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Abstract 14 

Individual variation in survival probability due to differential responses to early-life environmental 15 

conditions is important in the evolution of life-histories and senescence. A biomarker allowing 16 

quantification of such individual variation, and which links early-life environmental conditions with 17 

survival by providing a measure of conditions experienced, is telomere length. Here, we examined 18 

telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross-19 

sectional relationship between telomere length and age, with no apparent loss over the first 29 20 

months, but with both decreases and increases in telomere length at older ages. Overall, we found low 21 

within-individual consistency in telomere length across individual lifetimes. Importantly, we also 22 

observed increases in telomere length within individuals, which could not be explained by 23 

measurement error alone. We found no significant sex differences in telomere length, and provide 24 

evidence that early-life telomere length predicts lifespan. However, while early-life telomere length 25 
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predicted survival to adulthood (ш1 year old), early-life telomere length did not predict adult survival 26 

probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These 27 

results show that the relationship between early-life telomere length and lifespan was driven by 28 

conditions in early-life, where early-life telomere length varied strongly among cohorts. Our data 29 

provide evidence for associations between early-life telomere length and individual life-history, and 30 

highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing 31 

different early-life environments.  32 

 33 

Keywords: telomere length, early-life conditions, biomarker, senescence, wild population, mammal 34 

 35 

1. Introduction 36 

Species from most taxa exhibit a loss of performance in later-life that increases the probability of 37 

mortality (Medawar 1952; Williams 1957). This process of senescence is common, but highly variable 38 

across taxa (Jones et al. 2014) and even within species (Campbell et al. 2017; Dugdale et al. 2011; 39 

Nussey et al. 2009). Pioneering laboratory studies using controlled environments have provided 40 

important insights into senescence patterns, but cannot explain the remarkable variation in the onset 41 

and rate of senescence in wild populations, where selection acts under naturally varying conditions 42 

(Partridge & Gems 2007). Hence, studies of wild populations have informed understanding of how 43 

early-life environments shape individual senescence patterns (Cooper & Kruuk 2018; Lemaitre et al. 44 

2015; Nussey et al. 2013). This understanding has been further improved by quantification of extrinsic 45 

effects through biomarkers that reflect ecological effects that are otherwise difficult to measure 46 

(Bebbington et al. 2016; Spurgin et al. 2017).  47 

Telomere length, which reflects the physiological consequences of within-individual 48 

experiences and facilitates between-individual comparisons, is a biomarker of senescence (Monaghan 49 

& Haussmann 2006). Telomeres are non-coding hexĂŵĞƌŝĐ ƌĞƉĞĂƚƐ ;ϱ͛-TTAGGG-ϯ͛Ϳ ƚŚĂƚ͕ ǁŝƚŚ 50 
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associated shelterin proteins, prevent end-to-end fusion of linear chromosomes and maintain genomic 51 

integrity (Blackburn 2000; de Lange 2004). Telomeres shorten with age due to incomplete DNA-52 

ƌĞƉůŝĐĂƚŝŽŶ Ăƚ ƚŚĞ ϯ͛-end of the DNA-strand (Olovnikov 1973). This occurs more rapidly in early-life due 53 

to higher levels of cellular division during growth (Frenck et al. 1998; Hall et al. 2004), or in response 54 

to metabolically demanding activities (e.g. reproduction; Heidinger et al. 2012; coping with 55 

stress/disease; Epel et al. 2004; Willeit et al. 2010). The amount of telomeric DNA lost in each cell 56 

division depends on cellular conditions (Monaghan & Ozanne 2018) and oxidative stress (Reichert & 57 

Stier 2017; von Zglinicki 2002; but see Boonekamp 2017). Telomeres can, however, be replenished by 58 

telomerase, the telomere-elongating enzyme (Blackburn et al. 1989). Telomerase is transcriptionally 59 

repressed later in development (Blackburn et al. 1989), but alternative pathways for telomere 60 

lengthening do exist (Cesare & Reddel 2010; Mendez-Bermudez et al. 2012). Telomere shortening 61 

occurs until cells enter a state of arrest, inducing replicative senescence, where the accumulation of 62 

senescent cells, due to progressive loss of regenerative capacity (Campisi & di Fagagna 2007), can 63 

impair tissue functioning (Armanios & Blackburn 2012; Campisi 2005).  64 

Variation in the rate of telomere shortening occurs among organisms (Monaghan 2010). For 65 

example, mean human leukocyte telomere length shows a biphasic decline with age, with rapid 66 

shortening in early-life followed by slower attrition in adulthood (Aubert & Lansdorp 2008). 67 

Correlations among within-individual telomere measurements in humans were high (0.82 ʹ 0.93; 68 

Benetos et al. 2013), which corroborates the high individual repeatability (i.e. 81 ʹ 83%) in telomere 69 

length in wild populations using TRF (telomere restriction fragment) methods (Bauch et al. 2013; 70 

Boonekamp et al. 2014). However, longitudinal studies in wild populations using a qPCR (quantitative-71 

PCR) approach across individual lifetimes reported much lower (i.e. 7 ʹ 13%) individual repeatability in 72 

telomere length (Fairlie et al. 2016; Spurgin et al. 2017), indicating that telomeres are highly dynamic 73 

over individual lifetimes. Indeed, telomere length can both decrease and increase with age (Bateson 74 

& Nettle 2016), which has been attributed to measurement error (Steenstrup et al. 2013) but cannot 75 
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be explained by measurement error alone (Spurgin et al. 2017). Telomere length can therefore exhibit 76 

complex relationships with age, explained by within-individual changes, and provide a measure of 77 

conditions experienced that links to individual life-history. 78 

Telomere length has been linked positively to survival to adulthood and/or annual adult 79 

survival probability in both captive (Heidinger et al. 2012) and wild populations (Asghar et al. 2015b; 80 

Barrett et al. 2013; Cram et al. 2017; Fairlie et al. 2016; Haussmann et al. 2005). Even though other 81 

studies have tested for, but not found such associations (Beaulieu et al. 2011; Sudyka et al. 2014), a 82 

meta-analysis in non-human vertebrates reported an overall association between short telomeres and 83 

higher mortality risk (Wilbourn et al. 2018). While this provides evidence for a link between telomere 84 

length and life-history, whether telomere length plays a direct causal role in senescence, because 85 

telomeres are integral to organismal function, or acts as a non-causal biomarker of somatic integrity 86 

remains currently unclear (Simons 2015; Young 2018).  87 

Compelling evidence exists that early-life conditions such as maternal effects, developmental 88 

stress and competition for resources (e.g. Asghar et al. 2015a; Haussmann et al. 2012; Cram et al. 2017) 89 

can be particularly influential in shaping telomere length. The greater strength of early-life than late-90 

life effects could be due to stronger forces of selection, since natural selection acts on the proportion 91 

of a cohort that is alive, which is greatest in early-life (Hamilton 1966). However, greater selection in 92 

early-life is affected by a trade-off between parental and offspring survival (Lee 2008; Lee 2003), 93 

causing the evolutionary paradigm around early-life telomere length to remain relatively poorly 94 

understood (Vedder et al. 2017). Nevertheless, early-life telomere length might be an important 95 

predictor of life-histories (Monaghan 2010; Wilbourn et al. 2018; Young 2018). While studies into the 96 

effects of the environment on telomeres are emerging in wild mammals (Cram et al. 2017; Izzo et al. 97 

2011; Lewin et al. 2015), longitudinal studies in wild mammals remain relatively rare (Beirne et al. 98 

2014; Fairlie et al. 2016). Gaining a better understanding of telomere dynamics, its relationship with 99 

survival, and early-life effects requires more comprehensive longitudinal studies in wild populations. 100 
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The European badger (Meles meles͖ ŚĞŶĐĞĨŽƌƚŚ ͚ďĂĚŐĞƌ͛Ϳ ƉƌŽǀŝĚĞƐ ĂŶ ŝŶĨŽƌŵĂƚŝǀĞ mammalian 101 

model species for studying the effects of early-life conditions on telomere length and senescence 102 

patterns. We benefit here from a long-term study of badgers at Wytham Woods (Oxford, UK; 103 

Macdonald et al. 2015); an almost closed population (see Macdonald et al. 2008) with a high and 104 

relatively consistent annual recapture rate of 84% (SE = 1.3%; Macdonald et al. 2009) over 1726 life-105 

histories monitored seasonally since 1987. In this population, badgers live in polygynandrous social 106 

groups (mean group size: 11.3, range: 2 ʹ 29; da Silva et al. 1994; Macdonald et al. 2015), and show 107 

reproductive senescence (Dugdale et al. 2011). Badgers have one litter per year (mean litter size 1.4 ± 108 

0.06 SE; range 1 ʹ 4; Dugdale et al. 2007), where cubs emerge from underground dens at 6 ʹ 8 weeks 109 

of age, are weaned at 12 weeks, and reach independence at 14 ʹ 16 weeks old (Fell et al. 2006). Cub 110 

survival probability ranges from 61 ʹ 94% (mean ± SE = 67% ± 3%; Macdonald et al. 2009), and cub 111 

cohorts are negatively impacted by early-life exposure to endo-parasitic coccidia infection (Newman 112 

et al. 2001), oxidative stress (Bilham et al. 2018) and unseasonable weather variation (Macdonald et 113 

al. 2010; Noonan et al. 2014; Nouvellet et al. 2013). We therefore posit that strong selection pressures 114 

on badger cubs may be reflected in their telomere length and survival probability. 115 

Here, we investigate longitudinal telomere dynamics among 24 cohorts in wild badgers. 116 

Relative leukocyte telomere length (RLTL) measurements were used to test: (i) age-related variation in 117 

RLTL and the extent to which this was driven by within-individual changes, and both cohort and sex 118 

effects; (ii) the repeatability of RLTL and whether within-individual changes in telomere length are 119 

attributed to measurement error; and (iii) whether early-life and adult RLTL predict survival and 120 

lifespan.  121 

 122 

2. Methods  123 

2.1 Study system 124 
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We conducted this study in Wytham WŽŽĚƐ͕ OǆĨŽƌĚƐŚŝƌĞ͕ UK ;ϱϭΣϰϲ͛Ϯϰ഼N͕ ϭΣϮϬ͛Ϭϰ഼WͿ͕ Ă ϰϮϰ ŚĂ ŵŝǆĞĚ 125 

semi-natural woodland site surrounded by mixed arable and permanent pasture (Macdonald & 126 

Newman 2002; Macdonald et al. 2004; Savill 2010). The resident high-density badger population 127 

(range = 20.5 ʹ 49.5 badgers/km2; Macdonald et al. 2015) forms large social groups (Johnson et al. 128 

2000). Badger social groups have clearly demarcated territories (Buesching et al. 2016; Delahay et al. 129 

2000), although badgers do cross these borders when foraging and meet amicably with neighbouring 130 

groups (Ellwood et al. 2017; Noonan et al. 2015). Mean annual adult survival rates in this population 131 

are 0.83 (± 0.01 SE, Macdonald et al. 2009) with a mean adult lifespan of 4.96 years (± 3.21 SD; Bright 132 

Ross, J., Pers. Comm.).  133 

 Trapping has been undertaken three or four times per year since 1987, for two to three 134 

consecutive days per social group. Trapped badgers were anaesthetised using an intra-muscular 135 

injection of 0.2 ml ketamine hydrochloride per kg body weight (McLaren et al. 2005) and identified by 136 

a unique tattoo number on the left inguinal region. Capture date, sett, social group (comprising several 137 

setts, i.e. burrow systems), sex, age-class (cub <1 year; adult ш1 year) and morphometric 138 

measurements (i.e. length, weight, tooth wear; da Silva & Macdonald 1989; Macdonald et al. 2009)  139 

were recorded for each badger. Badger age was defined as the number of days elapsed since the 14th 140 

of February in their respective birth year (reflecting the February birth peak; Yamaguchi et al. 2006) . 141 

Blood was collected by jugular venipuncture into vacutainers with an EDTA anticoagulant, and stored 142 

at -20°C immediately. Badgers were released at their setts, after full recovery from anaesthesia. 143 

 144 

2.2 Telomere analyses 145 

We selected 1248 blood samples from 612 individuals, representing 308 males and 304 females, 146 

comprising individuals varying in lifespan (range: 14 ʹ 233 months; mean ± SE = 97.2 ± 1.88 months) 147 

and from different cohorts (n = 24). Only badgers for which age could be determined, either trapped 148 

as a cub (n = 545) or inferred through low tooth wear, were included (n = 67; males = 26, females = 41; 149 
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tooth wear 1 indicates a cub and tooth wear 2 indicates a 1-year old adult (da Silva & Macdonald 1989; 150 

Macdonald et al. 2009), where young individuals also had to have length <685 mm and weight <8 kg). 151 

Individuals were either sampled once (n = 163) or more (n = 449 badgers; 2 ʹ 9 times per individual) 152 

for telomere length analyses. Only badgers which were considered dead at the time of analysis were 153 

included. All analyses were also run without the 67 individuals for which age was determined through 154 

tooth wear, to confirm that inclusion of these samples did not bias the results (see supporting results 155 

S1). 156 

Genomic DNA was extracted from whole blood using the DNeasy Blood & Tissue kit (Qiagen, 157 

MĂŶĐŚĞƐƚĞƌ͕ UKͿ ĂĐĐŽƌĚŝŶŐ ƚŽ ƚŚĞ ŵĂŶƵĨĂĐƚƵƌĞƌ͛Ɛ ƉƌŽƚŽĐŽů͕ ǁŝƚŚ ĂĚũƵƐƚŵĞŶƚƐ ƵƐŝŶŐ ϭϮϱ ʅů of 158 

ĂŶƚŝĐŽĂŐƵůĂƚĞĚ ďůŽŽĚ ĂŶĚ Ă ĚŽƵďůĞ ĞůƵƚŝŽŶ ƐƚĞƉ ;Ϯǆ ϳϱ ʅů AE ďƵĨĨĞƌͿ͘ DNA ŝŶƚĞŐƌŝƚǇ ǁĂƐ ĂƐƐĞƐƐĞĚ ďǇ 159 

running a random selection of DNA extracts (ca. 20%) on agarose gels to check for high molecular 160 

weight. DNA concentration of all samples was quantified using the Fluostar Optima fluorometer (BMG 161 

LĂďƚĞĐŚ͕ OƌƚĞŶďĞƌŐ͕ GĞƌŵĂŶǇͿ ĂŶĚ ƐƚĂŶĚĂƌĚŝǌĞĚ ƚŽ ϮϬ ŶŐͬʅů͕ ĂĨƚĞƌ ǁŚŝĐŚ ƐĂŵƉůĞƐ ǁĞƌĞ ƐƚŽƌĞĚ Ăƚ -20 162 

°C. 163 

 Relative leukocyte telomere length (RLTL) measurements were made using the monochrome 164 

multiplex qPCR method described by Cawthon (2009). This method provides a ratio of the abundance 165 

of telomeric sequence to that of the control gene IRBP, the T/S ratio, analysed in the same well which 166 

should reduce measurement error by excluding pipetting errors and well effects. DNA samples were 167 

assayed using SYBR® Select Master Mix (Applied Biosystems, Warrington, UK) with telomere primers 168 

ƚĞůŐ ;ϱ͛-ACA-CTA-AGG-TTT-GGG-TTT-GGG-TTT-GGG-TTT-GGG-TTA-GTG-T-ϯ͛Ϳ ĂŶĚ ƚĞůĐ ;ϱ͛-TGT-TAG-169 

GTA-TCC-CTA-TCC-CTA-TCC-CTA-TCC-CTA-TCC-CTA-ACA-ϯ͛Ϳ Ăƚ Ă ĐŽŶĐĞŶƚƌĂƚŝŽŶ ŽĨ ϵϬϬ ŶM͘ A GC-clamp 170 

was added to the control gene (inter-photoreceptor retinoid-binding protein; IRBP) primers to allow 171 

for sufficiently different melt temperatures between the control gene and telomeric sequences, using 172 

GC-clamped IRBP primers IRBP-F ;ϱ͛-CGG-CGG-CGG-GCG-GCG-CGG-GCT-GGG-CGG-GCC-ACA-TTT-CTG-173 

GTA-TCC-CCT-ϯ͛) and IRBP-‘ ;ϱ͛-GCC-CGG-CCC-GCC-GCG-CCC-GTC-CCG-CCG-GGG-CGG-TCG-TAG-ATG-174 
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GTA-TC-ϯ͛Ϳ Ăƚ Ă ĐŽŶĐĞŶƚƌĂƚŝŽŶ ŽĨ ϵϬϬ ŶM͘ Subsequent melt-curve analysis confirmed differential melt-175 

curves and lack of primer-dimer formation. Semi-skirted 96-well polypropylene qPCR plates were 176 

ůŽĂĚĞĚ ŵĂŶƵĂůůǇ ǁŝƚŚ ŝŶŝƚŝĂů ƌĞĂĐƚŝŽŶ ǀŽůƵŵĞƐ ŽĨ ϮϬ ʅů͘ EĂĐŚ ǁĞůů ĐŽŶƚĂŝŶĞĚ ϭϬ ʅů ŽĨ “YB‘Π “ĞůĞĐƚ 177 

MĂƐƚĞƌ Mŝǆ ;AƉƉůŝĞĚ BŝŽƐǇƐƚĞŵƐ͕ WĂƌƌŝŶŐƚŽŶ͕ UKͿ͕ ϰ͘ϵ ʅů ŽĨ ŶƵĐůĞĂƐĞ ĨƌĞĞ ǁĂƚĞƌ͕ Ϭ͘ϵ ʅM ŽĨ ďŽƚŚ ƚŚĞ 178 

ĨŽƌǁĂƌĚ ĂŶĚ ƌĞǀĞƌƐĞ ƉƌŝŵĞƌƐ ;ϵϬϬ ŶMͿ ĂŶĚ ϭ͘ϱ ʅů ŽĨ ϮϬ ŶŐͬʅů DNA ƐĂŵƉůĞ ;ǁŚŝĐŚ ǁĂƐ ƌĞƉůĂĐĞĚ ǁŝƚŚ 179 

ϭ͘ϱ ʅů ŽĨ ŶƵĐůĞĂƐĞ ĨƌĞĞ ǁĂƚĞƌ ŝŶ ĐŽŶƚƌŽůƐͿ ĂŶĚ ƐĞĂůĞĚ ǁŝƚŚ PC‘-plate film adhesive. Cycling conditions 180 

in the Quantstudio 12K flex real-time PCR system (Applied Biosystems, Warrington, UK) were: 50°C for 181 

2 min and 95°C for 2 min, followed by 2 cycles at 94°C for 15 sec and 49°C for 15 sec, then 40 cycles at 182 

94°C for 15 sec, at 60°C for 10 sec, at 74°C for 15 sec, at 84°C for 10 sec and 86°C for 15 sec. A serially 183 

ĚŝůƵƚĞĚ ;ϰǆ ĨƌŽŵ ϴϬ ƚŽ Ϭ͘ϯϭϮϱ ŶŐͬʅůͿ ͚reference͛ sample was included on each qPCR plate to produce a 184 

ƐƚĂŶĚĂƌĚ ĐƵƌǀĞ ƚŽ ĐĂůĐƵůĂƚĞ ƉůĂƚĞ ĞĨĨŝĐŝĞŶĐŝĞƐ͕ ǁŚĞƌĞ ƚŚĞ ϮϬ ŶŐͬʅů dilution was used as a calibrator. The 185 

reference sample was collected from a badger in 2005 and was subject to the same capture methods 186 

and long-term storage as the other samples that we analysed.   187 

Samples were randomly allocated to qPCR plates and run in duplicate in adjacent wells, after 188 

which amplicon lengths and telomeric sequences were confirmed on the Agilent TapeStation 4200 and 189 

3730 DNA Analyzer (Applied Biosystems, Warrington, UK) with the Big Dye 3.1 cycle sequencing kit 190 

(Applied Biosystems, Warrington, UK). Cq-values on the 34 qPCR plates declined in a log-linear fashion 191 

(r2>0.99). Using LinRegPCR 2017.1 (Ruijter et al. 2009) we corrected for baseline fluorescence, 192 

determined the windows of linearity for the amplification curves (0.432 for IRBP and 0.694 for 193 

telomeres) and calculated efficiencies and Cq-values for each well. Reaction efficiencies were (mean ± 194 

SE) 1.793 ± 0.004 for IRBP and 1.909 ± 0.004 for telomeres, and we calculated RLTL according to Pfaffl 195 

(2001):  196 

ܮܶܮܴ ൌ ሺܧ௧௘௟̰ሺݍܥ௧௘௟ሺ௖௔௟௜௕௥௔௧௢௥ሻ െ ݍܥ௧௘௟ሺ௦௔௠௣௟௘ሻሻሻሺܧூோ஻௉̰ሺݍܥூோ஻௉ሺ௖௔௟௜௕௥௔௧௢௥ሻ െ  ூோ஻௉ሺ௦௔௠௣௟௘ሻሻሻ 197ݍܥ
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where Etel and EIRBP represent the mean well efficiencies for each of the amplicons, Cqtel(calibrator) and 198 

CqIRBP(calibrator) are the mean Cq-ǀĂůƵĞƐ ĨŽƌ ƚŚĞ ĐĂůŝďƌĂƚŽƌƐ ;ϮϬ ŶŐͬʅůͿ for each amplicon and Cqtel(sample) and 199 

CqIRBP(sample) are the mean Cq-values for both amplicons in each sample.   200 

Inter-plate repeatability (intraclass correlation coefficient), calculated with rptR 0.9.2 (Stoffel 201 

et al. 2017), was calculated with the reference sample by comparing variance among duplicates of the 202 

reference sample within a plate, to variance of the reference sample among plates and estimated at 203 

0.82 (95% CI = 0.76 ʹ 0.87; n = 142 samples; 34 plates). Intra-plate repeatability was calculated with 204 

duplicates of the same sample on the same plate, while controlling for plate effects, and estimated at 205 

0.90 (95% CI = 0.86 ʹ 0.93; n = 1248 samples; 34 plates) for IRBP, 0.84 (95% CI = 0.79 ʹ 0.90; n = 1248 206 

samples; 34 plates) for telomere Cq-values and 0.87 (95% CI = 0.82 ʹ  0.91; n = 1248 samples; 34 plates) 207 

for RLTL measurements (for further details on quality control see supporting methods).    208 

 209 

2.3 Statistical analyses 210 

Statistical analyses were conducted in R 3.3.1 (R Development Core Team 2019), with RLTL 211 

measurements square-root transformed to meet the assumptions of Gaussian error distributions in 212 

models with RLTL as the response variable. 213 

 214 

2.3.1 Age, sex and cohort effects on telomere length 215 

We assessed the relationship between RLTL and age (months), and the interaction with cohort, 216 

following Fairlie et al. (2016) and Spurgin et al. (2017). We tested a variety of age functions in General 217 

Linear Mixed Models (GLMMs; Bates et al. 2015) that included individual ID, plate ID and year as 218 

random effects, and sex, sample storage time (months), and in some models cohort, as fixed effects. 219 

We checked for collinearity and found that sample storage time and cohort were collinear (VIF>3), 220 

since sample storage time is similar within cohorts. We therefore first determined that sample storage 221 

time was not associated with telomere length (ȕ = -0.006 ± 0.010 SE, X2 = 0.383, d.f. = 1, P = 0.536) and 222 
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then excluded it from subsequent models. We considered a null model (without the age terms), 223 

polynomial age terms (linear, quadratic, cubic), a full-factorial age term and a variety of threshold 224 

functions. Visual inspection of the data indicated inflection points, with further specification of 225 

inflection points through comparison of AIC values, at 29, 65 and 112 months of age. These threshold 226 

models (with either a single, double or triple threshold) were compared to all other models. We ran 227 

additional models to test whether adding a cohort fixed effect and an interaction between age and 228 

cohort improved the model, using AIC values. We did not fully apply model selection or averaging, as 229 

we aimed to compare a set of specifically defined models, where the model with the lowest AIC fits 230 

these data best, but we considered all plausible ŵŽĚĞůƐ ǁŝƚŚ ѐAIC ф7.  231 

We then tested age-specific sex differences in telomere length through an interaction between 232 

age and sex in the best fitting age model and all non-significant interactions were dropped. In the same 233 

model we included age at last capture ;ɲi), as a measure of lifespan (van de Pol & Verhulst 2006), to 234 

test if selective disappearance of individuals contributed to the age pattern observed. We also 235 

compared, in the same model, within-individual (ȕW) to between-individual (ȕB) slopes, where the 236 

difference between these slopes is exactly the effect of selective disappearance (van de Pol & Verhulst 237 

2006). In a separate model we tested the significance of the between-individual component by 238 

replacing age parameters by within-group deviation scores (age - ɲi). 239 

 240 

2.3.2 Individual repeatability and telomere elongation 241 

Individual repeatability (across multiple samples from the same individual) was calculated by dividing 242 

the variance explained by individual identity by total phenotypic variance, in a Gaussian-distributed 243 

model (identity link function), across all samples (n = 1248) and only for adult samples (n = 779). These 244 

models included RLTL as the response variable and the best fitting age variable and cohort as fixed 245 

effects, with individual ID and qPCR-plate as random effects. The variance explained by qPCR-plate was 246 

then excluded from the total phenotypic variance as it is a source of experimental measurement error 247 
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and therefore not biologically relevant phenotypic variance; thus, it could lead to underestimation of 248 

repeatability (Dochtermann et al. 2015). Additionally, we determined the correlation between within-249 

individual telomere measurements, using the marginal R2 (Nakagawa & Schielzeth 2013), in a Gaussian-250 

distributed model (identity link function) with RLTL as the response variable, RLTL at t+1, cohort and 251 

age (months) as fixed effects and individual ID as a random effect. 252 

We examined increases in RLTL with age by estimating differences in telomere lengths among 253 

technical replicates, i.e. duplicates next to each other within a qPCR-plate, and among within-individual 254 

samples, i.e. difference in RLTL between within-individual samples. We used MCMCglmm (Hadfield 255 

2010) with an inverse Wishart prior (v = 1, nu = 0.002), 600,000 iterations, a thinning of 300 and burn-256 

in period of 15,000 iterations, to test whether within-individual changes in RLTL were greater than 257 

measurement error. We randomly selected two samples per individual, and built a model with 258 

telomere length as the response variable and individual ID and qPCR-plate as random effects (n = 898 259 

samples; 449 individuals). We then randomly selected one set of duplicates per individual, and 260 

constructed a model with telomere length for each of the technical replicates as the response variable 261 

and individual ID as a random effect (n = 898 samples; 449 individuals). We compared the explained 262 

variance by the random effect for individual ID between these two models and whether the 95% 263 

credible intervals overlapped. Additionally, we separated the dataset into groups that either increased 264 

or decreased in RLTL and ran these models again for these groups separately. We also tested if the 265 

residual error variance (ߪതఌ͸) was smaller than the error variance in RLTL, when RLTL can increase or 266 

decrease (ߪఌಅ͸), following Simons et al. (2014), which would reject the hypothesis that RLTL shows no 267 

elongation. 268 

 269 

2.3.3 Telomere length, survival and lifespan 270 

We used GLMMs to test the relationship between early-life RLTL (<1 year old) and lifespan (n = 435). 271 

In the following models, we conducted model averaging, using an information theoretic approach to 272 
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ƐĞůĞĐƚ ƉůĂƵƐŝďůĞ ŵŽĚĞůƐ ĂŶĚ ĞƐƚŝŵĂƚĞ ƚŚĞ ƌĞůĂƚŝǀĞ ŝŵƉŽƌƚĂŶĐĞ ŽĨ ĨŝǆĞĚ ĞĨĨĞĐƚƐ ĨŽƌ ŵŽĚĞůƐ ǁŝƚŚ ѐAIC фϳ 273 

with the ͞ ŶĂƚƵƌĂů ĂǀĞƌĂŐĞ ŵĞƚŚŽĚ͟ (Burnham et al. 2011). All four models included sex as a fixed factor, 274 

and plate and natal social group as random effects. Early-life RLTL did not vary with age (n = 435, ȕ 275 

= -0.002 ± 0.006 SE, X2 = 0.160, d.f. = 1, P = 0.690); therefore, age was not included in GLMMs with 276 

early-life RLTL as a fixed effect. Firstly, early-life RLTL as a predictor of lifespan was modelled with 277 

lifespan as the response variable (n = 435), including early-life RLTL and cohort as additional fixed 278 

effects in a Poisson-distributed model (log link function). We also controlled for overdispersion by 279 

including observation (for each unique measure) as a random effect (Harrison 2014). Lifespan was 280 

determined as the age at last capture. To ensure the different survival probabilities for cubs and adults 281 

did not alter the results we also ran a model (see Table S1) with lifespan calculated in months as the 282 

difference between the date of birth and last capture, with 24 months added when last captured as 283 

adults, due to a 95% recapture interval of 2 years (Dugdale et al. 2007), and 12 months as cub due to 284 

their different survival rates (Macdonald et al. 2009). Secondly, we modelled survival to adulthood (ш1 285 

year old) using a binary term in a binomial (logit link function) mixed-effects model with early-life RLTL 286 

(n = 435) and cohort as additional fixed effects. Thirdly, we used a Cox mixed-effects model to test 287 

whether early-life RLTL predicts annual adult survival probability over the lifetime of individuals that 288 

survived their first year. The model included early-life RLTL (n = 336) as an additional fixed effect, and 289 

cohort as an additional random effect. Finally, we tested the relationship between adult RLTL (n = 779) 290 

and survival to the subsequent year, in a binomially-distributed model (logit link function) with RLTL 291 

interacting with age (based on the best fitting model) as an additional fixed effect and individual ID 292 

(correcting for multiple measures per individual), cohort, current social group and year as additional 293 

random effects. 294 

  295 

3. Results 296 

3.1 Age, sex and cohort effects on telomere length 297 
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Across all samples, after no change up to and including 29 months of age, RLTL increased up to and 298 

including 65 months, followed by a decline up to and including 112 months, with a second increase in 299 

RLTL in older age (Table 1; Figure 1). Two models had ѐAIC <7, with the top model including all 300 

thresholds, and the second-best model with thresholds at 65 and 112 months, where both models 301 

included a fixed factor for cohort (Table S2 and Figure S1). Males and females had similar telomere 302 

lengths (Table 1) and there was no evidence for different age patterns by sex. Cohorts from earlier 303 

years (1987 ʹ 1992) had lower and more variable early-life RLTL measurements than those from 304 

subsequent years (Figure 2a). We thus repeated these analyses where these cohorts were omitted, 305 

which showed that these cohorts did not alter the results (see supporting results S2).  306 

 Selective disappearance of individuals was accounted for by including age at last capture (ȕS) 307 

in the best fitting age model, which was borderline significant (Table 1). However, there was a 308 

between-individual effect (ȕB) and a within-individual effect (ȕW) for individuals aged 29 months or 309 

older, where the difference between these slopes is due to selective disappearance of individuals with 310 

shorter telomeres (Table 1). Consequently, selective disappearance of individuals with shorter 311 

telomeres did contribute to the age pattern observed. 312 

 313 

3.2 Individual repeatability and telomere elongation 314 

Individual repeatability was 0.017 (95% CI = 0.001 ʹ 0.098) including cub and adult RLTL estimates, and 315 

0.026 (95% CI = 0.001 ʹ 0.143) using only RLTL measurements from adulthood. These repeatabilities 316 

changed to 0.022 (95% CI = 0.001 ʹ 0.103) and 0.039 (95% CI = 0.001 ʹ 0.154), respectively, when plate 317 

variance (measurement error) was removed from the phenotypic variances, so 2.2% of the variance in 318 

RLTL was explained by within-individual consistency among samples. There was no significant 319 

correlation between RLTL measured at different time points in the same individual (marginal R2 = 320 

0.067; X2 = 0.92, P = 0.336; Figure 2b).  321 
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Increases (in the range of 0.004 ʹ  5.829% per month) in RLTL were identified in 61.2% of within-322 

individual changes (Figure 2cͿ ĨŽƌ ŝŶĚŝǀŝĚƵĂůƐ ǁŝƚŚ шϮ ƐĂŵƉůĞƐ (n = 449). When accounting for plate 323 

effects using MCMCglmm, the random effect estimate for individual ID with technical replicates was 324 

0.0331 (95% CI = 0.0290 ʹ 0.0376), whereas for within-individual samples the random effect estimate 325 

was 0.0014 (95% CI = 0.0003 ʹ 0.0044; Figure 2d). For the group that exhibited increases in RLTL the 326 

random effect estimate for individual ID with technical replicates was 0.0345 (95% CI = 0.0289 ʹ 327 

0.0424), whereas for within-individual samples this estimate was 0.0016 (95% CI = 0.0003 ʹ 0.0058). 328 

The random effect estimate for technical replicates in the group that exhibited decreases in RLTL was 329 

0.0359 (95% CI = 0.0310 ʹ 0.0452) and for within-individual samples this estimate was 0.0006 (95% CI 330 

= 0.0003 ʹ 0.0045), where none of the 95% credible intervals from the technical replicates and within-331 

individual samples overlapped. Additionally, residual variance among samples was smaller (ߪതఌ͸ = 0.041) 332 

than the overall change in RLTL (ߪఌಅ͸ = 0.922; F31,40 = 22.48, P <0.001). These within-individual increases 333 

in RLTL were therefore not solely due to measurement error. 334 

 335 

3.3 Telomere length, survival and lifespan 336 

Early-life RLTL (<1 year old) was positively associated with lifespan (Figure 3 and 4a; Table S3 and S4), 337 

where individuals with longer telomeres in early-life had longer lifespans, such that an increase of 1 338 

T/S ratio was associated with 13.3% greater longevity. However, this association was underpinned by 339 

survival benefits in early-life and not in adulthood as early-life RLTL only predicted survival to 340 

adulthood (Figure 5 and 4b; Table S4 and S5). In contrast, early-life RLTL showed no relationship with 341 

annual adult survival probability (Table S4) and adult RLTL showed no association with survival to the 342 

subsequent year (Figure 4c; Table S4 and S6), but all models indicated an effect of cohort on survival 343 

and lifespan (Figure S2; Table S4). 344 

 345 

4. Discussion 346 
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We found complex telomere dynamics with no apparent change (29 months of age), decreases (i.e. 347 

between 65 and 112 months) and increases in RLTL with age (>29 and 65, and >112 months). This 348 

pattern was mainly due to within-individual changes. However, selective disappearance of individuals 349 

with shorter telomeres contributed to the age pattern observed when age at last capture was included 350 

(as a measure of selective disappearance) and within- and between-individual slopes were compared. 351 

While the lack of change in RLTL in early-life contrasts with previous studies that have reported rapid 352 

declines in RLTL with age in early-life (Aubert & Lansdorp 2008; Baerlocher et al. 2003), we are unable 353 

to sample individuals until at least 3 months of age, due to welfare legislation (Protection of Badgers 354 

Act, 1992), and therefore we may miss the period where the greatest changes in RLTL occur. The 355 

combination of selective mortality and within-individual changes in RLTL was also reported in wild Soay 356 

sheep (Ovis aries; Fairlie et al. 2016), providing evidence for complex relationships between telomere 357 

length and age.  358 

Male and female badgers had similar telomere lengths across all ages, corroborating recent 359 

findings in wild meerkats (Suricata suricatta) and European badgers in Woodchester (Beirne et al. 360 

2014; Cram et al. 2017), but contrasting with age-specific sex differences in telomere length in Soay 361 

sheep (Ovis aries; Watson et al. 2017). The lack of age-specific sex differences in badgers and meerkats 362 

could be due to males and females having similar lifespans, whereas in Soay sheep females live much 363 

longer than males (Cram et al. 2017; Fairlie et al. 2016; Macdonald & Newman 2002).  364 

Individual repeatability in RLTL was only 2.2й ƚŚƌŽƵŐŚŽƵƚ ĂŶ ŝŶĚŝǀŝĚƵĂů͛Ɛ lifespan. The point 365 

estimate was higher (3.9%) when only including RLTL measurements in adulthood, but the 95% 366 

confidence intervals overlapped greatly, and within-individual RLTL measurements were not 367 

correlated. Within-individual RLTL correlations in humans were high (0.82 ʹ 0.93; Benetos et al. 2013) 368 

and individual repeatability in RLTL in avian TRF studies was also high (81% ʹ 83%; Bauch et al. 2013; 369 

Boonekamp et al. 2014). In contrast, lifelong qPCR studies in wild populations provide substantially 370 

lower repeatability estimates (7%, Spurgin et al. 2017; 13%, Fairlie et al. 2016). The individual 371 
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repeatability estimate in RLTL in our system is in the lower spectrum of qPCR-studies. Such a low 372 

individual repeatability indicates that the within-individual slopes in RLTL across ages are different. 373 

RLTL is therefore highly variable within individuals across their lifetimes, where positive within-374 

individual changes indicate some active process in increasing telomere length. 375 

Telomere elongation, particularly in qPCR-based studies, is often attributed to measurement 376 

error (Steenstrup et al. 2013; Verhulst et al. 2015). It is, however, becoming more apparent in wild 377 

population studies that telomeres do elongate (Fairlie et al. 2016; Hoelzl et al. 2016a; Hoelzl et al. 378 

2016b; Kotrschal et al. 2007; Spurgin et al. 2017). Our study supports this, using monochrome 379 

multiplex qPCR that, in principle, reduces measurement error due to reactions occurring in the same 380 

well. Additionally, we found that residual variance among samples was smaller than the overall change 381 

in RLTL, and variance among technical replicates was smaller than among-sample variation, indicating 382 

that increases in mean telomere length with age were not due to measurement error alone.  383 

Aside from actual telomere elongation, however, we acknowledge the potential for competing 384 

mechanisms that could alter mean RLTL, notably changes in leukocyte cell composition with age 385 

(Kimura et al. 2010; Linton & Dorshkind 2004; Pawelec et al. 2010; Weng 2012). Mammalian leukocytes 386 

are nucleated and different leukocyte cell types have different telomere lengths due to their respective 387 

functional capacities to proliferate and express telomerase (Aubert & Lansdorp 2008; Weng 2001), and 388 

these vary in ratio over time with health/immune status (see Davis et al. 2008). For instance, an innate 389 

immune response can cause a granulocyte-biased leukocyte ratio, where in humans and baboons the 390 

granulocytes have longer telomeres than lymphocytes (Baerlocher et al. 2007; Kimura et al. 2010). 391 

While a previous study of RLTL in wild Soay sheep did not find changes in leukocyte cell composition 392 

with age (Watson et al. 2017), leukocyte cell composition in badgers does vary between similar aged 393 

ĐƵďƐ ĂŶĚ ĂĐƌŽƐƐ ĂŶ ŝŶĚŝǀŝĚƵĂů͛Ɛ ůifespan due to changes in immune system activation (Montes 2007). A 394 

greater metabolic rate while clearing infection could also modify leukocyte cell composition and 395 

potentially affect mean RLTL directly. For instance, badger cubs are typically infected with coccidia 396 



17 

 

(Newman et al. 2001), causing a strong innate immune response and oxidative stress (Bilham et al. 397 

2018; Bilham et al. 2013). A change in ĂŶ ŝŶĚŝǀŝĚƵĂů͛Ɛ ŝŵŵƵŶŽůŽŐŝĐĂů ƐƚĂƚƵƐ͕ ĂůŽŶŐ ǁŝƚŚ ĂŐĞ͕ ŵĂǇ 398 

therefore alter individual leukocyte cell composition and might contribute to RLTL elongation in this 399 

study. 400 

Our study shows a positive relationship between early-life RLTL and lifespan, driven by survival 401 

benefits of long telomeres in early-life, rather than in adulthood. This is congruent with previous 402 

studies reporting that early-life RLTL predicts lifespan more strongly than RLTL in adulthood (Fairlie et 403 

al. 2016; Heidinger et al. 2012) and where early-life RLTL predicts survival to adulthood in non-human 404 

mammals (Cram et al. 2017; Fairlie et al. 2016). Early-life RLTL in badgers does predict survival to 405 

adulthood, but not adult survival probability. Cubs have higher mortality rates than adults (Macdonald 406 

et al. 2009), which could drive this association between early-life RLTL and lifespan. In contrast, adult 407 

RLTL in badgers did not predict survival to the following year, whereas other studies found that adult 408 

RLTL does predict survival to the next year (e.g. Barrett et al. 2013). The lack of such an association in 409 

our study system could be due to, for example, most of our RLTL measurements in later adulthood (ш2 410 

years) being from long-lived individuals, indicating a sampling bias with fewer samples in later 411 

adulthood from individuals with shorter lifespans. The interplay between adult RLTL and the adult 412 

environment, or in combination with the early-life environment, also requires understanding to 413 

explain the link between adult RLTL and adult survival to the next year. Even though early-life RLTL 414 

predicts survival probability in badgers, it remains currently unclear how RLTL and life-history are 415 

linked (Simons 2015; Young 2018). A direct link might exist through delayed cellular senescence when 416 

telomeres are longer (von Zglinicki et al. 2001). However, an indirect link exists when telomeres 417 

function as a biomarker of somatic redundancy and reflect the accumulated damage to other biological 418 

structures that have deleterious effects on fitness (Boonekamp et al. 2013; Young 2018).  419 

The early-life environment clearly exerted a strong effect on early-life RLTL, apparent from the 420 

pronounced variation in early-life RLTL we noted among cohorts, which corroborates the variation in 421 
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survival rate and lifespan among cohorts in our study system (Macdonald & Newman 2002; Macdonald 422 

et al. 2010). Badgers in our study are exposed to variable environmental conditions and have a limited 423 

tolerance for, for example, cohort-specific weather conditions (i.e. higher cub recruitment and survival 424 

probability with intermediate levels of rainfall and restricted deviation from the mean temperature; 425 

Nouvellet et al. 2013; Macdonald et al. 2010) and exposure to diseases (i.e. lower cub survival 426 

probability with higher intensities of coccidia; Newman et al. 2001). These variable environmental 427 

conditions may be reflected in the variation in early-life telomere length seen in our study system. 428 

Similarly, previous studies in birds have shown that higher levels of early-life competition can 429 

accelerate telomere shortening (Boonekamp et al. 2014; Nettle et al. 2015), although studies that do 430 

not find stressors affecting early-life telomere length do exist (reviewed in Vedder et al. 2017). In 431 

mammals, studies on social and ecological effects on telomere dynamics are emerging (Cram et al. 432 

2017; Izzo et al. 2011; Lewin et al. 2015; Watson et al. 2017; Wilbourn et al. 2017), showing that, for 433 

example, socially dominant spotted hyaenas (Crocuta crocuta) have longer telomeres (Lewin et al. 434 

2015) and that meerkat pups experiencing more intense early-life competition have shorter telomeres 435 

(Cram et al. 2017).  436 

As well as environmental effects, variation in early-life RLTL can also be caused by additive 437 

genetic effects (Dugdale & Richardson 2018). In wild populations, using a quantitative genetic ͚ĂŶŝŵĂů 438 

ŵŽĚĞů͕͛ ŶŽ ŚĞƌŝƚĂďŝůŝƚǇ of telomere length was found in white-throated dippers (Cinclus cinclus; Becker 439 

et al. 2015), and high heritability (0.35 ʹ 0.48) was found in the great reed warbler (Acrocephalus 440 

arundinaceus; Asghar et al. 2015). Even though we currently have no heritability estimates from wild 441 

mammals, the likelihood for additive genetic effects in our study system to contribute to early-life RLTL 442 

is small given that individual repeatability, which sets the upper limit for heritability (unless indirect 443 

genetic effects occur), in RLTL is low. This indicates that the individual variation in RLTL in our study 444 

system is likely driven by early-life environmental conditions. 445 
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Our findings demonstrate that telomeres reflect the effects of early-life conditions on 446 

individual life-history, and elaborate on the dynamic way that telomeres function as a biomarker of 447 

senescence in a wild mammal, where within-individual telomere length is highly variable. Further work 448 

on how specific early-life environment conditions impact telomere lengths in wild mammals and 449 

quantifying the relative contribution of environmental effects (e.g. cohort, year and social group) on 450 

telomere length will provide insight into the evolution of senescence. 451 
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Figures & tables 801 

Table 1: Parameter estimates from the models that best explained the relationship between telomere 802 

length and age, when accounting for selective disappearance (n = 1248 samples; 612 individuals). ɴW 803 

= within-individual slope, ɴs = selective disappearance according to age at last capture, ɴB = between-804 

individual slope, Įi = between-individual component, S.E. = standard error, d.f. = degrees of freedom. 805 

P-values from log-likelihood ratio tests, where significant parameters are in bold. 806 

Parameters ȕ S.E. d.f. P-value ȕB (ȕS + ȕW) 
Model 1Ώ:      
Intercept 0.6259 0.0527    
Age ( 29 months) (ȕW) 0.000029 0.00054 1 0.958 0.000199 

        (>29,  65 months) (ȕW) 0.002130 0.00051 1 <0.001 0.002301 

        (>65,  112 months) (ȕW) -0.00210 0.00063 1 <0.001 -0.001924 

        (> 112 months) (ȕW) 0.004008 0.00143 1 0.005 0.004179 

Sex (male) 0.008045 0.00687 1 0.242  

Cohort§   23 <0.001  

Lifespan (ȕS) 0.000171 0.000093 1 0.068  

      

Model 2Ώ:      

Intercept 0.6259 0.0527    

Age ( 29 months) (ȕW) 0.000029 0.00054 1 0.958  

        (>29,  65 months) (ȕW) 0.002130 0.00051 1 <0.001  

        (>65,  112 months) (ȕW) -0.00210 0.00063 1 <0.001  

        (> 112 months) (ȕW) 0.004008 0.00143 1 0.005  

Sex (male) 0.008045 0.00687 1 0.242  

Cohort§   23 <0.001  

Įi (ȕB) 0.004242 0.00138 1 0.004  

Random effect estimates (variance): ΏIndividual ID (4.851*10-5), Plate (1.067*10-3), Social group (6.062*10-5), Year 807 
(3.731*10-3), Residual (1.295*10-2); §Estimates ± S.E. for 24 cohorts are in the supporting information (Figure S1).  808 
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809 
Figure 1: Age-related variation in relative leukocyte telomere length (RLTL), with inflection points at 810 

29, 65 and 112 months of age. Raw data points (n = 1,248) are shown with fitted lines representing the 811 

model prediction for RLTL (T/S ratio) with 95% confidence intervals. 812 

  813 
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814 
Figure 2: Telomere dynamics in European badgers. a) Variation in early-life relative leukocyte telomere 815 

length (RLTL) among cohorts. b) Longitudinal telomere dynamics for 41 individuals that were measured 816 

at least four times. c) Within-individual variation in RLTL over consecutive time points (t and t+1). 817 

Dashed line represents parity, thus data points above and below this line represent increases and 818 

decreases in telomere length, respectively. d) Scaled density plots of changes in RLTL among technical 819 

replicates (dark grey) and among individual samples (light grey) with a dotted line representing no 820 

change. Areas left of the dotted line represent decreases in RLTL, while to the right represent increases. 821 



30 

 

822 
Figure 3: Early-life (<1 year old) relative leukocyte telomere length (RLTL) predicts lifespan. Raw data 823 

(n = 435) are shown as open circles, the regression from the GLMM as a black line, and the 95% 824 

confidence interval as the shaded area. 825 

  826 
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827 
 828 

Figure 4: Parameter estimates and 95% confidence intervals of fixed effects from models investigating 829 

the effect of: a) Early-life RLTL (relative leukocyte telomere length) on lifespan; b) Early-life RLTL on 830 

survival to adulthood; and, c) Adult RLTL on survival to the next year. Age parameters in plot c) refer 831 

to threshold model where Age 1 29 months old, Age 2 >29 and 65 months old, Age 3 >65 and 112 832 

months old and Age 4 >112 months old. Scale differs in plot c). For cohort effects see Figure S2. * 833 

represents an interaction.  834 
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835 
Figure 5: Early-life (<1 year old) relative leukocyte telomere length (RLTL) predicts survival to adulthood 836 

(>1 year old). The regression line from a binomial GLMM is shown, with associated 95% confidence 837 

interval as a shaded area, and raw jittered data as open circles (n = 435). 838 


