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Abstract Purpose: Morphological changes to anatomy resulting from in-
vasive surgical procedures or pathology, typically alter the surrounding vas-
culature. This makes it useful as a descriptor for feature-driven image reg-
istration in various clinical applications. However, registration of vasculature
remains challenging, as vessels often differ in size and shape, and may even
miss branches, due to surgical interventions or pathological changes. Further-
more, existing vessel registration methods are typically designed for a specific
application. To address this limitation, we propose a generic vessel registra-
tion approach useful for a variety of clinical applications, involving different
anatomical regions. Methods: A probabilistic registration framework based
on a hybrid mixture model, with a refinement mechanism to identify missing
branches (denoted as HdMM+) during vasculature matching, is introduced.
Vascular structures are represented as 6-dimensional hybrid point sets compris-
ing spatial positions and centerline orientations, using Student’s t-distributions
to model the former and Watson distributions for the latter. Results: The
proposed framework is evaluated for intraoperative brain shift compensation,
and monitoring changes in pulmonary vasculature resulting from chronic lung
disease. Registration accuracy is validated using both synthetic and patient
data. Our results demonstrate, HdMM+ is able to reduce more than 85%
of the initial error for both applications, and outperforms the state-of-the-
art point-based registration methods such as coherent point drift (CPD) and
Student’s t-Distribution mixture model (TMM), in terms of mean surface dis-
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tance, modified hausdorff distance, Dice and Jaccard scores. Conclusion: The
proposed registration framework models complex vascular structures using a
hybrid representation of vessel centerlines, and accommodates intricate vari-
ations in vascular morphology. Furthermore, it is generic and flexible in its
design, enabling its use in a variety of clinical applications.

1 Introduction

A crucial component of non-invasive disease monitoring and interventional
guidance systems is the registration of serially acquired intra-patient image
data. As blood vessels permeate through all organs within the body, they
are a rich descriptor for feature-driven image registration techniques. Vascular
structures can be visualized with high resolution images in real time, using
state-of-the-art interventional and diagnostic imaging modalities. Hence, reg-
istration of vascular structures provides a good basis for registering preopera-
tive and intraoperative images, necessary for image-guided procedures, and a
non-invasive mechanism for monitoring disease progression.

Vascular image registration techniques can be categorized into point-, graph-
and curve-based approaches [16]. The main benefits of point-based approaches
to vessel matching are, that they do not require a priori identification of corre-
spondences; and may be imbued with robustness to outliers and missing data,
by formulating the problem within a probabilistic framework. [22] proposed
the coherent point drift (CPD) algorithm for point set registration based on
Gaussian mixture models (GMMs). Here, a uniform distribution component
was used to account for noise and outliers. Consequently, prior knowledge
about the degree of outliers present in the data has a great impact on the
registration accuracy. Compared to conventional approaches such as ICP and
robust point matching (RPM) [5], CPD demonstrates its superiority in nu-
merous computer vision tasks. However, although the incorporation of a uni-
form distribution component provides global robustness, localized robustness
is desirable in many clinical applications as outliers may be concentrated in a
spatial neighbourhood. To overcome this limitation, [25] proposed a probabilis-
tic point set registration approach based on Student’s t-distributions (TMM),
which confers the property of localized robustness to the registration process,
via estimation of a unique shape parameter for each mixture component in
the TMM. Numerous recent studies have employed hybrid shape represen-
tations [26,19,18,20,17,23], in order to increase the discriminative capacity
of probabilistic point set registration approaches. In [26] for example, spatial
positions and their associated surface normal vectors were modeled with Stu-
dent’s t-distributions, and Von-Mises-Fisher (vmF) distributions, respectively.
However, such an approach is ill-suited to registering vessel centerlines, since
vmF distributions are not antipodally symmetric. Consequently, they cannot
be used to model vessel centerlines as the latter are not consistently oriented
in any specific direction throughout the vascular tree.
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The applications of interest in this study are vasculature registration for
intraoperative brain shift compensation, and monitoring the progression of
lung disease. Comprehensive reviews on intraoperative brain shift compensa-
tion were presented in [1,11]. In general, brain shift can be described as a
non-rigid deformation of the brain parenchyma as a result of craniotomy. This
phenomenon has a significant impact on the accuracy of neuronavigation sys-
tems. Non-rigid registration techniques are employed to warp the preoperative
image to its intra- and postoperative counterparts, in order to compensate for
brain shit. For example, blood vessel centerlines extracted from preoperative
MRIs and intraoperative ultrasound data were aligned by applying the ICP
algorithm [27]. In [9,15], CPD was used to compensate for intraoperative brain
shift. Both studies used thin plate splines (TPS)-based interpolation to warp
the preoperative image to its intraoperative counterparts. Assessing changes to
pulmonary vasculature is a crucial for monitoring chronic lung diseases [8,30].
Pathological changes to pulmonary vessels may manifest as pruning of small
vessels, dilation of large vessels, or impaired vessel perfusion. Pulmonary vas-
culature extracted from longitudinal CT scans are thus compared, to assess
treatment response and quantify disease progression [31,32].

As reported in a recent review [16], a major limitation of existing ves-
sel registration approaches is that they are typically designed, and evaluated,
for a single application. For example, algorithms incorporating details of the
aortic shape [13] cannot be employed for registering cerebral or pulmonary
vessels. Furthermore, a generalized vessel registration approach that achieves
high accuracy and precision for different applications has not been tackled
previously [16], to the best of our knowledge. Consequently, in this study, we
propose a novel and generalized framework for registering vessel centerlines.
We improve on the HdMM-based vessel registration framework proposed in
our recent study [2], through suitable algorithmic modifications, and provide
a detailed description of the same. Furthermore, we evaluate the proposed
approach comprehensively and compare it with the state-of-the-art, using vas-
cular data from two different clinical applications, namely, intraoperative brain
shift compensation, and quantification of pulmonary vascular changes caused
by lung disease.

2 Methods

An overview of the registration framework is presented in Fig. 1. Vessels are
represented as 6-dimensional hybrid point sets comprising spatial positions and
their corresponding unit vectors describing local centerline orientation. Here,
each voxel representing the vessel centrelines denotes the 3D spatial positions,
and the eigenvector corresponding to smallest eigen value of the Hessian ma-
trix [10], is used to represent the 3D local vessel orientation. Hybrid points
defining the Source are regarded as the centroids of a HdMM, while, the
point set defining the Target are regarded as data points (observations). The
former is registered to the latter by maximizing the log-likelihood (llh) func-
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Fig. 1 Pipeline of proposed framework. The red path shows the steps of HdMM+, while
the blue one represents the steps for HdMM.

tion iteratively, using the expectation-maximization (EM) algorithm [6]. The
desired affine (translation, rotation and scaling) or non-rigid (displacement)
transformations are estimated in the maximization (M)-step. All experiments
conducted in this study initially performed an affine registration, and used
the estimated transformations to initialize the subsequent non-rigid registra-
tion step. In order to cope with large amounts of missing data, we formulated
a mechanism for refining the correspondences established between the Source
and Target. This is achieved by clustering and excluding points in the Source
set that lie within the missing data region in the Target set, following both
affine and non-rigid registration, henceforth referred to as HdMM+.

2.1 Hybrid mixture model for vascular structure registration

The proposed hybrid mixture model is a weighted linear combination of two
different probabilistic components, where, the Student’s t-distribution (S) and
Watson distribution (W) are used to model the spatial positions, and ves-
sel centerline orientations, respectively. Following the formulation of TMM in
[24,25], the joint likelihood of all N spatial positions in the Target center-
line points xi=1...N being data points, sampled from an M -component TMM
(represented by the Source centerline points), with model parameters Θp =
{µµµj , νj , σj}, can be described as:

p(X | Θp) =

N∑

i=1

ln

M∑

j=1

πjS(xi | µµµj , νj , σ
2) (1)

Here, µµµj=1...M , νj=1...M and σ2 represent the mean positions, degrees of free-
dom and variance of the Student’s t-distributions, while πj=1...M represents
the mixture coefficient of each TMM component. Considering the antipodal
symmetry of the centerline points, we formulate an additional Watson mixture
model to model the 3D orientations of vessels. Watson distributions (W) are
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antipodally symmetric probability distributions defined on a unit-hypersphere,
and hence their probability density is the same in either direction along its
mean axis. On a d-dimensional unit-hypersphere S

d−1 = {n | n ∈ R
d, ‖n‖2 =

1}, antipodally symmetric vectors (±n ∈ R
d) are considered to be Watson-

distributed, if their probability density function can be expressed as Eq. 2a.

p(±ni | mj , κj) = M(
1

2
,
D

2
, κj)

−1 expκj(mj
T
ni)

2

(2a)

p(N | Θn) =

N∑

i=1

ln

M∑

j=1

πjp(±ni | mj , κj) (2b)

This distribution is parametrized by the mean orientation m and the con-
centration κ. Here, M( 12 ,

D
2 , κ)

−1 is the confluent hyper-geometric function.
This function has been shown to be monotonically increasing within [−∞,∞]
[29]. With increasing |κ|, n are more concentrated along m, for κ > 0. Conse-
quently, κ is often considered to be analogous to the precision of a Gaussian
distribution. The joint llh of the axes of all N centerline points in the entire
Target point set, being generated by an M -component Watson mixture model
(defined by the Source) with parameters Θn = {mj , κj} is given by Eq. 2b.

We assume both the spatial positions (xi) and the centerline orientations
(ni) of each hybrid point in the Target set to be conditionally independent.
Consequently, their joint PDF can be formulated as a product of the individual
conditional densities as shown in Eq. 3, where Θp = {νj , σj}, Θn = {mj , κj}
and πj are the parameters of the HdMM to be estimated. Here, all hybrid
points in the Target (T) are assumed to be independent and identically dis-
tributed observations of a HdMM defined by the Source point set. The desired
transformation parameters T are estimated by maximizing Eq. 3, in the M-
step of the EM-algorithm, in addition to the associated model parameters
Θp, Θn.

log(T | T , Θp, Θn) =

N∑

i=1

ln

M∑

j=1

πjS(xi | T µµµj , νj , σ
2)W(ni | T mj , κj) (3)

2.1.1 Affine and non-rigid registration

Pair-wise affine and non-rigid registration is achieved by maximizing the joint
likelihood in Eq. 3 using EM. Each hybrid point in the Target set is de-
noted as di = {xi,ni}. EM alternates between: the expectation E-step, where
the expectations of the posterior probabilities P t

ij are evaluated (refer to
Eq. 4a), given an estimate for the model and transformation parameters Θt =
{Θt

p, Θ
t
n, T

t}; and the maximization M-step (refer to Eq. 4b), where the esti-

mated P t
ij at the tth iterative, are used to update estimates for Θt, by maxi-



6 Siming Bayer et al.

mizing the conditional expectation of the complete data log-likelihood function
Q, with respect to each parameter.

P t
ij =

πjp(di | Θ
t)

∑M

j=1 πjp(di | Θt)
(4a)

Q(Θt+1 | Θt) =

N,M∑

i,j=1

P t
ij [lnπj +Q(Θt+1

p | Θt
p) +Q(Θt+1

n | Θt
n)] (4b)

First, we perform an initial affine registration (refer to Eq. 5a) of the vessel
centerlines, which is used to initialize the subsequent non-rigid registration
step. Here, P ⋆(t) represents the corrected posterior probabilities estimated in
the E-step. Updates for the affine transformation T = {s,R, t} and model
parameters σ2, νj are derived analytically similarly to [25] and computed in
the M-step. The model parameters κj associated with the Watson distributions
are estimated using the approximation derived in [4].

Q(Θt+1
p | Θt

p) =

N,M∑

i,j=1

P
⋆(t)
i,j [−

‖xi − sRµµµj − t‖2

2σ2
+ κj(RmT

j )nj ] (5a)

Q(Θt+1
p | Θt

p) =

N,M∑

i,j=1

−P
⋆(t)
i,j

||xi − (µµµj + v(µµµj)||
2

2σ2
+

λ

2
Tr{WTGW} (5b)

Subsequently, the desired non-rigid transformation (T ), expressed as a linear
combination of radial basis functions (refer to Eq. 5b), is estimated using EM.
The associated parameters (W) are computed as described in [22]. Tikhonov
regularization is employed to ensure that the estimated deformation field is
smooth. In Eq. 5b, v is the displacement field mapping the Source to the
Target, while W and G represent the weights associated with the radial basis
functions and the Gaussian kernel, respectively. The trade off between reg-
istration accuracy and the smoothness of the estimated deformation field is
regulated by λ.

In CPD and TMM, the Gaussian kernel is computed as G(µµµl,µµµm) =

exp−‖
µµµl−µµµm

2β
‖2

. Here, β controls the width of the Gaussian kernel and is a
hyperparameter that is chosen manually. The value chosen for β controls the
range of filtered frequencies, and consequently, the spatial smoothness of the
deformation field, i.e. higher values result in smoother deformations [22]. How-
ever, as it is defined manually, it requires some prior information regarding
the degree of smoothness required for accurate registration, or alternatively,
tuning of the hyperparameter to identify a suitable value for an application.
Furthermore, the same value for β is used when computing G, for all points µ,
defining the centroids of the mixture model. Consequently, such a kernel has
two main limitations - manual definition of kernel width; and enforced global
smoothness on the deformation field, as the kernel width is fixed for all µ,
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when computing G(µµµl,µµµm). Our framework addresses these limitations by us-
ing the model parameters κj of the Watson distributions in the HdMM, which
represent the concentration of centerline orientations along the mean orienta-
tions of each component in the HdMM, to compute a locally adaptive variant
of the Gaussian kernel as, G(µµµl,µµµm, κj) = exp−‖2κj(µµµl−µµµm)‖2

. The intuition
here is that, as κ is analogous to the precision (or inverse of the variance)
of a Gaussian distribution, it can be used in place of β (i.e. the variance of
the Gaussian kernel). As all κj are estimated in the M-step of the algorithm,
during the preceding affine registration step, they are automatically defined
when computing G for the subsequent non-rigid registration step. Addition-
ally, as κj is estimated for each component of the HdMM, the resulting kernel
is locally adaptive, thereby providing different degrees of smoothness to the
deformation field, at different spatial positions.

During non-rigid registration, the transformation parameters T = v =
GW, and a subset of the model parameters, namely, {σj , νj , κj} ∈ Θ are es-
timated analytically, via EM. Following EM-convergence, the displacements
mapping the Source to the Target are computed as: T (M) = M + GW,
where, M represents the means of the HdMM, defined by the former. Since
the degrees of freedom νj do not have a closed-form solution, they are es-
timated iteratively in both registration registration steps, by the Newton-
Raphson scheme, similar to [25].

2.1.2 Registration refinement

Significant proportions of missing data in the Source relative to the Target,
limits the accuracy and robustness of the propose HdMM-based method. Con-
sequently, we formulated a mechanism for refining the point correspondences,
in order to accommodate for the missing data during registration.

First, we construct a 2D feature space for each point in the Source. This
feature vector is constructed based on the intuition that points lacking cor-
respondence should have low responsibility in describing the Target points.
This behavior is reflected in the N×M posterior probability matrix estimated
following registration using HdMM, where each entry describes the probabil-
ity of each point in the Target being observations sampled from each point
in the Source point set. Consequently, Source points which are missing in
the Target point set have a large number of values close to zero in the pos-
terior probability matrix. Furthermore, Source points lacking correspondence
have large Euclidean distances to the Target points, following HdMM-based
registration. Therefore, we select the following two features: (1) the number
of points in the Target set which have posterior probabilities greater than
1e−5, for each point in the Source point set, and (2) the minimum euclidean
distance between each updated Source point (use HdMM) and the points in
the Target point set.

Subsequently, PCA was used to extract the first principal component. Fi-
nally, automatic histogram clipping using Otsu-thresholding was performed on
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the first principal component, to identify and exclude points within the miss-
ing data region. The refined correspondences in the Source are subsequently
non-rigidly registered to the Target set using HdMM again (henceforth re-
ferred to as HdMM+), to accommodate for the missing data, and improve the
overall registration accuracy.

3 Experiments and Results

3.1 Evaluation metrics

In order to demonstrate the effectiveness of incorporating centerline orienta-
tions, and the proposed outlier removal mechanism for registering vasculature,
we compare CPD, TMM, TMM+, HdMM and HdMM+, for two different clin-
ical applications. For fair comparison, we fixed the smoothing factor associated
with Tikhonov regularization (λ = 1) during non-rigid registration, for CPD,
TMM, TMM+, HdMM and HdMM+ in all experiments. The width of the
Gaussian kernel (β) is set to 1, for CPD, TMM and TMMM+ in all experi-
ments. Following preliminary investigations, we identified 0.5 to be a suitable
value for the uniform distribution component weight in CPD, which remained
fixed for all experiments. The maximum number of iterations is set to 100 for
all methods. Following estimation of the sparse displacement field with the
established point correspondence, B-spline interpolation [28] is employed to
estimate a dense deformation field and warp the Source image.

Modified Hausdorff distance (MHD) [7], and mean surface distance (MSD) [25],
are used to quantitatively assess registration accuracy. MHD1, MSD1 compute
the MHD and MSD between registered Source and Target point sets once point
correspondences are established; MHD2, MSD2 evaluate the MHD and MSD be-
tween the vessel centerlines extracted following warping of the Source image
to each corresponding Target image. Furthermore, 100 homologous fiducial
landmark pairs are defined semi-automatically for each patient, using Mur-
phy’s method [21] to assess the mean target registration error (mTRE). Since
the semi-automatic annotation method in [21] is designed for thoracic CT im-
ages, it is not applicable for DSA brain acquisitions. In order to evaluate the
degree of overlap in cerebral vasculature following registration of the Source

images to corresponding Target images, for clinical data, we calculate the
Dice and Jaccard coefficients between their respective vessel segmentations.

3.2 Intraoperative brain shift compensation

For intraoperative brain shift compensation, the performance of CPD, TMM,
TMM+, HdMM and HdMM+ is compared using both an anthropomorphic
head phantom and clinical data. First, vesselness maps of the images are esti-
mated using Frangi’s vesselness filter [10]. The vessel centerlines are extracted
by applying a homotopic thinning algorithm proposed in [12].
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Phantom data: An anthropomorphic deformable head phantom as de-
scribed in [3] (refer to Fig. 2) is used to acquire cone beam CT (CBCT) data
and conduct synthetic experiments. During the experiments, distilled water
is used to fill up the ventricle. We use a 1:10 solution of distilled water and
Ultravist 370 as contrast agent to enhance the vascular structures. The em-
bedded tumor is initially inflated with 40ml distilled water, and downsized to
25ml, 15ml, 5ml and 0ml subsequently, emulating a tumor resection surgery.
In each step, contrast enhanced cone beam CT image is acquired. All images
have a voxel resolution of 0.48mm3 (refer to Fig. 2 right).

Fig. 2 The computer aided design model of the anthropomorphic head phantom, the ex-
periment setting and an example slice of CBCT acquisition of the phantom are shown from
left to right.

Clinical data: The clinical data used in this retroperspective study com-
prises 3D DSA images acquired during tumor resection surgery of a glioma
patient. The images are acquired preoperatively, following craniotomy, during
resection, and postoperatively, to monitor blood flow within the brain dur-
ing and after surgery. The surgery is performed in a hybrid operating room
with Siemens Artis zeego installation. As with the phantom experiments, the
acquisitions have a voxel resolution of 0.48mm3.

For the phantom data, centerlines extracted from the CBCT images with
the tumor maximally inflated (40ml), was treated as Source and aligned to
the other four remaining acquisitions. In order to validate the performance
of the proposed method for brain shift compensation with sufficient amount
of clinical data, we include every combination of two, out of four, acquired
clinical images as a Source - Target pair, where the Source image is al-
ways acquired before Target image. Quantitative results for brain shift com-
pensation are summarized in Table. 1. The initial average MSD and MHD are
5.42±1.07mm and 5.57±1.11mm for phantom data, while for clinical images,
they are 5.40 ± 1.24mm and 5.62 ± 1.31mm. With regard to qualitative as-
sessment of our approach, extracted vessel centerlines from registered Source

images, are superimposed on its counterpart extracted from Target images
in Fig. 3. Each row represents the registration result of different Source and
Target pairs, while each column represent a different registration method.
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Table 1 Comparison of the accuracy of CPD, TMM, HdMM and HdMM+ for intraoper-
ative brain shift compensation. Mean and standard deviation of all evaluation metrics in
millimeters (mm) are summarized below.

CPD TMM TMM+ HdMM HdMM+

Phantom

MHD1 1.04± 0.21 0.61± 0.08 0.41± 0.06 0.56± 0.05 0.34± 0.030.34± 0.030.34± 0.03
MHD2 2.16± 0.17 1.85± 0.06 1.77± 0.04 1.81± 0.07 1.76± 0.051.76± 0.051.76± 0.05
MSD1 0.97± 0.21 0.58± 0.09 0.32± 0.03 0.54± 0.06 0.24± 0.020.24± 0.020.24± 0.02
MSD2 1.83± 0.42 1.20± 0.03 1.15± 0.01 1.19± 0.02 1.15± 0.011.15± 0.011.15± 0.01

Clinical

MHD1 2.46± 0.26 1.33± 0.32 1.04± 0.28 1.23± 0.32 0.90± 0.240.90± 0.240.90± 0.24
MHD2 4.48± 0.43 1.73± 0.53 1.48± 0.46 1.52± 0.42 1.37± 0.371.37± 0.371.37± 0.37
MSD1 2.32± 0.27 1.07± 0.24 0.64± 0.15 0.97± 0.21 0.55± 0.130.55± 0.130.55± 0.13
MSD2 3.31± 0.28 1.51± 0.50 1.30± 0.44 1.39± 0.43 1.26± 0.391.26± 0.391.26± 0.39
Dice 0.28± 0.07 0.72± 0.07 0.74± 0.07 0.72± 0.06 0.76± 0.050.76± 0.050.76± 0.05

Jaccard 0.16± 0.05 0.56± 0.08 0.58± 0.07 0.57± 0.08 0.61± 0.070.61± 0.070.61± 0.07

Fig. 3 Overlay of registered Source centerlines (blue) on Target (red) point set. The green
circle visualize the location of missing branches caused by tumor resection. The first row
shows centerlines extracted from a preoperative DSA image aligned to intraoperative vas-
cular structures following the dura opening. The second row presents the preoperative data
aligned with post-resectional centerlines. While in the last row, postoperative point set of
vasculature is aligned with the intraoperative data following the dura opening.

3.3 Pulmonary vascular alternation of lung diseases

For the evaluation of non-invasive disease monitoring of pulmonary diseases,
we select baseline (Source) and follow-up (Target) CT scans of 12 patients
from SPREAD study, suffering from pulmonary emphysema [30]. This results
in 24 Source and Target image pairs. All CT images are acquired during
breath hold and reconstructed with a standardized protocol optimized for
lung densitometry. The slice thickness of the CT images is 2.5mm and in
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plane resolution is 0.65× 0.65 mm. The segmentation of pulmonary vessels is
performed with a graph-cuts based method proposed in [33]. Subsequent steps
including the centerline extraction technique, point matching algorithms, and
image warping, are identical to the brain shift compensation experiments.

For all 24 CT image pairs, the initial average MSD and MHD between cen-
terlines extracted from baseline and follow-up images are 8.24± 2.33mm and
9.07 ± 3.7mm. Quantitative results after applying CPD, TMM, HdMM and
HdMM+ are summarized in Table. 2. Examples of overlay between updated
Source and Target point set are presented in Fig. 4.

Table 2 Comparison of the accuracy of CPD, TMM, HdMM and HdMM+ for longitudinal
assessment of pulmonary diseases. Average and STD of all evaluation metrics are summa-
rized millimeter (mm) unit.

CPD TMM TMM+ HdMM HdMM+

MHD1 3.31± 0.87 2.34± 0.53 1.55± 0.54 2.03± 0.33 1.24± 0.271.24± 0.271.24± 0.27
MHD2 4.16± 1.21 2.28± 0.48 2.05± 0.60 2.26± 0.46 2.05± 0.322.05± 0.322.05± 0.32
MSD1 3.04± 0.76 2.24± 0.53 1.15± 0.42 1.91± 0.32 0.90± 0.170.90± 0.170.90± 0.17
MSD2 3.25± 0.72 2.11± 0.38 1.84± 0.47 2.01± 0.41 1.80± 0.291.80± 0.291.80± 0.29
mTRE 2.70± 3.45 2.22± 2.852.22± 2.852.22± 2.85 2.21± 2.802.21± 2.802.21± 2.80 2.20± 2.822.20± 2.822.20± 2.82 2.20± 2.822.20± 2.822.20± 2.82

Fig. 4 Results of the pulmonary vessel registration using CPD, TMM, HdMM and
HdMM+. Updated Source (blue) point set is superimposed with Target (red) data.

4 Discussion and outlook

The quantitative (refer to Table 1 and 2) and qualitative (refer to Table 3
4) results indicate that TMM outperforms CPD significantly, with further
improvements achieved using HdMM, compared to TMM. This demonstrates
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the ability of the proposed registration framework to model fine structural
details of both cerebral and pulmonary vasculature. This is attributed to the
hybrid representations of vessel centerlines, as they are a rich descriptor of
local vessel morphology, and the improved discriminative capacity and locally
adaptive nature of the model employed in the HdMM/HdMM+ framework.
Complex structures such as vasculature require more descriptive features for
accurate registration, than afforded by spatial positions alone. Consequently,
a registration framework that jointly models the PDF of spatial positions and
centerline orientations, is better equipped for registering complex geometries
such as vasculature, than point matching methods that rely on spatial positions
alone, regardless of clinical application.

A major challenge in many clinical applications is the presence of miss-
ing data due to surgical interventions or pathology-induced morphological
changes. The green circle in Fig. 3 highlights the missing branches caused by
tumor resection. When registering pre- and post-resectional data (refer to row
2 in Fig. 3), missing data poses a great challenge for CPD, TMM and HdMM,
whereas TMM+ and HdMM+ are less affected and able to establish correct
point correspondences. The correspondence refinement mechanism proposed
in our framework identifies a subset of points in the Source, which have a
large responsibility (i.e. large posterior probability) in describing points in the
Target, without any prior knowledge regarding the positions of missing ves-
sel branches. Following refinement, TMM+ and HdMM+ achieve significant
improvements in registration accuracy (refer to Tables 1 and 2) relative to
TMM and HdMM, respectively. Overall, HdMM+ consistently outperformed
all other methods, in all experiments conducted.

The performance of CPD is affected by three manually chosen hyper-
paremters (outlier weight, β and λ). While, TMM/TMM+ are affected by just
β and λ, as they are are inherently robust to outliers due to the heavy tailed
property of the constituent Student’s t-distributions. However, in the proposed
HdMM/HdMM+ framework, β is defined automatically using the concentra-
tion parameters (κj) estimated for the constituent Watson distributions, i.e.
only a single hyperparameter (λ) remains. Furthermore, as different values
for κ are estimated for each component of the HdMM, the resulting kernel
is locally adaptive, resulting in localized smoothness constraints on the esti-
mated deformation field (as opposed to the global constraint enforced in CPD,
TMM and TMM+). The improvements in registration accuracy afforded by
HdMM/HdMM+ relative to TMM/TMM+ are attributed to this locally adap-
tive kernel. Thus, compared to CPD and TMM/TMM+, HdMM/HdMM+ are
considered to be of greater practical value within a clinical setting.

Quantitative results presented in Tables 1 and 2 also indicate that MSD and
MHD values are higher, when they are computed following image warping, com-
pared to those evaluated following point set registration. This is attributed
to the localized support of B-spline basis functions, used to warp the images.
Global deformations introduced by the change of biomechanical boundary con-
ditions are therefore not considered, when deriving dense displacement fields
from its sparse counterparts.
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At each bifurcation point, centerline orientation could follow either the
main branch or any sub-brunch, i.e. the spatial position and orientation are
conditionally independent. This assumption increases the flexibility and the
discriminative capacity of the proposed HdMM/HdMM+ framework. How-
ever, the proposed framework may be improved by modeling the conditional
dependency of spatial positions and associated orientations, for points within
each branch. The lack of a “gold standard” for quantitative evaluation of local
accuracy is a limitation of the current study. Usually, mTRE is the state-of-
the-art metric to evaluate the average local accuracy of a registration frame-
work. However, the homologous fiducial landmarks used in this study for the
pulmonary data set, is not able to identify differences in the performance
of HdMM+ from HdMM and TMM. This is because the homologous land-
marks are annotated semi-automatically, where a fixed number of correspond-
ing point pairs are identified without considering missing data. Hence, even
if one of the landmarks identified in the Source image lacks a correspond-
ing landmark on the Target due to pathological changes of the vessels, the
semi-automatic approach used, will still identify a point in the Target. As
the aim of this study was to compare different probabilistic mixture model-
based registration approaches, for the task of generalized vessel registration,
some aspects regarding the evaluation and algorithmic analysis were beyond
it‘s scope. Future work will look to - identify a suitable metric to evaluate the
local accuracy of the proposed HdMM+ framework, such as the performance
of missing branch detection for example; conduct a comprehensive analysis of
the effect of λ on registration accuracy; and qualitatively and quantitatively
assess the outlier removal mechanism employed in TMM+ and HdMM+, using
manual outlier screening via variogram analysis [14] for example.

5 Conclusion

Clinical applications benefit from an accurate and inherently robust registra-
tion method, able to accommodate large proportions of outliers, missing data,
and morphological variations in vasculature. We treated vessel registration
as a point matching problem, and formulated a hybrid mixture model based
rigid and non-rigid registration framework. By incorporating a correspondence
refinement step to deal with missing data, the proposed HdMM/HdMM+
registration framework was shown to significantly outperform the state-of-
the-art, in terms of registration accuracy. We validated our approach using
data from intraoperative brain shift compensation, and longitudinal analysis
of pulmonary vasculature. The presented results demonstrate the ability of the
HdMM/HdMM+ framework to model complex vascular structures acquired
from different anatomical regions. The fidelity of the proposed framework is
thus compelling for its use in a variety of clinical applications.
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