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The traditional diagnostic gold standard for inflammatory skin lesions of unclear etiology

is dermato-histopathology. As this approach requires an invasive skin biopsy, biopsy

processing and analysis by specialized histologists, it is a resource intensive approach

requiring trained healthcare professionals. In many health care settings access to

this diagnostic approach can be difficult and outside emergency cases will usually

take several weeks. This scenario leads to delayed or inappropriate treatment given

to patients. With dramatically increased sensitivity of a range of analysis systems

including mass spectrometry, high sensitivity, multiplex ELISA based systems and PCR

approaches we are now able to “measure” samples with unprecedented sensitivity and

accuracy. Other important developments include the long-termmonitoring of parameters

using microneedle approaches and the improvement in imaging systems such as

optical coherence tomography. In this review we will focus on recent achievements

regarding measurements from non-invasive sampling, in particular from plucked hair

and skin tape-strips which seem well suited for the diagnosis of lupus erythematosus

and psoriatic inflammation, respectively. While these approaches will not replace clinical

observation—they can contribute to improved subgroup diagnosis, stratified therapeutic

approaches and have great potential for providing molecular and mechanistic insight in

to inflammatory skin diseases.
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INTRODUCTION

Traditionally, the diagnosis of autoimmune and inflammatory skin diseases relies on
the visual assessment by experienced dermatologists as well as dermato-histopathology.
Descriptive diagnosis of skin biopsies is normally based on conventional histological
staining but may also include direct immunofluorescence for the detection of antibody
and complement deposits. Depending on the underlying disease, blood results in particular
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regarding circulating auto-antibodies directed against structural
epidermal components (pemphigus, pemphigoid) or anti-
nuclear antibodies can give certainty regarding the underlying
disease. However, as blood focused diagnostics can often be
negative for cutaneous diseasemanifesting, key informationmust
often be derived from analysis of skin tissue itself.

So why are changes or additions to the established diagnostic
approach for inflammatory skin disease required? There are a
number of reasons. Firstly, due to the non-systemic nature of
many skin diseases, reliable serum biomarkers may simply be
non-existent or unreliable. Secondly, the use of skin biopsies as
a diagnostic tool is an invasive procedure and not always readily
available in many health systems or local situations. Skin biopsies
require specialized, trained health care professionals, laboratory
and histology staff (dermatohistopathologists) and the time to
perform biopsies in addition to the wait for result reporting, can
in clinical reality often be weeks. Furthermore, as many primary
health care settings lack access to specialist dermatology care,
approaches suitable for general practitioners (GP) would be very
welcome to support diagnostic pathways.

Apart from costs, time and staff availability, an important
issue comes from the recognized need and ambition to move
forward in the field of stratified medicine (also referred to
as personalized medicine, precision medicine). This approach
aims to recognize sub-types of diseases outside the traditional
morphology based categories, allowing optimized treatment
choices and thus preventing the current “trial and error”
approach to identify which treatment actually works best for
which patient. For this to become a reality for a wide range
of patients, researchers, and clinicians need to start thinking
of alternatives to conventional approaches and embrace new
molecular analysis tools, parameters not traditionally included
in dermatology diagnosis, and easy, non-invasive approaches.
Ideally, these approaches would not require highly-trained
specialists to perform and analyse results, results would be
available within the first presentation of the patient (“point-of-
care” diagnostic) and would allow repeated diagnostic assessment
over time.

While confirming the diagnosis of cutaneous lupus
erythematosus (LE) can be challenging due to the wide
variety of possible lesion morphologies, the diagnosis of psoriasis
is usually directed by pathognomonic clinical presentation. So
why is there a need to additional approaches regarding psoriatic
inflammation? Diagnostic challenges occur for lesions which do
not fall into the typical plaque type psoriasis or display minimal
pathology; however, they are important to diagnose due to
the existence of co-morbidities such as psoriatic arthritis and
cardiovascular disease. Lesions in certain anatomical locations
such as palmoplantar, retro-auricular, outer ear canal and scalp
can also be challenging for both GP and trained dermatologists,
and in particular skin fold lesions can often be misdiagnosed as
fungal infection and treated without success with anti-fungals.

In this review we endeavor to give an overview of existing
non-invasive techniques and highlight major recent advances
demonstrating their potential as next generation diagnostics and
as powerful tools to provide cellular and molecular insights in to
inflammatory skin diseases.

IMAGING

Recent developments in imaging and imagining analysis
techniques have added to our ability to assess real time changes
in the skin. The most widely used imaging technique in
standard care dermatology for suspicious and/or pigmented
lesions is dermatoscopy. Dermatoscopy standards are developed
by the international dermatoscopy society (dermoscopy-ids.org)
and the approach has also been successfully used to support
diagnosis of inflammatory skin conditions [for review: (1–
3)]. Dermatoscopy needs training, although machine learning
based analysis tools are successfully being developed in
particular for cancerous lesions, and is usually performed in
dermatology settings.

While this review does not specifically focus on imaging
techniques, the following innovative approaches have to be
mentioned, although they do require significant financial
investments. A recent development, not yet introduced into
clinical settings is Raster Scanning Optoacoustic Mesoscopy
(RSOM) (4). This technique also termend photoacoustic
mesoscopy is based on ultra-broadband (10–180MHz) detection,
achieves tissue resolution of 4µm axially and 20µm laterally
and importantly can visualize vascular patterns in dermal skin
compartments. A number of studies have collected images
from human skin including eczema, psoriasis and nail fold
changes in scleroderma capillaries (4, 5). This imaging approach
can distinguish between intra- and subepidermal morphology
features typical for eczema or psoriasis lesions (5).

By contrast, optical coherence tomography (OCT), which can
deliver similar morphology information [detailed comparison
of OCT vs. RSOM is given in (4)], has been used in a
wide range of skin lesions, in particular in neoplastic ones
to assess invasiveness and depth of the tumor. OCT uses
light to capture sub-micrometer resolution and creates three-
dimensional images from upper skin layers. The method is based
on low-coherence interferometry employing near-infrared light.
The use of relatively long wavelength light allows it to penetrate
1–2mm into the tissue. This method generates detailed 3D data
on skin surface roughness, tissue density, and vascular network in
addition to non-invasive measurement of architectural features
such as epidermal thickness. This technology is already being
utilized as a biomarker for scleroderma and systemic sclerosis
(6–8), preclinical diagnosis of palmar hyperkeratosis (9) and to
evaluate wound re-epithelialization (10).

In psoriasis, OCT can detect all common psoriasis nail
changes including leukonychia/white spots, pitting/localized
surface irregularities, diffuse surface waving, onycholysis, and
subungual hyperkeratosis (11). Studies evaluating psoriatic
plaque vascular morphology are also beginning to surface,
although are currently limited by low cohort numbers (12, 13).

In cutaneous LE, OCT has been shown to correlate
with histological features of disease including hyperkeratosis,
epidermal atrophy, and edema (14). More recently available

higher resolution OCT has also been found to be of value for
the diagnosis of autoimmune blistering skin diseases. However,

to date—this technique is considered auxiliary to skin biopsies in

this disease group (15, 16) and larger trials are not available yet.
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Unfortunately, at present, costly hardware, expertise and time
required to analyzed skin lesions is likely to limit the use of OCT
to the research setting and specialist clinics.

Microcirculatory abnormalities are found in many
inflammatory skin diseases. High Resolution Laser Doppler
imaging (LDI) is a single-probe, non-invasive imaging method
that can quantify total local microcirculatory blood perfusion,
including capillaries, arterioles, venules, and shunting vessels.
Similarly to ultrasound, it is based on the Doppler effect. Briefly,
when low-level light is directed onto the skin, a fraction of this
light penetrates the skin and interacts with both the static tissue
and the moving red blood cells (RBCs). The light that is reflected
from this static tissue remains unchanged in wavelength. The
light that is scattered from the moving RBCs undergoes a change
in wavelength. This backscattered light is then collected by the
photodetector of LDI system to provide a signal or reading that
is proportional to the speed and density of the moving RBCs
(17). Alteration in peripheral blood flow (as measured by LDI)
has been shown to correlate with inflammation in skin psoriasis
(18). More recently, our group showed that in cutaneous LE, LDI
showed better correlation with histology than clinical assessment
using the local Cutaneous LE Disease Area and Severity Index
(CLASI) or a physician’s visual analog scale (19).

FUNCTIONAL SKIN TESTING

Trans-Epidermal Water Loss
Trans-epidermal water loss (TEWL) is a validated measure of
skin epidermal permeability barrier function, measured with
a non-invasive Tewameter R© probe (20, 21). Evaporation of
water from the skin occurs as part of normal skin metabolism.
As barrier function is disrupted, water loss increases. TEWL
measures the density gradient of the water evaporation from
the skin, expressed as evaporation rate (g/h/m2). In addition to
resting TEWL, epidermal function can be assessed by measuring
TEWL recovery over time following barrier disruption by
repeated tape stripping (20).

Although atopic eczema is best recognized for its barrier
defects clinical and molecular evidence suggest that barrier
defects play a role in psoriatic disease pathogenesis (22–25).
Further, experimental skin barrier disruption leads to several
psoriasis-like features including epidermal hyperproliferation,
production of pro-inflammatory cytokines, increased
inflammatory infiltrate, elevated vascular endothelial growth
factor and consequently, increased vascularization (26–29).
Conversely, glucocorticoid/corticosteroid therapy reverses many
of these features to restore normal barrier function (23, 30).
Glucocorticoids also help to maintain the barrier function by
directly promoting keratinocyte differentiation pathways (31, 32)
which result in a paradoxical improvement in barrier function
(33). Interestingly, a recent transcriptomic study found a >90%
deficit in expression of the glucocorticoid-activating enzyme
11β-hydroxysteroid dehydrogenase type 1 in psoriatic plaques
(34) which has also recently been shown to modulate epidermal
barrier integrity (35).

Several small clinical studies have employed TEWL as a
measure of treatment efficacy in psoriasis (36–40). However, the

use of TEWL as a diagnostic tool has not been studied in detail
due to a lack of specificity, as other skin conditions such as
eczema also present with impaired epidermal barrier function
(41, 42). A recent study by Ye et al. used TEWL to demonstrate
differences in barrier recovery between stable and progressive
forms of psoriasis in uninvolved skin sites (43). Further studies
in larger cohorts are required to fully assess the auxiliary value
of TEWL as a non-invasive diagnostic or disease activity measure
in psoriasis.

TEWL is mainly examined in diseases with epidermal
involvement. Thus, LE which shows inflammatory activity
around the basement membrane area may not show significant
changes in TEWL but this is currently unexplored.

Skin Elasticity
Skin elasticity is typically measured by a non-invasive
Cutometer R© probe (or similar method) which utilizes negative
pressure to aspirate a small section of skin. The distance the skin
travels is affected by its elastic properties and this is recorded as
a series of parameters (44). This has been utilized to measure
elasticity in skin disorders characterized by stiffness such as
scleroderma and systemic sclerosis (45–47).

A limited number of studies have assessed changes in skin
elasticity in psoriasis. Differences in total elastic and plastic
deformation were found between psoriasis, dermatitis, and
lichen planus patients and within patient groups compared to
uninvolved sites, with psoriasis exhibiting the greatest superficial
stiffness (48). This could be partly due to psoriasis exhibiting
a relatively greater epidermal hyperproliferation and lower
hydration than dermatitis and lichen planus (48, 49).

As with TEWL, changes in elasticity were also detected
between uninvolved sites in patients with psoriasis and skin from
healthy volunteers (50).

Skin elasticity in LE has not been studied in detail but reports
indicate differential elastic fiber staining compared to lichen
planopilaris which is challenging to distinguish clinically in the
later stages (51), suggesting this non-invasive method merits
further investigation in LE.

However, the lack of molecular information obtained through
this method and variability caused by factors such as age, sun-
exposure, anatomical location, and ethnicity are likely to prevent
this method being widely used for personalized diagnostics.

EPIDERMAL SAMPLING

Non-invasive Sampling of Skin Epithelium
via Tape Stripping
Non-invasive sampling of skin epithelium via tape stripping
uses adhesive tapes to “strip” the superficial layers of the skin,
peeling of layers tape by tape. This method has been widely
used over the last decade in research settings; however with
increased sensitivity of detection methods and the given ease of
sampling—this approach becomes more interesting for clinical
diagnostic pathways.

Different types of tapes are available, the most widely
used being the acrylic-based (D-Squame discs−1.4 cm diameter,
CuDerm, Dallas, TX, USA or 2.2 cm diameter, Monaderm,
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Monaco), and synthetic rubber-based tapes (Adhesive Research,
Glen Rock, PA) but other tapes, such as Barrier (Mölnlycke,
Allerod, Denmark) and cellophane tapes (Nichiban Co, Tokyo,
Japan) are also utilized. Tapes are placed on the skin with
gentle pressure for 2–10 s, and then removed with a quick
movement. D-squame pressure applicator (Monaderm) can be
used to standardize pressure (225 g/cm2). It has been shown that
due to the stronger adhesion of corneocytes toward the stratum
granulosum, the protein content of tapes decreases in parallel
with the increase of tape number/depth of penetration (52, 53).
Studies examining the depth of skin removed by tape stripping
techniques indicate that in case of healthy skin, depending on
anatomical location, at least 30 consecutive tapes are needed
to remove the stratum corneum (SC) via D-Squame tapes (54,
55). We have confirmed these results by applying 50 sequential
half cut D-Squame discs to a healthy skin area. Simultaneous
visualization of the taped and non-taped area was performed
with OCT imaging, examining the skin surface roughness and
epidermal thickness (Figure 1).

Sample collection can be followed by mRNA or protein
isolation from pooled tapes. The composition of buffers for
protein extraction differ, however most contain Triton-X100 and
protease inhibitor cocktails. Sonication steps can be applied in
order to improve the yield of extracted protein.

Skin-taping requires no special preparation of the skin and
no anesthetic. In the authors view the largest advantage of tape
stripping is that it allows for direct sampling of the pathologically
involved skin (lesional skin). In contrast to biopsies, which
are not a preferred option in pediatric settings and at certain
anatomical sites due to their invasiveness and potential for scar
formation, tape stripping can be repeatedly performed at any
anatomical site, independent of age and location (56–58).

A potential disadvantage of tape stripping lies in the difficulty
of sampling standardization. Quantity and quality of sampled
skin may differ not only between individuals, but also intra-
individually due to differences in epidermal thickness, skin
hydration and intercellular adherence (52, 59–62). A study on
RNA yield when sampling healthy skin at different locations
demonstrated considerable inter- as well as intra-individual
variations (mean RNA mass = 11 ng ± 3.6 from the forearm,
and = 91 ng ± 31 from the back, when using 12 consecutive
tapes). The authors indicated that rather than corneocytes,
other associated cells (specialized keratinocytes, components of
adnexal structures) are the main source of RNA recovered by
tapes. In addition, a variable distribution in the normal baseline
mRNA expression of pro-inflammatory IL-8 and TNFα was
demonstrated, which could contribute to differences in disease
specific anatomical predilection sites. The study highlights that
despite the distinct epidermal characteristics at different sites,
mRNA expression can be internally normalized to combined
housekeeping gene expression levels, as they are relatively
uniformly distributed (63).

Healthy skin sampling is limited to the stratum corneum (SC),
however this is often not the case in pathologically involved
skin, where inflammation influences not only the morphology
[hyperproliferative epidermis with thickened SC in psoriasis
vs. reduced SC thickness with increased corneocyte cohesion

in acute eczema compared to healthy and non-lesional skin
(64)], but also the cellular composition within the epidermis,
barrier defects at the level of tight junctions and the basement
membrane, thus allowing “leakiness” of serum components into
the epidermal compartment. Therefore, the authors believe,
that the term “stratum corneum sampling/harvesting” should
be avoided when referring to tape stripping in diseased skin,
as one cannot be certain which layers of the epidermis
are collected. Moreover, additional variations can result from
different sampling techniques (e.g., applied pressure, duration,
the dynamic of tape removal, precise reapplication at the same
site) (61, 65, 66).

Studies focusing on transcriptomic profiling of lesional
and non-lesional skin material obtained by non-invasive tape
stripping are limited in number. In an early study Morhenn et al.
used 20 subsequent acrylic based tapes describing distinct RNA
cytokine profiles in allergic and irritant contact dermatitis using
ribonuclease protection assay (67). Follow up work by Wong
et al. demonstrated that the application of four rubber based
tapes is sufficient to obtain adequate amount of RNA, suitable
for RT-PCR and amplification for microarray analysis. However,
the yield of RNA from healthy skin is low compared to inflamed
skin (68). To date, only one study focusing on the “taped” mRNA
profile in psoriasis showed an upregulation of TNFα, IFNγ, KRT-
16, CD2, IL-23A, IL-12B, and VEGF in psoriatic lesions (69).
Interestingly, this study found stronger expression of five of
these mRNA levels in tape stripping material compared to punch
biopsy material from adjacent sites. This highlights that although
tape-striping does not sample the deeper layers of the skin, it may
have an advantage in detecting epithelial diagnostic biomarkers
in diseases with epidermal involvement.

However, overall there are noteworthy limitations for the
use of skin tape-strip sampling for transcriptomic analysis as
the quantity and quality of RNA obtained is suboptimal. This
is due to the skin surface being particularly rich in RNAases
and due to the fact that RNA degradation is a natural process
of skin differentiation as cells mature into corneocytes. This
makes the method prone to false negative results. A recent study
by Dyjack et al. (70) reported an ∼40% failure rate in RNA
isolation from non-lesional atopic dermatitis (AD) tape samples,
compared to the 86% isolation success rate from lesional AD skin.
Of interest, transcriptome (RNAseq)—proteome (LC-MS/MS)
correlation based on full thickness skin biopsy material from
lesional and non-lesional psoriatic skin demonstrated an only
modest correlation (71). A clear advantage of focusing on protein
detection in diagnostic approaches is their stability and the ease
to measure their concentration in a timely manner.

Recent evidence suggests that protein sampling of the
epidermis via tape stripping is a surprisingly efficient method
to detect and study a range of mediators, from structural
proteins to antimicrobial peptides, chemokines, and cytokines
contributing to disease pathomechanisms, using traditional
ELISA, western blot and Multiplex bead-based technologies
where available. Furthermore, studies analyzing protein extracts
from tape stripping with highly sensitive mass spectrometry
(MS) techniques are emerging as an unbiased approach to
examine disease entities not only from the perspective of
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FIGURE 1 | Imaging of a 4mm volar skin surface area of a healthy forearm with optical coherence tomography (OCT) after application of 50 tape stripes on the right

side of the area reveals smoothening of the skin roughness. OCT imaging confirms that sampling of healthy skin remains at the level of the cornified layer and doesn’t

penetrate deeper than the uppermost layer of the epidermis.

disease subtype diagnosis, but importantly the detection of
differentially expressed proteins can also provide potential
mechanistic insight into the initiation and maintenance of these
inflammatory diseases.

One of the most comprehensive tape stripping studies
focusing on healthy vs. psoriatic skin identified 140 proteins
expressed in lesional psoriatic skin by combining tape sampling
and MS analysis (72). Compared to healthy, significant
upregulation of 20 proteins were found, amongst them proteins
playing role in keratinocyte differentiation, antimicrobial
activity, cell-cell and cell-matrix interactions, protease inhibition
and in signaling pathways (FABP5, fatty acid-binding protein;
CALML5, calmodulin-like protein 5; NGAL, neutrophil
gelatinase-associated lipocalin, elafin, S100A7 “psoriasin,” α-
enolase, galectin-7 (members of the serpin family, 14-3-3-protein
sigma). Zn-α-2-glycoprotein was the only protein found to
be downregulated in lesional vs. healthy samples. Although
promising, many of the mediators found upregulated in psoriatic
lesional tape samples compared to healthy have also been
described to be also upregulated in tape harvested lesional AD
skin, such as galectin-7, Serpin and S100 family members, FABP5
and α-enolase (73–76). Galectin-7 expressed in the SC has been
previously studied as an indicator of skin barrier disruption in
eczema (77), and serpin B3 has been highlighted as a potential
biomarker for atopic inflammation (73, 78), although serpin
family members seem to play a pathophysiological role in
psoriatic inflammation as well (79, 80).

Additionally, Mehul et al. (72) were able to quantify
known pathophysiological chemokines in psoriatic tape samples,
including CXCR3 ligands (CXCL10, CXCL11) which are involved
in the chemotaxis of IFNγ expressing lymphocytes) and CCL20
which acts on CCR6+ IL-17 producing leukocytes (72, 81, 82).
Tape sampling of psoriatic skin also detects strong expression
of the neutrophil chemoattractants CXCL1 (GROα) and CXCL8
(IL-8) (72, 83). This is in line with the neutrophilic infiltrate
known to characterize psoriatic skin lesions (84, 85). Unlike in
protein extracts from full thickness biopsies, CXCL1 was also
detectable in non-lesional tape samples (72). The same study
found low expression but detectable levels of IL-17 pathway
cytokines including IL12p40 subunit which is part of both IL-12

and IL-23, IL17A, and IL17F in psoriatic lesional tape samples.
According to the authors’ experience, in contrast to epidermal
chemokines, detection of lymphokines in tape stripped samples
from lesional skin is not very reliable probably due to disease
activity dependent differences in lymphocyte infiltration into the
upper skin layers.

There are a number of studies focusing on atopic
inflammation vs. healthy skin which identified elevated CCL17
(TARC) and TSLP in tape harvested material with correlations
to disease severity (86, 87). However, none of the mentioned
investigations directly compared lesional skin from different
diseases which leaves interpretation on whether detected
molecules are disease specific or just general inflammation
markers open to discussion.

We have recently (88) compared tape harvested proteins
expressed in psoriatic and atopic eczema inflammation with
comparable lesion scores (e.g., local inflammatory intensity),
non-lesional and healthy skin. The study identified increase
expression of IL-36γ, a pro-inflammatory IL-1 family member,
as a surprisingly robust biomarker for psoriatic inflammation.
These results are in line with previous research which showed
significantly enhanced IL-36γ mRNA expression in psoriasis
biopsy material compared to healthy skin and recognized IL-
36γ as an important cytokine in the pathogenesis of psoriatic
inflammation (89–91). Other previously described markers
including CCL20, CXCL1, and CXCL8, were also strongly
increased in lesional psoriatic samples compared to eczema
but were not as reliable as IL-36γ in discriminating the
two entities.

Lesional psoriatic skin is well described to overexpress
antimicrobial peptides (AMPs) in the outermost layers of the
skin. Thus, non-invasive surface sampling is ideally suited
study their expression in different conditions. AMPs measured
via tape stripping (92, 93) but also “washing fluid” (94,
95) obtained from the skin surface confirmed significantly
higher expression levels of hBD2 in both lesional psoriatic
and eczematous skin compared to healthy controls. To date,
there is no published tape stripping data regarding hBD3
expression in psoriasis, although increased secretion of hBD3
and RNase7 have been shown in non-lesional AD compared
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to healthy skin (96). Markedly elevated S100 family members
(S100A7, S100A8, S100A9) expression which contribute to
antimicrobial defense but are also an indicator of inflammation
at epithelial surfaces, have been reported in psoriatic lesional
SC (72). Identification of fecal calprotectin (formed by a
heteromeric complex of two subunits, S100A8 and S100A9)
is currently used as a routine non-invasive diagnostic tool to
distinguish inflammatory bowel disease (IBD) from irritable
bowel syndrome, to follow up disease activity and predict disease
relapse (97).

All skin diseases showing epidermal inflammation present
with some degree of pruritus, which is well recognized
to be a complex phenomenon. Neuropeptides which can
impact on release of histamine, vasoactive mediators and pro-
inflammatory cytokines and play a role in itch. Keratinocytes
are the main source of the neurotrophic nerve growth factor
(NGF), a regulator of sensory nerves innervating the skin
and which can induce lymphocyte activation and keratinocyte
proliferation (98, 99). NGF has been recognized to be
upregulated in both atopic and psoriatic lesional skin, and
correlates positively with the severity of itch (100, 101). A
study focusing on AD has shown that NGF is measurable
in tape collected samples, and that its levels correlate with
disease and itch severity and are found reduced following
treatment (102). IL-31 also called the “pruritic cytokine”—
which is currently targeted by biologics approach in clinical
studies—can be successfully measured in psoriatic lesional
SC (72).

Metabolomics is an exciting newly emerging field. Recent
data using skin and serum samples suggest that perturbations in
the glycolysis and amino acid metabolic pathways may play an
important role in the pathogenesis of psoriasis (103, 104). So far
there is a lack of studies combining tape stripping with examining
metabolomics data, although this could represent a valuable
future approach.

Other Approaches for Epidermal Sampling
Other approaches for epidermal sampling include—as
mentioned above—washing buffer approaches which seems
to be particularly suitable to monitor the in vivo secretion of
AMP (94, 95).

Epidermal material can also be obtained by scraping of
the skin surface with a surgical blade. For psoriasis lesions,
this approach allows detection of chemokines, growth factors
including VEGF and IL-1 family members (104). However, this
sampling methods seems difficult to standardize.

Suction blister (105) has been successfully used in research
settings to allow protein measurement of interstitial fluid from
lesional skin—however this approach seems less suitable for
clinical practice as it is time intense and requires special
setups and training. A promising approach suitable for point
of care diagnostic is the analysis of interstitial fluid by means
of microneedle patches (106). This approach is being used
for continuous glucose monitoring and drug bioavailability.
This method has not yet been applied to inflammatory
skin conditions.

HAIR FOLLICLE ANALYSIS

Hair follicles are generally referred to as an “appendage” located
in the skin (107, 108). Hair biologists however consider the hair
follicle an “end organ,” with its own complex microenvironment
(109). The hair producing segment of the hair follicle is
constantly being renewed from a stem cell pool (110–112). The
hair follicle is mainly composed of keratinocytes that make up
the hair shaft as well as the inner and outer root sheaths. The hair
follicle also has a specialized mesenchymal population referred
to as dermal papilla (DP) (112) which play a role in regulating
the activities of keratinocytes in forming a follicle and hair shaft.
The hair follicle stages include anagen (active growth), catagen
(degeneration of the lower follicle), telogen (quiescence), and
then regeneration (108, 112).

The bulge region of the hair follicle is located in an area
of the outer root sheath just beneath the sebaceous gland
and is believed to be the reservoir for epidermal stem cells
in the hair follicle (113). This region shows features of an
immunologically privileged (IP) site (114). Some of the critical
features indicating collapse of immune privilege, which goes
along with inflammatory alopecia conditions, is the expression
of MCH I and other related molecules, downregulation of CK15,
E-cadherin and increased expression of genes associated with
epithelial-mesenchymal transition, such as vimentin, fibronectin,
and SLUG (115).

Cutaneous Lupus
Cutaneous lupus can present as an organ specific disease localized
only to the skin or can occur as a manifestation of a systemic
disease (116). The subtype of CLE that results in permanent
scarring is the chronic discoid LE (CDLE) (117). CDLE lesions
appear frequently on the scalp, with resultant permanent scar
and irreversible hair loss (118, 119). The pathogenesis of
CDLE involves accumulation of apoptotic materials, resulting in
secondary necrosis and the activation of the interferon (IFN)
pathway by nucleic materials, leading to inflammation and the
recruitment of cytotoxic, IFNγ-producing CD8+ T cells. The
recruitment of the cells to the bulge region of the hair follicles
coupled with collapse of immune privilege ultimately leads to
permanent hair loss and atrophic scarring (120). A key feature
in LE is high expression of IFN and IFN stimulated genes
(ISGs), such as myxovirus protein A (Mx1), IFN inducible
protein 6 (IFI6), guanylate binding protein 1 (GBP-1), CXCL9,
and CXCL10 (121–123). In addition to high IFN expression,
IFN-induced expression of MHC I and MHC I pathway-related
molecule, such as beta 2 microglobulin (β2M) has been reported
in ex vivo human scalp skin culture (124, 125). IFNs have anti-
proliferative properties on skin cells (126) and this may explain
the reduced proliferation and neovascularization reported in
CDLE cells and tissues, and may be major contributors to the
scarring outcome (127).

The current gold standard for diagnosis of connective tissue
disease manifesting at the skin organ which includes LE is
dermato-immunohistopatholog and key features for LE include
interface dermatitis i.e., deposition of inflammatory cells at the
dermo-epidermal junction, basal cell vacuolization, keratinocytes
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TABLE 1 | Characteristics of non-invasive diagnostic approaches.

Method Current

applications

Studying Advantages Disadvantages

Tape

stripping

Non-invasive

sampling of the

upper epidermal

layers (mainly

stratum

corneum)

Physiology of the stratum corneum Non-invasive, no scarring, painless,

repeatable, applicable at any

anatomical location (e.g., face) and

suitable for any age group (including

children)

Depth of sampling varies between different skin

conditions and different body sites

Diagnostic markers Provides valuable molecular

information

Need storage access (freezer) and sample

transport facility if not processed at site

Treatment targets Easy and quick to perform, no special

training or professional knowledge is

required

Disease pathomechanism Cost effective

Disease monitoring Potential as a non-invasive tool for

diagnostic, disease activity and

therapeutic response

Epidermal wound healing

Excretion of endogenous substances

Percutaneous absorption of topical

treatments—kinetics of drug delivery

Treatment efficacy and toxicity (e.g.,

glucocorticoid therapy)

Disruption of the

skin barrier

Skin barrier function (TEWL)

“Deep” tape

stripping =

Koebnerisation

Pathophysiology of psoriasis

Hair

plucking

Research Etiology and pathogenesis of

diseases involving the hair follicle (LE,

LPP, scarring vs. non-scarring

alopecias)

Relatively non-invasive, repeatable,

and suitable for any age group

(including children)

Variability in the quality of hair follicle obtained

Wound healing Provides valuable molecular

information

Restricted to patients with presence of

“pluckable” hairs; so far only investigated for

the scalp

Therapeutic response Easy and quick to perform, however,

the examiner needs to be able to

differentiate anagen from telogen hair

Need for further scientific data

Potential as a non-invasive tool for

diagnostic, disease activity and

therapeutic response

Results may depend on hair cycle stage. The

same hair cycle stage should be analyzed (e.g.,

anagen) depending on research question

Need storage access (freezer) and sample

transport facility if not processed at site

Trans-

Epidermal

Water

Loss

(TEWL)

Skin epidermal

permeability/barrier

function

Barrier defects in various pathologies

(eczema, psoriasis)

Non-invasive, painless, repeatable,

applicable at any anatomical location

(e.g., face) and suitable for any age

group (including children)

Lack of molecular information—lack of

specificity as a diagnostic tool

Treatment efficacy and toxicity (e.g.,

glucocorticoid therapy)

Validated measure, quick, and

accurate

Need access to the instrument (Tewameter® )

and specific software

Application limited to epidermal pathologies

Skin

elasticity

Skin elasticity

measurements

Skin disorders characterized by

stiffness (scleroderma, systemic

sclerosis) and, other pathologies

Non-invasive, painless, repeatable,

applicable at any anatomical location

(e.g., face) and suitable for any age

group (including children)

Lack of molecular information—lack of

specificity as a diagnostic tool

Skin aging Variability (age, sun-exposure, anatomical

location, ethnicity)

Treatment efficacy and toxicity (e.g.,

glucocorticoid therapy)

Need access to the instrument (Cutometer®)

and specific software
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apoptosis, lymphohistiocytic infiltration around appendages and
vessels, mucin deposition, basement membrane thickening, and
follicular plugging (128, 129). An important differential diagnosis
for LE of the scalp is Lichen planopilaris (LPP) which also
presents as interface dermatitis in dermatohistopathology and
can be difficult to distinguish in some cases. As with LE, current
knowledge suggests that scarring in LPP is due to CD8+ T-cell
driven attack on the epidermal stem cells of the hair follicles due
to collapse of immune privilege (114).

Scalp dermatoscopy can be a useful addition to the diagnostic
portfolio in dermatology settings (130). The hair follicle
epithelium has been recognized as a valuable tissue for diagnostic
purposes. The group of Blume-Peytavi has demonstrated the
diagnostic potential of hair follicles obtained by hair plucking
or cyanoacrylate surface stripping in androgenic alopecia and
seborrheic dermatitis conditions (131–133).

Since the hair follicle is the main target in CDLE, we used
3–5 plucked anagen hair follicles as a non-invasive diagnostic
approach (134). We found increased expression of ISGs that
are known to play important role in the pathogenesis of the
disease (121). Interestingly, we also found increased expression
of β2M. Both of these findings have also been made for LPP by
Harries et al. (114) who used laser capture microdissection of
scalp biopsy to gain hair follicle specific information (114). Of
interest, regarding diagnostic difficulties for CDLE vs. LPP lesion,
significant contribution of complement activation identifies LE
lesions. In our analysis of plucked hair follicle derived epithelium,
we found increased expression of C3 in lesional LE in comparison
to non-lesional, psoriatic, and healthy hair follicles.

Of interest, despite the hair follicles not being specifically
involved in type 2 diabetes, the use of hair follicles as an
alternative means of diagnosing the disease has been suggested
(135). This hypothesis is hinged on the prolonged shortage of
oxygen supply to the hair follicles in hyperglycaemic patients thus
leading to hair follicles damage, sparseness of hair, or decreased
hair growth speed (136).

Based on our experience, patients are highly acceptant of
hair follicle plucking (in our setup 5–10 hairs) for diagnostic
or research purposes and are also happy for repeated sampling
e.g., to ascertain therapeutic responses. In addition, hair follicle
collection does not require specialist training.

CONCLUSION

The need to include analysis of tissue specific responses in
precision medicine approaches has been recognized. Table 1

gives an overview including advantages and limitations of
the main approaches discussed in this review. Dermatoscopy
and functional skin testing are useful to support diagnostic
processes but their use seem to be limited to specialized

dermatology department and training is needed for correct use
and interpretation.

As highlighted in this review, novel imaging techniques have
great potential to allow non-invasive diagnostic by visualizing
changes in the epidermal down to the vessel compartment. Access
to imaging devices such as OCT and RSOM are however limited
to specialized centers due to high costs.

By contrast, epidermal sampling by tape stripping and for the
scalp by hair follicle plucking do not need specific training, are
easy and fast to perform, suitable for point of care approaches and
can give molecular information beyond morphology changes.
This could significantly help with disease subgroup identification
and importantly provide a molecular understanding of the
inflammatory processes behind these diseases and highlight
novel targets for future therapeutics. Thus, protein biomarkers
detectable with non-invasive epidermal/hair follicle sampling has
the potential to direct treatment pathways, follow up disease
progression and therapeutic response.

It remains to be demonstrated in well planned prospective
studies which compare standard of care diagnostic with the
here discussed non-invasive diagnostic approaches if suitable
protein biomarker algorithm can be developed with high
enough sensitivity and specificity for a range of inflammatory
skin conditions to replace current biopsy approaches. Another
previously discussed (137) outcome of such studies could be
that approaches such as tape stripping cannot fully replace
dermatohistopathology but could prove to be of significant
support for treatment decision pathways either in primary care
setting (e.g., inverse psoriasis vs. fungal infection; palmoplantar
eczema vs. psoriasis), in secondary care dermatology (e.g.,
predicting response to therapy) or in other disciplines such
as rheumatology (e.g., supporting the diagnosis of psoriatic
arthritis). The potential of epidermal sampling to be developed
into a point-of-care test for specific diagnostic problems is given
by the ease of sampling. Larger trials and development of robust
biomarker algorithms are needed to fully appreciate the value
epidermal sampling could have in routine care settings.
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