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Generation of TD50 Values for Carcinogenicity Study Data  

Andrew Thresher, *a John Paul Gosling b and Richard Williams a 

Carcinogenic potency is a key factor in the understanding of chemical risk assessment. Measures of carcinogenic potency, 

for example TD50, are instrumental in the determination of metrics such as the threshold of toxicological concern (TTC), 

acceptable intake (AI) and permitted daily exposure (PDE), which in turn impact on human exposure. The Carcinogenic 

Potency Data Base (CPDB) has provided a source of study information, complete with calculated TD50 values. However, this 

is no longer actively updated. An understanding of carcinogenic potency, which can be derived from dose-response data, 

can be used as part of human risk assessments to generate safety thresholds under which cancer risk is judged to be minimal. 

The aim of this paper is to produce a transparent methodology for calculating TD50 values from experimental data in a 

manner consistent with the CPDB. This was then applied across the same data as used in the CPDB and analysis done on the 

correlation with the CPDB TD50 values. While the two sets of values showed a high level of correlation overall, there were 

some significant discrepancies. These were predominantly due to a lack of clarity in the CPDB methodology and 

inappropriate use of a linear model in TD50 calculation where the data was not suitable for such an approach.

1. Introduction 

There is a wealth of data on chemical carcinogenicity 
from animal studies available in the published literature. 
Until 2007, this was actively collated and curated as part 
of the Carcinogenic Potency Data Base (CPDB) project 
under the guidance of Lois Gold (Carcinogenic Potency 
Project).1 Sources included long-term carcinogenicity 
data from both general literature and through 
collaboration with the US National Toxicology Program 
(NTP) (Chemical Effects in Biological Systems).2 

These data are routinely used for chemical safety 
assessments, where carcinogenicity is (understandably) 
one of the endpoints considered. This requires an 
understanding of carcinogenic potency to calculate 
exposures at which carcinogenic risk can be assumed to 
be acceptable, which is likely to differ based on the 
application of the chemical being considered, as part of 
a risk-benefit comparison or due to differences in 
exposure routes, for example. 

Historically, the metric used to determine carcinogenic 
potency has been the TD50, defined as the dose required 

to halve the probability of a subject remaining without 
tumours throughout a lifetime of exposure. TD50 values 
were included in the CPDB and subsequently used to 
derive the threshold for toxicological concern (TTC) for 
carcinogens,3 which is widely used as a pragmatic safety 
threshold for chemicals lacking adequate experimental 
data. However, alternative approaches to TTC 
calculation and the use of alternative metrics for 
carcinogenic potency have been recommended more 
recently.4 

Despite the possibility of using alternative metrics, the 
application of TD50 values for risk assessments in 
international regulations and industrial practice remains 
widespread. For example, in the ICH M7 guidance for 
genotoxic impurities in pharmaceuticals, linear 
extrapolation from TD50 values is cited as the default 
method for calculating a compound-specific acceptable 
intake where adequate (positive) carcinogenicity data is 
available. Moreover, thresholds for human exposure to 
14 genotoxic impurities were calculated, 10 of which 
were derived from the linear extrapolation of TD50 
values that were either present in CPDB or “calculated 
from published studies using the same method as in the 
CPDB”.5 A similar process utilising TD50 values was used 
to derive acceptable intakes for the (only) two 
mutagenic impurities described in a recent 
pharmaceutical industry study, as well as a class-specific 
limit for alkyl bromides.6 
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The calculation of TD50 values is described in some detail 
in several publications, the most well-known being Cox 
(1972)7, Peto et al. (1984)8 and Sawyer et al. (1984)9; 
however, these methods require the use of ‘lifetable’ 
data where tumour incidence is tracked over time. Such 
data are rarely available given current experimental 
protocols. In the more common case where only tumour 
incidence data at the terminal sacrifice is available, the 
CPDB used a ‘summary’ methodology that is far less 
detailed in the description of incidences over time.10  

The aim of the current work was to reproduce the 
methodology by which TD50 values could be generated 
from carcinogenicity study data using modern statistical 
tools and knowledge, but in a manner consistent with 
the approach used by Gold et al. (1984).11 Once 
complete, it would then be possible to make the 
resultant scripts publicly available. This has two benefits. 
Firstly, it will provide a documented and reproducible 
method to generate TD50 values which can be used for 
risk assessments for genotoxic carcinogens, such as 
those already described. Secondly, the creation and 
sharing of scripts allows the automated generation of 
TD50 values to accelerate benchmarking against new 
metrics to describe points of departure, such as 
benchmark dose. 

The first step in the work involved the digestion of the 
published studies on TD50 calculation, many of which 
were published over 20 years ago, and the 
implementation of scripts in the statistical package R to 
reproduce the calculations.12 Then, an extensive 
validation was conducted to compare the TD50 values 
generated using our R-script to those reported in CPDB. 

2. Materials & Methods 

2.1. Data 

To allow for a practical comparison with the CPDB TD50 
values, long-term carcinogenicity study data was 
obtained from the CPDB website. Making use of the 
same data as was used in the generation of the CPDB 
minimised the potential for complicating factors which 
may arise when comparing the newly generated TD50 
values with the CPDB TD50 values. 

Chemical information (that is, CAS registry number13 and 
common name) for each test substance was cross-
referenced with the Vitic_Lhasa 2016.1 database (Lhasa 
Limited. Vitic Nexus)14. Any instances where the same 
chemical entity appeared multiple times as separate test 

substances in the CPDB were merged with relevant 
information recorded with the associated studies rather 
than the chemical compound. For example, two batches 
of a single chemical compound may have been tested 
separately, with each batch displaying a different 
chemical purity. Rather than recording these as 
unrelated entities (as was done in CPDB), these have 
been assigned the same test substance ID with the 
relevant purity information being associated with the 
individual studies. In doing this the total number of 
unique test substances for which carcinogenicity data 
was available was reduced from 1,547 to 1,529. 

The data set contained an ‘opinion’ column, which the 
CPDB documented as being an indication of the original 
study authors’ tumourigenic activity call. Data were 
removed for any tumour type-tumour site combination 
which was considered to be negative, as these data are 
not amenable to TD50 modelling due to a lack of 
tumourigenic affect. 

The CPDB also assigned each dose-response set with a 
‘curve’ notation (*, \, /, | or 0), indicating the shape of 
the dose-response curve with regard to a linear 
correlation. Table 1 details the nature of each curve 
notation together with its prevalence within the data set 
as a whole. Those assigned a ‘0’ curve either display no 
dose-response relationship or consist of a single 
treatment group. As such all data assigned a ‘0’ curve 
were removed from the data set. 

2.2. Statistical Models 

Two statistical models were used to generate the TD50 
estimates and associated confidence intervals. The 
choice of model for each data set depended on whether 
the full lifetable data were available or if the end-of-
experiment statistics were recorded. Both models were 
coded in the R statistical language with optimisations for 
the calculations of the maximum likelihoods and 
confidence intervals using the Broyden–Fletcher–
Goldfarb–Shanno algorithm15 implemented in the built-
in optim function. 

The first model was used when full lifetable data were 
available, and it followed the estimation process as laid 
out in Sawyer et al. (1984).9 Here, a form of proportional 
hazards model was utilised to model the effect of 
changing dose on the probabilities of not forming a 
tumour over time. In this modelling approach, account 
is taken of when the tumours occurred and the number 
of animals at risk over each time period in any given 
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experiment. The estimates for the TD50 are based upon 
maximum likelihood estimates stemming from a 
generalised linear model with a binomial likelihood. This 
form is used because a linear model can be used to 
capture the effect of changing dose on the probability of 
getting a tumour for each observation period. 

The second model was used when only the final 
numbers of animals exposed and which developed 
tumours were reported for each dose level. In this case, 
the data are not as informative because it is not known 
when the tumours occurred in the experiment. This 
model is again based on a binomial likelihood, but the 
time element is removed. Again, a linear model is used 
to capture the effect of dose on the probability of 
tumours occurring. A description of this method is given 
in the appendix of Peto et al. (1984).8 

For both models, the lead of Peto et al. (1984)8 was 
followed by applying an extrapolation factor to the TD50 
estimates to accommodate the fact that the 
experiments were run at a different timespan to the 
timespan of interest: that is, the lifespan of the animal. 
The particular multiplier for this purpose was the square 
of the ratio of the length of the experiment to the 
standard lifespan for mice, which was estimated at 104 
weeks for rodent species, 234 weeks for tree shrews, 
520 weeks for bush babies, 572 weeks for dogs and 1040 
weeks for monkey species. 

When fitting each model, a test was performed to 
determine if a constant relationship between the 
probability of tumours occurring and dose better 
accorded with the data than the linear dose relationship 
that is integral to both models. In practice, a likelihood 
ratio test was conducted to establish if the model with a 
positive linear relationship was better than a constant 
fit. If a constant relationship performs better, then it is 
probable that the linear model is not suitable to capture 
the experimental results. 

2.3. Analysis 

Analysis was conducted in the KNIME Analytics Platform 
(version 3.1.2.).16 The TD50 models were implemented as 
part of a Knime workflow. The script was encapsulated 
into an R snippet node which was positioned within a 
loop set to iterate across the dose-response data for 
each tumour-tissue pairing. In this manner it was 
possible to run the TD50 calculation script across a large 
number of dose-response curves. 

To reproduce the workings of Gold et al. (1986)10, the 
data set was split according to the curve notation that 
had been assigned in the CPDB. This separated the data 
into a number of groups and each of these groups was 
processed as recommended by the CPDB 
documentation, with the exception of the ‘0’ curve 
group, which was removed (Table 1). 

Table 1: Details of curve notation used to classify dose-response data in CPDB 

Group Definition Processing required Number of 
tumour-tissue 
data sets a 

* Two or more dose groups 
showing a linear curve 

None 8,180 

\ Two or more dose groups 
showing a downward 
departure from linearity 

Only the dose level displaying the highest tumour 
incidence was retained for TD50 calculation 

543 

/ Two or more dose groups 
showing an upward 
departure from linearity 

None 672 

Z Two or more dose groups 
showing upward or 
downward departure from 
linearity 

A column in the CPDB data file indicated the number of 
dose groups used when generating the TD50. The 
highest tested dose groups were removed until this 
number of dose groups was reached 

1,147 

0 No dose effect or only a 
single dose group 

Removed from the data set 12,179 

a Number within the whole data set before the removal of negative authors’ call rows 
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The CPDB also performed a summation step where a 
single TD50 value was generated per compound per 
species. We reproduced this per compound per species 
TD50 value using the same method as CPDB. Data from 
all tissue/tumour data sets, excluding those which did 
not demonstrate a positive tumourigenic response, 
which were assigned a ‘0’ curve notation, or which 
generated outlying TD50 values, were gathered and the 
most potent TD50 value within each study selected. 
These values were then grouped according to test 
animal species and the harmonic mean calculated, 
giving a single TD50 value per species per compound. In 
order to also produce a single, overall TD50 value per 
compound this method was modified by removing the 
species grouping and so calculating the harmonic mean 
from all applicable studies for each compound. 

The correlation between the R script-generated TD50 
values and those published within the CPDB was 
assessed using the Pearson correlation coefficient. This 
was calculated using the .corr() method in the Python 
programming language.17 

3. Results 

3.1. Distribution of TD50 values 

There is some doubt regarding the nature of the data 
used by Gold et al. (1984)11 in relation to the availability 
of lifetable data (see section 4). Subsequently, all data 
sets were processed using the second method described 
in section 2.2 (that is, the method reproducing the 
‘summary’ methodology, see supplementary appendix 
A). Henceforth, all reference to R script-derived TD50 
values refer to those generated using this method.  

After removal of the dose-response groups with either a 
negative authors’ call or a ‘0’ curve notation, a total of 
8,969 data points remained, each representing a unique 
combination of study ID, tumour site and tumour type. 
TD50 values were successfully calculated using the R 
script described above for 8,956 of these (leaving 13 
data points with no R-script generated TD50 value). The 
distributions of both the published CPDB and R script-
generated TD50 values are shown in Figure 1. 

 

 

Figure 1: Distribution of log TD50 values a) downloaded from the CPDB website and b) 

calculated by the R script 

The calculated TD50 values show a number of unusually 
high values which are isolated from the main 
distribution curve (log R script TD50 greater than 6). A 
similar set of outliers appears in the log CPDB TD50 
distribution but only in those data points removed due 
to a negative authors’ call or ‘0’ curve notation. These 
values represent impractically high dosing levels when 
applied. For example, a log TD50 value of 6 would equal 
a dose of 1,000,000 mg/kg, or a dose equivalent to the 
mass of the test subject. It appears that these values are 
generated where the methodology is unable to calculate 
a valid TD50 value from the available dose-response data. 
This generally occurred when the incidence of tumours 
remained low over all dose groups (for example, 0/28, 
0/29, 0/29, 1/27, 1/27, 2/29 and 2/29 animals with 
tumours/total animals) or where the number of animals 
in each dose groups was low (for example, 0/7, 0/9, 0/8, 
0/9, 2/5 animals with tumours/total animals). Both 
these examples were classified as ‘positive’ by the study 
author. In the latter case, it has been suggested that 
data such as this, where the dose response groups are 
too small to generate a point of departure metric, 
should be excluded from such calculations.4 The former 
case is more difficult to assess as part of a large 
validation exercise because it is possible that unusual 
tumours may result in a positive classification despite 
the low incidence; that is, there may be biological 
relevance that usurps either a human or statistical 
evaluation of the dose response data alone. 
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Removal of data sets where TD50 was calculated to be 
greater than 6, henceforth referred to as ‘outliers’, 
leaves 7,061 data sets with valid R script TD50 values. 
While the distribution of these is broadly similar to that 
of the CPDB values, it is also clear that the R script is not 
generating TD50 values which are an exact match of 
those from the CPDB. The median log TD50 for the R 
script-generated values (after removal of the outliers) 
was 2.11 compared to 2.13 for the CPDB values, with 
standard deviations of 1.09 and 1.35, respectively. 

This can also be observed when comparing the overall, 
per compound TD50 values obtained by analysing the 
data for all studies related to each compound as 
described in section 2.3. The distribution of these overall 
TD50 values is shown in Figure 2. 

 

Figure 2: Distribution of per compound log TD50 values a) calculated from CPDB TD50 

values and b) calculated from the R script TD50 values 

3.2. Correlation of TD50 values 

After removing the data sets which were 1) considered 
negative, 2) displayed ‘0’ curve notation, 3) had no R 
script-generated TD50 value, or 4) where the R script 
generated an outlier TD50 value, a total of 7,061 TD50 
values remained, covering 664 compounds.  This still 
includes compounds with no author call, or an equivocal 
call (removal of these resulted in per compound calls for 
486 test substances). The correlation between the CPDB 
and R script-generated TD50 values is illustrated in Figure 
3. The Pearson coefficient generated values of 0.926 
when comparing the individual dose-response TD50 
values (that is, those related to specific site and tumour 
combinations, Figure 3a) and 0.979 when comparing the 
overall, per compound TD50 values (Figure 3b). 

These indicate that although the calculated values do 
not exactly match those published by the CPDB, a good 
correlation between the two sets of values remains. 

Potential factors which may have led to these 
differences are discussed in section 3.4. 

 

Figure 3: Correlation between log TD50 values taken from CPDB and calculated by the R 

script a) for individual tissue/tumour dose-response data sets, and b) per compound 

3.3. Suitability of Data for TD50 Modelling 

The R script also performs an assessment as to whether 
the use of a linear model is appropriate for TD50 
modelling given the dose-response data available (see 
section 2.3). Using this measure, a total of 1,348 of the 
8,956 data points (15.1%) were considered ‘unsuitable’ 
for TD50 generation via the linear model. Of these 703 
(52.2%) generated an outlier value (for our purposes, a 
log R script TD50 greater than 6). This shows a much 
higher proportion of outliers than the 1,192 (15.7%) 
data points labelled as outliers in the 7,608 data points 
considered suitable for the use of a linear model. 

Figure 4 shows the correlation between log R script TD50 

and log CPDB TD50 separately for data points assessed as 
either suitable (figure 4a) or unsuitable (figure 4b) for a 
linear model. The distribution of the log TD50 values from 
unsuitable data points appears to cluster at a log TD50 
above 2 (100 mg/kg on the original scale). Removal of 
these unsuitable data points resulted in a Pearson 
correlation of 0.934, a slight increase on the 0.926 
observed across the whole data set. 

 

Figure 4: Correlation between log TD50 values taken from CPDB and calculated by the R 

script where the data set was a) suitable, or b) unsuitable for use in a linear model 
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Table 2: Effect of dose range on R script generated TD50 values 

Data Set Number of 
Data Points 

Number of 
Outliers (%) a 

Number of 
Unsuitable Data 
Points (%) b 

Pearson Coefficient Correlation 

Without 
Outliers 

Without Outliers 
and Unsuitable 

Low 4,722 417 (8.8) 51 (1.2) 0.923 0.924 

Medium 2,119 544 (25.7) 211 (13.4) 0.802 0.866 

High 2,115 934 (44.2) 383 (32.4) 0.668 0.753 
a Number of data points with a log R script TD50 >6 
b After removal of outliers 

3.4. Investigating Mismatch Issues 

3.4.1. Tested Dose Range 
To investigate the relationship between the dose range 

tested and the subsequent TD50 values, the data set was 

split into three subsets, labelled ‘low’, ‘medium’ and 

‘high’. These consisted of those studies with a highest 

tested dose below 100 mg/kg (‘low’), those with doses 

ranging from below 100 mg/kg to above 100 mg/kg 

(‘medium’), and those where all tested doses were 

above 100 mg/kg (‘high’). The 100 mg/kg value was 

chosen as the cut-off point as this appears to be the TD50 

value beyond which the majority of unsuitable data 

points were found. Supplementary appendix B shows 

the correlation of the log R script and log CPDB TD50 

values for the low, medium and high groups. Table 2 

gives the number of data points present in each group, 

together with the number of outliers, unsuitable data 

points and Pearson coefficient values. Both the number 

of TD50 outliers and the number of unsuitable data 

points (both before and after removal of the outliers) 

increased from the low to medium and high groups, with 

the high dose group showing the largest proportion of 

both. At the same time the correlation between the log 

R script and log CPDB TD50 values, as quantified by the 

Pearson coefficient, decreased, even after removal of 

outliers and unsuitable data points. This evidence 

suggests that there is greater uncertainty inherent in 

precise TD50 values where this equates to doses greater 

than 100 mg/kg. 

3.4.2. Lifetable v summary data 

The data downloaded from the CPDB website also 
included an indication as to which calculation method 
had been used by the CPDB when deriving the TD50 
values (that is, the lifetable or summary methods). 
Separate analysis was made of the relationship between 
the CPDB and R script TD50 values for each of the CPDB 
calculation methods, as illustrated by Figure 5. The R 
script method aligned much more closely with the TD50 
values produced by the summary method than with the 
lifetable method, showing a Pearson coefficient of 0.989 
(Figure 5b), compared to 0.891 (Figure 5a) from the 
lifetable data set. This confirms the validity of the R 
script methodology as being a faithful reworking of the 
principles used in the summary method, which gives 

 

Figure 5: Correlation between log TD50 values taken from CPDB and calculated by the R 

script where CPDB used (A) the lifetable calculation method or (B) the summary 

calculation method, and the effect of removing unsuitable data points from (C) the 

lifetable and (D) summary data sets 
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Table 3: Data set counts and Pearson correlation coefficient after removal of outliers in regard to curve notation grouping 

Data Set Number of 
Data Points 

Number of 
Outliers (%) a 

Number of 
Unsuitable Data 
Points (%) b 

Pearson Coefficient Correlation 

Without 
Outliers 

Without Outliers 
and Unsuitable 

* 6,841 1,702 (24.9) 557 (10.8) 0.929 0.939 

\ 412 43 (10.4) 33 (8.9) 0.916 0.919 

/ 652 66 (10.1) 18 (3.1) 0.914 0.926 

Z 1,051 84 (8.0) 37 (3.8) 0.920 0.922 
a Number of data points with a log R script TD50 >6 
b After removal of outliers 

confidence in its use to determine TD50 values for new 
data sets. 

Figure 5 also shows the effect of removing those data 
points which were judged as being unsuitable for linear 
modelling (5c and 5d). 11.8% of the lifetable group were 
labelled as unsuitable, compared to 4.6% of the 
summary group. While the proportions of these 
unsuitable data points are relatively low, their removal 
had a noticeable effect on the correlation between the 
log R script and log CPDB TD50 values, especially in the 
summary data set (figure 5d). This removal of unsuitable 
data points resulted in Pearson coefficients of 0.899 and 
0.995 for the lifetable and summary data sets, 
respectively. 

3.4.3. Dose-response group curve 

The curve notation provided by the CPDB was used to 
separately analyse the TD50 data generated in relation to 
the groups described in Table 1. No demonstrable 
difference in the relationship between log CPDB TD50 
and log R script TD50 values was observed (see 
supplementary appendix C). The number of data sets, 
outliers and unsuitable data points, together with the 
Pearson coefficients for log R script vs log CPDB TD50 
values are given in Table 3. Given the similarity in 
Pearson coefficient values, it is unlikely that the 
assignment of data points to these different groups is a 
significant factor in the applicability of the TD50 model. 

In the original CPDB data set there were a number of 
dose-response sets where the generation of TD50 values 
is questionable. The use of the curve notation highlights 

this, with category ‘0’ being listed as having either no 
dose-related effect or containing only a single dose 
group. However, 5,324 data sets with a ‘0’ curve 
notation showed a log CPDB TD50 of less than 6, 
indicating that, despite acknowledging these data points 
as displaying no dose-response relationship, CPDB 
continued to calculate TD50 values from the tumour 
incidence data. 

Similarly, groups \ and Z required the removal of dose 
points from the tumour incidence data before applying 
the TD50 calculation method. This suggests that the raw 
data generated by the study was unsuitable for TD50 
generation and brings the validity of the subsequent 
TD50 values into question. The R script was rerun against 
the \ and Z curve groups without first applying the pre-
calculation processing. The resultant TD50 values 
showed a higher proportion of outliers (23.2%) and 
unsuitable data points after removal of outliers (14.9%), 
compared to the same tumour incidence sets run with 
the pre-processing modifications (8.7% and 5.2%, 
respectively). Despite this, only a relatively small 
decrease in the Pearson coefficient correlation between 
log R script and log CPDB TD50 values was observed after 
removal of the outlier and unsuitable data points (0.891 
without modifications, compared to 0.921 with 
modifications). 

This, coupled with the difficulty in replicating the 
method by which the CPDB curve notation was 
generated, is problematic when considering the 
reproducibility of the TD50 values.
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Table 4: Data set counts and Pearson correlation coefficient after removal of outliers, with regard to test animal species 

Data Set Number of 
Data Points 

Number of 
Outliers (%) a 

Number of 
Unsuitable Data 
Points (%) b 

Pearson Coefficient Correlation 

Without 
Outliers 

Without Outliers 
and Unsuitable 

Rat 4,797 967 (20.2) 166 (4.3) 0.940 0.941 

Mouse 4,032 914 (22.7) 477 (15.3) 0.906 0.920 
a Number of data points with a log R script TD50 >6 
b After removal of outliers 

3.3.4. Species 

The correlation between CPDB and R script TD50 values 
was also examined according to the species of test 
animal used. Analysis was performed on the two most 
common species; rat and mouse. Other species were 
present but the number of studies available was too 
small to allow for meaningful analysis. Information 
regarding the number of data sets, outliers and 
unsuitable data points, and the Pearson coefficient 
(after removal of outliers and of outliers and unsuitable 
data points) between log TD50 values from the CPDB and 
the R script, are shown in Table 4.  

There appeared to be no major difference in correlation 
between the two species (see supplementary appendix 
D). Both displayed similar profiles compared to the 
complete data set, with a greater correlation between 
the CPDB and R script values for higher potency data 
sets.  

4. Discussion 

The results indicate that the TD50 values generated using 
the R script supplied alongside this manuscript correlate 
with, but do not exactly match, those contained within 
the CPDB. It is important to acknowledge here that all 
TD50 values are models of the dose-response data, and 
so there is no single, ideal TD50 value for a given data set, 
there are only values generated through different 
modelling techniques. That said, the aim was to recreate 
the methods described by Gold et al., so it was a surprise 
to find discordance at a level above what might be 

expected through occasional errors and deviations from 
protocol. 

One of the most influential factors, as demonstrated by 
Figure 5, is the use of a lifetable model. Questions 
remain about the exact nature of the lifetable 
calculation method. The methodology described in the 
CPDB requires tumour incidence data from a number of 
time points in order to assess how the probability of 
tumorigenesis develops throughout the lifespan of the 
test subjects. However, the standard long-term rodent 
assay protocol, typically used in carcinogenicity studies, 
does not provide this information. The data sources 
given by the CPDB which relate to the lifetable data set 
predominantly indicate that this data originated with 
the NTP studies. However, the standard protocol 
described by the NTP details a long-term treatment 
ending in a terminal sacrifice without routine interim 
sacrifices.18 While interim sacrifices and sacrifice of 
moribund animals are discussed, these do not form part 
of the standard carcinogenicity testing protocol. This 
raises the question of which data were used as part of 
the lifetable method. Taking tumour incidence data 
from moribund or spontaneously dead animals would 
not be sufficient for the requirements of the lifetable 
method. Another possibility could be that the CPDB 
group had access to more detailed data than has been 
subsequently made available in the download files. 
However, this would cause issues with the 
reproducibility of the TD50 values generated from such 
data. In any case, the difference in calculations (and 
input data) explains the differences between TD50 values 
being generated by the R script and the CPDB, where the 
latter used the lifetable method. The remaining 
summary data shows a much higher correlation 
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between the two methods, indicating that the former is 
fit-for-purpose for the assessment of new data. 

Although the effect on discordance was not strong as 
judged by correlation coefficients, the use of the curve 
notation described by the CPDB is problematic. This is 
because the method by which the CPDB assigned a curve 
to each data set is difficult to reproduce, as it appears to 
be based on expert judgment. Thus, the assignment of a 
curve to new data being assessed may be done in an 
inconsistent manner to those performed previously. 
More fundamentally, the practice of altering the data 
sets to be more amenable to TD50 calculation is likely to 
be a larger factor in reproducibility issues for several 
reasons. The removal of inconvenient data points from 
a data set in order to produce a clearer dose-response 
curve may lead to the resultant TD50 values not being 
fully representative of the test compound’s 
tumourigenic potential. The worst-case scenario is 
where higher doses lead to plateaus of activity at less 
than 50% – removal of these higher dose data points will 
give an inaccurate estimate of potency (better, in this 
case, to use an alternative metric). This will then have 
the knock-on effect of adversely influencing any metric 
generated from the TD50 values. A more likely scenario 
within the CPDB is where the removal of some of the top 
dose data points leads to a reasonable estimate of TD50, 
but no record is kept of the data points that were 
removed, again preventing reproducibility. A better 
alternative may be to recognise those dose-response 
data sets unsuited to TD50 calculation and remove them 
or use an alternative metric for point of departure – 
emphasising the requirement for expert review of the 
data. 

The use of the test against a constant relationship in the 
R script has shown a reproducible way of assessing the 
suitability of the data for the linear model-based TD50 
calculation. Data sets designated as unsuitable were 
shown to have a higher incidence of outliers with a log R 
script TD50 value greater than 6, and a poorer correlation 
with the published CPDB TD50 values. The test also 
revealed a total of 1,338 data sets that were considered 
unsuitable for TD50 calculation, but which have valid TD50 
values (that is, log TD50 less than 6) as published by the 
CPDB. A more sophisticated approach for these data 
points would be to use modelling to generate dose-

response curves that are more amenable to point of 
departure calculations. 

From this analysis it is possible to infer a set of 
recommendations to assess the applicability of new data 
for the use of this TD50 modelling technique.  

 When taking a result from a study published in 
the literature, data points with no tumorigenic 
response, as judged by the study authors, 
should not be considered for TD50 modelling. 
The CPDB included 2,574 data points with a 
negative authors’ call and a log CPDB TD50 value 
less than 6. (section 3.1); 

 Studies with one only dose group should not be 
used for TD50 modelling; Bercu et al., (2018)6 
suggested a minimum of three dose groups be 
present; 

 Additional scrutiny should be applied to data 
sets where the R script described in this paper 
indicates that the linear model should not be 
applied (section 3.3) or where the calculated 
TD50 exceeds what would be a reasonable 
physiological value (section 3.1). 

 More generally, when the calculated TD50 value 
exceeds doses of 100 mg/kg, the lower 
correlation between the methods described 
here (see section 3.4.1) indicate increased 
uncertainty in the precise values. 

Where these parameters indicate the data as being unfit 
for TD50 modelling an expert review should be 
undertaken to determine the biological relevance of the 
dose-response data and suggest possible alternative 
point-of-departure models. 

The difficulties encountered in reproducing previous 
TD50 calculations underline the importance of having 
documented and hard-coded algorithms for generating 
metrics which are actively used in human risk 
assessments. This work has created just that, in an R 
script that can be widely shared and re-used. A further 
outcome of this work has been the generation of a new 
TD50 data set. The Lhasa Limited Carcinogenicity 
Database provides a freely-available, searchable 
interface through which the data can be accessed.19 All 
data downloaded from the CPDB has been transferred 
to this new system. 

Of the TD50 values calculated through the R script, all 
those with a log TD50 value greater than 6 have been 
removed from the published data set. The dose-
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response information is still available but no newly 
calculated TD50 values have been displayed in 
accordance with the above inference that these data 
sets are not suitable for TD50 calculation. It should be 
noted that no attempt has been made to assess the 
quality and relevance of the study data, as this would 
have confounded comparisons with the CPDB. However, 
the creation of a reproducible methodology for 
calculating TD50 values supports future work for the 
refinement of, and addition to, the CPDB. The TD50 
values published in the CPDB remain available in a 
separate field within the new database, in order to allow 
easy comparison with the newly generated values. 

Conclusions 

Overall, an R script has been written and shared in 
order to provide a reproducible, documented and 
validated method for generation of TD50 values 
which can be used for risk assessment, 
benchmarking of alternative metrics or as part of 
efforts to re-evaluate the TTC for carcinogenicity. 
This is an aid for point of departure calculations 
based on dose-response data sets and emphatically 
does not negate the careful selection of studies or 
close examination of dose-response data (for 
human relevance of tumours for example) before 
generating such metrics. 
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