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Abstract
Aim: The Area of Occupancy (AOO) of a species is often utilized to assess extinction 
risk for determining IUCN Red List status. However, the recommended raw‐counts 
method of summing occupied grid cells likely reflects only sampling effort, as the 
majority of species have not been sampled across their entire range at the fine grains 
required by IUCN. More accurate measurements can be generated at coarser grains 
(so‐called atlas data) as false absences are reduced. If we fit the occupancy‐area re‐
lationship to these data, we can extrapolate the relationship down to estimate oc‐
cupancy at finer grains. Numerous models have been proposed to carry out such 
occupancy downscaling, but have only been tested on a limited range of species.
Methods: We test the ability of downscaling models to recover fine grain AOO 
against the raw‐counts method for 28,900 virtual species with a wide range of preva‐
lence and aggregation characteristics, subsampled to reflect common spatial biases 
in sampling effort. We address several questions for ensuring accurate downscaling: 
How to generate accurate atlas data? How far can we accurately extrapolate the oc‐
cupancy‐area relationship given perfect data? Can occupancy downscaling overcome 
false absences at fine grain sizes? And how does sampling bias and coverage affect 
accuracy?
Results: Downscaling was more accurate than the raw‐counts method in all scenarios 
except where sampling coverage was very high and/or the sampling bias was posi‐
tively related to the species distribution. However, if atlas data contained many false 
absences, then even downscaling under‐estimated actual occupancy.
Main conclusions: Occupancy downscaling has the potential to be a useful tool for 
estimating AOO for IUCN Red List assessments, especially when sampling coverage 
is low and the currently recommended method is ineffective. However, its applica‐
tion should be tailored to the species’ characteristics, as well as the sampling cover‐
age and bias of the species’ records.
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1  | INTRODUC TION

The geographic range size of a species is an important character‐
istic describing a species’ rarity, as it is correlated with species’ 
local and total abundances (Gaston, 1991; Gaston & Lawton, 1990) 
which require more detailed information to estimate. Range size 
can be quantified at two extremes (Gaston, 1994); the Extent of 
Occurrence (EOO) is the geographic range that encompasses all 
occurrences of a species, and the Area of Occupancy (AOO) is the 
total area within that range that is actually occupied. The mea‐
surement of either requires only the spatial coordinates of readily 
available species record data and forms the basis of one of the cri‐
teria used to assess extinction risk for the IUCN Red List (Criterion 
B, IUCN, 2001, 2017). For example, the recommended method 
of calculating AOO is simply to overlay a grid over all known re‐
cords, and sum the area of occupied cells (hereafter, the ‘raw‐
counts’ method). As a result, the proportion of species assessed 
as threatened through the estimate of their AOO varies between 

37% (amphibians) and 97% (gymnosperms), depending upon the 
taxonomic group (Gaston & Fuller, 2009).

The issue, however, is that AOO is intrinsically scale‐dependent 
(Kunin, 1998): a species will be seen to occupy different amounts of 
area if grids of different spatial “grain” are used. Therefore, a species 
does not have a single AOO value, but rather AOO is a function of 
grain size (Figure 1), the scale‐area or occupancy‐area relationship 
(OAR, He & Condit, 2007), the shape of which is dependent upon 
the characteristics of the species’ distribution, such as the degree 
of clumpiness and prevalence (Kunin, Hartley, & Lennon, 2000). The 
coarser the grain, the larger the measurement of AOO and thus the 
less threatened the status of that species will appear to be. The finer 
the grain size used, the closer the correlation with total abundance, 
so that if a grain size is set to cover a single individual then AOO will 
eventually equal population size (Kunin, 1998).

The IUCN guidelines require a grain size of 2 × 2 km (IUCN, 2017) 
and certainly no larger than 3.16 × 3.16 km, as a single occupied grid 
cell larger than this would give an AOO beyond the threshold for 

F I G U R E  1   Example of a hypothetical species distribution where only 50% of true occupancies are sampled at the finest grain, leading to 
false absences in unsampled areas (red cells) and observed presences (black cells). As grain size increases, the proportion of false absences 
decreases (bottom right, red) and our estimate of occupancy (bottom left, black) approaches the true area of occupancy (bottom left, blue); 
however, the lower the proportion of cell area that each occupied cell is actually occupied by the species at the fine scale (second row; 
bottom right, black). The grain size where the number of false absences approaches zero is a reliable atlas scale (grey line). Models can be fit 
to the relationship at the atlas scale and above and then be extrapolated back down to fine grains (dashed line)
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potential classification as Critically Endangered (10 km2). Although 
the IUCN Red List Guidelines used to permit use of a different scale 
‘dependent on the taxon’, others have suggested that grain size 
should be based upon the spread of points (Willis, Moat, & Paton, 
2003), and in fact, a great many assessments of AOO used grain sizes 
much larger than the IUCN suggestion (Gaston & Fuller, 2009) as 
biodiversity atlases are typically compiled at 10 × 10 km or larger.

Regardless of the grain size selected, there are several other 
challenges potentially preventing the accurate assessment of AOO. 
The first is insufficient sampling coverage. The finer the grain size 
used, the greater the sampling effort required to identify all occu‐
pied cells for accurate measurement, but the vast majority of species 
do not have sample data across their full ranges at a grain size of 
2 × 2 km. Not only are omission errors (false absences) important in 
assigning a species’ conservation status (Visconti et al., 2013), with 
the magnitude of error varying between species of different range 
sizes (Gaston, 1996), but the sheer volume of records required to 
attain lower threat categories is prohibitive for the majority of spe‐
cies—put simply, the value of AOO assigned for poorly recorded spe‐
cies will primarily be a reflection of sampling effort.

For example, at a grain size of 2 × 2 km, over 500 unique spa‐
tial records are required for a species’ AOO to be beyond the larg‐
est threshold for threatened species, at 2,000 km2 for Vulnerable 
(Rivers et al., 2011). Unfortunately, the majority of species in most 
taxa have a fraction of this volume of records, especially in tropical 
regions (e.g. Brummitt, Bachman, Aletrari, et al., 2015a; Brummitt, 
Bachman, Griffiths‐Lee, et al., 2015b). Even species in the best‐stud‐
ied regions may be unlikely to have sufficient records. For example, 
more than 71% of tree species in the EU‐Forest dataset of 588,982 
records (1 × 1 km grain size) are represented by fewer than 500 re‐
cords (Mauri, Strona, & San‐Miguel‐Ayanz, 2017). The challenge is 
therefore to provide estimates of AOO that accurately reflect ex‐
tinction risk within the constraints of the methods and grain sizes 
outlined by the IUCN Red List Guidelines, but for species with low 
sampling coverage across their entire range.

1.1 | Spatial sampling biases in data

If sampling intensity is equally spread across a species’ distribution, 
then an accurate AOO estimate may be achieved even at relatively 
fine grain sizes at low efforts (Gaston & Fuller, 2009). Unfortunately, 
however, even for well‐sampled species there are likely to be distinct 
spatial biases in where data have been collected and therefore in the 
location of false absences, and furthermore, the patchiness in col‐
lection effort is rarely random (Beck, Boller, Erhardt, & Schwanghart, 
2014; Isaac & Pocock, 2015).

Spatial biases occur at distinct spatial scales. At global scales, 
sampling intensity is concentrated in developed countries with 
high political stability (Hortal, Jiménez‐Valverde, Gómez, Lobo, & 
Baselga, 2008), particular colonization histories and a cultural pro‐
clivity to natural history (Stropp et al., 2016). At regional scales, 
occurrences are often clustered around areas of high accessibil‐
ity, such as close proximity to roads (Reddy & Dávalos, 2003) or 

around research centres and universities (the ‘botanist effect’; 
Moerman & Estabrook, 2006). There is typically a distance‐decay 
in sampling effort away from these well‐recorded regions (Ladle & 
Hortal, 2013). At more local scales, effort is often directed towards 
good habitat areas the recorder believes a priori to be suitable for 
the species or sites of high biodiversity, such as reserves or known 
areas of occurrence of particular rare species (Freitag, Hobson, 
Biggs, & Jaarsveld, 1998).

Unfortunately, only occurrence records are available for the ma‐
jority of species, so it is extremely difficult to estimate sampling ef‐
fort across space for a given species lacking associated absence data 
(Isaac, Strien, August, Zeeuw, & Roy, 2014). It is therefore difficult to 
distinguish between a species that is genuinely rare and does only 
occur in a few locations and one that is simply under‐recorded and 
for which there are large sampling gaps across its distributions.

1.2 | A solution to sampling gaps: atlas data

A potential solution where sampling gaps are large is to increase 
the spatial grain at which data are aggregated. As grain size is in‐
creased, the quantity of sampling within each sampled cell grows 
higher and the number of cells with little‐to‐no sampling is reduced. 
In particular, the certainty of absences is increased (Figure 1; bot‐
tom right, red). Whereas only a single record is required to confirm 
a presence within a cell (although there are still possibilities of 
false presences through misidentification, incorrect spatial coor‐
dinates or local extinctions since sampling), it is much more diffi‐
cult to confirm a species’ absence (Kéry, 2002). Therefore at small 
grain sizes many false absences are likely, but these are reduced 
as grain size increases (Graham & Hijmans, 2006). This principle 
lies behind biodiversity atlas data: by collating information over 
long time spans at large‐grain sizes, accurate representations of 
a species’ distribution can be generated (Gibbons, Donald, Bauer, 
Fornasari, & Dawson, 2007). Therefore, as grain size increases and 
the proportion of false absences decreases, the measurement of 
AOO moves from being largely reflective of sampling effort to 
being a more accurate estimate of that species’ AOO at the scale 
of measurement, where accuracy is measured as the false omission 
rate (the number of false absences divided by the sum of false and 
true absences) in this case.

Although accuracy, using this measure, increases with grain size, 
there is, however, a reduction in within‐cell precision for coarse‐
grain atlases; for an occupied coarse‐grain cell, the cell area will be 
composed of a larger proportion of area that it is not occupied at 
a finer grain (Figure 1; bottom right, black) and are therefore less 
information‐rich than an accurate fine grain atlas. As accuracy and 
within‐cell precision have opposing scaling relationships, they must 
therefore be compromised between each other.

Published atlases of biodiversity have a distinguished tradi‐
tion and have proliferated over the last decade (Powney & Isaac, 
2015) as larger volumes of biodiversity data have become pub‐
licly available. However, even for extremely well‐recorded taxa in 
highly sampled regions, atlases are typically collated at 10–20 km 
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cell widths (Groom et. al., 2018), 25–100 times larger in area than 
IUCN’s 2 × 2 km recommendation. In fact, grain sizes of atlases are 
usually chosen to fit national grid systems at resolutions highly cor‐
related to their extents (Gibbons et. al., 2007), with little consid‐
eration to the applicability of that scale to various species or data 
coverage. The challenge is therefore to utilize the accurate data 
available at larger grain sizes to generate Red List assessments at a 
much finer grain size.

One solution is so‐called occupancy downscaling. First, we 
generate the OAR at coarse grains using atlas data and fit likely 
mathematical functions to approximate the relationship, which can 
then be extrapolated down to estimate occupancy at fine grains. 
The initial step is therefore to generate accurate atlas data at large‐
grain sizes; however, currently there is no method for selecting the 
most suitable grain size. The larger the grain size, the greater the 
accuracy of cell occupancies and the better that sampling gaps may 
be overcome by minimizing false absences. This comes with several 
trade‐offs, however. First, the further up the OAR towards large 
grains that modelling begins, the further it must be extrapolated 
back down to predict occupancy at fine grain sizes, with potential 
increases in subsequent prediction error. Second, as grain size in‐
creases atlases may reach the scale of saturation—the grain size 
where all cells are occupied—or the scale of endemism—the grain 
size where all occurrences occur within a single cell (Hartley & 
Kunin, 2003). If these are reached, the data for all grain sizes larger 
than this point must be discarded before modelling, so reducing 
the number of data points for model fitting, which may reduce pre‐
diction accuracy, or worse, leave insufficient data points to fit the 
downscaling models.

A number of models for downscaling the OAR are available (see 
Azaele, Cornell, & Kunin, 2012; Barwell, Azaele, Kunin, & Isaac, 
2014), ranging from simple Poisson models to more complicated 
models that incorporate species aggregations through pattern‐point 
processes. The ability of these models to accurately extrapolate 
AOO to finer grain sizes has been found to be relatively consis‐
tent, dependent upon species’ prevalences (Groom et. al., 2018). 
Furthermore, the direction of error is predictable. For example, 
the power‐law model, the IUCN‐suggested method for translating 
between grain sizes (IUCN, 2017), consistently over‐predicts AOO 
(Groom et. al., 2018).

However, due to the difficulty in obtaining accurate fine‐scale 
estimates, performances of a wide range of models have been eval‐
uated on either only a limited set of species (Azaele et al., 2012; 
Barwell et al., 2014), or only at coarse grains (Groom et al., 2018). 
Here, we test the ability of downscaling models to recover AOO 
at fine grain sizes for 28,900 virtual species covering a wide range 
of prevalences and clumping patterns. As the “true” occupancy of 
virtual species can be known with certainty, the effects of differ‐
ent sampling intensities and forms of sampling bias, and the scale 
at which atlas data should be collated in order to reduce false ab‐
sences and provide the best data for fitting the downscaling models, 
can therefore be investigated. Results should, however, be consid‐
ered with the knowledge that virtual species will inevitably present 

somewhat of a simplification of real species distributions. Finally, we 
investigate the ability of downscaling models to recover fine grain 
AOO from subsampled atlas data and compare these results to the 
AOO generated simply from summing occupied grid cells.

2  | METHODS

Our analyses followed four main steps (Figure 2): (a) generating 
the virtual species, (b) sampling the virtual species, (c) selecting 
the appropriate scale to generate the atlas data and finally (d) pre‐
dicting fine‐scale occupancy using downscaling. All simulations 
were carried out using R 3.4.3 (R Core Team, 2017); occupancy 
downscaling was carried out using the ‘downscale’ package (Marsh 
et. al., 2018).

2.1 | Generating virtual species

Previous research has shown that the prevalence of a species (the 
proportion of occupied cells in the landscape) has a large effect on 
our ability to downscale the OAR (Groom et al., 2018), and it is likely 
that models will also differ in their ability to recover the OARs gen‐
erated from species with different degrees of aggregation, as this 
also affects the shape of the OAR. We distributed species across 
512 × 512 cell grids (262,144 cells) using a spherical variogram 
(sill = 1.5, beta = 1) and explored seventeen prevalence levels be‐
tween 0.00005 (13 occupied cells) and 0.5 (131,072 occupied cells) 
and seventeen clumping values (the range parameter) between 2 
(highly disaggregated) and 512 (highly aggregated), both distributed 
evenly in log space.

We created 100 replicates for each prevalence‐clumping com‐
bination, generating a total of 28,900 virtual species spanning the 
full parameter space of realistic species distributions in the given 
extent. A description and R script for creating the virtual species is 
available in the Supporting information (examples are presented in 
Figure 3).

2.2 | Sampling virtual species

The number of samples and their distribution pattern are likely to 
affect the number of false absences detected in the atlas data and 
thereby the shape of the sampled OAR. In general, we predict that 
the closer the sampled OAR curve is to the true curve at the atlas 
scales, the greater the accuracy of the downscaling estimates at fine 
scales.

For each of the 28,900 species, we explored various combina‐
tions of sampling coverage and sampling distribution. For the sam‐
pling coverage, we draw between 0.005 (1,311 cells) and 0.232 
(60,818 cells) proportions of cells in six equally spaced increments 
in log‐space. We used three different protocols to distribute the 
samples in the landscape (Figure 3) but ensured that at least one 
presence was recovered (see details in the Supporting informa‐
tion; Figure S1.1).
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1. Random sampling—every cell has an equal probability of being 
sampled until the designated sampling coverage has been 
reached.

2. Aggregated neutral sampling bias—a spatially biased distribution of 
samples, where the bias is neutral in relation to the species distri‐
bution. This represents the bias that occurs where sampling ef‐
fort is independent of whether the data recorder is expecting to 
encounter the species. This bias occurs frequently where certain 
regions or countries are over‐ or under‐sampled due to cultural 
and economic reasons, or there is increased sampling intensity 
around easily accessible locations. A probability of sampling sur‐
face was created by splitting the grid into 64 ‘regions’ of 64 × 64 
cells. Each region was assigned a probability of sampling with a 
large degree of spatial autocorrelation that approximates pat‐
terns found at continental scales (Figure S1.2). When samples are 
drawn from the sampling surface, sampling coverage is therefore 
concentrated in a few closely associated regions.

3. Aggregated positive sampling bias—a bias positively correlated 
with the species distribution such that presences are more likely 
to be sampled than absences, but discovering new populations 
may take some time as effort is focussed around known locations. 
This represents scenarios of increased sampling effort in suitable 
habitat where the sampler expects to encounter the species due 
to previous knowledge, but is unlikely to sample previously un‐
sampled areas. Samples were drawn using the probability map 
created during the virtual species creation process. In order to 

further distinguish high‐suitability areas, probability values were 
first raised to the power of ten. Samples are then drawn from this 
probability surface (prob). Once a presence has been detected, we 
calculate a new probability surface as a function of an exponen‐
tial decay curve with a mean of 25 cells (halving distance = ~17 
cells), so that the probability of sampling of cell i is calculated as 
probi×e

−(di(1∕25)), where di is the centre‐to‐centre distance be‐
tween cell i and the occupied cell. Further samples are drawn from 
this probability surface until the next presence is detected and 
the process is repeated until sufficient samples have been accu‐
mulated (Figure S1.3).

2.3 | Selecting the atlas scale

To examine the impact of grain size on atlas accuracy, we first gener‐
ated the atlases and OARs for each of the 100 replicates for each 
species (prevalence‐clumping combination) using the complete data 
and each sampling coverage and protocol combination. Each OAR 
was created by aggregating the sampled cells in arrays of 2 × 2, 4 × 4, 
8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128 and 256 × 256 cells. This 
resulted in 41,616,000 atlases for testing.

We explored the trade‐off between atlas accuracy and model 
performance. Atlas accuracy was evaluated as the mean proportion 
of false absences across the 100 replicates at each scale for each 
sampling protocol and coverage combination. We expect that as 
grain size increases the proportion of absences will decrease and 

F I G U R E  2   Flow diagram of the simulation study
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that larger grain sizes will be required when sampling coverage is 
low or when sampling is independent of the species’ distributions.

A larger grain size increases atlas accuracy (but reduces within‐
cell precision), but may prevent model fitting if the scales of sat‐
uration (the grain size where all cells are occupied) or endemism 
(the grain size where all occurrences occur within a single cell) is 
reached. We calculated the median scale of saturation and ende‐
mism at each grain size for each OAR over the 100 species repli‐
cates. We also examined three aspects that may then impact the 
accuracy of occupancy downscaling. First, extrapolating from a 
finer grain size means that a larger number of coarser grain data 
points are available for model fitting, which should therefore re‐
sult in more accurate estimates of the OAR. Second, the finer the 
grain size, the fewer steps down between model fit and prediction. 
However, and finally, the finer the grain size, the greater the like‐
lihood that atlas data will be inaccurate as we increase the likeli‐
hood of false absences. We explored this by predicting AOO at 

the 1 × 1 grain size using atlas data generated at grains sizes of 
4 × 4, 8 × 8, 16 × 16 and 32 × 32. Models were also fitted with 
three to six fitting scales, depending on atlas scale (see following 
section on modelling procedure and evaluation). As species were 
distributed over a square area, we did not explore the effects of 
standardizing the extent or the position of the grid origin but these 
methods can also be important (Groom et. al., 2018; Marsh et. al., 
2018).

Upon inspection of the results (see Figures S2.1–S2.7), the most 
appropriate atlas data were dependent upon the species prevalence 
and clumping, as well as on the sampling bias and effort. For ex‐
ample, rare species require atlas data created at very large‐grain 
sizes, but atlas data at these scales have already reached saturation 
in common species. It was therefore decided that for further anal‐
yses, the atlas scale would be run‐specific; it would be created at 
the largest scale that still allowed for modelling before the scale of 
saturation or endemism was reached.

F I G U R E  3   Examples of simulated species (prevalence = 0.05) showing three values of spatial aggregation (clumping generated 
through the range parameter of a variogram). Species are sampled under three sampling protocols: random sampling, a bias neutral to 
the species distribution and a bias positive to the species distribution (sampling coverage = 0.1). The left‐hand column shows the true 
species distribution (black cells = presences). In the other columns, black cells = sampled presences, grey cells = sampled absences, red 
cells = unsampled presences and white cells = unsampled absences
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2.4 | Predicting fine‐scale occupancy

We fitted the downscaling models to the OAR generated from the 
atlas scale and larger grain sizes and extrapolated them to predict 
occupancy back at the 1 × 1 grain size. As successfully fitting some 
of the models can be difficult or require long processing times, in 
this study we used an ensemble approach, averaging the estimates 
in log‐space from the Poisson, power law, Nachman, exponential and 
negative binomial downscaling models. These models were selected 
as they provide robust estimates that are rapidly computed while 
still maintaining good accuracy (Groom et al., 2018).

We first examined individual models’ ability to accurately predict 
the OAR given complete atlas data across all species (‘downscaled 
prevalence, full data’ in Figure 2) and then repeated the analyses for 
the three subsampling methods and six sampling coverages (‘down‐
scaled prevalence, sampled data’). We also calculated occupancy 
generated through the raw‐counts method recommended by IUCN, 
by simply summing the number of occupied cells after subsampling 
at 1 × 1 grain size (‘raw‐counts, sampled data’). Accuracy was cal‐
culated as the difference between the predicted occupancy and 
true occupancy (‘true prevalence, full data’) in log‐space. Negative 
values indicate the method under‐predicted occupancy and posi‐
tive values indicate the method over‐predicted occupancy. For each 
prevalence‐clumping combination, we calculated the mean accuracy 
across all 100 species replicates. For the downscaled predictions, if 
fewer than five repeats could be evaluated then accuracy was given 

as non‐assessed. We then compared downscaling models and raw‐
counts through the difference in absolute values of accuracy.

3  | RESULTS

3.1 | Selecting the atlas scale

For a given level of sampling effort, the proportion of false absences 
increased as the virtual species became either rarer or more clumped 
(Figures S2.1–S2.3). For the rarest species, some false absences re‐
mained even at the highest sampling effort (0.232 of cells sampled) 
at the largest grains examined under random or neutral sampling 
biases (Figures S2.1–S2.2). If the sampling bias was positively corre‐
lated with the species distribution, then false absences could be re‐
moved at fine grains with much lower sampling effort (Figure S2.3).

If the scale of saturation or endemism occurs at fine grains, then 
it can prevent the fitting of downscaling models. All but very scarce 
(low prevalence) species reached the scale of saturation at some scale 
(Figures S2.4–S2.6) but the scale was only small enough to cause 
modelling issues for common, dispersed species with higher sampling 
effort (red in Figure 4). A greater problem was reaching the scale of 
endemism (blue in Figure 4): scarce species reached scales of ende‐
mism at even the smallest scales (Figures S2.4–S2.6). As we used a 
variable cell size, we were still able to model all but the lowest prev‐
alence species at low sampling efforts, but atlases may be as fine as 
2 × 2 cells in these cases (Figure S2.7). Overall, reducing prevalence 

F I G U R E  4   The proportion of species that reach the scale of saturation (red colour scale) or endemism (blue colour scale) before 
downscaling models could be fitted. In this example, the atlas scale has been fixed at 8 × 8 cells
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and sampling effort increased the chances of reaching the scale of en‐
demism. Under a positive sampling bias, the potential for reaching the 
scale of saturation was increased, but reduced for the scale of ende‐
mism, whereas the opposite occurred under a neutral sampling bias.

When examining the OARs generated using complete data, most 
species’ OARs were linear in log–log space before quickly levelling off if 
full occupancy was reached (Figure S2.8), which reflects the variogram 
used to generate them. Some species of medium prevalence but high 
aggregation may actually show a slightly concave OAR, as well as higher 
variation between species. Examining the OARs after subsampling re‐
veals that there is much more variance between the subsampled OARs 
as species aggregation increases (Figures S2.9–S2.11). Where species 
prevalence and aggregation are low, the subsampled OAR does not ap‐
proach the true OAR even at the highest sampling coverages.

3.2 | Predicting fine‐scale occupancy

When predicting fine grain AOO through downscaling, there was 
considerable variation between the predictions of different downs‐
caling models, even when using complete atlas data (Figures S2.12–
S2.16). The Poisson, power law and negative binomial downscaling 
models tended to over‐predict occupancy, whereas the Nachman 
and logistic models generally under‐predict occupancy. Where spe‐
cies were rare and aggregated, there was much greater within‐model 
variation (Figure S2.16).

For fitting the downscaling models, the effect of selecting a 
particular atlas scale was greater than the effect of having a larger 
number of scales (Figure 5). The coarser the atlas scale, the more the 
models were able to overcome sampling gaps, but with increased 
variation in predicted occupancies. Increasing the number of scales 
for fitting the models also increased the accuracy of predictions 
even though the atlas data were identical in these cases.

Occupancy downscaling provided more accurate predictions 
than did the raw‐counts method in the majority of cases (Figure 6), 
but the variance was also much higher, suggesting that there is a 
large amount of error associated with the downscaling models them‐
selves beyond the variation present in the set of species examined. 
However, downscaling was still mostly unable to fully overcome the 
sampling gaps at low sampling coverages. The raw‐counts method 
was instead highly correlated with sampling coverage, although it 
could provide high accuracy where there are high sampling coverage 
and a positive sampling bias associated with the species distribution 
(Figure S2.17).

Performance was not consistent across species (Figure 7). 
Downscaling produced a rather unusual ‘yin‐and‐yang’ pattern of ac‐
curacy where downscaling tended to under‐predict for clumped, me‐
dium‐high prevalence species but over‐predict for dispersed 
low‐medium prevalence species, when sampling coverage was high 
(upper row in Figure 7). At lower sampling coverages (lower rows), 
downscaling tended to under‐predict at all but very low prevalence 

F I G U R E  5   The accuracy of predicted 
occupancy at a grain size of 1 × 1, 
measured as log(predicted) – log(true) 
occupancy, from downscaling after 
subsampling (coverage = 0.0232) using 
three sampling biases, random, neutral 
and positive. Downscaling models were 
fitted to atlas data created at four grain 
sizes. Each atlas was then aggregated 
further to larger grain sizes to produce 
between three to six grain sizes for fitting
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values. We were often unable to provide predictions for extremely low 
prevalence species under random or regional sampling with low effort 
due to the scale of endemism preventing model fitting.

Occupancies predicted through downscaling were substantially 
closer to true occupancy than the raw‐counts method unless sampling 
coverage was very high, or at lower coverages if there was a positive 
sampling bias and species were highly clumped (Figure 8).

4  | DISCUSSION

The area occupied by a species is one of the most widely ap‐
plied estimates of a species’ conservation status (Gaston & Fuller, 
2009). However, the recommended method of measurement by 

summing the area of occupied cells of a 2 × 2 km grid is inaccurate 
where there are large sampling gaps. A more accurate estimate 
can be made if occurrences are aggregated across larger spatial 
(and temporal) scales to create atlas scale data, reducing the num‐
ber of false absences (Figures S2.1–S2.3). We can then fit likely 
functions to the OAR at large‐grain sizes, where accuracy is high, 
and downscale them to predict occupancy at the fine grain size 
required by IUCN.

There are numerous challenges to this approach, listed in the 
introduction, that have been explored here. These questions have 
been impossible to address using real species data as so few spe‐
cies have been mapped at sufficiently high resolution and accuracy 
across large extents, but can be approached using virtual species as 
demonstrated here.

F I G U R E  6   Accuracy of predicted occupancies at a grain size of 1 × 1, measured as log(predicted) ‐ log(true) occupancy, using ensemble 
downscaling (red) or raw‐counts (grey), after three subsampling biases (random, neutral and positive) and six sampling coverages (0.005, 
0.0107, 0.0232, 0.05, 0.107 and 0.232). The grain size that atlases were aggregated were run‐specific, defined as the largest scale that still 
allowed for modelling before the scale of saturation or endemism was reached
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4.1 | Selecting the appropriate atlas scale

Published biodiversity atlases use grain sizes that are understandably 
standardized across species and highly correlated with atlas extent 
(Gibbons et al., 2007). In parallel, the open data revolution allows the 
creation of biodiversity ‘atlases’ for specific objectives directly from 
distribution data stored in online repositories, allowing greater free‐
dom in the choice of grain and extent. We found that for an atlas to 
be relatively accurate (i.e. have a limited number of false absences), 
not only is the sampling coverage and bias critical to selecting grain 
size, but this scale should be specific to the species’ prevalence and 
clumping (Figures S2.1–S2.3). For example, accurate atlas data can be 
generated at fine grains for common, clumped species but if species 
are rare and dispersed atlas data may be inaccurate even at large‐grain 
sizes and high sampling coverage.

Issues are further complicated by a species reaching the scale of 
either saturation or endemism before enough scales are present to 
fit downscaling models. In this study, we used the largest grain size 
that still allowed for modelling, but in our example, this led to very 
small grain sizes for species with very low prevalence. During Red 
List assessments, if a species reaches the scale of endemism at a 
fine grain size where sampling coverage is believed to be too low to 

generate accurate atlas data, this may be an appropriate reason to 
assign the species as Data Deficient with regard to AOO.

4.2 | Predicting fine‐scale occupancy

In the majority of cases for our virtual species, the estimates from en‐
semble downscaling were more accurate than were the raw‐counts 
method but downscaling is still likely to underestimate AOO to some 
extent (Figures 6 and 8), unless models that systematically over‐predict 
AOO given perfect data are utilized (Figure S2.16). Prevalence is an im‐
portant indicator of downscaling accuracy (Groom et. al., 2018), but we 
also found that degree of aggregation will impact the ability to accurately 
recover the OAR. For example, even given perfect data, downscaling 
over‐predicts the AOO of scarce, dispersed species but under‐predicts 
the AOO of abundant, clumped species (Figures S2.9–S2.11).

Underestimation of AOO was greater the lower the sampling coverage 
(Figure 7) but to a large extent this is due to atlas data at even large‐grain 
sizes containing a large proportion of false absences (Figures S2.4–S2.6), 
as underestimation was reduced when a positive sampling bias was ap‐
plied. Every effort should therefore be made to ensure atlas data are ac‐
curate before downscaling is attempted. The increased accuracy through 
downscaling does come, however, with increased variance (Figure 6).

F I G U R E  7   Accuracy of the 
downscaled predicted occupancy 
calculated as log(predicted) – log(true) 
occupancy for three sampling biases 
(random, neutral and positive) and three 
sampling coverages (0.005, 0.0232, 
0.232). Blue cells are where downscaling 
under‐predicted occupancy, orange cells 
are where downscaling over‐predicted 
occupancy, and white cells are where 
occupancy is accurately predicted. 
Grey cells indicate species where <5 of 
the replicates could be modelled using 
downscaling
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4.3 | Guidelines on downscaling the OAR

The most appropriate approach to estimating AOO should, as far as 
possible, vary depending upon the characteristics of the species’ dis‐
tribution, the expected sampling coverage and any suspected spatial 
sampling bias (Table 1). More generally, we propose the following 
recommendations:

• Where sampling coverage is low, downscaling provides a better 
estimate of AOO than the raw‐counts method does, but it is still 
likely to be an underestimate of true AOO (Figures 6 and 8).

• Where sampling coverage is very high, and particularly where any 
sampling bias is likely to be positive to the species distribution, it 
may be better to use the raw‐counts method (Figure 8).

• An accurate estimate of AOO is more likely using atlas data at 
larger grain sizes, but the estimates have greater uncertainty from 
the downscaling predictions (we must extrapolate further back; 
Figure 5).

• Where possible downscaling accuracy will be increased by using 
more scales for fitting, but this should not be done at the expense 
of using a finer‐grained atlas (Figure 5).

• Where the scale of endemism is reached at fine grain sizes be‐
fore accurate atlas data can be generated, it may be appro‐
priate to assign the species as Data Deficient with regard to 
Criterion B2.

• Where no other information on the appropriate atlas grain size is 
available, atlas data should be generated at the largest scale that 
still allows for modelling before the scale of saturation or ende‐
mism is reached, providing this will not result in very fine grain 
sizes.

• Care should be taken when using downscaling to assess trends 
over time, as occupancy changes will be manifested over longer 
time periods at coarse grains (regional extinctions/colonizations) 
than at fine grains (local extinctions/colonizations; Hartley & 
Kunin, 2003).

4.4 | Potential improvements and future directions

Where the downscaling approach could provide additional informa‐
tion over the raw‐counts method is to give an estimate of uncertainty 
or error around the measurement of AOO, which is not provided by 
current methods but could be critical when determining if there are 
trends in changing AOO over time (Akçakaya et al., 2000). There are 
two errors associated with downscaling.

The first is the error within the downscaling models, which are 
relatively predictable at least in the direction of error (Figure S2.16; 
Groom et. al., 2018). Here, we also show that variation between 
models is dependent upon the species’ prevalence and clumping, 
as some models appear to struggle to recover the shape of certain 

F I G U R E  8   Accuracy of the downscaled 
predicted occupancy against occupancy 
calculated using raw‐counts for three 
sampling biases (random, neutral and 
positive) and three sampling coverages 
(0.005, 0.0232 and 0.232). Green cells 
are species where, on average, using 
downscaling produced more accurate 
predictions of occupancy, and red cells are 
where the raw‐count method produced 
more accurate predictions. Grey cells for 
a species are where <5 of the replicates 
could be modelled using downscaling

Accuracy compared to raw count
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OARs. Error will also increase with the distance of extrapolation (the 
larger the atlas scale, Figure 5). To some extent, by exploring a range 
of possible OARs in simulations such as these, we can therefore pre‐
dict the uncertainty of our estimates given the species’ characteris‐
tics in the atlas data and could weight models during the averaging 
of the ensemble process accordingly.

The second uncertainty is associated with generating coarse‐
grain atlas data without sampling gaps and is more difficult to es‐
timate as generally we cannot distinguish true absences from areas 
that have not been sampled. Published atlases ensure accuracy 
through the accumulation of data over long time periods, but they 
are generally confined only to well‐known taxa in well‐recorded 
regions. Unfortunately, for less well‐recorded taxa, particularly in 
the tropics, the majority of species are represented by fewer than 
30 records (Brummitt, Bachman, Aletrari, et al. 2015a; Brummitt, 
Bachman, Griffiths‐Lee, et al., 2015b).

The issue is exacerbated in that sampling coverage will also be 
uneven and likely to be spatially biased. It is extremely difficult to 
estimate sampling coverage or bias from the presence‐only data 
generally available from biological records, although some models 
are available that utilize information from the records of similar taxa 
to ascertain this (Isaac et al., 2014). We urge those that collect bio‐
logical records data to also collect and publish absences where they 
are certain, as absence data are just as valuable as presence data in 
nearly all applications for predicting species distributions.

Finally, downscaling methods themselves could also be devel‐
oped further. For example, models could account for potential false 
absences in the data if we know sampling to be low in particular 
regions, randomly assigning a presence or absence to uncertain 
atlas cells. Repeated many times this could produce a distribution 
of predicted occupancies. Additionally, although most downscaling 
models account for saturation (occupancy cannot exceed one), none 
account for the ‘slope of endemism’ where the maximum slope pos‐
sible is when only one of four cells at grain size n is occupied for 
each cell occupied at grain size n + 1. Therefore, some models pro‐
duce OARs that we know to be impossible. In such cases, the log–log 
slopes could be set at 0.25.

5  | CONCLUSION

Downscaling occupancy from coarse‐grain atlas data is potentially a 
valuable method for estimating AOO in IUCN Red List assessments. 
In previous studies and here we have:

1. Created a new R package which makes ten published down‐
scaling models accessible (Marsh et al., 2018).

2. Shown that an ensemble approach can accurately predict the oc‐
cupancy of a large number of real species (Groom et al., 2018).

3. Shown that for many virtual species, differing in their prevalence 
and clumping, ensemble downscaling can fill in information gaps 
resulting from low sampling coverage and spatial biases better than 
the currently advocated method of using raw‐counts (Figure 6).

4. Provided information on the limitation of downscaling and guide‐
lines on when it should and should not be used (Table 1).

Given the increased availability of open‐access biodiversity data 
that allows considerable freedom in creating bespoke atlas data, 
the potential to automate the fitting of downscaling models, and 
their ability to provide a more accurate AOO estimate at the rec‐
ommended scale of 2 × 2 km, we hope that downscaling can use‐
fully contribute to the IUCN Red Listing toolbox. We note that 
downscaling is only one of the tools suggested in the literature to 
assess AOO (Marsh et. al., in review). Which of these methods is 
the most appropriate for various species under various sampling 
scenarios remains under‐explored. Repeating a similar analysis 
with virtual species for a wide range of AOO methods may re‐
veal further methods that are complimentary to one another, each 
more suitable for different species and data characteristics, and 
lead to more holistic guidelines.
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