University of Vork

This is a repository copy of The ubiquitous cross-coupling catalyst system 'Pd(OAc)2'/2PPh3 forms a unique dinuclear Pdl complex: an important entry point into catalytically competent cyclic Pd3 clusters.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/149236/
Version: Published Version

Article:

Scott, Neil Walter James, Ford, Mark, Schotes, Christoph et al. (2 more authors) (2019) The ubiquitous cross-coupling catalyst system ' $\mathrm{Pd}(\mathrm{OAc}) 2$ '/2PPh3 forms a unique dinuclear PdI complex: an important entry point into catalytically competent cyclic Pd3 clusters.
Chemical Science. pp. 1-8. ISSN 2041-6539

https://doi.org/10.1039/C9SC01847F

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cite this: DOI: 10.1039/c9sc01847f
All publication charges for this article have been paid for by the Royal Society of Chemistry

Received 15th April 2019
Accepted 5th July 2019
DOI: 10.1039/c9sc01847f
rsc.li/chemical-science

The ubiquitous cross-coupling catalyst system ' $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / 2 \mathrm{PPh}_{3}$ forms a unique dinuclear Pd^{\prime} complex: an important entry point into catalytically competent cyclic Pd_{3} clusters \dagger

Neil W. J. Scott, (D) ${ }^{\text {a }}$ Mark J. Ford, ${ }^{\text {b }}$ Christoph Schotes, ${ }^{\text {c }}$ Rachel R. Parker, (D) ${ }^{\text {a }}$ Adrian C. Whitwood (ID ${ }^{\text {a }}$ and Ian J. S. Fairlamb (D) *a

Abstract

Palladium(II) acetate ' $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / n \mathrm{PPh}_{3}$ is a ubiquitous precatalyst system for cross-coupling reactions. It is widely accepted that reduction of in situ generated trans-[Pd(OAc) $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]$ affords $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}\right]$ and/or $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{OAc})\right]^{-}$species which undergo oxidative addition reactions with organohalides - the first committed step in cross-coupling catalytic cycles. In this paper we report for the first time that reaction of $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ with 6 equivalents of PPh_{3} (i.e. a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1: 2$) affords a novel dinuclear Pd^{\prime} complex $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as the major product, the elusive species resisting characterization until now. While unstable, the dinuclear Pd^{\prime} complex reacts with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, p-fluoroiodobenzene or 2bromopyridine to afford Pd_{3} cluster complexes containing bridging halide ligands, i.e. $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$, carrying an overall $4 / 3$ oxidation state (at Pd$)$. Use of 2-bromopyridine was critical in understanding that a putative 14 -electron mononuclear ' $\mathrm{Pd}^{\prime \prime}(\mathrm{R})(\mathrm{X})\left(\mathrm{PPh}_{3}\right)^{\prime}$ ' is released on forming $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$ clusters from $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Altering the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio to $1: 4$ forms $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3}$ quantitatively. In an exemplar Suzuki-Miyaura cross-coupling reaction, the importance of the ' $\mathrm{Pd}(\mathrm{OAc})_{2} / n \mathrm{PPP}_{3}$ ratio is demonstrated; catalytic efficacy is significantly enhanced when $n=2$. Employing 'Pd(OAc) $)_{2}^{\prime} / \mathrm{PPh}_{3}$ in a $1: 2$ ratio leads to the generation of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ which upon reaction with organohalides (i.e. substrate) forms a reactive Pd_{3} cluster species. These higher nuclearity species are the cross-coupling catalyst species, when employing a ' $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / \mathrm{PPh}_{3}$ of $1: 2$, for which there are profound implications for understanding downstream product selectivities and chemo-, regio- and stereoselectivities, particularly when employing PPh_{3} as the ligand.

Introduction

Palladium(II) acetate ' $\mathrm{Pd}(\mathrm{OAc})_{2}$ ' is commonly used in combination with tertiary phosphine ligands, e.g. PPh_{3}, to generate active catalyst species for an eclectic array of cross-coupling reactions, ${ }^{1}$ where it is universally accepted that ' $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}$ ' species are formed. ${ }^{2}$ Such species enter into oxidative reactions with organohalides, e.g. iodobenzene to generate trans $-\left[\mathrm{Pd}(\mathrm{I})(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)_{2}\right]$. ${ }^{3}$ Considerable and notable efforts have been made by Amatore and Jutand ${ }^{4}$ to understand how varying the ${ }^{'} \mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / n \mathrm{PPh}_{3}$

[^0]ratio affects the generation of reduced palladium species in both THF and DMF. Following extensive NMR spectroscopic and electrochemical measurements, conclusions were drawn implicating phosphine-induced reduction of ' $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / n \mathrm{PPh}_{3}$ mixtures, via trans $-\left[\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, by an intramolecular process (independent of phosphine concentration, once the latter complex is formed). ${ }^{4}$ The global findings from Amatore and Jutand are detailed in Scheme 1, showing the key intermediate species observed by ${ }^{31}$ P NMR spectroscopic studies. Comparisons of these data were made with complexes generated from $\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ in the presence of $n-\mathrm{Bu}_{4} \mathrm{NOAc},{ }^{4 a}$ under electrochemical conditions. The conclusions were that ' $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}$ ' species are generated in situ from the reaction of $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / 2 \mathrm{PPh}_{3}$ mixtures. ${ }^{4 a}$ Later studies showed that increasing the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio to $1: 3$ and above led to the clean generation of $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}(\mathrm{OAc})\right]^{-}$species ($n=2$ or 3), with $\mathrm{O}=\mathrm{PPh}_{3}$ being a key side product, i.e. formed during the formal $\mathrm{Pd}^{\mathrm{II}} \rightarrow \mathrm{Pd}^{0}$ reduction process. ${ }^{4 b, c}$ Both ${ }^{'} \mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{2}$ ' and $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{OAc})\right]^{-}$species react by oxidative addition with organohalides.

Scheme 1 Reactions of ' $\mathrm{Pd}(\mathrm{OAc})_{2}$ ' with PPh_{3} (1:2 ratio). ${ }^{31} \mathrm{P}$ NMR spectral data are taken from ref. $4 a$.

Later, Kollár et al. examined the reaction of ' $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / n \mathrm{PPh}_{3}$ in DMF, ${ }^{5}$ amongst other phosphines, concluding that ' $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}$ ' species are formed under ambient reaction conditions. Taken together these studies suggest that a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1: 3$ is necessary for satisfactory catalytic cross-coupling performance.

Over the last 20 years we have regularly debated the differences in cross-coupling catalyst system performance on changing the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio from $1: 2$ to $1: 3 .{ }^{6}$ When papers are reported employing a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1: 2$ we have asked the why, as $1: 3$ would be ideal based on the outcomes of previous studies; ${ }^{4}$ in other words, optimal conditions for forming catalytically active $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}(\mathrm{OAc})\right]^{-}$species requires ≥ 3 equivalents of PPh_{3} per Pd , "not 2 equivalents", when ' $\mathrm{Pd}(\mathrm{OAc})_{2}$ ' is used as the initial $\mathrm{Pd}^{\mathrm{II}}$ precatalyst.

A superb recent example is found in the high-throughput automated reaction screening study conducted by a team from Pfizer, ${ }^{7}$ where a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1: 2$ was used for 480 Suzuki-Miyaura cross-coupling (SMCC) reactions, involving changes in solvent and base, against relatively minor changes in substrate structure, correlated alongside many other phosphine ligands (over 5760 reactions in total). Cronin et al. further applied a machine learning algorithm based on the product percentage yields. ${ }^{8}$ With such important developments being made in automation, reaction optimization and machine learning, ${ }^{9}$ knowing precisely the reactive Pd species,
formed under working reaction conditions, has never been more important. Thus, herein we report that the reaction of $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ with 6 equivalents of $\mathrm{PPh}_{3}\left(\mathrm{Pd}: \mathrm{PPh}_{3}, 1: 2\right)$, in both THF and DMF, generates a well-defined $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2^{-}}\right.\right.$ $\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)_{2}$] complex II. The formation of this unusual species adds to the mechanistic debate concerning the activation pathways for $\operatorname{Pd}(\mathrm{II})$ precatalysts, particularly papers reported by: (a) Balcells and Hazari ${ }^{10 a}$ showing formation of Pd^{I} dimers with NHC ligands and bridging allyl and chloride ligands (eqn (1)); (b) Colacot and Schoenebeck ${ }^{10 b}$ showing formation of Pd^{I} dimers with phosphines and bridging bromide ligands (eqn (2)); (c) Bedford ${ }^{10 c}$ showing SPhos activation on reaction with $\operatorname{Pd}(\mathrm{OAc})_{2}$ (eqn (3)); (d) Jutand and Grimaud ${ }^{10 d}$ showing XPhos reactions with $\operatorname{Pd}(\mathrm{OAc})_{2}$ leading to a proposed Pd^{I} dimer (eqn (4)).

The stability and reactivity of these Pd^{I} dimers appear to be critical in understanding the delivery of active ' $\mathrm{L}-\mathrm{Pd}^{0}$, species, a process dependent on L / Pd ratios and additives. From our study we find that $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II, exhibits unique reactivity toward organohalides, e.g. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{1 a}, p$-fluoroiodobenzene 1b and 2-bromopyridine 1c, which affords Pd_{3} cluster species, namely $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$ VII (later referred to as $\mathbf{P d}_{3} \mathbf{X} \cdot \mathbf{X}$, where $\mathbf{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ or OAc). Our results naturally connect to a recent report showing that $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$ is a highly active catalyst for SMCC reactions, including the activation of substrates containing harder to activate $\mathrm{C}-\mathrm{Cl}$ bonds. ${ }^{11}$ $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$ invokes an unusual switch in cross-coupling steps from oxidative addition then transmetallation to transmetallation and then oxidative addition. ${ }^{11}$

Colacot, Schoenebeck et al.

Results and discussion

The reaction of ultra-pure $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}(>99 \%$ purity $)$ with PPh_{3}, in varying ratios, in THF- d_{8} were conducted at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$ and monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic analysis (where $[\mathrm{Pd}]=20 \mathrm{mM} ; T=298 \mathrm{~K}$, external reference $=85 \%$ $\mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$). A wide spectral window (-50 to +250 ppm) was required to allow full characterization of the array of phosphorus signals and associated species formed under these reaction conditions (Fig. 1 and 2).

Where the ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}$ was $1: 1$, degradation of $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$, leading to the formation of large perfectly spherical Pd particles (sized $\sim 0.1-0.4 \mu \mathrm{~m}$, by TEM) and many Pcontaining species (by ${ }^{31} \mathrm{P}$ NMR) was observed (Fig. 1(a)). Alteration of the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio to $1: 2$ (Fig. 1(b)) led to the

(c) $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 9 \mathrm{PPh}_{3}\left(\mathrm{Pd}: \mathrm{PPh}_{3}=1: 3\right)$

Decomposition / formation of Pd black particles

(d) $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 12 \mathrm{PPh}_{3}\left(\mathrm{Pd}: \mathrm{PPh}_{3}=1: 4\right)$

Fig. 1 The room temperature formation of dinuclear $\mathrm{Pd}^{\prime \prime}$ complexes from trans- $\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ in THF. (a) Ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}=1: 1$; (b) ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}=1: 2$; (c) ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}=1: 3$; (d) ratio of $\mathrm{Pd}: \mathrm{PPh}_{3}=1: 4$. The Pd^{0} species $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{IX}$ and $\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{OAc}\right]^{-}$ $I X^{\prime}$ are indicated by cyan circles (appearing as coincident signals by ${ }^{31} \mathrm{P}$ NMR spectroscopic analysis when present together - compare top two ${ }^{31}$ P NMR spectra in Fig. 2 with the authentic sample of $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3}$ IX, bottom spectrum, Fig. 2).
formation of a major new phosphorus-containing species at $\delta 199.01(\mathrm{t}, 1 \mathrm{P})$ and $\delta 13.41(\mathrm{~d}, 2 \mathrm{P})$, with a ${ }^{2} J_{\mathrm{PP}}$ coupling constant of 83.5 Hz (i.e. an AX_{2} type spin system). The high ${ }^{31} \mathrm{P}$ chemical shift of $\delta 199.01$ indicates that the PPh_{3} ligand has been activated by $\mathrm{P}-\mathrm{C}$ bond-cleavage to give a bridging phosphido-group at Pd, with concomitant loss of ' $\mathrm{C}_{6} \mathrm{H}_{5}$ '. The ${ }^{1} \mathrm{H}$ NMR spectrum shows a methyl resonance at $\delta 2.08(\mathrm{~s}, 3 \mathrm{H})$, due to a bridging acetoxy ligand, which balances with aromatic proton integrals $(40 \mathrm{H})$. Running the reaction at lower $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ concentration (between 3 and 20 mM) allowed this species to be isolated in a form that could be crystallized. X-ray diffraction analysis of dark red single crystals of this species confirmed its structure as $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II, possessing both bridging $\mu_{2^{-}}$ acetoxy and μ-phosphido ligands and terminal-capping PPh_{3} ligands. Complex II is a diamagnetic species. The Pd-Pd bond distance was found to be $2.5958(3) \AA$, which is in-keeping with other dinuclear Pd^{I} complexes with bridging μ-acetoxy ligands known in the literature (typical Pd-Pd distances 2.532 to 2.711 $\AA)$, and shorter than a related structure, $\left[\mathrm{Pd}_{2}\left(\eta^{3}\right.\right.$-allyl $)(\mu-\mathrm{OC}(\mathrm{O}) \mathrm{i}-$ $\mathrm{Bu})\left(\mathrm{PPh}_{3}\right)_{2}$] where the $\mathrm{Pd} \cdots \mathrm{Pd}$ bond distance equals 2.6267(3). ${ }^{12}$

A scaled-up synthesis of II was found possible from $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 6 \mathrm{PPh}_{3}$, formed in 31% yield (note: some Pd is lost as large particles during its preparation), which was fully characterized. Interestingly, the LIFDI-MS data showed that the dinuclear Pd^{I} complex was present in solution $\left(\mathrm{M}^{+\bullet}=m / z 982\right.$, with the correct isotopic distribution). The reference ${ }^{31} \mathrm{P}$ NMR spectrum for purified II is given in Fig. 2 (externally-referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$). GC-MS analysis of the crude reaction mixture containing $\mathbf{I I}$ indicated that benzene and biphenyl were present, the former most likely derived from protonation of ' $\mathrm{Pd}-\mathrm{Ph}$ ' species by adventitious water/ AcOH and the latter by reductive elimination. Acetoxybenzene, a possible reductive elimination product, was not detected by GC-MS analysis. These species are accompanied by $\mathrm{O}=\mathrm{PPh}_{3}$ III, $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{OAc})\right] \mathrm{X}$ IV and another dinuclear $\mathrm{Pd}^{\mathrm{II}}$ species VIII, the latter only in minor amounts. Complex VIII was previously reported as a major product of a reaction of ' $\mathrm{Pd}(\mathrm{OAc})_{2}$ ' with 2 equivalents of PPh_{3} on heating in methanol (41% yield). ${ }^{13}$ It is worth noting that complex II is stable in dry THF solutions over 12 hours, which allows for its spectroscopic characterization, but decomposition is seen after ca. 5 days at $22-25^{\circ} \mathrm{C}$.

On changing the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio to $1: 3$ complex II was not formed, simply a broad resonance at $\delta 5.71$ (FWHM ca. 550 Hz) characterized as $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n} /\left[\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}(\mathrm{OAc})\right] \mathrm{P}(\mathrm{OAc}) \mathrm{Ph}_{3}(n=1$, 2 or 3), see Fig. 1(c). The chemical shift alters with time, with concomitant formation of $\mathrm{O}=\mathrm{PPh}_{3}$, by hydrolysis of $\left[\mathrm{Ph}_{3}{ }^{-}\right.$ $\mathrm{P}(\mathrm{OAc})] \mathrm{X}$ IV, yielding AcOH also. Heating this mixture to $60^{\circ} \mathrm{C}$, over 16 h , eventually ended in decomposition to form large Pd black particles. Indeed, similar ${ }^{31} \mathrm{P}$ NMR spectra were seen on changing the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio to $1: 4$, see Fig. $1(\mathrm{~d})$, leading to a mixture of $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3} \mathbf{I X}$ and $\left[\mathrm{Pd}^{0}(\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)_{3}\right]^{-} \mathbf{I X}$. At the same $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio, subsequent heating to $60{ }^{\circ} \mathrm{C}$ resulted in clean conversion of II into $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3}(\mathbf{I X}), \mathrm{O}=\mathrm{PPh}_{3}$ (III) and 2 AcOH , quantitatively, as shown by both ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra. Layering this solution with hexane, after $t=16 \mathrm{~h}$, led to the formation of yellow-orange crystals, which were found suitable for X-ray diffraction, establishing the compound as

Fig. 2 Top: Single crystal X-ray diffraction structures of II, VIII and IX are shown (thermal ellipsoids shown at 50%, H -atoms and solvent of crystallization not shown, for clarity). Bottom: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz})$ spectra of mixtures of ' $\mathrm{Pd}(\mathrm{OAc})_{2}$ ' with $n \mathrm{PPh} \mathrm{S}_{3}(n=1$ to 4$)$ in THF at $23^{\circ} \mathrm{C}$ for 16 h, showing differences in phosphorus speciation. Reference spectra are given for II (green), VIII (blue) and IX (cyan); other species are OPPh ${ }_{3}$ (pink), $\left[\mathrm{AcOPPh}_{3}\right] X$ (yellow, where X is likely the OAc anion) and trans- $\mathrm{Pd}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2} I$ (red). Several phosphorus species are uncharacterized for the $\mathrm{Pd}(\mathrm{OAc})_{2} / 1 \mathrm{PPh}_{3}$ experiment (also resulting in PdNP formation). For the equilibrium shown against the ratio of $\mathrm{Pd}(\mathrm{OAc})_{2} / 4 \mathrm{PPh} 3 \mathrm{Spectral}$ data, acetate anion and free PPh_{3} are involved, explaining the substantially lower chemical shift (compare also the reference spectrum of pure $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{IX}$ - bottom).
$\operatorname{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3}$ ($\mathbf{I X}$) (Fig. 2). It is worthy of note that $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3} \mathbf{I X}$ is a relatively stable Pd^{0} complex in the solid-state (note: discoloration is noted in air after ~ 1 day).

Computational studies using DFT calculations with $\left[\mathrm{Pd}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II at the B3LYP/DEF2SVP-D3 level of theory. The calculations reveal a short Pd-Pd bond ($2.58 \AA$) , supporting its diamagnetic properties. The HOMO resides primarily on the Pd-Pd centers, whereas the LUMO can be found over the phosphide and Pd-Pd centers (Fig. 3). The HOMO/LUMO provide potential clues about the underlying reactivity of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ toward other species such as electrophiles and nucleophiles.

We believe that the mechanism for formation of II is different to the Pd^{I} dimer stabilised by a bridging arene, as reported by Bedford. ${ }^{10 c}$ In the latter case a sequential reaction in methanol was used, followed by treatment with a noncoordinating anion leaves a suitably-disposed arene to stabilise the cationic Pd^{I} dimer species, though $\mathrm{Pd}-\pi$-arene interactions. In II acetate takes on that role.

Reactivity of II towards organohalides

The reaction of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1a (~ 10-fold excess) occurred at room temperature to afford a new

Fig. 3 The HOMO (left) and LUMO (right) for $\left[P_{2}\left(\mu-P P h_{2}\right)\left(\mu_{2}-\right.\right.$ $\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)_{2}$ III, computed by density functional theory (b3lyp/def2svp functional/basis set used for optimization, single point orbital and total energies; CPCM implicit solvent (tetrahydrofuran) and Gimme's D3 empirical correction used).

Pd species, which was identified as $\left[\mathrm{Pd}_{3}(\mathrm{Cl})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{OAc}$ $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{O A c}$ by ESI studies (+ve mode, detected by the $[\mathrm{M}-\mathrm{OAc}]^{+}$ ion) (Fig. 4). ${ }^{14}$ Real-time reaction monitoring by ${ }^{31} \mathrm{P}$ NMR spectroscopic analysis showed that $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{O A c}$ formed over several hours at the expense of II. The data for $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{O A c}$ closely matches the data obtained from the independent synthesis of $\left[\mathrm{Pd}_{3}(\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{Cl} \mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$, starting from $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ in aniline under $\mathrm{H}_{2(\mathrm{~g})}$ at $90^{\circ} \mathrm{C}$, for which an X-ray structure of a single crystal was determined (Fig. 5). ${ }^{15}$ We were unable to trace the ' $\mathrm{CH}_{2} \mathrm{Cl}$ ' fragment derived from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ' $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{1}$ ' and acetate anion required to balance the overall chemical reaction. However, balance of overall charge and mass allows one to postulate a putative 14 -electronic $\mathrm{Pd}^{\mathrm{II}}$ species Xa. Similarly, reaction of II with p-fluoro-iodobenzene $\mathbf{1 b}$ afforded $\left[\mathrm{Pd}_{3}(\mathrm{I})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ OAc $\mathbf{P d}_{3} \mathbf{I} \cdot \mathbf{O A c}$, as shown by ${ }^{31} \mathrm{P}$ NMR and ESI data (as the $[\mathrm{M}-\mathrm{OAc}]^{+}$ion), which degraded rapidly to form Pd black. As with the reaction of II with $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathbf{1 a}$, the ' p-F$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\prime}$ fragment derived from 1b, ${ }^{\prime} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{1}{ }^{\prime}$ and OAc anion could not be fully traced ($\mathrm{Pd}^{\mathrm{II}}$ species $\mathbf{X b}$ is postulated).

To reveal whether putative 14 -electron $\mathrm{Pd}^{\mathrm{II}}$ species were formed in the reactions of II with organohalides ($\mathrm{R}-\mathrm{X}$) we hypothesized that a reaction with 2 -bromopyridine 1 c would enable characterization by the stabilization conferred by N coordination from the pyridine ring, leading to formation of a stable 16 -electron dinuclear $\mathrm{Pd}^{\mathrm{II}}$ species (i.e. 4a-c, Fig. 4).

To verify findings concerning formation of $\left[\mathrm{Pd}_{3}(\mathrm{Br})(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{OAc}\left(\mathbf{P d}_{3} \mathrm{Br} \cdot \mathbf{O A c}\right)$ vide supra, a closely related sample was prepared by treatment of $\left[\mathrm{Pd}_{3}(\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ $\mathrm{Cl}\left(\mathrm{Pd}_{3} \mathbf{C l} \cdot \mathbf{C l}\right)$ with excess KBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, giving $\left[\mathrm{Pd}_{3}(\mathrm{Br})(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{Br}\left(\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}\right) .{ }^{16}$ The latter material possessed identical ${ }^{31} \mathrm{P}$ NMR and MS data to that seen for $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{O A c}$ from the reaction of II with 2-bromopyridine 1c. A reasonable single
crystal X-ray diffraction structure for $\mathbf{P d}_{\mathbf{3}} \mathbf{B r} \cdot \mathbf{B r}$ was further determined (Fig. 5). Whilst a detailed comparison between $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$ and $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ cannot be made (R_{1} factors for $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$ $=3.58 \%$ and $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}=7.04 \%$), there are striking structural differences that necessitate additional comment. The cyclic 6membered 'Pd-P-Pd-Cl-Pd-P' fragment is essentially flat in $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$, leaving the second chloride anion as noncoordinating. However, in $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ we see something quite different - the cyclic 6-membered 'Pd-P-Pd-Br-Pd-P' fragment is highly twisted, which is associated with an interacting second bromide anion.

It is tempting to draw an analogy here to a bromonium ion interacting with a bromide anion (i.e. reactions of alkenes with bromide proceeding via bromonium ion intermediates). The structural differences between $\mathbf{P d}_{3} \mathbf{C l} \cdot \mathbf{C l}$ and $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ suggest that they could be distinctly different in how they operate in catalysis.

The relevance of our findings concerning reaction of II with organohalides requires contextualisation with the results recently reported by Schoenebeck and co-workers. ${ }^{17}$ It has been shown that $\left[\operatorname{Pd}(\mu-\mathrm{I}) \mathrm{P}(t-\mathrm{Bu})_{3}\right]_{2}$ reacts with PHPh_{2} (slight excess relative to the Pd^{I} dimer) in toluene at room temperature to give a Pd_{3} cluster containing three bridging phosphide ligands (Fig. 6). Subsequent reaction with an aryl halide then delivers a Pd_{3}-type cluster containing a bridging iodide ligand, similar to the $\mathbf{P d}_{3} \mathbf{X} \cdot \mathbf{X}$ clusters vide supra. The pathways to these Pd_{3} clusters are not the same. Complex II reacts directly with organohalides to give $\mathbf{P d}_{3} \mathbf{X} \cdot \mathbf{X}$ clusters (where $\mathbf{X}=\mathrm{Cl}, \mathrm{Br}$ or I), i.e. additional phosphine is not necessary at this point. Indeed, if additional PPh_{3} (2 equiv.) is reacted with II (1 equiv.) in THF at room temperature we see the generation of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{n}$ species (where $n=3$, this species was detected by LIFDI-MS, see ESI \dagger). This finding is in-keeping with what was observed when $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ was reacted with nine equivalents of PPh_{3} (i.e. $\mathrm{Pd} /$ PPh_{3} ratio of $1: 3$, Fig. 2). We expect that Pd^{0} complexes are generated from disproportionation of the Pd^{I} dinuclear complex II, upon addition of PR_{3}, akin to the observations reported by Schoenebeck and Colacot. ${ }^{10 b}$

Importance of our findings in an exemplar SMCC reaction

To better understand the importance of the ${ }^{\prime} \mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\prime} / n \mathrm{PPh}_{3}$ ratio in catalysis, the cross-coupling of 2-bromopyridine 1 c with p-fluorophenylboronic acid 2 to give 2-arylpyridine 3 was examined, ${ }^{6 b}$ using $1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NOH}$ as the base, in a THF/water mixture ($1: 1, \mathrm{v} / \mathrm{v}$) at $40{ }^{\circ} \mathrm{C}$. We carefully selected 1 M n $\mathrm{Bu}_{4} \mathrm{NOH}$ as the base, drawing on the recent findings concerning the importance of both the hydroxide anion and cation-type in SMCCs. ${ }^{18}$ Also pertinent to mention is that our SMCC reaction is homogeneous, i.e. not biphasic, simplifying the discussion concerning which phase the Pd catalyst and organoboron species reside in. Furthermore, operationally NMR spectroscopic analysis in operando was made feasible by use of aqueous $n-\mathrm{Bu}_{4} \mathrm{NOH}$ in THF.

SMCC reactions of $\mathbf{1 c}+2 \rightarrow 3$ were monitored in operando by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis, allowing pre-stirred mixtures of ${ }^{\prime} \mathrm{Pd}_{3}(\mathrm{OAc})_{6} / n \mathrm{PPh}_{3}\left(n=6\right.$ and 12 , i.e. $\mathrm{Pd} / \mathrm{PPh}_{3}=1: 2$ or $1: 4$

Fig. 4 Reactions of dinuclear Pdl complex II with organohalides ($1 \mathrm{a}-\mathrm{c}$), leading to formation of Pd_{3} clusters $\mathrm{Pd}_{3} X \cdot O A c$. The X anions in these clusters are likely acetate (mass balance is formally correct using acetate for all Pd species formed), although mixtures of different anions cannot be ruled out for species generated in situ. The MS ions are all observed by ESI (+ve mode) as molecular cations, the data for which is presented (measured - in blue; simulated - in red). The ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectrum for species generated from the reaction of 2-bromopyridine 1c with II illustrates the formation of $\mathrm{Pd}_{3} \mathrm{Br} \cdot \mathrm{OAc}$ and species $4 \mathrm{a}-\mathrm{c}$ (note a cut//in the ${ }^{31} \mathrm{P}$ NMR spectrum is made between 40 and 190 ppm, due to the wide spectral range, for ease of viewing - full ${ }^{31}$ P NMR spectra are shown in the ESI \dagger).
respectively) to be compared in THF against a reaction mediated by $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II. The kinetic profiles for the appearance of $\mathbf{3}$, with concomitant disappearance of $\mathbf{1 c}$
(pseudo-zero order in 1c), are shown in Fig. 6. The kinetic profile for the reaction mediated by $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 6 \mathrm{PPh}_{3}(1: 2, \mathrm{Pd} /$ PPh_{3}) indicates that the reaction is efficient at $40^{\circ} \mathrm{C}\{$ Fig. 7(A) $\}-$

Fig. 5 The single crystal X-ray diffraction structures for $\left[\mathrm{Pd}_{3}(-\right.$ $\left.\mathrm{X})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}\left(\right.$ top, $\mathrm{X}=\mathrm{Cl}, \mathrm{Pd}_{3} \mathrm{Cl} \cdot \mathrm{Cl}$; bottom, $\left.\mathrm{X}=\mathrm{Br}, \mathrm{Pd} 3 \mathrm{Br} \cdot \mathrm{Br}\right) ; \mathrm{H}-$ atoms and solvent of crystallization are not shown and thermal ellipsoids are set at 50% probability. For $\mathrm{Pd}_{3} \mathrm{Cl} \cdot \mathrm{Cl}$ the non-coordinating chloride anion is not shown. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for: $\mathrm{Pd}_{3} \mathrm{Cl} \cdot \mathrm{Cl} \mathrm{Cl} 1-\mathrm{Pd} 1=2.3828(8) ; \mathrm{Cl} 1-\mathrm{Pd} 3=2.4002(8) ; \mathrm{Pd} 1-\mathrm{Pd} 2=$ 2.9138(3); Pd1-Pd3 = 2.8882(3); Pd2-Pd3 = 2.9127(3); Pd1-Cl1-Pd3 $=74.29(2) ;$ Pd1-P2-Pd2 = 81.38(3); Pd3-P4-Pd2 = 81.45(3); Cl1-Pd1-Pd2 = 113.303(19); Cl1-Pd1-Pd3 = 53.130(18); Pd3-Pd1-Pd2 = 60.265(8). $\mathrm{Pd}_{3} \mathrm{Br} \cdot \mathrm{Br} \mathrm{Pd} 1-\mathrm{Pd} 2=2.8355(10) ; \mathrm{Pd} 2-\mathrm{Br} 1=2.9423(13)$; $\mathrm{Pd} 2-\mathrm{Br} 2=2.5698(13) ; \mathrm{Pd} 3-\mathrm{Br} 1=2.5490(13) ; \mathrm{Pd} 1-\mathrm{Pd} 3=2.8808(10)$; Pd2-Pd3 = 2.8240(10); Pd2-Pd1-Pd3 = 59.21(2), Pd3-Pd2-Pd1 = 61.20(2), Pd2-Pd3-Pd1 = 59.60(2); Pd3-Br1-Pd2 = 61.40(3); Br2-Pd2-Pd1 = 101.20(4); Br2-Pd2-Pd3 = 76.91(3); Br2-Pd2-Br1 = 96.67(4).
there is an exotherm during initial catalyst turnover (ca. 4 turnovers) which is associated with full dissolution of aqueous $1 \mathrm{M} n-\mathrm{Bu}_{4} \mathrm{NOH}$ (into THF - overall concentration equals $0.5 \mathrm{M} n$ $\left.\mathrm{Bu}_{4} \mathrm{NOH}\right)$. The same reaction mediated by II showed a similar kinetic curve $\{$ Fig. 7(B) $\}$, confirming the catalytic competency of this key species isolated earlier. Furthermore, no Pd particles were visibly seen to form during catalysis (the solution appearing completely homogeneous).

Altering the $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 12 \mathrm{PPh}_{3}\left(1: 4, \mathrm{Pd} / \mathrm{PPh}_{3}\right)$ led to a poor catalyst system for reaction $1 \mathrm{c}+2 \rightarrow 3$ at $40^{\circ} \mathrm{C}\{$ Fig. 7(C), curves illustrated by diamonds\}. This catalyst system exhibited higher catalyst efficacy at $70{ }^{\circ} \mathrm{C}$. Thus, additional phosphine slows down catalysis in the reaction of $\mathbf{1 c}+2 \rightarrow 3$, at $40^{\circ} \mathrm{C}$, which is

Fig. 6 Schoenebeck's findings ${ }^{17}$ on the formation of a Pd_{3}-type cluster from an electron-rich Pd^{\prime} dimer species.
an outcome consistent with our previous studies on SMCCs involving 1c. ${ }^{6 b}$

With the finding that $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II reacts with 2-bromopyridine 1c to give $\left[\mathrm{Pd}_{3}(\mathrm{Br})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{OAc}$ $\left(\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{O A c}\right)$ and $\left[\mathrm{Pd}\left(\mathrm{X} / \mathrm{X}^{\prime}\right)\left(\mathrm{N}, \mathrm{C}^{2}-\mathrm{pyr}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathbf{4 a - c})$, additional catalytic experiments were devised to test the importance of such species in the SMCC reaction $\mathbf{1 c}+2 \rightarrow 3$ (Fig. 8). Two control experiments, with different Pd catalysts, were conducted: (a) to establish the catalytic competency of $\mathbf{P d} \mathbf{3} \mathbf{B r} \cdot \mathbf{B r} ;{ }^{19}(\mathrm{~b})$ to assess the catalytic activity of $\left[\mathrm{Pd}(\mathrm{Br})\left(\mathrm{N}, \mathrm{C}^{2}-\mathrm{pyr}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$ 4a, under comparable reaction conditions. The reaction of $\mathbf{1 c}+2 \rightarrow$

Fig. 7 Kinetic profiles for the SMCC reaction of $1 \mathrm{c}+2$ to give 3 , mediated by $\mathrm{Pd}(\mathrm{OAc})_{2} / n \mathrm{PPh}_{3}\left(n=2\right.$ and 4) and dinuclear Pd^{\prime} complex II. (A) Reaction mediated by $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 6 \mathrm{PPh}_{3}$; (B) reaction mediated by dinuclear Pd^{\prime} complex II; (C) reaction mediated by $\mathrm{Pd}_{3}(\mathrm{OAc})_{6} / 12 \mathrm{PPh}_{3}$. Reactions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis in a J . Young's NMR tube (spinning). The effective $\mathrm{Pd}: \mathrm{PPh}_{3}$ ratio takes into account that one equivalent of PPh_{3} is required to reduce $\mathrm{Pd}^{\prime \prime}$ to Pd^{0}, with concomitant formation of one equivalent of $\mathrm{O}=\mathrm{PPh}_{3}$. For complex II, two PPh_{3} ligands are present overall, i.e. one per Pd ; in this respect the ' PPh_{2} ' group was treated as an anionic ligand.

Fig. 8 Overlay of kinetic curves for the SMCC reaction of 1c $+2 \rightarrow 3$ mediated by $\mathrm{Pd}_{3} \mathrm{Br} \cdot \mathrm{Br}(1 \mathrm{~mol} \%)$, 4 a ($0.5 \mathrm{~mol} \%$) and II $(1.5 \mathrm{~mol} \%$, generating $\mathrm{Pd}_{3} \mathrm{Br} \cdot \mathrm{OAc}, 4 \mathrm{a}-\mathrm{c}$ in situ); other reaction conditions identical to Fig. 6. Reactions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis in a J. Young's NMR tube (spinning).

3, mediated by $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ ($1 \mathrm{~mol} \%$, giving $1 \mathrm{~mol} \%$ active Pd - the cluster being treated as a well-defined catalyst species ${ }^{11}$) gave 3 with full conversion after $c a .7 .5 \mathrm{~h}$ at $40{ }^{\circ} \mathrm{C}$ (Fig. 8). The same reaction mediated by an authentic sample of $\mathbf{4 a}$ ($0.5 \mathrm{~mol} \%$ giving $1 \mathrm{~mol} \%$ active $\mathrm{Pd}^{6 b}$) gave 3 with 32% conversion after $c a$. 7.5 h . These control experiments establish that $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ is a significantly more active catalysis species than $\mathbf{4 a}$. Thus, when generated in situ, we expect $\mathbf{P d}_{3} \mathbf{B r}^{+}$species to play a more dominant role in terms of the overall catalyst efficacy vide infra.

With the kinetic profiles for the SMCC reaction of $\mathbf{1 c}+2 \rightarrow 3$, mediated by either $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ or $\mathbf{4 a}$, established, we could then qualitatively compare the catalytic activity mediated by $\mathbf{P d}_{3^{-}}$ $\mathbf{B r} \cdot \mathbf{O A c}$ and $\left[\mathrm{Pd}\left(\mathrm{X} / \mathrm{X}^{\prime}\right)\left(\mathrm{N}, \mathrm{C}^{2}-\mathrm{pyr}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}(\mathbf{4 a - c})$ species, formed in situ from the reaction of II with 1c. ${ }^{20}$ The observed catalyst activity sits between the high reactivity of $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ and comparatively lower activity of $\left[\mathrm{Pd}(\mathrm{Br})\left(\mathrm{N}, \mathrm{C}^{2}-\mathrm{pyr}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2} \mathbf{4 a}$.

Conclusion

In conclusion we have demonstrated that reaction of $\mathrm{Pd}_{3}(\mathrm{OAc})_{6}$ with 6 equivalents of PPh_{3}, that is in a $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio of $1: 2$, gives an intriguing dinuclear Pd^{I} complex, $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\right.\right.$ $\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)_{2}$], II. Species II is relatively unstable, but characterizable, and we propose it is this species that Amatore and Jutand detected in their early studies, which resisted characterization at that time. ${ }^{4 a}$ An important discovery was the finding that II reacts relatively cleanly with the organohalides, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{1 a})$, p fluoroiodobenzene ($\mathbf{1 b}$) and 2-bromopyridine ($\mathbf{1 c}$) to afford Pd_{3} cluster complexes containing bridging halide ligands, i.e. $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$, carrying an overall $4 / 3$ oxidation state. Use of 2-bromopyridine 1c was critical in understanding that a putative 14-electron mononuclear ' $\mathrm{Pd}{ }^{\mathrm{II}}(\mathrm{R})(\mathrm{X})\left(\mathrm{PPh}_{3}\right)^{\prime}$ is released on forming $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$ clusters from II. Altering the $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio from $1: 2$ to $1: 4$ forms $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{3}$ quantitatively, generally in-keeping with Amatore's and Jutand's original studies. ${ }^{4}$ It has been established further that the $\mathrm{Pd} /$ PPh_{3} ratios are important in an exemplar SMCC reaction, $\mathrm{Pd} /$ PPh_{3} ratio $\mathrm{Pd} / \mathrm{PPh}_{3}$ reaction, $\mathbf{1 c}+2 \rightarrow 3$. Near identical catalytic efficacy was seen for a reaction mediated by either $1 \mathrm{Pd}(\mathrm{OAc})_{2} /$
$2 \mathrm{PPh}_{3}$ or II, whereas the $1 \mathrm{Pd}(\mathrm{OAc})_{2} / 4 \mathrm{PPh}_{3}$ catalyst system was significantly less effective, requiring a higher temperature (70 rather than $40^{\circ} \mathrm{C}$) for reasonable conversion to product 3 to be observed.

An important take home message from our study is that where $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{2}-\mathrm{OAc}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ II can form, i.e. when a ratio of $\mathrm{Pd} / \mathrm{PPh}_{3}$ ratio is $1: 2$ employed in catalysis, reactions with organohalides (common starting materials for cross-coupling catalysis) afford catalytically competent Pd_{3} cluster complexes in situ, in addition to other known $\mathrm{Pd}^{\mathrm{II}}$ species (i.e. oxidative addition products). If the relative amount of PPh_{3} ligand to Pd is low, then Pd clustering tends to occur, to afford either particles (where $\mathrm{Pd} / \mathrm{PPh}_{3}=1: 1$), or 'ligated clusters', whereas welldefined dimers and trimers are formed where $\mathrm{Pd} / \mathrm{PPh}_{3}=1: 2$ (the major finding of this study) and when there is enough PPh_{3} ligand around, mono-nuclear $\mathrm{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}$, i.e. $n>2$, can be stabilised, aligning with a general understanding of ligated Pd^{0} species in text book mechanisms.

Understanding how $\left[\mathrm{Pd}_{3}(\mathrm{X})\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{X}$ clusters activate aryl/heteroaryl halides and organometallic coupling partners, e.g. aryl boronic acids, ${ }^{11}$ will no doubt be important goingforwards, which will enable their catalytic properties to be fully delineated and exploited in chemical synthesis. To emphasize this point further, similar Pd_{3}-type clusters have been studied by Maestri and Malacria in catalysis, particularly hydrogenation. ${ }^{21}$ Our results, taken together with contributions made by others, show that Pd_{3}-clusters are ripe for exploitation in applied catalysis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The project was funded by Bayer AG (PhD studentship to NWJS). We thank the University of York for supporting NMR spectrometers \& X-ray equipment, and EPSRC for NMR upgrades (EP/K039660/1). We are grateful to Professor Robin N. Perutz and Dr Jason M. Lynam for many useful discussions regarding this research.

Notes and references

1 (a) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4442-4489; (b) C. Torborg and M. Beller, Adv. Synth. Catal., 2009, 351, 3027-3043; (c) W. A. Carole and T. J. Colacot, Chem.-Eur. J., 2016, 22, 7686-7695; (d) I. J. S. Fairlamb, Angew. Chem., Int. Ed., 2015, 54, 1041510427; (e) P. Devendar, R.-Y. Qu, W.-M. Kang, B. He and G.-F. Yang, J. Agric. Food Chem., 2018, 66, 8914-8934.

2 (a) T. A. Stromnova, V. S. Sergienko, A. V. Kisin, M. A. PoraiKoshits and I. I. Moiseev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 821-824; (b) V. S. Sergienko and M. A. PoraiKoshits, J. Struct. Chem., 1988, 28, 548-552.
3 J. A. Labinger, Organometallics, 2015, 34, 4784-4795.

4 In the original publication it was shown that trans$\operatorname{Pd}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ forms an unstable $\operatorname{Pd}(0)$ species - excess PPh_{3} was required to form oxidative addition products of the type trans $-\mathrm{Pd}(\mathrm{I}) \mathrm{Ph}\left(\mathrm{PPh}_{3}\right)_{2}$ by reaction of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ with PhI, see: (a) C. Amatore, A. Jutand and M. A. M'Barki, Organometallics, 1992, 11, 3009-3013. The subsequent study employed higher $\mathrm{PPh}_{3} / \mathrm{Pd}(\mathrm{OAc})_{2}$ ratios, see: (b) C. Amatore, E. Carre, A. Jutand and M. A. M'Barki, Organometallics, 1995, 14, 1818-1826. For the reactions of acetate anion with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, see: (c) C. Amatore, E. Carre, A. Jutand, M. A. M'Barki and G. Meyer, Organometallics, 1995, 14, 5605-5614. The global findings by Amatore and Jutand led to the proposal of anionic Pd intermediates playing a critical role in cross-coupling catalysis, see: (d) C. Amatore and A. Jutand, Acc. Chem. Res., 2000, 33, 314-321.

5 The reaction of $\mathrm{Pd}(\mathrm{OAc})_{2}$ with $2 \mathrm{PPh}_{3}$ was reported, leading to the proposal that a $\operatorname{Pd}^{0}\left(\mathrm{PPh}_{3}\right)_{n}$ species was formed, see: Z. Csákai, R. Skoda-Földes and L. Kollár, Inorg. Chim. Acta, 1999, 286, 93-97.
6 The Pd / L ratio is important for effective cross-coupling catalysis, see: (a) U. Christmann and R. Vilar, Angew. Chem., Int. Ed., 2005, 44, 366-374. The effect of the Pd/ PPh_{3} was also previously examined by us, see: (b) SuzukiMiyaura cross-couplings, see: A. Beeby, S. Bettington, I. J. S. Fairlamb, A. E. Goeta, A. R. Kapdi, E. H. Niemela and A. L. A. Thompson, New J. Chem., 2004, 28, 600-605. A ratio of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PAr}_{3}$ of $1: 2$ was found optimal for SMCC reactions involving purines, see: (c) T. E. Storr, J. A. Strohmeier, C. G. Baumann and I. J. S. Fairlamb, Chem. Coттип., 2010, 46, 6470-6472.
7 D. Perera, J. W. Tucker, S. Brahmbhatt, C. J. Helal, A. Chong, W. Farrell, P. Richardson and N. W. Sachs, Science, 2018, 359, 429-434.
8 J. M. Granda, L. Donina, V. Dragone, D.-L. Long and L. Cronin, Nature, 2018, 559, 377-381.

9 (a) S. V. Ley, D. E. Fitzpatrick, R. J. Ingham and R. M. Myers, Angew. Chem., Int. Ed., 2015, 54, 3449-3464; (b) M. Trobe and M. D. Burke, Angew. Chem., Int. Ed., 2018, 57, 4192-4214.

10 (a) D. P. Hruszkewycz, D. Balcells, L. M. Guard, N. Hazari and M. Tilset, J. Am. Chem. Soc., 2014, 136, 7300-7316; (b) C. C. C. Johansson Seechurn, T. Sperger, T. G. Scrase, F. Schoenebeck and T. J. Colacot, J. Am. Chem. Soc., 2017, 139, 5194-5200; (c) M. Montgomery, H. M. O'Brien, C. Méndez-Gálvez, C. R. Bromfield, J. P. M. Roberts, A. M. Winnicka, A. Horner, D. Elorriaga, H. A. Sparkes and R. B. Bedford, Dalton Trans., 2019, 48, 3539-3542; (d) S. Wagschal, L. A. Perego, A. Simon, A. Franco-Espejo, C. Tocqueville, J. Albaneze-Walker, A. Jutand and L. Grimaud, Chem.-Eur. J., 2019, 25, 6980-6987.

11 The catalytic competency of the Pd_{3} cluster has been validated in Suzuki-Miyaura cross-couplings, see: F. Fu, J. Xiang, H. Cheng, L. Cheng, H. Chong, S. Wang, P. Li, S. Wei, M. Zhu and Y. Li, ACS Catal., 2017, 7, 1860-1867.

12 (a) D. P. Hruszkewycz, J. Wu, N. Hazari and C. D. Incarvito, J. Am. Chem. Soc., 2011, 133, 3280-3283; (b) P. Leoni, E. Vichi, S. Lencioni, M. Pasquali, E. Chiarentin and A. Albinati, Organometallics, 2000, 19, 3062-3068.
13 The reaction of $\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$ in MeOH gives complex VIII in 41% yield, see. M. B. Hursthouse, O. D. Sloan, P. Thornton and N. P. C. Walker, Polyhedron, 1986, 5, 1475-1478.
14 In $\left[\mathrm{Pd}_{3}(\mathrm{Cl})\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right] \mathrm{OAc}$ we specify the noncoordinating anion as acetate, which serves to balance the full chemical reaction equation. As the reaction is run with an excess of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, exchange of acetate for chloride could occur under the reaction conditions used.
15 A. S. Berenblyum, A. P. Aseeva, L. I. Lakhman and I. I. Moiseev, J. Organomet. Chem., 1982, 234, 219-235.

16 K. R. Dixon and A. D. Rattray, Inorg. Chem., 1978, 17, 10991103.

17 C. J. Diehl, T. Scattolin, U. Englert and F. Schoenebeck, Angew. Chem., Int. Ed., 2019, 58, 211-215.
18 (a) K. Matos and J. A. Soderquist, J. Org. Chem., 1998, 63, 461-470; (b) A. F. Schmidt, A. A. Kurokhtina and E. V. Larina, Russ. J. Gen. Chem., 2011, 81, 1573-1574; (c) B. P. Carrow and J. F. Hartwig, J. Am. Chem. Soc., 2011, 133, 2116-2119; (d) C. Amatore, A. Jutand and G. Le Duc, Chem.-Eur. J., 2011, 17, 2492-2503; (e) C. Amatore, A. Jutand and G. Le Duc, Chem.-Eur. J., 2012, 18, 66166625; (f) A. J. J. Lennox and G. C. Lloyd-Jones, Angew. Chem., Int. Ed., 2013, 52, 7362-7370; (g) A. A. Thomas, H. Wang, A. F. Zahrt and S. E. Denmark, J. Am. Chem. Soc., 2017, 139, 3805-3821.
$19 \mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{B r}$ was selected for control experiments as we hypothesized that excess bromide would be generated the SMCC reaction, i.e. bromide would be liberated during each catalyst turnover.
20 A catalyst loading approximation ($1.5 \mathrm{~mol} \%$ of II) was made for comparison of catalytic activity for the in situ generation of $\mathbf{P d}_{3} \mathbf{B r} \cdot \mathbf{O A c}$ and $\mathbf{4 a}$, which takes into consideration that degradation of $\mathbf{I I}$ is expected under the real working reaction conditions.
21 (a) S. Blanchard, L. Fensterbank, G. Gontard, E. Lacte, G. Maestri and M. Malacria, Angew. Chem., Int. Ed., 2014, 53, 1987-1991; (b) A. Monfredini, V. Santacroce, P.-A. Deyris, R. Maggi, F. Bigi, G. Maestri and M. Malacria, Dalton Trans., 2016, 45, 15786-15790; (c) A. Monfredini, V. Santacroce, L. Marchio, R. Maggi, F. Bigi, G. Maestri and M. Malacria, ACS Sustainable Chem. Eng., 2017, 5, 8205-8212.

[^0]: ${ }^{a}$ Department of Chemistry, University of York, Heslington, York, North Yorkshire, YO10 5DD, UK. E-mail: ian.fairlamb@york.ac.uk
 ${ }^{\text {b }}$ Bayer Aktiengesellschaft, Crop Science Division, Industriepark Höchst G836, 65926 Frankfurt am Main, Germany
 ${ }^{\text {cBayer AG, Crop Science Division, Building A729, 415, } 41539 \text { Dormagen, Germany }}$ \dagger Electronic supplementary information (ESI) available: Full experimental details and characterization data for all compounds is provided, including NMR spectra, X-ray diffraction data and computational data (as a PDF file). CCDC 1894927-1894931 and 1901195. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9sc01847f

