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Optimizing the damping properties of unidirectiosamposites by incorporating

carbon fibers with a thin viscoelastic coating
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Abstract. Two distinct techniques were used to predict, and then optinitze viscoelastic
properties of unidirectional carbon fiber/epoxy composites wiherearbon fibers were coated
with a thin lossy coating. First, finte element modelsth whexagonal and random
microstructures were used to predict the effect of varparameters on the five independent
stifness constants of such unidirectional composites, mpsirtantly that of the ratio of the
coating thickness to the fber diameter. Second, these eslictvere compared to those
obtained from the n-layered micromechanical model of HerdéZaoui and it was shown that
the modeling predictions were remarkably accurate. It wasdf that whie the longitudinal
moduli were little affected by the presence of the cqatiagh the transverse and shear moduli
showed a maximum loss (and a significant enhancement penpa uncoated fibers) for a
coating thickness ratio of 0.001 corresponding to a coating teskoé~10nm for a typical
industrial carbon fiber. The enhancement of the sheamoslsli was shown to be particularly
important, as a study of the eigenfrequencies of a sirsppported viscoelastic plate strip
showed that the shear deformation mode was activated acd legl to a significant increase

in the effective vibration damping.
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1 Introduction

Vibration damping is a relevant topic in various applicetio Not only can vibrations cause
structural instability but also trigger noise. Thus, imprognt in vibraton control is of
standing interest for many industries. Composite mateaisdsoften favored to pure materials
as they can be designed to provide several desired propenigkargously whie the
properties are mutually exclusivan pure materials. Polymersreawidely employed in
composites due to their high dissipation and light weight. Geabwith a stiff but non-lossy
material, one can create compessithat exhibit both, high stiffness and high dissipati@n?2].
However, defining suitable properties of a composite to achievienabpperformance is a
challenging task. It is thus of interest to make use of honmag@n models to determine the
effective properties of heterogeneous materials. Commoslkd models were derived by
Hashin, Hill, Christensen and later by Hervé and Z&x8].

In the last decades, many approaches were made on asffesgiogential of micromechanical
models and estimating the accuracy by comparison withtsresuhumerical simulations and
experimental measuremen{9-11]. Recently, Gusev presented time-domain finite element
simulation for composites with different microstructurescluging composites with
viscoelastic coated spherical inclusions. It was foundttieah-layered model [8] is remarkably
accurate even in the case of high stiffness cortnadthin coating layers [12-14]. Unwin et al.
further highlighted the progress in damping techniqueshdyise of polymer composites with
viscoelastic coated spherical inclusions [15, 16]. It was shbainekperimental measurements
were in close agreement with the analytic prediction.

Another work showed the agreement of numerical models arglree@nts for unidirectional
glass/epoxy composites [17]. The predictiohelastic moduli of fiber-reinforced composites
was addressed by the composite cyinder model of Hashin anch R9sé&8] and further
approached by Christensen and Lo [4]. Moreover, viscoelastic cispoan be studied using

the viscoelastic correspondence principle and replacing sthiic moduli by complex
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viscoelastic ones [19]. The elastiscoelastic correspondence principle has been discussed and
used in a recent finite-volume unit cell homogenizatitudysto relate the governing equations
in the time and Laplace-Carson domains [20]. Inrecent work, uncoated carbon fibers (and
glass fibers) in a viscoelastic matrix were studied diygarison with frequency-domain finite
element estimates [21].

In the present work, frequency-domain finite element simula were further applied to
determine the effective moduli of viscoelastic coated fie@rforced composites. The obtained
estimates are then used to examine the accuracy ahdickel for multiply coated fiber-
reinforced composites by Hervé and Zaoui [6] and compared &giect to the fiber coating
thickness and the volume fractions of matrix and fiberaredver, examples of applications
are presented where the previously derived moduli are usedetermine complex

eigenfrequencies of composite viscoelastic plate stripsn wh@rmed in simple bending.



2 Theoretical simulations

2.1 Finite element model

Figure 1: Periodic finite element model of coated fiber compositesxdrghaal structure (a) and the corresponding mesh
(b). Amodel with 32 random fibers is illustrated in Figure c and a magnified sketwh miesh between two nearly touching
fibers is shown in Figure d.

The effective viscoelastic moduli of unidirectional codieer reinforced composites were first

estimated using finte element models. Two kinds of modete stedied employing unit csll

with etther aregular hexagonatonfiguration of fibers (ci. Figure |1a) or randomly distributed

fibers (cf|Figure Lc). The latter was generated usinlylonte Carlo method by randomly

dispersing 32 identical fbers. A detailed description of the téddarlo method and the
homogenization procedurgas given in our recent work [21].

The models were meshed with prismatic elements obtaineger@yating a two-dimensional
triangular mesh first on one of the two faces orthogooathe fibers. This mesh was then

extruded to the opposite face of the unit cel, creatingmatic elements along the fibers as it

is seenn|Figure 1b. It is further shown |in Figure 1d that in ¢ase of random models, where

fibers can come arbitrarily close, the mesh has smellanments in the regions between two
close fibers. Likewise, the mesh is finer within the iogalyers.

Frequency-domain finite element simulations were perbrmeing COMSOL Muliphysics

www.comsol.con] with MATLAB (www.matlab.cor)] as described in our recent work [21]

where a frequency-domain homogenization procedure for fretied viscoelastic constants
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was introduced and valdated. The procedure is based on thec-\edE®elastic
correspondence principle and it allows doeobtain the effective viscoelastic constants of
composite materials on the basis of their periodic computer snodiej the weighted residual

Galerkin finite element method with complex viscoelastioduli of the constituent phases. The

multi-frontal direct sparse complex arithmetic MUMP Svaplfmumps.enseeiht)frwas used

in all numerical calculations.
The models with 32 randomly dispersed fbers had up to two mmitiegrees of freedom and
took several minutes computing time. Calculations with denal models, containing only two

fibers, were accordingly faster.

2.2 Constituent properties
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Figure 2: Temperature dependence of the shear modulus (a) and the bulk moduluke(b)sabelastic coating layer. The
blue line corresponds to the storage moduli while the red line shows the tosddms.

Composites with coated carbon fibers are studied. Temperatependent moduliwere

assumed for the fibers and the matrix, whereas the moéluhie viscoelastic coating layer

varied as ilustrated ih Figure| 2. The temperature depeedér the shear and the bulk

modulus, given by; = G'(1+ itand) andK = K'(1 + i tand), respectively, is shown.

From Figure 2a it is seen that the storage shear moduldsiue curvg@ changes froml GPato

1 MPa across the glass transition temperatufg=(0°C), with the corresponding loss factor


http://www.mumps.enseeiht.fr/

tané (red curvg reachingamaximal value of 1 atthe glass transiton temperatfjjeThe bulk

modulus ranges frorK’ = 4 GPato 3 GPa with amaximal tané of 0.1, as shown |n Figure| 2b

[13]. The assumed temperature-independent moduli of the naatik= (1+i0.02) GPa and
K=4 GPa, which is equivalent to the moduli of the coating laydr=-50°C. For carbon fibers,
temperature-independent transversely isotropic properiesssumed with the moduli given
in Table 1 [22].Clearly, the stiffness is highest in the fiber direction.

E,,[GPa] E,,[GPa] G,,[GPa] G,;[GPa] Uy,

230 15 15 7 0.2
Table 1: The chosen constituent properties for the carbon fibers.
For the constituent phases, linear viscoelastic stresin-sélations are assumed at a frequency
of 1 Hz w = 2n)
o(t) = C(w)ee'®t (1)

whereao is the stress tensasthe strain amplitude tensor aBidhe complex viscoelastic moduli,

respectively whereas andt denote the angular frequency and the time, respectiily

2.3 Micromechanics model
A micromechanical model to predict the effective moduli of eray composites was derived

by Hervé and Zaoui for fiber-reinforced composites with neltijayers of coated fibers [6].

The layers are represented by shells covering an eoreras ilustrated |n

Figure 3. The elastic strain and stress fields are degsnfor the n-layered composite cyinder

embedded in an infinite matrix and subjected to uniform loadigditions at infinity.
As perfect bonding at the interfaces is assumed, thenaibytticonditons of the stress and
displacement fields must hold, and they are written as

JiRIVie = Jiek 1 (R Vieyq (2)



whereR, is the radius of layek, V, is a vector of constants (undetermined coefficients) used
to express the displacement solution field for a given nafddeformation. The form of the
solutons and the required number of constants are known Hiashin and Rosen [5] or
Christensen and Lo [4]. From Eqg. (2) one can then derivedision vectorV, ,, by defining

a transfer matrixN® = J:1 (R,)J, (R,)

1 -
Virs = 1_[ N v (3)

j=k
Based on this, the average stress and strain in the whlalyered inclusion can be calculated
from the continuity conditons used for the respective modulg setting the appropriate
components o¥, andV, ., to zero to avoid a singularity at the fiber axis and a dwerg at
infinity.

In order to determine the effective elastic moduli, thayered inclusion is surrounded by an
(nt+1)-phase which is assumed to have the yet unknown pespeofi an equivalent
homogeneous medium. Uniform strain or stress is appliedetoriedium at infinity. The
effective moduli are obtained by requiring the averageanstastress in the n-phase cylinder
to equal the strain or stress of the effective mediumfiratyn which is shown to be equivale nt
to the Christensen-Lo energy condition.

For all but the transverse shear modulus, the effectigstic moduli are directly derived
through the recursive algorithm. The solution is found diyodde of upper and lower bounds,
as described by Hashin and Rosen Tole remaining modulus is determined using a self-
consistency condition.

The analytical expressions derived by Hervé and Zaoui bearapplied to viscoelastic

composites by replacing the elastic phase moduli by the pongiag complex modul.



The first goal of this work is to evaluate the accurafythis micromechanical model by

comparing the predictions with the finite element estimadescribed in Section 2.2.

effective medium

coating

Figure 3: The n-layered model of Hervé and Zaoui for multiple layers ofccélage-reinforced composites.



3 Theoretical predictions for the viscoelastic properties

3.1 Effect of coating thickness
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Figure 4: Temperature dependence of the effective viscoetastali for composites with different fiber coating thickness
ratios, comparing the n-phase model predictions (lines) with hexagonal (aplealsyand random (closed symbols) finite
element models. The coating thickness ratio is indicated by color® whek blue corresponds to uncoated fibers and light
blue to fibers consisting of the coating material only. For the thinnest cdhithgess (0.0001), only hexagorfmlite element
models could be employed with our current computational resources aalidelations with the random models were

numerically impractical because of too many finite elements refjuire



The impact of a coating layer was analyzed by comparige tbf the five independent moduli
which areC,,, C,, andCs, given in the complex fornd;,= C/,+iC;,. The predictions of the n-
phase model, indicated by lines, are compared to frequency-dofinéién element (FE)
estimates of hexagonal models (open symbols) and random meddds gymbols). A
composite with a fiber volume fraction, = 0.6 was assumed, where the volume fraction is
defined as the ratio of the fiber volume, including coatiogthe total volume of the unit cell.
The moduli for thickness ratiod/R = 0.0001, 0.001, 0.01 and 0.1 are shown, wheie the
thickness of the coating layer aRdthe outer radius of the fiber together with coating. Using
this definition, A/R = 0 andA/R = 1 then correspond to uncoated carbon fibers and fbers
consisting of the coating material only, respectively.

Clearly, the latter results in a strong reduction of #mrage modulusC;,, whie the loss

modulus C;; is overall increased with thicker coating layers asamshin|Figure #a and,b

respectively. The estimates of both, the hexagonal and ransmals, are in equaly good
agreement with the predictions of the n-phase model focoalting thickness ratios. For the
longitudinal direction, aratio of 0.01 could be viewed as optimum, avittalready noticeable
increasein C;; for only a smal drop irCy,.

The effect of the coating layer thickness is differeott the transverse modulus,,. Here, at
A/R = 1 the storage modulus is only reducedaligctor two at T=50°C compared to uncoated
carbon fibers. The loss modulus,, does not increase continuously for thicker coating layers
but shows to reach almost the same peak values for all cwspeathA/R > 0.001. With
respect to the uncoated fiber composite, it is about seven kger at the maximum which is
reached with a coating thickness ratio of 0.001. However, k shila of the temperature of
maximal loss modulus is observed for different coating th&kneatios. At this point, it is
highly remarkable that even for the thin coating thicknestios, the model predictions and the

finite element estimates of the hexagonal model coinbidall temperatures. Some deviations
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are however seen with respect to the random models &g.forhe differences increase the
less coating material is used. It is further seen ffagnre 4e that the reduction acrdsis
higher, compared to the previous discussed moduli. ComparingsthenbdulusC:; to C,; for

the different coating thicknesses one can see the déesefor coating thickness ratios of 0.1
and above. There, the peak values are much smaller tlethea. However, for smaller ratios,
the behavior forC}, and C:; is similar. The overal maximum for botfy, andC.; is found

with A/R =0.001 and is slightly abo& . For the transverse and shear moduli, a ratio of 0.001
could be viewed as an excellent compromise, with a signifitergase inC,, andC.s for only

a small drop in both storage moduli compared to uncoated fbers.ioAdlit, at this coating

thickness, Figures 4a and 4b suggest that neither thudongl storage or loss moduli would

be significantly affected, which could be an important result.

3.2 Effect of fiber volume fraction
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Figure 5: Temperature dependence gf, C,, andCss in terms of storage and loss moddlf, andCj, respectively. The

effective moduli for three different volume fractions are shownvfer0.3 (blue), 0.45 (red) and 0.6 (yellow). Lines indicate

the predictions of the n-phase model, symbols correspond to finitenelestenates with hexagonal structures (open) and

random structures (closed).

Figure § demonstrates the temperature dependence forntoed C,,, C,, and C.. The

results for three different volume fractions are shown, withv, = 0.3, 0.45 and 0.6. A coating

thickness ratidA/R = 0.001 was assumed based on the resul&ection 3.1.

From|Figure %a, one can clearly see an increase istifftmess witha higher fiber volume

fraction. Raising the volume fraction lyfactor oftwo leads to an increase 6f, by almost

the same factor. Only a slight variation with thegerature is seen in both, the storage and the
loss moduli. It is further shown that; is larger the smaller the volume fraction.

Comparing the model predictions and the FE estimates, thense forC,, is again excelent.
The deviations in the real part are too small to be detinfrom this figure. For the imaginary

parts, slight differences below 1% are seen for the random snadlindT},.

Figure §c and d present the corresponding results ofathevéirse modulus;,,. In this case,

both the storage and the loss modulus are noticeably affectbd t®mperature and the volume
fraction of fibers (which also increases the fractionthef viscoelastic coating). Interestingly,
the pattern of behavior, with increasing fiber volume ibactis different to that seen far;,

and C;;. For the longitudinal constants, as the fiber volumetidrcwas increased(;, was

12



seen to risg (Figure|5a), whig;; fell (Figure 8b). However, for the transverse properties, the

pattern was more interesting, and reflects our previousbisped work on spherical coated
particle composites [15]. Here, bath, and C;, increased with increasing fiber content, with

the influence being particularly large for the highestume fraction ob, = 0.6.

In contrast toC;7, the loss modulug’,;, shows to haveahigh but narrow peak which is seven
times larger (fow, = 0.6) thanatthe two terminal temperatures. At the latt€f, converges to
the same value for the three volume fractions, whie pibak values deviate. It is further seen,
that the peak is located somewhat belowTthef the coating material.

Although differences between the two finte element models be seen, the deviations are
small (below 2%). The estimates of the hexagonal modeslightly lower than the model
predictions, whereas the random model predicts too high moduli.

Interestingly, the agreement of the loss moduli is evere memarkable. EveatT, where the
moduli change rapidly with the temperature, the model predict@e close to the FE estimates.
Somewhat larger deviations were however founcCfgbelow the glass transition temperature
as presented in Figures 5e and fvpt= 0.6 the predictions of the random FE models were
about 15% too high. However, excelent predictions were dadifained with the hexagonal
models. We have already seen such similar behavior prewous work [21] on unidirectio nal
composites with uncoated glass and carbon fibers. It is arpiissng that the microstructural
effects are the strongest for the, axial shear modulus but we cannot offer any immediate

explanation to this fact.

13



3.3 Effect of volume fraction at a fixed temperature of 0°C
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Figure 6: Effective moduli predicted by the n-phase model (lines) anaditeeefement models with hexagonal structure (open
symbols) and random structure (closed symbols). Storage (a) and loss moduli (b) are #hoespett to the fiber volume

fraction.

Figure @ presents the model predictions (lines) BBdestimates (symbols) for the five

independent effective viscoelastic coefficients assurairggating thickness ratid/R= 0.001,
so now including the real and imaginary partsCof and C,;. Both hexagonal and random
models are used in the FE simulations as indicated by opkesddd symbols, respectively.
The results are compared for different volume fractionscoAstant temperature of 0°C is
assumed.

Complementary to the results presented in a previous work i{2&¢]shown that all storage
moduli exceptC;, increase with the volume fraction,. The loss moduli, on the other hand,
decrease withv, for C,; andCy;. Further, it is seen that tiig; andC;, have negative values
afthough C7;, is broadly independent of volume fraction.

The storage moduli obtained from the n-phase model are #lleekcagreement with the FE
predictions, for both the hexagonal and the random model. greeraent is equaly good for
all coeficients butC:; for which the random model estimates deviate by up to 79. Thi

difference is also seen in the loss modulif§ where the deviance is even larger (around 15%).
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However, comparing the other loss moduli shows that thes thmethods give practically
indistinguishable results for volume fractions below 0.5. Aboigeldlel, small deviations are
revealed as both FE models give slightly different restdsthe n-phase model. This is
highlighted in particular by¥,, andC,; where differences of almost 10% are seen.

Similar results were obtainegt T=-50°C and T=50°C.

Altogether, it was shown that the n-phase model is suitedpredict the effective viscoelastic
moduli of unidirectional fber reinforced compositesremarkably high accuracy was seen for
both the storage and the loss moduli and the valdity was confirfogdvarious coating layer
thicknesses and volume fractions. This confrmation tdemvs the whole design space to be
quickly evaluated, and also wil alow aspects such asptioperties of an alternative

viscoelastic coating to be quickly assessed.

4 Finite element predictions for the plate eigenfrequencypectrum

The previously derived effective viscoelastic moduli of uattional coated carbon fiber
composites were used to study the eigenfrequencies dita girip with those effective
properties. A simply supported strip of length L=20cm and thickriés2mm was considered.
The effective moduli were taken from the model predictionsafoomposite with fiber volume
fraction 0.6 and the previously determined optimal coatingkribss ratio 0.001. Complex
eigenfrequencyf = f'+ if "and damping timer= 1/f" were derived from both plane-strain
2D and 3D finite element simulations.

The equations of motion are given by

0%u
'061:2

=V-o (4)
whereu = u(r,t) is the displacement vector at positienat time ¢, V - the spatial divergence
operator anar the instantaneous stress tensor. Here and below, a ditatiom is used for the

tensors.
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A steady-state harmonic form solution
u(r,t) = u(r)eit (5)
is assumed, wher@ is the position-dependent complex ampltude of displacementwdnd
angular frequency of oscillation.
The strain tensor is defined by
= [Vu+ (Vu)T]/2 = gelvt (6)
where & = &(r) is the position-dependent complex strain amplitude tensomrlLiiscoelastic
frequency-independent stress-strain constituent relaiomsassumed
o =Cs=(C +iC")ge't (7)
where C is the viscoelastic complex modulus tengdrand €'’ are the storage and loss
moduli, which are given by the real and imaginary partheinodulus tensor, respectively.
The inclusion of frequency dependence does not presenindog gomplications but it is not
needed for the model problems considered in this work.
The discrete dynamic finte element stiffness relati@me obtained by substituting Egs. {5)
(7) in Eq. (4) and using standard Bubnov-Galerkin weak formepwe [23] to get the
folowing matrix differential equation
Ma+Ca+Ka=0 (8)
where M, € andK are the mass, damping and stiffness matriagis, a global vector listing
the unknown components of the displacement vectors at the poidi of the studied model
and the overdot denotes the derivative with respect to time.
Substituting harmonic form = @e‘“t in Eq. (8), one obtains the folowing viscoelastic
characteristic value problem
P*Ma— ACa+ Ka=0 9)

wherea denotes the nodal displacement amplitude vectorland-iw the eigenvalue.

16



Weak-form boundary condtions are imposed using the Lagrandigplier method. In this
study, simply supported boundary conditions are assumed. Thengesyitarse - matrix

eigenvalue problem is solved using the ARPACK Arnoldi paekag

www.caam.rice.edu/software/ARP AQikas implemented in COMSOL Multiphysics [20].

The fundamental frequency of a simply supported strip with piepeas nhamed above was

studied in both plane-strain 2D and 3D FEM simulations.

e ST

S S

S

e

S eSS S e

e
————"

a) b)
Figure 7: Mesh of a3 finite element model of a stri@a) and magnifiediiew of the highlighted cross section (b) as also

used for the plane-strain 2D models.

The 3D model was meshed employing brick elements as depi¢teguie Ha. The largest

structure was composed of 30,000 mesh elements. A similar nasshsed for the 2D model
by referring to a cross section of the 3D )a Here, the mesh was constituted of
600 rectangular elements. While the calculation time o$igiDlations was only about a
second, 3D simulations required up to several minutes.

In the theoretical analysis of elastic plates, one comgmassumes the orthotropic
symmetry [24]. Unidirectional composites with perfectygradid fibers have a fiber
symmetry, which is a subset of the more general orthorlcosypnmetry class. In the finite
element analysis, the required viscoelastic moduli &es dgoy the corresponding viscoelastic
moduli tensor represented by standard 6x6 Voigt-notation cowvpla®d matrices. They
involve five independent viscoelastic moduli that are obthinsing the n-layered
micromechanical models (see Section 3). Two different uridineal fiber layouts are
considered, the one with the fibers along the strip aedsnétd longitudinal) and

perpendicular td (termed transverse).
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Aiming at comparing derived fundamental frequencies of 2D anoh@iels, a parameter
study was performed varying the widii of the strip in the 3D model. In this way, both

beam-lke and plate-like setups could be addressed.
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Figure 8: Fundamental frequenty= f +if " obtained from 2D and 3D finite element simulations. Fibers were assumed to

be oriented in the longitudinal direction. The development of the eigenfrequehaglifierent aspect ratiod’ /L is shown.

Figure § shows the fundamental frequefiey f + if " resuting from these simulations. A

clear trend of the eigenfrequency obtained from 3D simulstis seen. When changing from
low to high aspect ratios, both the real and the imaginaris parease. With higher aspect
ratio, the eigenfrequencies from 3D models converge towaods from 2D simulations.
Some minor differences (below 1%) are found in the imaginzeny.

Overal, also the magnitude of increase from low to higheetsratios is small, i.e. below 1%
in the real part and 3% in the imaginary parts.

For the folowing FEM estimates, 2D simulations were perforrmed was shown that
comparable results to the 3D model FEM estimates were edbtdiut m considerably less

computing time.
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4.1 Temperature dependence
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Figure 9 Eigenfrequencyf ' (left) and damping time = 1/f (right) of a simply-supported plate strip with fibers oriented in
the longitudinal direction (Figures a and b) or the transverse dirg@ignres ¢ and d). The temperature dependence is
shown for three eigenmodes, p=1, 5 and 20. Micromechanical FEM esti(ssmeisols) and analytical n-layered model

predictions (lines) are used as input for the structural eigenfrequencyc&lElations. Acoating thickness ratio of 0.001 is

assumed.
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Figure 10: lllustration of the deflection of three studied eigenmodeq @) & (b) and 20 (c).

Figure 9 shows the change of the eigenfrequency andaimping time with temperature for

the unidirectional composites with coated carbon fbers n&sbuto be oriented in the
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longitudinal (Figures a and b) or the transverse awecfFigures ¢ and d). Three modes are

analyzed with mode numbers p = 1, 5 and 20 as ilustrated gimeFiL(). Comparing tie

frequencies in the case of longitudinal oriented fbersgveals that the change acrdsis
larger for higher modes, whereas the frequency of theafmental mod remains almost
unchanged. Unlke the frequency, the damping time vaf&s far lower modes. A similar
development is found for all three modes. The damping times afahs transition temperature
is reduced by more than one order of magnitude compared to T=A88Cand significantly,
the damping time is stil considerably reduced above tles dgiansition temperature of the
coating.

Overal, it is seen, that the higher modes decay faBtarexample, the damping time at 50°C
of the fundamental mode is about one second, whie for p=2Qetssthan a microsecond.
Similar trends are observed for composites with fibers tedem the lateral direction.

At this point, it should be mentioned that the eigenfregiesn were calculated assuming
frequency-independent properties of the coating materladugh this does not represent well

the real viscoelastic behavior where a frequency chahgee order of magnitude corresponds

to a temperature shift of 4°@s shown in Figure P, an increase in the temperaturesesa

decrease in the frequency. Hence, also the coating prepeitide affected. However, for the
fundamental mode, whose decay is commonly most important ¢tusiluvibration damping
applications, the frequency change is small (below 1%) #merefore the frequency-
dependence is expected to have only minor contribution. Fegieependent moduli are

assumed for all further simulations.
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Figure 11 Comparison of the eigenfrequency (left) and damping time (right) of the funddmeode of a plate strip of

uncoated (blue) and coated fiber composite (red) with coating thickness ratio 0.001 foateneseacrosg,. For Figures a

and b, longitudindy oriented fibers were assumed whereas for Figures c and d treglgwaiented fibers. FEM estimates

and analytical predictions are shown as indicated by symbols and lines, tve§pexs described in the legend to Figure 9.

In the previous figures, only coated fibber composites weredmyasi. However, the influence
of the coating layer on plate strip eigenfrequency badeen shown yet. Therefore, frequency

and damping time of the fundamental mode are compated ire Fiduifor an uncoated fber

composite and a composite containing coated fibers of coatirignetb rato 0.001. The
decrease in the frequency from below to above the glassidmangmperature is approximately
0.5% for the coated fiber composite with longitudinal orientbdrd. Considering uncoated
fibers, the composite modul, and hence the frequency, agpetature-independent. The
overal effect of the coating layer on the frequencysnsll as the difference for the two

composites is only belowdA.
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However, with fibers in the lateral direction, the redurctiof the frequency for coated fiber
composites is more dn 15%.

In both cases, the significance of a coating layeresrlgl demonstrated for the damping time.
With longitudinaly oriented fbers, the minimal damping time of the coated flmenposite is
0.44s which is only 6% of the one obtained for the uncoated dbenposite at the same
temperature. With further increase of the temperataeedamping time is increased again and

converges to 1.5s which is stil by factor 5 smaller th#im uncoated fibers. Using transversely

oriented fbers, this difference is only 50%. At first sigthe results presented|in Figurepll

are unexpected, as the previous results from Figures 4blastiowed that the longitudinal
loss modulus was litle affected at this coating thicknestio. This conficting result wil be

explained in the folowing section.

4.2 Comparison of Classical Plate Theory and First-order Shear Defomtion Theory
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Figure 12 Eigenfrequencies for different modes. Finite element estimatesanpared with Classical Plate Theory (blue)
and First-order Shear Deformation Theory (red). The fibers were assumed tanbegldni¢he longitudinal direction (Figures

a and bor the transverse direction (Figures c and d).

Figure 12 compares the eigenfrequencies obtained from memsional FE simulations with

the corresponding analytical solutions of Classical Plaeoifh(CPT) and First-Order Shear
Deformation Theory (FSDT).
The eigenfrequencies in CPT and FSDT are obtained flfeamharmonic solution of the
eqguation of motion, assuming that the displacementse of the form

w(x, t) = w,(x)e't (10)
where w, is the displacement ampltude aadthe frequency [24]. The eigenfrequencies of

mode n are then given by

1 n®m?
wlPT = 5 Q; (11)
in Classical Plate Theory and
1 n°rm? 1
WFSPT — H 11 (12)
n 2\/§ L2 \[p 1+LT[2H2n2 Qll

K,” 7 126Gy,

with First-order Shear Deformation Theory, for a stripeofth L and thickness HK. is the

shear correction coefficient and was assumed.as 5/6. Q,, and G,; are the plane stress-
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reduced longitudinal stifiness and the transverse shedulus, respectively, and were taken
in complex form from the results of Chapter 3.

A volume fraction of 0.6 was assumed and a coating thickmats of 0.001. A fixed

temperature of 50°C was chosen to achieve frequency-indepepdzperties. For Figure @2

and b, the fibers were considered to be oriented in theudimgitl direction of the strip while

for |[Figure 12c and d fbers in the transverse directonrewassumed. The smalest

eigenfrequency corresponds to the fundamental mode.

With fibers longitudindly oriented, the discrepancy of the CPT solution is strikiDgly the
real part of the fundamental mode coincides with the FHEaoluFor all higher modes, the
solutons deviate progressively strongly. Even largeerdfices are found for the imaginary
part, where already the fundamental mode differs by ordemmagfitude. The CPB hence
not sufficient to predict complex-valued eigenfrequenciesheitomposite strip studied.
However, when taking shear effects into account usinBTi-$he results agree with the FEM
estimates equaly good for all modes. Similar results carelf for a strip with transverse fibers
where FSDT gives reliable predictions for both the redlthe imaginary parts. Moreover, also
the predictions from CPT are comparable in this case, alifittience to the FE predictions is
much smaller than for the previous case of longitudlynaliented fibers. Only small differences

in the eigenfrequencies obtained from the two theories beanbserved for high modes.
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Figure 13 Classical Plate Theory and First-order Shear Deformation Theorygfwedifor the fundamental frequency with
respect to finite element estimates. The convergence with the asfeid shbwn for a strip with fibers assumed to be oriented
in the longitudinal (Figures a and b) or the transverse (Figures ¢ and d) direction.

The difference between Classical Plate Theory and FirdeiC8hear Deformation Theory was

studied in detail for the fundamental mode of a strip witerd oriented in the longitudinal

direction. | Figure 18 demonstrates the convergence oiMmheheories with respect to finite

element predictions. The aspect ratio L/H was varieduttyshe range of valdity of the two
theories. Considering a strip with fibers oriented in theyitodinal direction, the results
obtained from FSDT converge clearly faster than with (Fiure a and b). For the real part
of the frequency, an aspect ratio of 100 is needed to obtain corepegabits from CPT to the
FE estimates. With FSDT, the same results can alleadchieved for a much smaller aspect
ratio. Even larger are the differences in the imaginaart where CPT requires an aspect ratio
of almost 1000 to obtain similar resultsfiam FSDT with an aspect ratio of 20.

However, as observed in previous figures, this differenaainisr for the transverse case, which

suggests that the shear term has no effect here.

Overall,| Figure 1p arld Figure [L3 reveal the differencasvdam CPT and FSDT. It was shown

that the validity of CPT is limited to strips with vength aspect ratios. In contrast, FSDT can

be widely used and suitable for the prediction of complex-valued eigenfrequ@sncAccurate
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estimates are obtained for both the real and imaginarg @adlt cover lower and higher msde
equally good.

These results can then explain the conflicting reduts Figures 4b, 5b and 11b. For a highly
anisotropic plate, bending in the longitudinal direction tegcshear deformation (which has to
be taken into account to accurately predict the deformabiehavior). Consequently, this

excitation of shear deformation in bending also excit@sreed damping behavior.

5 Conclusions

In this work, we presented frequency-domain finite elenestimates for unidirectional fber
composites with viscoelastic coating. Finte element modétk hexagonal and random
microstructures were used and compared to predictions oflthyered model by Hervé and
Zaoui to assess the potential of this model. It was showrcdrbon filber composites that
accurate results are obtained. Excelent agreement omad ffor loss moduli with both,
hexagonal and random structure finte element models. \Abiethe predictions of the storage
moduli coincided with estimates for hexagonal microstresturdeviations were seen with
respect to random microstructures, in particular in thgitlmhnal shear modulus. However,
for the remaining moduli the predictions of the n-layered mogeé remarkably accurate.
The model is convenient to be applied in micromechanical rdesigdetermine optimal
properties for coated fber composites. The present study campaeeffective moduli for
different coating thicknesses. A maximum in the loss medukas obtained with coating
thickness ratios between 0.01 and 0.001, which corresponds to a d¢biekingss of 10nm -
100nm [22]. A value of 0.001 was considered optimum, as this gavBcaigt enhanceme nt
of the transverse and shear loss moduli, without affe¢chadongitudinal modul.

Industrial unidirectional composites commonly have arandarrostiucture with a variety of
local fiber arrangements, as ilustrated in Figure 1c. Meweclassical micromechanical

models usually assume a specific, simplified one-fiber geraent, as ilustrated in Figure 3.
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It has been shown in both our current and also previotis fement studies [12-14, 21] that
despite such simplification, these classical models do prevderate estimates of the effective
viscoelastic elastic moduli and as so, they are very saiteguick and reliable materials design
[15, 16, 25]. However, by their construction these models cannot proeidded information
about the distribution of stress fields and their locadizatn random composites. On contrary,
the finte element method directly provides access to sicimation that can be helpful in
studying and understanding both large strain deformation hmd faehavior of real composite
materials.

In our recent work on coated sphere reinforced composites, wee finst demonstrated
numerically, using a combination of micromechanicdiyered sphere model’s predictions and
time-domain finite element estimates, that the lossnifie@fion should occur at a coating
thickness ratio ofA/R ~ 0.01 [12]. And we have then realized this effect expataiby
following two different technological routes, by using spray-coafgetrical particles [15] and
then uncoated ones but dispersed in a phase-separating blockrespblgnd matrix [16, 25].
It wil be interesting to see if either of these two ofacturing routes could also be used to
experimentally realize the predicted loss magnificatédfact in unidirectional composites.
Free vibrations of a plate strip were studied as an exaofig® application to demonstrate the
reduction of the damping time through the use of a visa@elasating layer. It was shown that
for bending in the longitudinal direction, the highly amispic nature of the composite (and
the high ratio of the longitudinal to the shear modulijivated significant enhancement of the

damping time for this deformation mode due to increased sledammation.
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