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Abstract  
 

Migration of cells is required in multiple tissue-level processes, such as in inflammation 

or cancer metastasis. Endocytosis is an extremely regulated cellular process by which 

cells uptake extracellular molecules or internalise cell surface receptors. While the role 

of endocytosis of focal adhesions (FA) and plasma membrane (PM) turnover at the 

leading edge of migratory cells is wide known, the contribution of endocytic proteins 

per se in migration has been frequently disregarded. In this review, we describe the 

novel functions of the most well-known endocytic proteins in cancer cell migration, 

focusing on clathrin, caveolin, flotillins and GRAF1. In addition, we highlight the 

relevance of the macropinocytic pathway in amoeboid-like cell migration.   
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AP-2, adaptor protein 2; Arp2/3, Actin related protein 2/3; Cav, caveolin; CHC, clathrin 
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dendritic cells; ECM, extracellular matrix; EMT, epithelial to mesenchymal transition; 

ERK1/2, Extracellular signal Regulated Kinase ½; ERM, Ezrin, Radixin, Moesin; FA, Focal 

adhesions; FAK, focal adhesion kinase; FCHO2,F-BAR domain-containing Fer/Cip4 

homology domain-only protein 2; Flot, flotillin; GRAF1, GTPase regulator associated 

with focal adhesion kinase-1; HR, hydraulic resistance; LPA, lipid lysophosphatidic acid; 

LPAR1, lipid lysophosphatidic acid receptor 1; MEK, mitogen activated protein kinase 

kinase; MMP, matrix metalloprotease; N-WASP, Wiskott-Aldrich Syndrome Protein; 

NMDAR, N-methyl-D-aspartate receptor; PAK1, P21-Activated Kinase 1; PDPN, 

podoplanin; PLA, podosome-like adhesion; PM, plasma membrane; RANK, receptor 

activator of nuclear factor-κB; ROCK, Rho-assocaited coiled coil-containing protein 

kinase; SCAR/WAVE, Suppressor of cyclic AMP receptor mutation/ WASP and Verprolin 

homologous protein; TRE, tubular recycling endosome 



Introduction  
 

Cell migration is an essential biological process involved in wound healing, embryonic 

development, immune responses and cancer metastasis (1,2). In brief, cellular 

migration is characterised by a cyclic process that consists of cell polarisation (3), 

protrusion extension at the leading edge, establishment of cell-substrate adhesions, 

forward movement of the cell body and detachment of the trailing edge of the cell (1). 

Importantly, the migratory cycle has been related to endocytosis and exocytosis (also 

known as recycling) of proteins contained in adhesive structures, which all together 

regulate the disassembly and further assembly of new adhesions (1). Cell protrusion is 

an actin-dependent process driven by promoters of actin nucleation and 

polymerization, such as Actin Related Protein 2/3 (Arp2/3), Wiskott-Aldrich Syndrome 

Protein (N-WASP) and Suppressor of cyclic AMP receptor mutation/ WASP and 

Verprolin homologous protein (SCAR/WAVE) (4,5). Of note, extracellular signals 

indirectly activate small GTPases, such as Rho, Rac and Cdc42, which are involved in 

the regulation of actin dynamics (5). Following cell protrusion, cell-substrate adhesions 

are formed and mediated by focal adhesions (FA) (1). FAs are integrin-based structures 

that mediate cell adherence to the substrate and regulate cell migration and 

spreading. Following integrin engagement with the extracellular matrix (ECM), multiple 

regulatory proteins are recruited to mediate FA connection to the actin cytoskeleton 

(1). This capability of responding to the mechanical properties of the ECM and 

transform the extracellular stimulus into intracellular signalling is defined as 

mechanotransduction (6). Outstandingly, the ECM goes beyond being a passive 

structure but it provides different types of mechanical signals and dimensionality. In 

three-dimensional (3D) environments, cells interact with and are embedded into an 

intricate network of fibres (6,7). Strikingly, cells exposed to 3D microenvironments 

present smaller FA than thier 2D counterparts (7). In 2D surfaces, ECM stiffness affects 

mechanosensing (7), which defines the act of sensing mechanical stimulus by cells (6). 

On the contrary, ECM stiffness varies in 3D environments depending on fibril 

alignment, intra- and extra-fibril crosslinking and ECM ligand density (7). Importantly, 

cancer cell migration contains elements of 2D and 3D environments. For instance, 

thick fibres could be potentially reminiscent of 2D surfaces (6), where cells show a 



polarised, flat and spread morphology since they adhere to the substrate on one side 

(8). Cell spreading is defined as the process through which recently attached cells 

engage the ECM and is required prior to cell migration. Indeed, migrating cells share 

the same subcellular processes with spreading cells (1). 

3D migration in invasive cancer cells comes in two different fashions: mesenchymal 

and amoeboid migration (9). The first one is characterised by an elongated 

morphology with membrane protrusions, while cells are rounded in amoeboid 

migration. Another significant difference is the presence of strong adhesive structures 

and ECM degradation in the mesenchymal state, characteristics that are absent in 

amoeboid migration (9).  In particular, amoeboid migration in cancer utilises small and 

unsteady blebs, which may be on account of augmented intracellular pressure, which 

correlates with high membrane tension, or weak membrane-cortical cytoskeleton 

attachment (10). Interestingly, amoeboid-like cells present a flexible shape that allows 

them to squeeze into the ECM pores (8,10).  

Endocytosis is defined as the process by which cells internalised a variety of molecules, 

including surface receptors, from the plasma membrane (PM) to cytoplasmic vesicles 

(11,12).  Endocytic pathways are categorised depending on their morphology and 

mechanics into clathrin-mediated endocytosis, caveolin-dependent endocytosis, 

clathrin- and caveolin-independent pathways, such as clathrin independent carriers 

(CLICs) and macropinocytosis (12). Clathrin-dependent internalisation, characterised 

by the formation of polygonal clathrin-coated pits and vesicles, is the most widely-

known form of endocytosis (13,14). These distinctive structures are possible because 

of the assembly of approximately hundred clathrin triskelia (15). The clathrin triskelion 

is a highly evolutionary conserved structure (16), composed of three clathrin heavy 

chains (CHCs) and three clathrin light chains (CLCs) that radiate form a centre (13,16). 

There are two CLC isoforms: CLCa and CLCb in vertebrates (16). CHCs are recruited 

together with CLCs to phosphatidylinositol 4,5-bisphosphate-enrich membranes, 

where they will contribute to membrane bending (14). The clathrin triskelion, 

however, cannot directly interact with the PM and adaptor proteins, such as adaptor 

protein 2 (AP-2) and epsin, are required (14). Other accessory adaptor proteins and 

curvature effectors are involved, such as Epidermal Growth Factor Receptor Pathway 

Substrate 15 (Eps15), which participates in AP2 clustering. Other relevant effectors 



involved in nucleation of clathrin-coated pits are F-BAR domain-containing Fer/Cip4 

homology domain-only proteins (FCHOs) (14,17). Complete invagination of the PM is 

followed by self-polymerisation of the GTPase dynamin around the neck of the pit, 

where it induces membrane scission (14). It is also worth noting that clathrin, together 

with other adaptor-coated vesicles, including AP-1, is implicated in the vesicle 

formation in the trans-Golgi network (TGN) (15,18). The TGN is the major secretory 

pathway of newly synthesised proteins to distribute them to different subcellular 

compartments (18).  

Caveolins are the foremost components of caveolae, invaginations in cholesterol- and 

sphingolipid-rich membranes, also known as lipid rafts domains (19).  These fatty acid-

enriched membranes have been described to participate in endocytosis, exocytosis, 

transcytosis, as well as cholesterol, triacylglycerid and mitochondrial homeostasis (19).  

Despite the fact that endocytosis at the leading edge of migrating cells has been 

reported to confine receptor-mediated signalling and promote integrin-mediated 

adhesion turnover (3), recent evidence shows that endocytic proteins regulate cell 

migration in a variety of ways. In this review, we will first discuss the newly described 

direct contribution of membrane trafficking-related proteins, such as clathrin, caveolin, 

flotillin and GRAF1 in cell migration. Secondly, the role of macropinocytosis – as an 

endocytic pathway – in overcoming the directional bias of cells for low hydraulic 

resistance environments will be considered.  

 

Clathrin-coated plaques support cell spreading and migration 
 

Clathrin triskelia, henceforth referred to as clathrin, is not only involved in the uptake 

of extracellular molecules but also controls cytokinesis (16,20), lymphocyte migration 

(16,21), cell protrusion and adhesion (22), as well as invasion (20). At the front of 

migrating lymphocytes, clathrin drives accumulation of actin and Arp2/3, which results 

in lymphocyte polarization during migration (21). In meningioma and cervical cancer 

HeLa cells, CHC is required to induce WAVE2-dependent lamellipodia formation and 

cell migration through Arp2/3 activation (22).   

Moreover, clathrin has been described in other distinct pleiotropic structures, known 

as tubular clathrin/AP-2 lattices (TCAL), clathrin-coated plaques or flat clathrin-coated 



structures (20,23). Although recent pieces of evidence show that this clathrin-coated 

plaques result from frustrated endocytosis (24), it is still not clear which extracellular 

or intracellular signals govern the induction of either clathrin-coated pits or this flat 

clathrin structures (23). Interestingly, clathrin coated structures resulting from 

frustrated endocytosis were reported to be mechanosensitive structures that 

responded to rigid substrates, i.e. stiff environments (24), as well as low-tension 

membrane conditions (25). Correspondingly, it has been reported that TCAL 

preferentially nucleate as semitubes around the long axis of collagen fibres, suggesting 

that the local curvature induced by collagen triggers clathrin assembly following the 

recruitment of clathrin adaptor proteins (Figure 1.) (20).  

Strikingly, TCALs have been involved in contact-guided cell migration in response to 

extracellular cues, in an endocytosis-independent manner (23), but they have also 

been shown to inhibit cell migration under certain circumstances (26). Focal adhesions 

(FA) are considered mechanotransducers that signal mechanical and topographical 

remodelling of the ECM to intracellular structures (27), such as the actin cytoskeleton 

(1). ECM modification is induced by either exertion of cellular physical forces (28) or 

matrix metalloproteases (MMPs)-mediated digestion (29). Interestingly, a recent 

studydeposited to bioRxiv suggests that extracellular topographical cues, such as 

gelatin degradation, promote disassembly of FA at the leading edge of migrating U373 

glioblastoma cells (23). According to this study, FA would be substituted by long-lasting 

TCALs, which would promote cell adhesion after proteolytic ECM remodelling (23), as 

well as cell spreading  on collagen matrices (20). Similarly, TCALs surround collagen 

fibres to mediate protrusion stabilisation and anchoring to the matrix (Figure 1.) (20).  

Interestingly, it seems that αvβ5 and β1 integrins would be retained at the PM 

following FA disassembly and those integrins would be required for TCALs stabilization 

(23). Consistently with these findings, αvβ5 integrin engagement with the ECM protein 

vitronectin is required for clathrin-coated plaques formation (24,25). In particular, β1-

integrin found at TCALs has been reported to recruit clathrin adaptor proteins, such as 

Dab2 and AP-2, which promote further integrin clustering at collagen fibres (Figure 1.)  

(20). Dab2 and AP-2 recruit EH domain scaffold proteins, such as Eps15, to regulate the 

size of clathrin-coated plaques and bring accessory proteins such as dynamin or 

FCHO2, protein that sense membrane curvature (30). In agreement with that, other 



studies performed in immortalized keratinocytes established that other adaptor 

proteins, including Autosomal Recessive Hypercholesterolemia (ARH) protein and 

Numb, interact with the cytoplasmic region of β5 integrin in clathrin-coated plaques 

(25,31). Interestingly, Numb and Dab2 probably present interchangeable roles when 

mediating Eps15 recruitment to TCALs (25). Importantly, Eps15 seems to possibly 

mediate FA shift to clathrin-coated plaques and the localization of β5 integrin in those 

structures (23). In addition, Eps15 would be necessary for the stabilization of TCALs 

(23). More recently, CLCa isoform has been specifically identified as a key protein in 

clathrin-dependent cell spreading and successive migration in HEK293 (Human 

Embryonic Kidney), HeLa (Cervical cancer) and H1299  (Non-small cell lung carcinoma) 

cells (16). Cell spreading following integrin-dependent anchorage to the substrate 

requires WAVE2-mediated lamellipodia formation (16,22). Indeed, CLCa appears to 

promote the activation of the small Rho family GTPase Rac1 (Figure 1.) (16). WAVE-2 

participates in rearrangements of the actin cytoskeleton via Arp2/3-dependent 

polymerisation of F-actin. Interestingly, CHC controls WAVE-2 recruitment to the PM, 

while Rac1 activity mediates its activation (16,22).  

However, perdurable TCALs have been reported to oppose cell migration in HeLa cells 

(26). Intriguingly, flat clathrin lattices appear to perform as lipid lysophosphatidic acid 

receptor 1 (LPAR1) signalling nanodomains (26). Interestingly, lipid lysophosphatidic 

acid (LPA) induces migration via the activation of the Rho-associated coiled coil-

containing protein kinase (ROCK) pathway, which then provokes actin cytoskeleton 

reorganization (32). Besides, LPA enhances the expression of MMPs, such as MMP2, 

which consequently results in increased cancer cell motility and invasion (Figure 1.) 

(32).  Following LPA stimulation, LPAR1-containing TCALs are internalised in an N-

WASP and Apr2/3 dependent way in HeLa cells (26), thus promoting cell migration. In 

fact, inhibition of TCAL internalisation has been shown to impair cell motility (26). 

More importantly, this may suggest that TCAL-endocytosis is required for maintaining 

the dynamics of clathrin-mediated adhesion and allow cell migration. Further research 

is needed to identify additional regulators of TCALs disassembly and turnover, as well 

as clarify the relation between the pro- and anti-migratory roles of clathrin. In 

addition, it is not clear whether clathrin-coated plaques are exclusively formed around 



collagen fibres or are also involved in cell adhesion to other extracellular matrix 

components during cell migration. 

Altogether, clathrin allows the adaptation of migrating cells to the surrounding 

environment by controlling WAVE2-mediated lamellipodia formation, actin 

cytoskeleton polymerization and, together with LPAR1, adhesion dynamics during cell 

migration. 

 

Caveolin-1 signalling hub fosters cell migration  
 

The caveolin family is constituted of three isoforms, Caveolin-1 (Cav-1), Caveolin-2 

(Cav-2) and Caveolin-3 (Cav-3) (19,33,34). Of note, Cav-1 and Cav-2 have been 

associated with cell transformation (33,34). Cav-1 expression has been reported to be 

augmented in breast, colon, prostate, pancreas and oesophageal carcinomas, while 

Cav-2 is overexpressed in cervical cancer, lung adenocarcinoma, glioma and urothelial 

and oesophageal carcinomas (33). Cav-1 and Cav-2 have been described to regulate 

cell motility in androgen-insensitive prostate cancer cells (33).   

Cav-1 expression is controlled by epigenetic mechanisms. At early stages of cancer or 

during cell transformation, Cav-1 is considered a tumour suppressor and its expression 

is diminished owing to methylation of the CpG islands present in CAV-1 promoter (35). 

As an example, Cav-1 levels are higher in non-transformed breast epithelial cells 

compared to ERα-positive breast tumorigenic cells, in which the CpG Island is 

hypermethylated (35,36). Interestingly, CAV1 promoter is demethylated as tumour 

progresses; in fact, re-expression of Cav-1 in lung adenocarcinoma fosters filopodia 

formation, cell migration and metastasis (35). Caveolin function in tumorigenesis 

remains ambiguous, as it has been shown to be both depleted and up-regulated in 

several cancers (33). On one hand, in peritoneal mesothelial cells, loss of Cav-1 leads to 

hyperactivation of mitogen activated protein kinase kinase (MEK)- Extracellular signal 

Regulated Kinase (ERK1/2)-Snail-1 pathway, which consequently enhances cell 

migration and invasion, suggesting that Cav-1 restrain cell migration in this context 

(37). Indeed, the peritoneum of Cav-1 deficient mice presents augmented fibrosis and 

epithelial to mesenchymal transition (EMT) (37). 



On the other hand, Cav-1 has been shown to localise at the trailing edge of fibroblasts, 

where it participates in rear polarization and promotes directional migration by 

regulating Rho GTPases and tyrosine protein kinase c-Src (Figure 2B.) (38,39). 

Moreover, Cav-1 interacts with Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold 

that facilitates Ras-mediated activation of Raf/MEK/ERK signalling cascade, to induce 

H-Ras driven cell transformation in primary mouse embryo fibroblasts (40).  

A recent paper deposited to bioRxiv reports that at the leading edge of invasive 

B16.F10 melanoma cells, Cav-1 appears to functionally cooperate with podoplanin 

(PDPN) to induce directional cancer cell migration in response to chemical or 

mechanical signals (e.g. tissue stiffening or ECM remodelling) (Figure 2A.) (41). PDPN (a 

glycosylated mucin-like protein) is highly expressed in several tumours, including 

melanoma, lung, colorectal, oral and breast cancer. Remarkably, PDPN expression 

correlates with higher metastatic potential and EMT (41). Under this circumstances, 

PDPN co-localising with Cav-1 probably triggers the activation of P21-Activated Kinase 

1 (PAK1) (41), which ultimately activates ERK1/2 (41,42) and Ezrin, Radixin, Moesin 

(ERM) proteins to promote directional migration via regulation of the actin 

cytoskeleton (Figure 2A.) (41). Although Rho family small GTPases Cdc42 and Rac1 are 

major upstream regulators of PAK1 (42), endogenous expression of both Cav-1 and 

PDPN seems to regulate cell migration in a RhoA-, Rac1- and Cdc42- independent 

manner (41). Notwithstanding, PDPN has been reported to activate RhoA/C small 

GTPases, which activity is inhibited by C-type lectin receptor (CLEC-2) signalling to 

induce actomyosin cytoskeleton relaxation in stromal fibroblastic reticular cells (43). 

However, PDPN overexpression in the non-invasive breast cancer cells MCF7 have 

been shown to decrease active RhoA levels during collective migration, resulting in an 

increase of motility (44). Further research is required to clarify the role of Cav-1 and 

PDPN in controlling small GTPase signalling, since other yet to be described proteins 

could potentially explain those discrepancies; for example, unidentified regulators of 

this signalling pathway could participate by rapidly inhibiting RhoA GTPases after their 

activation in order to facilitate migration by relaxing the actomyosin cytoskeleton.   

PDPN has also been shown to associate with CD44 (43,45), to promote the migration 

of stromal fibroblastic reticular cells in the lymph nodes (43).  CD44 is a 

transmembrane glycoprotein that binds to ECM proteins, such as hyaluronan acid, 



collagens and fibronectin (45). CD44 has been reported to participate in stiffness-

dependent cell adhesion and motility (46). In addition, CD44 has recently been 

involved in sensing hyaluronic acid cleavage in hyperalgesia (47)  and participate in 

collagenolysis during inflammation and fibrotic processes (48). CD44 specifically 

triggers the translocation and subsequent activation of c-Src, which triggers integrin β1 

activation via a process known as inside-out signalling (45). Integrin activation results 

in its clustering and enhanced adherence to the matrix (Figure 2A.). This prevents the 

endocytosis of caveolin-containing lipid rafts (45) which could potentially prolong 

signalling in these domains and mediate cell migration together with CD44. Of note, 

caveolin has been shown to form a complex with integrins at focal adhesions (49). 

Integrins also regulate the activation of c-Src (50)  and protein kinase C (PKC) (51), both 

of which phosphorylate caveolin (52), for the proper adhesion and spreading of cells 

(51,52). 

In addition, Cav-1 seems to induce receptor activator of nuclear factor-κB ligand 

(RANKL)-dependent migration in gastric cancer (53). The receptor activator of nuclear 

factor-κB (RANK) is expressed in several malignancies, such as renal, breast and lung 

cancer. Infiltrating T cells secret RANKL to promote c-Src activity which successively 

triggers Cav-1 activation/phosphorylation (pCav-1) (53) and the signalling axis 

Phosphoinositide 3-kinase (PI3K)/Akt and ERK pathway (54) to support cell migration 

(Figure 2A.)  (53). pCav-1 has been reported to sequester the regulatory subunit of 

PI3K, p85α, to prevent Rab5 inactivation. Rab5 activity results in recruitment of Rac1 

GEF Tiam1 and subsequent Rac1 activation (Figure 2A.), which promotes actin 

cytoskeleton reorganization and enhances migration (55). Neddylation is a post-

translational modification by the neural precursor cell expressed developmentally 

downregulated 8 (NEDD8)  that resembles the process of ubiquitin conjugation and 

affects protein stability and function (56). Neddylation of Cav-1 importantly diminishes 

its phosphorylation by c-Src and prevents prostate cancer and glioblastoma cell 

migration (56). Overall, caveolins seem to form a signalling regulation platform where 

multiple proteins interact to modulate cell migration.  

 

 



Flotillins promote cell migration by inducing FA turnover and 

EMT 

 

Flotillins are lipid rafts proteins (57–60) that define specific microdomains in the 

plasma membrane, which act as signalling sites and, in addition, flotillins have been 

suggested to transduce regulatory signals to the actin cytoskeleton, as well as 

participate in cell-cell adhesion in zebrafish embryos (61). Flotillins have additionally 

been associated to membrane trafficking (57), including cholesterol-enriched exosome 

secretion in oligodendroglial cells (62), and participate in clathrin-independent 

endocytosis (57,58). The flotillin protein family comprises two well-preserved isoforms: 

flotillin-1 (Flot-1; reggie-2) and flotillin-2 (Flot-2; reggie-1) (57), which is indispensable 

for Flot-1 stabilization (58). Besides, Flot-1 and Flot-2 undergo posttranslational 

modifications by means of palmitoylation and myristoylation (57,58) in order to being 

recruited to the PM (57,58,60). The process of flotillin homo- and hetero-

oligomerisation at the PM (58) additionally modulates its translocation to endosomal 

compartments (63) and function (57). Flotillins have been shown to be involved in 

actin cytoskeleton remodelling, cell adhesion and motility by modulating Rho GTPases 

activity (58).  

In addition, Flot-1/2 has been implicated in promoting integrin-dependent cell-

fibronectin adhesion, spreading, as well as directional migration (57). Consistently, 

Flot-1/2 downregulation correlates with increased non-directional migration in HeLa 

cells (57). Indeed, flot-2 knockout reduces metastasis formation in murine breast 

cancer models, while its overexpression enhances metastatic melanoma (57). Flot-1/2 

controls E-cadherin and α5β1 integrin recycling, as well as focal adhesion turnover in a 

Rab11-dependent manner, which negatively regulates Rac1 activation (64). Flot-1/2 –

depleted cells thus present high levels of active Rac1, which increases peripheral 

lamellae formation and random migration (65). 

Flot-1 is highly expressed in lung adenocarcinomas, where its expression in vitro 

correlates with enhanced cell proliferation, migration and invasion (59). Recent 

evidence suggests that both Flot isoforms are located at FA, where they seem to be a 

required for the autophosphorylation of FAK (focal adhesion kinase), downstream of 

integrin engagement with the ECM (57). Phosphorylated FAK (pFAK) successively forms 



a complex with c-Src, which further phosphorylates FAK (Figure 3A.), and promotes α-

actinin phosphorylation (57). c-Src consequently binds to phosphorylated α-actinin, 

thereby disassembling the c-Src/FAK complex (Figure 3A.). pFAK can then be 

dephosphorylated by the phosphatase PTB-1B, accelerating FA turnover (57). 

Moreover, Flot localization to FAs correlates with myosin IIa activity, which is 

intriguingly arbitrated by Flot. Notwithstanding, it is not known whether myosin IIa 

activity is dependent on Flot localization to FA (57). In addition, FAK indirectly 

promotes ERK activation during cell spreading, resulting in Flot-1/2-mediated 

anchorage-independent proliferation (Figure 3A.) (57).  Flot-1 has also been involved in 

the signal transduction of tyrosine kinase receptors, such as insulin-like growth factor 

receptor (IGF-1R). Palmitoylation of Flot-1 is indispensable for its translocation 

together with IGF-1R to the PM, where it promotes proliferation of prostate cancer 

cells (60) and actin remodelling by regulating RhoA, Rac1 and Cdc42 activity  (Figure 

3A.) (66).  

Furthermore, Flot-1 appears to be involved in EMT (60). In prostate cancer cells, Flot-1 

is sumoylated with SUMO-2/3 by the E2 conjugating enzyme UBC9 in the 

endoplasmatic reticulum (ER).  Sumoylation of Flot-1 triggers its relocation to the 

nucleus, where it interacts with, stabilises and hampers the proteosomal degradation 

of Snail – one of the foremost transcription factor involved in EMT, thereby promoting 

metastasis formation (Figure 3B.) (60). Taking everything into account, Flot-1/2 

enhances directional cell migration by modulating Rho GTPases activity and promotes 

cell spreading via activation of FAK downstream of integrin engagement.  

 

GRAF1 role in regulating cell migration  
 

GTPase regulator associated with focal adhesion kinase-1 (GRAF1), also known as 

Oligophrenin-1-Like (67), is a Cdc42 and RhoA GTPase-activating protein (GAP) (68) 

that seems to play an essential role as a sculptor of the highly curved membranes that 

are characteristic of the clathrin-independent carrier (CLIC) pathway (69,70).	 In 

fibroblasts, CLICs constitute one of the foremost pinocytic routes (68), also categorised 

as caveolin- and clathrin-independent endocytic pathways (68,69). Cdc42 and RhoA 

activity is required and tightly circumscribed at the initial stages of CLIC (69); while at 



the later stages, GRAF1-mediated Cdc42 and RhoA inactivation is necessary for the 

progression of CLIC-mediated endocytosis.  

Outstandingly, GRAF1-positive CLICs have been reported to participate in cell surface 

dynamics (68), impacting actin remodelling (68,71), integrin trafficking (67,68,71), 

spreading, adhesion (67,68,70,71), polarization of motile cells (72) and 2D and 3D 

migration (71). GRAF1 role in cell migration seems contradictory; on the one hand, its 

expression is required for the turnover of the plasma membrane, which facilitates the 

pro-migratory activity of cells in 2D surfaces. On the other hand, GRAF1 represses 

amoeboid migration of cancerous cells in a 3D environment. Recent evidence shows 

CLICs to be directly recycled to the PM, resulting in an accelerated recycling during cell 

adhesion turnover and motility. CLICs, for instance, have been reported to internalise 

the ECM adhesion receptor CD44, which complexes with β1 integrin, at the front of 

migrating fibroblasts. In addition, CD44 can mediate directional persistence and actin 

cytoskeleton rearrangements through ERM proteins (72).  

At the leading edge of migrating HeLa cells in a 2D surface, momentary interaction 

between GRAF1 and the Rho GTPase Cdc42 is required for modulating PM and actin 

dynamics during cell surface turnover (68). Cdc42 activity triggers GRAF1 recruitment 

to the PM, where it will promote membrane invagination. GRAF1 GAP activity 

concomitantly increases during membrane bending, which eventually causes Cdc42 

inactivation and dissociation from the PM to possibly further permit scission of the 

plasma membrane and maturation of the recently formed endosomal compartment 

(Figure 4A.) (68). Similarly, Rac1 fosters the CLIC pathway by controlling GRAF1 

membrane targeting  (Figure 4A.) (70).  

Moreover, downstream of CLIC generation, GRAF1 localises in phosphatidylinositol-

(4,5)-bisphosphate-enriched (69,71) tubular recycling endosomes (TREs) where it has 

more recently been shown to indirectly interact with MICAL-L1 (Molecules Interacting 

with CAsL-Like1) and EHD1 (Eps15 Homology Domain containing protein 1) to induce 

TREs vesiculation (Figure 4A.) (67).  GRAF1 similarly seems to be involved in the 

vesiculation of clathrin-independent incoming endosomes (67). Interestingly, this 

process is required for favouring β1 integrin recycling to the PM and, to a lesser extent, 

its lysosomal degradation (Figure 4A.) (67). 



Podosome-like adhesions (PLA) are integrin-rich protrusive structures that resemble 

classical podosomes in macrophages (73). PLA are formed in the absence of large 

traction forces in non-transformed fibroblasts, (73) and during the first stages of 

spreading in platelets (74). Although those adhesions present classical podosome and 

invadopodia (also known as podosome-type adhesions (75)) markers, such as F-actin, 

N-WASP and Arp2/3, they lack the characteristic matrix metalloproteinases of Src-

transformed fibroblasts (73). Despite this, the Virtanen group reported that 

podosome-like structures can degrade ECM to an extent (76). Despite the fact that PLA 

share many proteins with focal adhesions, N-WASP and the Arp2/3 complex are not 

found in the latter ones. Cdc42-recruited GRAF1 additionally modulates the dynamics 

of Src-induced PLA sites at the front of migrating cells (Figure 4C.)  (70). GRAF1 

deregulations consequently negatively impact on cell adhesion, spreading and 

migration by perturbing integrin recycling and PLA endocytosis.  

Furthermore, besides it role in controlling integrin recycling and focal adhesion 

turnover, GRAF1 has recently been implicated in the maintenance of membrane 

tension homeostasis (71,77). GRAF1 appears to participate in constructing a repository 

of cytoplasmic membranes with which cells can respond to fluctuations regarding 

osmotic pressure and membrane tension (Figure 4B.)  (71). In particular, GRAF1-

induced endocytosis reduces membrane tension and cellular blebbing (Figure 4B) by 

downregulating RhoA activity. Of note, loss of GRAF1 in HeLa and SW480 colorectal 

cancer cells results in an increase in bleb formation, fostering amoeboid invasive 3D 

migration (71).  

GRAF1 has further been reported to preserve the normal epithelial phenotype and, for 

this reason, it is contemplated as a tumour suppressor-type gene (77). Knockdown of 

GRAF1 in the non-malignant breast cells MCF10A apparently induces EMT (77), which 

may be mediated by the constitutive activation of RhoA/ROCK pathway, which 

expression is commonly correlated to metastases (77). Considerably, GRAF1 

contribution to cell migration, either by promoting CLIC pro-mesenchymal migration or 

suppressing bleb-induced amoeboid migration, as well as EMT, has to be further 

studied since other yet unknown effectors may be involved in its role in tumorigenesis. 

Integrin-containing TRE, for instance, could potentially activate signalling pathways 



that ultimately promote EMT. Indeed, it is well-known that integrin- and active FAK-

positive endosomes signal cell survival and supress anoikis (78). 

Thus far, this review has reported the migratory role of proteins involved in the 

regulation of endocytosis and membrane composition. In the next section, the role of 

the endocytic pathway macropinocytosis in overcoming the migration bias towards 

high hydraulic resistance pathways will be discussed.   

 

Macropinocytosis in amoeboid migration 

 

Barotaxis is commonly defined as the phenomenon by which migrating cells (e.g. 

neutrophils) follow tracks with minimum hydraulic resistance (HR) (79) or hydraulic 

pressure (80). The term HR is used to describe the resistance of the environment to 

fluid displacement with which can restrict amoeboid-like cell migration by limiting the 

interstitial liquid movement (79). HR consequently causes a small force imbalance at 

cellular level that biases cell migration to least hydraulic pressure paths (79). The 

Lennon-Duménil group has recently shown that highly barotactic dendritic cells (DCs) 

present an extremely polarised accumulation of actin and myosin II at the trailing 

edge, while barotactic-resistant DCs exhibited a symmetric accumulation of 

actomyosin at both the leading and trailing edge (79). In vitro experiments using low-

friction Y-shaped bifurcations showed that barotactic DCs first extend two symmetric 

projections, one of which eventually retracts after accumulating actomyosin; for this 

reason, actomyosin regulators can impinge on barotaxis (79). Low-barotactic cells 

exhibit high macropinocytic activity at the leading edge (Figure 5.) (79). 

Macropinocytosis or internalisation of extracellular fluid is an actin-dependent process 

(81,82) induced by augmented intracellular calcium after activation of the Ras/Rac1 

pathway (81). Outstandingly, the macropinosomes formed during barotactic-

independent migration are retrogradely transported to the trailing edge where fluid is 

released and cell resistance to extracellular flow is therefore diminished. As a result, 

macropinocytosis thwarts the directional bias to migrate towards low HR 

environments (79).  

Of note, interstitial fluid pressure is extremely high at the tumour boundaries and it 

has been reported to be concomitant with invasiveness and lymphatic metastasis (83). 



In murine pancreatic neuroendocrine tumours as well as in human and mouse breast 

malignancies, the interstitial flow can additionally support cancer invasion by 

regulating the localization of the neuronal receptor and calcium channel N-methyl-D-

aspartate receptor (NMDAR) to the plasma membrane (PM) and the secretion of its 

major agonist: glutamate (83,84) (Figure 5.). In the hippocampus, NMDAR mediates 

the translocation and further activation of Ras (85) and, in addition, glutamate-induced 

activation of NMDAR increases intracellular calcium levels (Figure 5.) (84). 

Furthermore, certain malignant cells (e.g. ERα-negative breast cancer cells) 

occasionally migrate in an amoeboid-like fashion in three-dimensional cultures and in 

vivo (86). The latter raises the intriguing hypothesis that NMDAR activation could 

induce macropinocytosis in amoeboid-like migrating cancer cells in order to allow their 

dissemination to high HR regions.  

 

Summary points 

- Clathin promotes cell migration on ECM through the generation of TCALs. 

Following FA dissociation, TCALs assemble in response to extracellular cues, 

such as fibrillar collagen or ECM degradation. Under these conditions, flat 

clathrin-coated lattices act as adhesive structures that seem to be necessary for 

cell migration. CLCa is particularly important in promoting actin reorganization 

prior to migration. Finally, LPAR1 is recruited to TCALs and its downstream 

activity triggers ROCK activation, as well as endocytosis of these clathrin-coated 

plaques, allowing the cell to move forward.  

- Cav-1 has been reported to act as a tumour suppressor-like gene, but also 

promote cell migration in cancer. Cav-1 is present at the front and rear of 

migrating cells. At the leading edge, Cav-1 forms a signalling platform where it 

interacts with several proteins, such as small GTPases and c-Src, to foster cell 

migration.  

- In the endoplasmic reticulum, Flot-1/2 is sumoylated by UBC9, which triggers 

its translocation to the nucleus where it inhibits the degradation of the pro-

metastatic transcription factor Snail. Flot-1/2 additionally promotes FA 

turnover and actin remodelling following the activation c-Src and small 

GTPases, respectively.  



- GRAF1 presents a controversial role in migration. On the one hand, GRAF1 

participates in FA turnover and integrin recycling, which are required in 2D cell 

migration. On the other hand, GRAF1 suppresses bleb-induced 3D amoeboid 

migration in cancer. GRAF1 has also been involved in preserving the epithelial 

phenotype and supressing EMT.   

- Macropinosomes formed at the front of amoeboid-migrating cells are 

retrogradely transported and released so that resistance to the extracellular 

flow decreases, which allows cell migration towards high HR environments.  

 

Conclusions  

 

Cell migration is required in various physiological and pathological processes, such as 

tumour invasion and subsequent metastasis(1,2), which is responsible of the vast 

majority of cancer deaths. Therefore, having a deeper understanding of the molecular 

pathways that govern cell migration, especially in 3D environments, is essential to 

prevent cancer dissemination. The role of endocytic proteins in cell migration goes 

beyond promoting FA turnover; in fact, these proteins seem to be active participants 

of cell migration by activating downstream regulators of migration, such as small 

GTPases or actin-remodelling proteins.  

Clathrin has been shown to have a role in promoting cell migration on ECM through 

the generation of TCALs. During cell migration cycle, cells adhere to the substrate via 

FAs (1). Interestingly, following FA dissociation, TCALs would assemble in response to 

extracellular cues, such as fibrillar collagen, ECM degradation or stiff substrates. Under 

these conditions, flat clathrin-coated lattices would act as reinforcing adhesive 

structures that would contribute to cell spreading. Of note, cell adhesion to the ECM is 

necessary to generate traction forces to pull cells forward during migration (87). 

Migration of cells is a dynamic actin-dependent process (4), in this context CLCa is 

particularly important in promoting actin reorganization prior to migration. Finally, 

adhesion structures disassemble at the end of the migratory cycle. On the one hand, 

LPAR1 is probably recruited to TCALs where its downstream activity triggers ROCK 

activation, which is involved in actin-cytoskeleton reorganisation and its activity 



correlates to metastasis (32,77). On the other hand, LPAR1 provokes endocytosis of 

these clathrin-coated plaques, allowing cells to move forward.  

Furthermore, Cav-1, another endocytic-related protein, has been reported to act as a 

tumour suppressor-like gene, but also promote cell migration in cancer (35). Cav-1 has 

been described to be at the front and rear of migrating cells. At the leading edge, Cav-

1 apparently forms a signalling platform where it interacts with several proteins, such 

as small GTPases and c-Src, to foster cell migration by facilitating cell adhesion and 

spreading (51,52). In addition, Cav-1 containing signalling hubs further support cell 

migration by activating pro-migratory and pro-invasive signalling pathways. 

Moreover, Flot-1/2 promotes FA turnover (64), being implicated in the endocytosis 

and recycling to the plasma membrane of adhesion structures involved in cell 

migration. Flot-1/2 is further involved in actin remodelling following c-Src and small 

GTPase activation (57,66). In the endoplasmic reticulum, Flot-1/2 is sumoylated by 

UBC9, which triggers its translocation to the nucleus where it inhibits the degradation 

of the pro-metastatic and EMT transcription factor Snail (60).  Another endocytic-

related protein is GRAF1, which have been reported to present a contradictory role in 

migration. On the one hand, GRAF1 promotes 2D migration by participating in FA 

turnover and integrin recycling (71) while, on the other hand, GRAF1 suppresses bleb-

induced 3D amoeboid migration in cancer (71). Interestingly, GRAF1 has also been 

implicated in preserving the epithelial phenotype and supressing EMT (77).   

Finally, macropinocytosis, an endocytic pathway, has been shown to contribute to 3D 

amoeboid migration. In summary, macropinosomes formed at the front of amoeboid-

migrating cells are retrogradly transported and released (79). Consequently, the 

resistance to the extracellular flow decreases, which allows cell migration towards high 

HR environments. Further research is however needed to fully decipher the novel role 

of the reviewed endocytic proteins and macropinocytosis in cell migration, in 3D in 

vivo-like conditions, and unravel possible cancer-specific targets to supress metastasis.  

 

 

 

 



Figure legends 

Figure 1. Schematic representation of TCALs at the leading edge of migrating cells. 

Following FA disassembly, integrins are retained in the PM where they promote the 

stabilisation of TCALs. TCALs recruit clathrin adaptor proteins, such as Dab2, to 

promote further integrin clustering at collagen fibres.  Dab2 brings to the membrane 

accessory proteins to sense membrane curvature and further stabilise clathrin-coated 

plaques. CLCa promotes Rac1 activity to subsequently mediate WAVE-2 activation 

leading to actin remodelling. Finally, LPAR1-resident clathin-coated plaques, besides 

triggering MMPs secretion and ROCK activity, are required to terminate cell adhesion 

and allow migration.   

Figure 2. Scheme of Cav-induced migratory pathways in the leading and trailing edge. 

At the front of migrating cells, Cav-1 forms a signalling platform where it interacts with 

multiple signalling proteins, including c-Src, Rac1, Cdc42, PKC and PAK1, to eventually 

promote cell adhesion, spreading and directional migration (A).  Cav-1 has been 

described to localise at the rear of cells to promote cell polarisation and directional 

migration (B).  

Figure 3. Diagram of the molecular pathways involved in Flot-mediated migration. 

Downstream integrin engagement with ECM proteins, Flot isoforms are required for 

FAK autophosphorylation. Following pFAK dissociation from c-Src, α-actinin is recruited 

and pFAK is dephosphorylated, which promotes FA turnover. Besides, FAK-mediates 

indirect ERK1/2 activation and promotes anchorage-independent proliferation (A). At 

the PM, palmitoylated Flot-1/2 regulates actin remodelling through Rac1, RhoA and 

Cdc42. In the endoplasmic reticulum, Flot-1/2 can be sumoylated by UBC9, which 

triggers its translocation to the nucleus where it inhibits Snail degradation, thereby 

promoting EMT (B).  

Figure 4. Schematic representations of GRAF1 roles in cell migration. GRAF1 is 

recruited to the membrane by small GTPases that regulate early stages of CLIC 

formation. Following GRAF1 recruitment, GRAF1 inhibts RhoA and Cdc42 to allow CLIC 

progression. Of note, GRAF1-mediated inhibition of RhoA eventually supresses EMT. 

GRAF1-induced vesiculation is required for integrin recycling to the plasma membrane 

(A).  GRAF1-negative cells cannot reduce membrane tension, thereby leading to cell 



blebbing and increase invasion in 3D environments (B). GRAF1 interacting proteins in 

PLA (C).  

Figure 5. Representation of barotactic and barotactic-resistant cells. Barotactic cells 

follow low HR paths, while barotactic-resistant cells present high levels of 

macropinocytosis at the leading edge. Exocytosis of macropinosomes at the trailing 

edge diminishes cell resistance to the extracellular flow, which allow them to follow 

high HR paths. Interstitial pressure increases the expression of NMDAR and the 

exocytosis of its ligand, glutamate. Downstream activation of NMDAR triggers Rac 

activity and an increase of intracellular calcium levels, which could potentially induce 

macropinocytosis to induce amoeboid-like migration.  
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