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Abstract. Fluoroscopy is used in a wide variety of examinations and
procedures to diagnose or treat patients in modern pediatric medicine.
Although these image guided interventions have many advantages in
treating pediatric patients, understanding the deterministic and long
term stochastic effects of ionizing radiation are of particular importance
for this patient demographic. Therefore, quantitative estimation and vi-
sualization of radiation exposure distribution, and dose accumulation
over the course of a procedure, is crucial for intra-procedure dose track-
ing and long term monitoring for risk assessment. Personalized pediatric
models are necessary for precise determination of patient-X-ray interac-
tions. One way to obtain such a model is to collect data from a population
of pediatric patients, establish a population based generative pediatric
model and use the latter for skin dose estimation. In this paper, we gen-
erate a population model for pediatric patient using data acquired by
two RGB-D cameras from different views. A generative atlas was estab-
lished using template registration. We evaluated the registered templates
and generative atlas by computing the mean vertex error to the asso-
ciated point cloud. The evaluation results show that the mean vertex
error reduced from 25.2± 12.9mm using an average surface model to
18.5± 9.4mm using specifically estimated pediatric surface model using
the generated atlas. Similarly, the dose estimation error was halved from
10.6 ± 8.5% using the average surface model to 5.9 ± 9.3% using the
personalized surface estimates.

1 Introduction

In modern pediatric radiology, fluoroscopy is used to provide the physicians
dynamic and functional information of the patients’ internal organs, both in
diagnostic and minimally invasive surgery. However, as an ionizing radiation
based imaging modality, the use of fluoroscopy is associated with radiation re-
lated risks such as radiation-induced cancer. A retrospective study by Pearce [1]
showed a noticeably increased risk of leukemia and brain cancer when accumu-
lated dose reached a certain level in children. Therefore it is desirable to reduce
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X-ray exposure adhering to the as low as reasonably achievable (ALARA) prin-
ciple, particularly in pediatric patients, who are more sensitive to X-rays than
adults. One way to help facilitate dose reduction in the interventional suite is
to use digital patient twins to better model and monitor X-ray dose exposure.
An interesting practical application for such models is to keep track of the dose
deposition in the skin. Skin entrance dose estimation often comprises two steps:
(1) identification of the irradiated skin area, and (2) dose calculation based on
a forward projection of an online-measured dose-related quantity such as dose-
area-product from the X-ray source onto the skin surface. Previous studies have
shown progressive improvements concerning the accuracy of skin dose estima-
tion, but also highlight the importance of an accurate patient model [2]. An
interesting practical question is, how accurate a patient model has to be, such
that the skin dose estimate is reliable. This forms the basic motivation for the
current study, with the focus on pediatric patients. The associated task is chal-
lenging as the anatomy and physiology of children exhibits a significantly higher
degree of variation relative to adults. Models of pediatric patients are typically
generated using MRI (or in rare cases CT) scans, referred to as computation
or reference phantoms. While such phantoms are highly detailed and accurate,
they are difficult to obtain on a large scale as they usually require very high
resolution data and significant manual post-processing, e.g. for segmentation.
With the introduction of RGB-D cameras, using depth data to construct surface
models has become increasingly popular. While most efforts have been aimed at
modeling adults [3,4,5], Hesse et al. [6] investigated methods to generate infant
body models, using RGB-D image sequences.

In this work, we propose a method to build a generative atlas using two RGB-
D cameras. Using this atlas, a patient specific pediatric model can be estimated
using patient height and weight as input data. We evaluated the model both in
terms of model estimation accuracy, and its impact on skin dose estimation.

2 Materials and Methods

RGBD imaging setup and data acquisition. Two Microsoft Kinect V2
cameras were used to acquire RGBD data from two fixed, but different viewing
angles. Children (n=20) were asked to stand in front of a wall in the target
region of interest (ROI). Cameras were mounted on two tripods and oriented such
that the target ROI (complete child) was located in the ISO center. The angle
between the two cameras was set to be approximately 30◦. An illustration of the
acquisition setup is shown in Fig. 1, left side. The RGBD cameras are calibrated
jointly using a calibration phantom to determine distortion correction and obtain
the intrinsic as well as the extrinsic camera parameters. Besides the RGBD data,
we further collected meta data (gender, height, weight and age) of the children.
In order to get most accurate height and weight information, measurements were
performed shortly before the image acquisition. Gender and age of the children
was inquired from the parents. The data acquisition was voluntary and followed
the rules set out by the European General Data Protection Regulation. Each
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data set acquired and processed has an associated consent form with signatures
of both parents and the child, if necessary.

Fig. 1. Data acquisition setup (left) and processing pipeline (right).

Preprocessing. The data preprocessing pipeline is illustrated in Fig. 1. First,
the point cloud of a patient is reconstructed using both depth images from
the two cameras. Two point clouds are reconstructed separately using associ-
ated undistorted depth images and the intrinsic camera matrix. These two point
clouds are then aligned using the extrinsic camera matrices. As the tripods may
have moved accidentally during the acquisition, we added an extra correction
step performing a rigid registration using coherent point drift (CPD) [7] to en-
sure that the point clouds are aligned. Subsequently, the two point clouds of each
child are merged. Next, we determined the wall and floor planes using RANSAC
with plane fitting and removed these from the data. As the backs of the patients
and the bottom of their feet were occluded in the acquisition setup, we used
the calculated wall and floor planes to fill in the missing information. As not all
patients were positioned next to the wall, we had to manually align the reference
wall planes to obtain the missing data. Finally, we manually removed remaining
artifacts, e.g., wide clothes obstructing the body silhouette. The extracted region
was adjusted for cases where patients were positioned outside the target ROI.

Template fitting. Template fitting was used to extract a structured mesh
for each preprocessed point cloud, for atlas generation. The MakeHuman1 soft-
ware was used to initialize a patient reference template. An iterative scheme
was then used to fit the reference to the cleaned-up point cloud. In each it-
eration, the reference was registered to each point cloud using an affine, and
subsequently, non-rigid transformation (using CPD). As clothing and pose of
the children varied significantly in the training data, a high outlier rate was used
in the CPD registration. CPD tries to find a globally optimal solution when
fitting the template to the point cloud by performing a non-rigid deformation.
Since the head-to-body-ratio of children, however, changes with age, we decided
to treat head and body trunk separately.

1 http://www.makehumancommunity.org/
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Afterwards, the reference was again fitted to the separately registered point
clouds to ensure smoothness of the model. At the end of each iteration, the
reference was updated by calculating the mean shape of all fitted meshes. This
fitting process converged after a few iterations, and we took the result for each
point cloud as the associated ground truth mesh.

Atlas generation. The goal of atlas generation is to learn a generative
model and estimate a personalized surface, based on a given height and weight
of the child. For this purpose, we used the ground truth meshes to compute a
statistical shape model using Principal Component Analysis (PCA), where P c

encodes the modes of variation and bci encodes the associated shape parameters.
We then computed the PCA space of the associated height and weight data.
Unfortunately, the measured data in the acquired datasets suffered from rank
deficiency, making a regression of shape parameters bci = f(hi, wi) in native PCA
space insufficient to generate a model having correct height hi and weight wi.
Therefore, we used the mode of variation P a learned from the adult CEASAR [8]
database as an extra term. Our aim was to find the associated shape parameters
ba for a given height hi and weight wi such that

xi = x̄+ P cbci + P abai (1)

argmin
ba

=
∑

i

(λ1‖ρV (xi)− wi‖+ λ2‖H(xi)− hi‖) + ‖∇ba‖ (2)

where ρ denotes the approximate body mass density of children, V (·) describes
the calculation of the input mesh volume, and H(·) represents the calculation of
the height of the input mesh, respectively. The gradient of the shape parameter
ensures smooth adaption. Minimizing this equation resulted in generation of an
estimated surface model which is in good agreement with the ground truth and
coherent with the associated measured data.

Skin Entrance Dose Estimation. For validation purposes, we computed
the accumulated skin entrance dose for each surface model, focused on a central
body region. The goal was not to simulate an actual interventional setup, but
to focus on differences in skin dose estimation resulting from the use of different
models. The surface models were placed within a virtual model of the imaging
setup (source - object - detector) for the dose simulations, comprising a homoge-
neous projection and view geometry of the X-ray source and the model matrix
of the patient, specifying its orientation and position with respect to the X-ray
beam. Based on the resulting model-view-projection matrix, each mesh face was
forward projected onto the detector plane if at least one associated vertex was
positioned within the X-ray beam and the face normal pointed towards the X-
ray source making sure that only those surfaces were considered that received
radiation. The corresponding distance to the X-ray source was given by the last
homogeneous coordinate of each vertex. Applying barycentric depth interpola-
tion, the triangle in the image plane was rasterized and the depth map was
constructed iteratively [9]. The skin entrance dose was then calculated by for-
ward projecting a dose-related quantity measured at the X-ray emitter onto the
area of irradiation, taking additional correction terms into account [2]. We eval-
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uated the percentage error of the skin entrance dose introduced by both surface
estimation methods: 1) using an average surface model, 2) using personalized
surface models. Both types of surface models were based on the atlas data. The
template fitted to the original point cloud served as ground truth.

3 Evaluation and Results

In total, we gathered 20 point cloud sets with associated measurements. We first
evaluated the accuracy of the atlas generation pipeline by overlaying the atlas-
based estimate with the associated 3D point cloud and calculating the minimal
distance for each vertex. We performed a leave-one-out cross validation in which
the estimate was rigidly registered to the associated point cloud using CPD.
An illustration of color coded mean vertex error of the reference, estimate and
ground truth, is shown in Fig. 2. Using only the reference, an average distance
of 25.2± 12.9mm was achieved. The ground truth had an average distance of
15.3± 8.7mm. A mean vertex error of 18.5± 9.4mm was achieved using the es-
timate. The percentage error of the skin entrance dose using the template model
(for each sample compared to its ground truth) was estimated to 10.6± 8.5%.
The percentage error using models generated by the atlas (for each sample com-
pared to its ground truth) was 5.9± 9.3%.

Fig. 2. An illustration of mean vertex distance in mm to its merged point cloud using
the reference template late (left), estimation based on metadata (middle) and the fitted
template. Right: Visualization of dose estimation setup.

4 Discussion

The proposed statistical atlas complements our adult atlas derived from the
CEASAR database. Both atlases yield comparable accuracy. Although the aver-
age error of approximately 2 cm will still contribute to a (skin) dose estimation
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error, the proposed atlas is still an improvement when compared to a setup in-
volving only one single representation, (average) reference model, for all pediatric
cases. Our statistical atlas could also be used as a first estimate of a continu-
ously adapting model which refines itself after each new source of information,
e.g., provided by successive MRI scans. A possible improvement of the model-
ing pipeline would be to use a more robust point set registration method than
CPD. Although CPD introduces an outlier ratio, the underlying Gaussian mix-
ture model can not effectively model the point cloud in the present of extreme
or large percentage of outliers. Despite the successful application of the adults’
modes of variation to the children’s atlas, more representative modes of variation
of the children might improve the accuracy of the model further. In this atlas,
we used height and weight measurements only. We were not able to account for
gender and age of the children due to the rank deficiency in the dataset. This was
caused by the limited amount of training data collected. In future work, we hope
to be able to gather more data such that we can incorporate this information as
well, to further reduce the estimation error.

Acknowledgements We gratefully acknowledge the support of Siemens Health-
ineers, Forchheim, Germany. Note that the concepts and information presented
in this paper are based on research, and they are not commercially available.

References

1. Pearce MS, et al. Radiation exposure from CT scans in childhood and subsequent
risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet.
2012;380(9840):499–505.

2. Johnson PB, et al. Skin dose mapping for fluoroscopically guided interventions. Med
Phys. 2011;38(10):5490–5499.

3. Zhong X, et al. Generation of Personalized Computational Phantoms Using Only
Patient Metadata. In: IEEE, editor. 2017 IEEE Nuclear Science Symposium and
Medical Imaging Conference Record (NSS/MIC); 2017. .

4. Zhong X, et al. A machine learning pipeline for internal anatomical landmark
embedding based on a patient surface model. Int J Comput Assist Radiol Surg.
2018;10:1–9.

5. Wu Y, et al. Towards Generating Personalized Volumetric Phantom from Patientś
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