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Abstract. Two distinct techniques were used to predict, and then optimize, the viscoelast ic 

properties of unidirectional carbon fiber/epoxy composites where the carbon fibers were coated 

with a thin lossy coating. First, finite element models with hexagonal and random 

microstructures were used to predict the effect of various parameters on the five independent 

stiffness constants of such unidirectional composites, most importantly that of the ratio of the 

coating thickness to the fiber diameter. Second, these predictions were compared to those 

obtained from the n-layered micromechanical model of Hervé and Zaoui and it was shown that 

the modelling predictions were remarkably accurate. It was found that while the longitudina l 

moduli were little affected by the presence of the coating, both the transverse and shear moduli 

showed a maximum loss (and a significant enhancement compared to uncoated fibers) for a 

coating thickness ratio of 0.001 corresponding to a coating thickness of ~10nm for a typical 

industrial carbon fiber. The enhancement of the shear loss moduli was shown to be particular ly 

important, as a study of the eigenfrequencies of a simply supported viscoelastic plate strip 

showed that the shear deformation mode was activated and hence led to a significant increase 

in the effective vibration damping. 
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1 Introduction 

Vibration damping is a relevant topic in various applications. Not only can vibrations cause 

structural instability but also trigger noise. Thus, improvement in vibration control is of 

standing interest for many industries. Composite materials are often favored to pure materials 

as they can be designed to provide several desired properties simultaneously while the 

properties are mutually exclusive in pure materials. Polymers are widely employed in 

composites due to their high dissipation and light weight. Combined with a stiff but non-lossy 

material, one can create composites that exhibit both, high stiffness and high dissipation [1, 2]. 

However, defining suitable properties of a composite to achieve optimal performance is a 

challenging task. It is thus of interest to make use of homogenization models to determine the 

effective properties of heterogeneous materials. Commonly used models were derived by 

Hashin, Hill, Christensen and later by Hervé and Zaoui [3-8].  

In the last decades, many approaches were made on assessing the potential of micromechanica l 

models and estimating the accuracy by comparison with results of numerical simulations and 

experimental measurements [9-11]. Recently, Gusev presented time-domain finite element 

simulation for composites with different microstructures, including composites with 

viscoelastic coated spherical inclusions. It was found that the n-layered model [8] is remarkably 

accurate even in the case of high stiffness contrast and thin coating layers [12-14]. Unwin et al. 

further highlighted the progress in damping techniques by the use of polymer composites with 

viscoelastic coated spherical inclusions [15, 16]. It was shown that experimental measurements 

were in close agreement with the analytic prediction.  

Another work showed the agreement of numerical models and measurements for unidirectiona l 

glass/epoxy composites [17]. The prediction of elastic moduli of fiber-reinforced composites 

was addressed by the composite cylinder model of Hashin and Rosen [5, 18] and further 

approached by Christensen and Lo [4]. Moreover, viscoelastic composites can be studied using 

the viscoelastic correspondence principle and replacing the static moduli by complex 
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viscoelastic ones [19]. The elastic-viscoelastic correspondence principle has been discussed and 

used in a recent finite-volume unit cell homogenization study to relate the governing equations 

in the time and Laplace-Carson domains [20]. In our recent work, uncoated carbon fibers (and 

glass fibers) in a viscoelastic matrix were studied by comparison with frequency-domain finite 

element estimates [21]. 

In the present work, frequency-domain finite element simulations were further applied to 

determine the effective moduli of viscoelastic coated fiber-reinforced composites. The obtained 

estimates are then used to examine the accuracy of the model for multiply coated fiber-

reinforced composites by Hervé and Zaoui [6] and compared with respect to the fiber coating 

thickness and the volume fractions of matrix and fibers. Moreover, examples of applications 

are presented where the previously derived moduli are used to determine complex 

eigenfrequencies of composite viscoelastic plate strips, when deformed in simple bending. 
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2 Theoretical simulations 

2.1 Finite element model 

 

 

 

Figure 1: Periodic finite element model of coated fiber composites in hexagonal structure (a) and the corresponding mesh 

(b). A model with 32 random fibers is illustrated in Figure c and a magnified sketch of the mesh between two nearly touching 

fibers is shown in Figure d.  

The effective viscoelastic moduli of unidirectional coated fiber reinforced composites were first 

estimated using finite element models. Two kinds of models were studied employing unit cells 

with either a regular hexagonal configuration of fibers (cf. Figure 1a) or randomly distributed 

fibers (cf. Figure 1c). The latter was generated using a Monte Carlo method by randomly 

dispersing 32 identical fibers. A detailed description of the Monte Carlo method and the 

homogenization procedure was given in our recent work [21]. 

The models were meshed with prismatic elements obtained by generating a two-dimensiona l 

triangular mesh first on one of the two faces orthogonal to the fibers. This mesh was then 

extruded to the opposite face of the unit cell, creating prismatic elements along the fibers as it 

is seen in Figure 1b. It is further shown in Figure 1d that in the case of random models, where 

fibers can come arbitrarily close, the mesh has smaller elements in the regions between two 

close fibers. Likewise, the mesh is finer within the coating layers. 

Frequency-domain finite element simulations were performed using COMSOL Multiphys ics 

(www.comsol.com) with MATLAB (www.matlab.com), as described in our recent work [21] 

where a frequency-domain homogenization procedure for the effective viscoelastic constants 

a)      b)            c)        d) 

matrix 
 
coating  
 
fiber 

https://www.comsol.com/
http://www.matlab.com/


   

 
 

5 

was introduced and validated. The procedure is based on the elastic-viscoelast ic 

correspondence principle and it allows one to obtain the effective viscoelastic constants of 

composite materials on the basis of their periodic computer models using the weighted residual 

Galerkin finite element method with complex viscoelastic moduli of the constituent phases. The 

multi-frontal direct sparse complex arithmetic MUMPS solver (mumps.enseeiht.fr) was used 

in all numerical calculations. 

The models with 32 randomly dispersed fibers had up to two million degrees of freedom and 

took several minutes computing time. Calculations with hexagonal models, containing only two 

fibers, were accordingly faster. 

 

2.2 Constituent properties 

 

Figure 2: Temperature dependence of the shear modulus (a) and the bulk modulus (b) of the viscoelastic coating layer . The 

blue line corresponds to the storage moduli while the red line shows the loss factor tanߜ. 

Composites with coated carbon fibers are studied. Temperature-independent moduli were 

assumed for the fibers and the matrix, whereas the moduli of the viscoelastic coating layer 

varied as illustrated in Figure 2. The temperature dependence for the shear and the bulk 

modulus, given by ܩ ൌ ᇱሺͳܩ ൅ ݅ tanߜሻ and ܭ ൌ ᇱሺͳܭ ൅ ݅ tanߜሻ, respectively, is shown.  

From Figure 2a it is seen that the storage shear modulus ܩᇱ (blue curve) changes from ͳ GPa to ͳ MPa across the glass transition temperature (௚ܶ= 0°C), with the corresponding loss factor 

a) b) 

http://www.mumps.enseeiht.fr/
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tanߜ (red curve) reaching a maximal value of 1 at the glass transition temperature, ௚ܶ. The bulk 

modulus ranges from ܭᇱ ൌ Ͷ GPa to ͵  GPa with a maximal tanߜ of 0.1, as shown in Figure 2b 

[13]. The assumed temperature-independent moduli of the matrix are ܩ= (1+i0.02) GPa and 4=ܭ GPa, which is equivalent to the moduli of the coating layer at T=-50°C. For carbon fibers, 

temperature-independent transversely isotropic properties are assumed with the moduli given 

in Table 1 [22]. Clearly, the stiffness is highest in the fiber direction. ܧଵଵ [GPa] ܧଶଶ [GPa] ܩଵଶ [GPa] ܩଶଷ [GPa] ଵ߭ଶ  

230 15 15 7 0.2 

Table 1: The chosen constituent properties for the carbon fibers. 

For the constituent phases, linear viscoelastic stress-strain relations are assumed at a frequency 

of 1 Hz (߱ ൌ ሻ࢚ሺ࣌ (ߨʹ ൌ ௜ఠ௧݁ࢿሺ߱ሻ࡯  ሺͳሻ 
where ࣌ is the stress tensor, ࢿ the strain amplitude tensor and ࡯ the complex viscoelastic moduli, 

respectively whereas ߱ and ݐ denote the angular frequency and the time, respectively [19]. 

 

2.3 Micromechanics model 

A micromechanical model to predict the effective moduli of n-layered composites was derived 

by Hervé and Zaoui for fiber-reinforced composites with multiple layers of coated fibers [6].  

The layers are represented by shells covering an inner core as illustrated in  

Figure 3. The elastic strain and stress fields are determined for the n-layered composite cylinder 

embedded in an infinite matrix and subjected to uniform loading conditions at infinity. 

As perfect bonding at the interfaces is assumed, the continuity conditions of the stress and 

displacement fields must hold, and they are written as   ࡶ௞ሺܴ௞ሻࢂ௞ ൌ ௞ାଵࢂ௞ାଵሺܴ௞ሻࡶ ሺʹሻ 
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where ܴ ௞  is the radius of layer ݇, ࢂ௞  is a vector of constants (undetermined coefficients) used 

to express the displacement solution field for a given mode of deformation. The form of the 

solutions and the required number of constants are known from Hashin and Rosen [5] or 

Christensen and Lo [4]. From Eq. (2) one can then derive the solution vector ࢂ௞ ାଵ by defining 

a transfer matrix ࡺሺ௞ሻ ൌ ௞ାଵିଵࡶ ሺܴ௞ሻࡶ௞ሺܴ௞ሻ 
௞ࢂ ାଵ ൌ ෑ ሺ௝ሻଵ௝ୀ௞ࡺ  ଵ ሺ͵ሻࢂ

Based on this, the average stress and strain in the whole n-layered inclusion can be calculated 

from the continuity conditions used for the respective modulus, by setting the appropriate 

components of ࢂଵ and ࢂ௞ ାଵ to zero to avoid a singularity at the fiber axis and a divergence at 

infinity.   

In order to determine the effective elastic moduli, the n-layered inclusion is surrounded by an 

(n+1)-phase which is assumed to have the yet unknown properties of an equivalent 

homogeneous medium. Uniform strain or stress is applied to the medium at infinity. The 

effective moduli are obtained by requiring the average strain or stress in the n-phase cylinder 

to equal the strain or stress of the effective medium at infinity, which is shown to be equivalent 

to the Christensen-Lo energy condition. 

For all but the transverse shear modulus, the effective elastic moduli are directly derived 

through the recursive algorithm. The solution is found by coincide of upper and lower bounds, 

as described by Hashin and Rosen [5]. The remaining modulus is determined using a self-

consistency condition. 

The analytical expressions derived by Hervé and Zaoui can be applied to viscoelast ic 

composites by replacing the elastic phase moduli by the corresponding complex moduli.  
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The first goal of this work is to evaluate the accuracy of this micromechanical model by 

comparing the predictions with the finite element estimates described in Section 2.2. 

 

Figure 3: The n-layered model of Hervé and Zaoui for multiple layers of coated fiber-reinforced composites. 
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3 Theoretical predictions for the viscoelastic properties 

3.1 Effect of coating thickness 

 

 

 

Figure 4: Temperature dependence of the effective viscoelastic moduli for composites with different fiber coating thickness 

ratios, comparing the n-phase model predictions (lines) with hexagonal (open symbols) and random (closed symbols) finite 

element models. The coating thickness ratio is indicated by colors where dark blue corresponds to uncoated fibers and light 

blue to fibers consisting of the coating material only. For the thinnest coating thickness (0.0001), only hexagonal finite element 

models could be employed with our current computational resources while calculations with the random models were 

numerically impractical because of too many finite elements required. 

c) 

a) 
b) 

d) 

e) 
f) 
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The impact of a coating layer was analyzed by comparing three of the five independent moduli 

which are ܥଵଵ, ܥଶଶ and ܥହହ, given in the complex form ܥ௜௞= ܥ௜௞ᇱ +iܥ௜௞ᇱᇱ. The predictions of the n-

phase model, indicated by lines, are compared to frequency-domain finite element (FE) 

estimates of hexagonal models (open symbols) and random models (solid symbols). A 

composite with a fiber volume fraction ߥ௙ ൌ ͲǤ͸ was assumed, where the volume fraction is 

defined as the ratio of the fiber volume, including coating, to the total volume of the unit cell.  

The moduli for thickness ratios οȀܴ = 0.0001, 0.001, 0.01 and 0.1 are shown, where ∆ is the 

thickness of the coating layer and ܴ the outer radius of the fiber together with coating. Using 

this definition, οȀܴ = 0 and οȀܴ = 1 then correspond to uncoated carbon fibers and fibers 

consisting of the coating material only, respectively.  

Clearly, the latter results in a strong reduction of the storage modulus ܥଵଵᇱ , while the loss 

modulus ܥଵଵᇱᇱ  is overall increased with thicker coating layers as shown in Figure 4a and b, 

respectively. The estimates of both, the hexagonal and random models, are in equally good 

agreement with the predictions of the n-phase model for all coating thickness ratios. For the 

longitudinal direction, a ratio of 0.01 could be viewed as optimum, with an already noticeable 

increase in ܥଵଵᇱᇱ  for only a small drop in ܥଵଵᇱ . 

The effect of the coating layer thickness is different for the transverse modulus ܥଶଶ . Here, at οȀܴ = 1 the storage modulus is only reduced by a factor two at T=50°C compared to uncoated 

carbon fibers. The loss modulus ܥଶଶᇱᇱ  does not increase continuously for thicker coating layers 

but shows to reach almost the same peak values for all composites with οȀܴ ൒ 0.001. With 

respect to the uncoated fiber composite, it is about seven times larger at the maximum which is 

reached with a coating thickness ratio of 0.001. However, a small shift of the temperature of 

maximal loss modulus is observed for different coating thickness ratios. At this point, it is 

highly remarkable that even for the thin coating thickness ratios, the model predictions and the 

finite element estimates of the hexagonal model coincide for all temperatures. Some deviations 
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are however seen with respect to the random models as for ܥହହᇱ . The differences increase the 

less coating material is used. It is further seen from Figure 4e that the reduction across ௚ܶ is 

higher, compared to the previous discussed moduli. Comparing the loss modulus ܥହହᇱᇱ  to ܥଶଶᇱᇱ  for 

the different coating thicknesses one can see the differences for coating thickness ratios of 0.1 

and above. There, the peak values are much smaller than all others. However, for smaller ratios, 

the behavior for ܥଶଶᇱᇱ  and ܥହହᇱᇱ  is similar. The overall maximum for both ܥଶଶᇱᇱ  and ܥହହᇱᇱ  is found 

with οȀܴ = 0.001 and is slightly above ௚ܶ. For the transverse and shear moduli, a ratio of 0.001 

could be viewed as an excellent compromise, with a significant increase in ܥଶଶᇱᇱ  and ܥହହᇱᇱ  for only 

a small drop in both storage moduli compared to uncoated fibers. Additionally, at this coating 

thickness, Figures 4a and 4b suggest that neither the longitudinal storage or loss moduli would 

be significantly affected, which could be an important result. 

 
3.2 Effect of fiber volume fraction 
 

 

a) b) 

c) 

d) 
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Figure 5: Temperature dependence of ܥଵଵ, ܥଶଶ and ܥହହ in terms of storage and loss moduli, ܥ௜௞ᇱ  and ܥ௜௞ᇱᇱ, respectively. The 

effective moduli for three different volume fractions are shown for ߥ௙=0.3 (blue), 0.45 (red) and 0.6 (yellow). Lines indicate 

the predictions of the n-phase model, symbols correspond to finite element estimates with hexagonal structures (open) and 

random structures (closed). 

Figure 5 demonstrates the temperature dependence for three moduli ܥଵଵ, ܥଶଶ and ܥହହ. The 

results for three different volume fractions ߥ௙  are shown, with ߥ௙  = 0.3, 0.45 and 0.6. A coating 

thickness ratio οȀܴ = 0.001 was assumed based on the results in Section 3.1. 

From Figure 5a, one can clearly see an increase in the stiffness with a higher fiber volume 

fraction. Raising the volume fraction by a factor of two leads to an increase of ܥଵଵᇱ  by almost 

the same factor. Only a slight variation with the temperature is seen in both, the storage and the 

loss moduli. It is further shown that ܥଵଵᇱᇱ  is larger the smaller the volume fraction. 

Comparing the model predictions and the FE estimates, the agreement for ܥଵଵ is again excellent. 

The deviations in the real part are too small to be determined from this figure. For the imaginary 

parts, slight differences below 1% are seen for the random models around ܶ௚.   

Figure 5c and d present the corresponding results of the transverse modulus, ܥଶଶ . In this case, 

both the storage and the loss modulus are noticeably affected by the temperature and the volume 

fraction of fibers (which also increases the fraction of the viscoelastic coating). Interestingly, 

the pattern of behavior, with increasing fiber volume fraction, is different to that seen for ܥଵଵᇱ  

and ܥଵଵᇱᇱ . For the longitudinal constants, as the fiber volume fraction was increased, ܥଵଵᇱ  was 

e) 
f) 
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seen to rise (Figure 5a), while ܥଵଵᇱᇱ  fell (Figure 5b). However, for the transverse properties, the 

pattern was more interesting, and reflects our previously published work on spherical coated 

particle composites [15]. Here, both ܥଶଶᇱ  and ܥଶଶᇱᇱ  increased with increasing fiber content, with 

the influence being particularly large for the highest volume fraction of ߥ௙  = 0.6. 

In contrast to ܥଵଵᇱᇱ , the loss modulus ܥଶଶᇱᇱ  shows to have a high but narrow peak which is seven 

times larger (for ߥ௙ = 0.6) than at the two terminal temperatures. At the latter, ܥଶଶᇱᇱ  converges to 

the same value for the three volume fractions, while the peak values deviate. It is further seen, 

that the peak is located somewhat below the ௚ܶ of the coating material. 

Although differences between the two finite element models can be seen, the deviations are 

small (below 2%). The estimates of the hexagonal model are slightly lower than the model 

predictions, whereas the random model predicts too high moduli.  

Interestingly, the agreement of the loss moduli is even more remarkable. Even at ௚ܶ where the 

moduli change rapidly with the temperature, the model predictions are close to the FE estimates.  

Somewhat larger deviations were however found for ܥହହᇱ  below the glass transition temperature, 

as presented in Figures 5e and f. At ߥ௙  = 0.6 the predictions of the random FE models were 

about 15% too high. However, excellent predictions were still obtained with the hexagona l 

models. We have already seen such similar behavior in our previous work [21] on unidirectiona l 

composites with uncoated glass and carbon fibers. It is a bit surprising that the microstructura l 

effects are the strongest for the ܥହହᇱ  axial shear modulus but we cannot offer any immed iate 

explanation to this fact. 
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3.3 Effect of volume fraction at a fixed temperature of 0°C 

 

Figure 6: Effective moduli predicted by the n-phase model (lines) and the finite element models with hexagonal structure (open 

symbols) and random structure (closed symbols). Storage (a) and loss moduli (b) are shown with respect to the fiber volume 

fraction. 

Figure 6 presents the model predictions (lines) and FE estimates (symbols) for the five 

independent effective viscoelastic coefficients assuming a coating thickness ratio οȀܴ= 0.001, 

so now including the real and imaginary parts of ܥଵଶ and ܥଶଷ. Both hexagonal and random 

models are used in the FE simulations as indicated by open and solid symbols, respective ly. 

The results are compared for different volume fractions. A constant temperature of 0°C is 

assumed.  

Complementary to the results presented in a previous work [21], it is shown that all storage 

moduli except ܥଵଶᇱ  increase with the volume fraction ߥ௙ . The loss moduli, on the other hand, 

decrease with ߥ௙  for ܥଶଷᇱᇱ  and ܥଵଵᇱᇱ . Further, it is seen that the ܥଶଷᇱᇱ  and ܥଵଶᇱᇱ  have negative values, 

although ܥଵଶᇱᇱ  is broadly independent of volume fraction. 

The storage moduli obtained from the n-phase model are in excellent agreement with the FE 

predictions, for both the hexagonal and the random model. The agreement is equally good for 

all coefficients but ܥହହᇱ  for which the random model estimates deviate by up to 7%. This 

difference is also seen in the loss modulus ܥହହᇱᇱ  where the deviance is even larger (around 15%). 

a) b) 
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However, comparing the other loss moduli shows that the three methods give practically 

indistinguishable results for volume fractions below 0.5. Above this level, small deviations are 

revealed as both FE models give slightly different results to the n-phase model. This is 

highlighted in particular by ܥଶଶ and ܥଶଷ where differences of almost 10% are seen. 

Similar results were obtained at T=-50°C and T=50°C. 

Altogether, it was shown that the n-phase model is suitable to predict the effective viscoelast ic 

moduli of unidirectional fiber reinforced composites. A remarkably high accuracy was seen for 

both the storage and the loss moduli and the validity was confirmed for various coating layer 

thicknesses and volume fractions. This confirmation then allows the whole design space to be 

quickly evaluated, and also will allow aspects such as the properties of an alternat ive 

viscoelastic coating to be quickly assessed. 

 

4 Finite element predictions for the plate eigenfrequency spectrum 

The previously derived effective viscoelastic moduli of unidirectional coated carbon fiber 

composites were used to study the eigenfrequencies of a plate strip with those effective 

properties. A simply supported strip of length L=20cm and thickness H=2mm was considered. 

The effective moduli were taken from the model predictions for a composite with fiber volume 

fraction 0.6 and the previously determined optimal coating thickness ratio 0.001. Complex 

eigenfrequency ݂ ൌ ݂ ƍ ൅ ݂݅ ƍƍand damping time  ൌ ͳȀ݂ ƍƍ were derived from both plane-strain 

2D and 3D finite element simulations.  

The equations of motion are given by 

ߩ ߲ଶ ଶݐ߲࢛ ൌ ׏ ή ࣌ ሺͶሻ 
where ࢛ ൌ ׏ ,ݐ at time ࢘ ሻ is the displacement vector at positionݐǡ࢘ሺ࢛ ή the spatial divergence 

operator and ࣌ the instantaneous stress tensor. Here and below, a direct notation is used for the 

tensors. 
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A steady-state harmonic form solution ࢛ሺ࢘ǡݐሻ ൌ ሻ݁௜ఠ௧࢘ഥሺ࢛  ሺͷሻ 
is assumed, where ࢛ഥ is the position-dependent complex amplitude of displacement and ߱ the 

angular frequency of oscillation. 

The strain tensor is defined by ࢿ ൌ ሾܝ׏ ൅ ሺܝ׏ሻ୘ሿȀʹ ൌ ത݁௜ఠ௧ࢿ ሺ͸ሻ 
where ࢿത ൌ ሻ is the position-dependent complex strain amplitude tensor. Linear viscoelast࢘തሺࢿ ic 

frequency- independent stress-strain constituent relations are assumed ࣌ ൌ ࢿ࡯ ൌ ሺ࡯ᇱ ൅ ത݁௜ఠ௧ࢿᇱᇱሻ࡯݅ ሺ͹ሻ 
where ࡯ is the viscoelastic complex modulus tensor, ࡯Ԣ and ࡯ԢԢ are the storage and loss 

moduli, which are given by the real and imaginary parts of the modulus tensor, respectively. 

The inclusion of frequency dependence does not present any undue complications but it is not 

needed for the model problems considered in this work. 

The discrete dynamic finite element stiffness relations are obtained by substituting Eqs. (5) – 

(7) in Eq. (4) and using standard Bubnov-Galerkin weak form procedure [23] to get the 

following matrix differential equation ࢇࡹሷ ൅ ሶࢇ࡯ ൅ ࢇࡷ ൌ ૙ ሺͺሻ 
where ࡯ ,ࡹ and ࡷ are the mass, damping and stiffness matrices, ࢇ is a global vector listing 

the unknown components of the displacement vectors at the nodal points of the studied model 

and the overdot denotes the derivative with respect to time. 

Substituting harmonic form ࢇ ൌ  ഥ݁௜ఠ௧ in Eq. (8), one obtains the following viscoelasticࢇ

characteristic value problem 

ഥࢇࡹଶߣ  െ ഥࢇ࡯ߣ ൅ ഥࢇࡷ ൌ ૙ ሺͻሻ 
where ࢇഥ denotes the nodal displacement amplitude vector and ߣ ൌ െ݅߱ the eigenvalue. 
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Weak-form boundary conditions are imposed using the Lagrange multiplier method. In this 

study, simply supported boundary conditions are assumed. The resulting sparse-matrix 

eigenvalue problem is solved using the ARPACK Arnoldi package 

(www.caam.rice.edu/software/ARPACK) as implemented in COMSOL Multiphysics [20]. 

The fundamental frequency of a simply supported strip with properties as named above was 

studied in both plane-strain 2D and 3D FEM simulations.  

a)      b) 
Figure 7: Mesh of a 3D finite element model of a strip (a) and magnified view of the highlighted cross section (b) as also 

used for the plane-strain 2D models.  

The 3D model was meshed employing brick elements as depicted in Figure 7a. The largest 

structure was composed of 30,000 mesh elements. A similar mesh was used for the 2D model 

by referring to a cross section of the 3D mesh (Figure 7a). Here, the mesh was constituted of 

600 rectangular elements. While the calculation time of 2D simulations was only about a 

second, 3D simulations required up to several minutes. 

In the theoretical analysis of elastic plates, one commonly assumes the orthotropic 

symmetry [24]. Unidirectional composites with perfectly aligned fibers have a fiber 

symmetry, which is a subset of the more general orthorhombic symmetry class. In the finite 

element analysis, the required viscoelastic moduli are given by the corresponding viscoelastic 

moduli tensor represented by standard 6x6 Voigt-notation complex-valued matrices. They 

involve five independent viscoelastic moduli that are obtained using the n-layered 

micromechanical models (see Section 3). Two different unidirectional fiber layouts are 

considered, the one with the fibers along the strip axis (termed longitudinal) and 

perpendicular to it (termed transverse). 

http://www.caam.rice.edu/software/ARPACK
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Aiming at comparing derived fundamental frequencies of 2D and 3D models, a parameter 

study was performed varying the width ܹ of the strip in the 3D model. In this way, both 

beam-like and plate-like setups could be addressed. 

 

 

Figure 8: Fundamental frequency ݂ ൌ ݂ ƍ ൅ ݂݅ ƍƍ obtained from 2D and 3D finite element simulations. Fibers were assumed to 

be oriented in the longitudinal direction. The development of the eigenfrequency with different aspect ratios ܹȀܮ is shown. 

Figure 8 shows the fundamental frequency ݂ ൌ ݂ ƍ ൅ ݂݅ ƍƍ resulting from these simulations. A 

clear trend of the eigenfrequency obtained from 3D simulations is seen. When changing from 

low to high aspect ratios, both the real and the imaginary parts increase. With higher aspect 

ratio, the eigenfrequencies from 3D models converge towards those from 2D simulations. 

Some minor differences (below 1%) are found in the imaginary part.  

Overall, also the magnitude of increase from low to high aspect ratios is small, i.e. below 1% 

in the real part and 3% in the imaginary parts. 

For the following FEM estimates, 2D simulations were performed as it was shown that 

comparable results to the 3D model FEM estimates were obtained, but in considerably less 

computing time.  
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4.1 Temperature dependence 
 

 

Figure 9: Eigenfrequency ݂ ƍ (left) and damping time  ൌ ͳȀ݂ƍƍ(right) of a simply-supported plate strip with fibers oriented in 

the longitudinal direction (Figures a and b) or the transverse direction (Figures c and d). The temperature dependence is 

shown for three eigenmodes, p=1, 5 and 20. Micromechanical FEM estimates (symbols) and analytical n-layered model 

predictions (lines) are used as input for the structural eigenfrequency FEM calculations. A coating thickness ratio of 0.001 is 

assumed. 

Figure 10: Illustration of the deflection of three studied eigenmodes p=1 (a), 5 (b) and 20 (c). 

Figure 9 shows the change of the eigenfrequency and the damping time with temperature for 

the unidirectional composites with coated carbon fibers assumed to be oriented in the 

a) b) 

a) b) c) 

c) 
d) 
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longitudinal (Figures a and b) or the transverse direction (Figures c and d).  Three modes are 

analyzed with mode numbers p = 1, 5 and 20 as illustrated in Figure 10. Comparing their  

frequencies in the case of longitudinal oriented fibers, it reveals that the change across ௚ܶ is 

larger for higher modes, whereas the frequency of the fundamental mode remains almost 

unchanged. Unlike the frequency, the damping time varies also for lower modes. A simila r 

development is found for all three modes. The damping time at the glass transition temperature 

is reduced by more than one order of magnitude compared to T=-50°C. Also, and significant ly, 

the damping time is still considerably reduced above the glass transition temperature of the 

coating. 

Overall, it is seen, that the higher modes decay faster. For example, the damping time at 50°C 

of the fundamental mode is about one second, while for p=20 it is less than a microsecond. 

Similar trends are observed for composites with fibers oriented in the lateral direction. 

At this point, it should be mentioned that the eigenfrequencies were calculated assuming 

frequency- independent properties of the coating material although this does not represent well 

the real viscoelastic behavior where a frequency change of one order of magnitude corresponds 

to a temperature shift of 4°C. As shown in Figure 9, an increase in the temperature causes a 

decrease in the frequency. Hence, also the coating properties will be affected. However, for the 

fundamental mode, whose decay is commonly most important in structural vibration damping 

applications, the frequency change is small (below 1%) and therefore the frequency-

dependence is expected to have only minor contribution. Frequency-independent moduli are 

assumed for all further simulations. 
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Figure 11: Comparison of the eigenfrequency (left) and damping time (right) of the fundamental mode of a plate strip of 

uncoated (blue) and coated fiber composite (red) with coating thickness ratio 0.001 for temperatures across ௚ܶ . For Figures a 

and b, longitudinally oriented fibers were assumed whereas for Figures c and d transversely oriented fibers. FEM estimates 

and analytical predictions are shown as indicated by symbols and lines, respecitvely, as described in the legend to Figure 9. 

In the previous figures, only coated fiber composites were considered. However, the influence 

of the coating layer on plate strip eigenfrequency has not been shown yet. Therefore, frequency 

and damping time of the fundamental mode are compared in Figure 11 for an uncoated fiber 

composite and a composite containing coated fibers of coating thickness ratio 0.001. The 

decrease in the frequency from below to above the glass transition temperature is approximate ly 

0.5% for the coated fiber composite with longitudinal oriented fibers. Considering uncoated 

fibers, the composite moduli, and hence the frequency, are temperature- independent. The 

overall effect of the coating layer on the frequency is small as the difference for the two 

composites is only below 1%. 

a) b) 

c) d) 
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However, with fibers in the lateral direction, the reduction of the frequency for coated fiber 

composites is more than 15%. 

In both cases, the significance of a coating layer is clearly demonstrated for the damping time. 

With longitudinally oriented fibers, the minimal damping time of the coated fiber composite is 

0.44s which is only 6% of the one obtained for the uncoated fiber composite at the same 

temperature. With further increase of the temperature the damping time is increased again and 

converges to 1.5s which is still by factor 5 smaller than with uncoated fibers. Using transverse ly 

oriented fibers, this difference is only 50%. At first sight, the results presented in Figure 11b 

are unexpected, as the previous results from Figures 4b and 5b showed that the longitudina l 

loss modulus was little affected at this coating thickness ratio. This conflicting result will be 

explained in the following section. 

 

4.2 Comparison of Classical Plate Theory and First-order Shear Deformation Theory 
 
 

 

a) b) 
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Figure 12: Eigenfrequencies for different modes. Finite element estimates are compared with Classical Plate Theory (blue) 

and First-order Shear Deformation Theory (red). The fibers were assumed to be oriented in the longitudinal direction (Figures 

a and b) or the transverse direction (Figures c and d). 

Figure 12 compares the eigenfrequencies obtained from two-dimensional FE simulations with 

the corresponding analytical solutions of Classical Plate Theory (CPT) and First-Order Shear 

Deformation Theory (FSDT).  

The eigenfrequencies in CPT and FSDT are obtained from the harmonic solution of the 

equation of motion, assuming that the displacements w are of the form ݓሺݔǡ ሻݐ ൌ ଴ݓ ሺݔሻ݁௜ఠ௧  ሺͳͲሻ 
where ݓ଴  is the displacement amplitude and ߱ the frequency [24]. The eigenfrequencies of 

mode n are then given by 

߱௡஼௉் ൌ  ͳʹξ͵ ݊ଶ ߨ ଶܮଶ ߩඨܳଵଵܪ  ሺͳͳሻ 
in Classical Plate Theory and  

߱௡ிௌ஽் ൌ  ͳʹξ͵ ݊ଶߨ ଶܮଶ ߩඨܳଵଵܪ ඩ ͳͳ ൅ ͳܭ௦ ߨ ଶܪଶ݊ଶܮଶ ܳଵଵͳʹܩଵଷ
 ሺͳʹሻ 

with First-order Shear Deformation Theory, for a strip of length L and thickness H. ܭ௦ is the 

shear correction coefficient and was assumed as ܭ௦ ൎ ͷȀ͸. ܳଵଵ and ܩଵଷ  are the plane stress-

c) d) 
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reduced longitudinal stiffness and the transverse shear modulus, respectively, and were taken 

in complex form from the results of Chapter 3. 

A volume fraction of 0.6 was assumed and a coating thickness ratio of 0.001. A fixed 

temperature of 50°C was chosen to achieve frequency- independent properties. For Figure 12a 

and b, the fibers were considered to be oriented in the longitudinal direction of the strip while 

for Figure 12c and d fibers in the transverse direction were assumed. The smallest 

eigenfrequency corresponds to the fundamental mode. 

With fibers longitudinally oriented, the discrepancy of the CPT solution is striking. Only the 

real part of the fundamental mode coincides with the FE solution. For all higher modes, the 

solutions deviate progressively strongly. Even larger differences are found for the imaginary 

part, where already the fundamental mode differs by orders of magnitude. The CPT is hence 

not sufficient to predict complex-valued eigenfrequencies of the composite strip studied.  

However, when taking shear effects into account using FSDT, the results agree with the FEM 

estimates equally good for all modes. Similar results are found for a strip with transverse fibers 

where FSDT gives reliable predictions for both the real and the imaginary parts. Moreover, also 

the predictions from CPT are comparable in this case, as the difference to the FE predictions is 

much smaller than for the previous case of longitudinally oriented fibers. Only small differences 

in the eigenfrequencies obtained from the two theories can be observed for high modes. 

 

a) b) 
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Figure 13: Classical Plate Theory and First-order Shear Deformation Theory predictions for the fundamental frequency with 

respect to finite element estimates. The convergence with the aspect ratio is shown for a strip with fibers assumed to be oriented 

in the longitudinal (Figures a and b) or the transverse (Figures c and d) direction. 

The difference between Classical Plate Theory and First-Order Shear Deformation Theory was 

studied in detail for the fundamental mode of a strip with fibers oriented in the longitudina l 

direction. Figure 13 demonstrates the convergence of the two theories with respect to finite 

element predictions. The aspect ratio L/H was varied to study the range of validity of the two 

theories. Considering a strip with fibers oriented in the longitudinal direction, the results 

obtained from FSDT converge clearly faster than with CPT (Figure a and b). For the real part 

of the frequency, an aspect ratio of 100 is needed to obtain comparable results from CPT to the 

FE estimates. With FSDT, the same results can already be achieved for a much smaller aspect 

ratio. Even larger are the differences in the imaginary part where CPT requires an aspect ratio 

of almost 1000 to obtain similar results as from FSDT with an aspect ratio of 20. 

However, as observed in previous figures, this difference is minor for the transverse case, which 

suggests that the shear term has no effect here. 

Overall, Figure 12 and Figure 13 reveal the differences between CPT and FSDT. It was shown 

that the validity of CPT is limited to strips with very high aspect ratios. In contrast, FSDT can 

be widely used and is suitable for the prediction of complex-valued eigenfrequencies. Accurate 

c) d) 
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estimates are obtained for both the real and imaginary parts and cover lower and higher modes 

equally good. 

These results can then explain the conflicting results from Figures 4b, 5b and 11b. For a highly 

anisotropic plate, bending in the longitudinal direction excites shear deformation (which has to 

be taken into account to accurately predict the deformation behavior). Consequently, this 

excitation of shear deformation in bending also excites enhanced damping behavior. 

 

5 Conclusions 

In this work, we presented frequency-domain finite element estimates for unidirectional fiber 

composites with viscoelastic coating. Finite element models with hexagonal and random 

microstructures were used and compared to predictions of the n-layered model by Hervé and 

Zaoui to assess the potential of this model. It was shown for carbon fiber composites that 

accurate results are obtained. Excellent agreement was found for loss moduli with both, 

hexagonal and random structure finite element models. While also the predictions of the storage 

moduli coincided with estimates for hexagonal microstructures, deviations were seen with 

respect to random microstructures, in particular in the longitudinal shear modulus. However, 

for the remaining moduli the predictions of the n-layered model were remarkably accurate. 

The model is convenient to be applied in micromechanical design to determine optimal 

properties for coated fiber composites. The present study compared the effective moduli for 

different coating thicknesses. A maximum in the loss modulus was obtained with coating 

thickness ratios between 0.01 and 0.001, which corresponds to a coating thickness of 10nm -

100nm [22]. A value of 0.001 was considered optimum, as this gave significant enhancement 

of the transverse and shear loss moduli, without affecting the longitudinal moduli. 

Industrial unidirectional composites commonly have a random microstructure with a variety of 

local fiber arrangements, as illustrated in Figure 1c. However, classical micromechanica l 

models usually assume a specific, simplified one-fiber arrangement, as illustrated in Figure 3. 
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It has been shown in both our current and also previous finite element studies [12-14, 21] that 

despite such simplification, these classical models do provide accurate estimates of the effective 

viscoelastic elastic moduli and as so, they are very suited for quick and reliable materials design 

[15, 16, 25]. However, by their construction these models cannot provide detailed information 

about the distribution of stress fields and their localization in random composites. On contrary, 

the finite element method directly provides access to such information that can be helpful in 

studying and understanding both large strain deformation and failure behavior of real composite 

materials. 

In our recent work on coated sphere reinforced composites, we have first demonstrated 

numerically, using a combination of micromechanical n-layered sphere model’s predictions and 

time-domain finite element estimates, that the loss magnification should occur at a coating 

thickness ratio of οȀܴ ~ 0.01 [12]. And we have then realized this effect experimenta lly 

following two different technological routes, by using spray-coated spherical particles [15] and 

then uncoated ones but dispersed in a phase-separating block-copolymer blend matrix [16, 25]. 

It will be interesting to see if either of these two manufacturing routes could also be used to 

experimentally realize the predicted loss magnification effect in unidirectional composites. 

Free vibrations of a plate strip were studied as an example of an application to demonstrate the 

reduction of the damping time through the use of a viscoelastic coating layer. It was shown that 

for bending in the longitudinal direction, the highly anisotropic nature of the composite (and 

the high ratio of the longitudinal to the shear moduli) activated significant enhancement of the 

damping time for this deformation mode due to increased shear deformation. 
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