparison between CFD models and their respective ∆PV. Top row: scatter

plot with linear regression results and line of equality. Bottom row: Bland-Altman of the

difference. A) Transient truncated model vs. full model (R2 = 0.998); B) Truncated steady-

state vs. full model (R2 = 0.998); C) Truncated steady-State vs. truncated transient model

(R2 = 0.999).
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Figure 9: Comparison between the Bernoulli estimates and pressure drops computed with the

full CFD model. A) Bernoulli estimate vs. full model (R2 = 0.995); B) Simplifed Bernoulli

(4v2) estimate vs. full model (R2 = 0.973); C) Simplified Bernoulli estimate vs. Bernoulli

estimate (R2 = 0.991).
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Table 2: Pressure drop estimates for each case and all models, ordered by valve resistance index

Case
HR
bpm

ALVOT

cm2

AAV

cm2

AAA

cm2

Qmax

ml/s
vmax

m/s
∆PCLV

E

mmHg
∆PCLV

V

mmHg
∆PTT

V

mmHg
∆PTS

V

mmHg
∆PCLV

B

mmHg
∆PCLV

SB

mmHg

∇PCLV
LVOT

mmHg/mm
IVR

†

−2mm
IVR

0
IVR

‡

+2mm

1 73 4.8 3.9 10.1 489 1.47 5.7 -2.3 -1.4 0.4 1.7 8.6 -0.20 -0.33 -0.40 -0.47

2 56 5.5 4.3 14.7 433 1.14 3.4 -1.1 -0.6 0.4 1.2 5.2 -0.11 -0.25 -0.32 -0.39

3 66 4.6 3.3 9.5 397 1.33 4.6 -0.7 0.1 1.4 2.5 7.1 -0.15 -0.09 -0.15 -0.22

4 58 3.4 2.4 7.2 330 1.64 8.4 -0.2 0.4 1.2 3.3 10.8 -0.28 0.04 -0.02 -0.09

5 87 3.1 2.3 7.4 178 0.88 2.5 -0.1 0.1 0.4 1.0 3.1 -0.07 0.03 -0.02 -0.08

6 63 4.3 2.7 6.7 321 1.33 5.4 0.2 0.9 1.3 2.3 7.1 -0.18 0.09 0.03 -0.04

7 66 4.1 2.8 7.8 451 1.81 8.8 0.3 1.5 2.8 4.9 13.1 -0.25 0.09 0.03 -0.03

8 61 4.3 2.7 9.5 415 1.75 9.1 1.3 1.5 2.4 4.8 12.2 -0.32 0.21 0.14 0.07

9 66 4.5 3.2 10.2 488 1.76 9.0 1.6 1.4 2.9 5.4 12.4 -0.29 0.24 0.18 0.11

10 63 5.1 3.0 11.1 635 2.39 18.0 6.8 6.0 7.5 12.5 22.8 -0.70 0.45 0.37 0.30

11 67 4.5 2.3 12.1 296 1.42 6.8 3.3 3.5 3.6 5.0 8.1 -0.19 0.53 0.48 0.42

12 66 3.9 1.3 8.5 416 3.47 41.7 31.8 32.6 32.9 38.4 48.1 -0.63 0.79 0.76 0.73

13 74 3.8 1.2 9.3 510 4.40 65.2 50.0 53.7 52.3 63.0 77.5 -0.46 0.78 0.77 0.75

14 80 3.6 1.3 9.5 417 3.47 40.2 31.6 30.6 31.1 39.8 48.2 -0.40 0.81 0.79 0.77

15 82 5.8 1.6 11.9 302 1.97 12.6 10.6 10.7 11.5 13.2 15.5 -0.26 0.88 0.84 0.79

16 98 4.0 1.1 8.3 286 2.75 26.6 22.8 22.4 22.7 26.3 30.3 -0.26 0.88 0.86 0.84

17 57 4.7 1.0 10.9 511 5.36 102.5 91.5 89.5 89.8 103.2 115.1 -0.77 0.91 0.89 0.88

18 74 5.6 0.9 8.1 251 3.16 36.4 34.9 33.9 34.3 38.0 39.9 -0.19 0.97 0.96 0.95
† Valve resistance index when PLVOT is taken 2 mm upstream truncation plane

‡ Valve resistance index when PLVOT is taken 2 mm downstream truncation plane

[9] added

range in

index and

added LVOT

and AA ar-

eas (R.1.7.

& R 2.2.)
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