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Abstract Over geological timescales, mountain building or orogenesis is associated with increased

weathering, the drawdown of atmospheric CO2, and global cooling. However, a multimillion‐year delay

appears to exist between peaks in low‐latitude mountain uplift and the maximum extent of Phanerozoic

glaciation, implying a more complex causal relationship between the two. Here we show that global silicate

weathering can be modulated by orogeny in three distinct phases. High, young mountain belts experience

preferential precipitation and the highest erosion. As mountains are denuded, precipitation decreases, but

runoff temperature rises, sharply increasing chemical weathering potential and CO2 drawdown. In the final

phase, erosion and weathering are throttled by flatter topography. We conclude that orogeny acts as a

capacitor in the climate system, granting the potential for intense transient CO2 drawdown when mountain

ranges are denuded; the mechanism suggests such a scenario potentially happening 10–50 × 106 years in

the future.

Plain Language Summary Over timescales of tens of millions of years or more, plate tectonics

can raise large mountain ranges. CO2 can be removed from the atmosphere through a complex series of

processes involving the weathering of rocks, which depends on processes such as rainfall, which in turn is

affected by the presence of mountains. The result is that mountain ranges are associated with a reduction of

atmospheric CO2 and global cooling on these very long timescales. An analysis of geological data suggests

a multimillion‐year delay between peaks in mountain range uplift at low latitudes and the maximum extent

of glaciation over the last 400 × 106 years. Our manuscript explains the delay using two numerical or

computer models: a climate and circulation model and a geochemical model that simulates weathering

processes. We show that weathering, and the implied reduction of atmospheric CO2, happens most intensely

when mountain ranges are eroded, because the ability of weathering to remove CO2 depends not just on

precipitation but also on the temperature of river runoff. Our mechanism intriguingly suggests such a

scenario potentially happening 10‐50 × 106 years in the future associated with projected changes to the

height of the Tibetan plateau.

1. Introduction

Over geological timescales, atmospheric CO2 concentration is stabilized by a negative feedback in which the

higher temperatures and precipitation associated with higher CO2 increase the weathering rate of silicate

rocks, ultimately forming marine sedimentary carbonates which sequester atmospheric CO2 (Maher &

Chamberlain, 2014; Raymo & Ruddiman, 1992; Walker et al., 1981). The stable concentration of CO2 is

the result of a balance between the tectonic input rate of CO2 and its removal by silicate weathering

(Berner, 2004), and it is broadly understood that changes in CO2 concentration on timescales of 1–100

Myr over the Phanerozoic Eon (the last 541 × 106 years) have been driven by both variation in CO2 degassing

rates and the amplification of silicate weathering due to changes in paleogeography, lithology, and biotic

enhancements (Berner, 2004; Goddéris et al., 2014; Royer, 2014).

The record of Phanerozoic glaciation shows distinct “icehouse” periods in which abundant glacial debris are

found (Figure 1, blue bars). For the majority of these icehouse events, the polar “ice line” (e.g., ice cap

terminal latitude) has been at >60°, while for two major events, the ice line has advanced to ≤40°. The first

of these events lasts for approximately 10 Myr and occurs at the apex of the Late Paleozoic Ice Age (LPIA) at

approximately 290–300 Myr (Cather et al., 2009; Isbell et al., 2012), while the second is occurring during the

present Cenozoic Icehouse. The relatively short duration of these major events is difficult to explain via
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changes in the CO2 input rate, which typically happen over a much longer

timeframe (e.g., McKenzie et al., 2016).

Glaciation during the LPIA and late Cenozoic has both been linked to

low‐latitude mountain building events—the Hercynian and Himalayan

orogenies, respectively (Goddéris et al., 2017; Raymo & Ruddiman,

1992)—and in both cases, there is a clear relationship over many tens of

million years between mountain building at low latitudes, low CO2, and

cold climate (Figure 1). However, on shorter timescales, it is not clear that

either major phases of glaciation or lowest levels of CO2 correspond

directly to the uplift of low‐latitude mountains. Rather, there is a sugges-

tion that major phases of glaciations lag behind the maximum extents of

high low‐latitude mountains by some 10–30 Myr. Figure 1a shows a com-

pilation of atmospheric CO2 estimates using paleosol isotope measure-

ments from the database of Royer (2014), updated in 2017 to include

more recent records (Montañez et al., 2016). It shows that the major ice

line advance during the LPIA (Isbell et al., 2012) and the minimum in

CO2 concentration occur at 300–290 Ma, in the Early Permian

(Figure 1a), whereas digital elevation models (Scotese & Wright, 2018)

and geological assessments (Lardeaux et al., 2001) estimate maximum

Hercynian range elevation approximately 20–30 Myr earlier, at around

320Ma. 87Sr/86Sr ratios (McArthur et al., 2012) and global sediment abun-

dance (Hay et al., 2006) also suggest a maximum in global erosion at 320 Ma. Additionally, there is a sugges-

tion that an initial minimum in CO2 concentration at 330 Ma actually precedes maximummountain extent.

It should be noted that while proxy CO2 measurements are inherently uncertain, the qualitative trend of

CO2 decline from ~320 to 300 Ma is clearly defined beyond this uncertainty (Montañez et al., 2016).

A similar pattern might be inferred over the Cenozoic, although the ongoing nature of glaciation and

mountain building, combined with biases that occur when quantifying erosion rates in the immediate

geological past (Willenbring & Blanckenburg, 2010) make assessment of the present orogenic cycle diffi-

cult. Nevertheless, current peak glaciation and low CO2 in the Cenozoic do appear to lag significantly

behind the peak in low‐latitude mountain uplift (Scotese & Wright, 2018; Vérard et al., 2015; See

Figure 1). Due to uncertainties in reconstructions and proxies, the precise relationship between the timing

of mountain uplift and low‐latitude glaciation cannot be proven conclusively. Nevertheless, we suggest

that there is sufficient inconsistency between records of low‐latitude mountain building, CO2 concentra-

tion, and severe icehouse climates to require a more detailed investigation of how an orogenic cycle

affects the key processes that control weathering, especially for what such an investigation may imply

for weathering rates and CO2 concentration in the next few tens of million years, since the long‐term

future is of great interest to those studying more general aspects of planetary habitability, such as the life

span of the biosphere, which has potential implications for the abundance of complex life in the galaxy

(e.g., Rushby et al., 2018).

Chemical weathering cannot occur without material supply from physical erosion, as is demonstrated in

slowly eroding, transport‐limited catchments (West et al., 2005), and approximately half of present‐day che-

mical weathering occurs in and around rapidly eroding mountainous areas (Gaillardet et al., 1999; Hilley &

Porder, 2008). Silicate weathering rates are variably dependent on local temperature, runoff rate, and degree

of soil shielding (or depth of the weathering zone). Physically based equations for estimating silicate weath-

ering at the catchment scale have been derived, validated against field data (Gabet & Mudd, 2009; West,

2012; West et al., 2005), and applied to present day climate (Hartmann et al., 2014), as well as paleoclimate

models having resolutions of approximately 5–7.5° in the horizontal (Goddéris et al., 2017), but have not

been coupled to higher‐resolution climate models that better simulate orographic enhancement of precipi-

tation, and hence changes in hydrology, over an individual orogenic cycle. In addition, it has been assumed

previously that physical erosion is a strong control on chemical weathering rates in mountainous areas

(Goddéris et al., 2017), whereas observations and theoretical modeling point to this relationship only being

important in lowlands (transport limitation; West et al., 2005; Gabet & Mudd, 2009; West, 2012).

Figure 1. CO2, glaciation, and low‐latitude mountains. Proxy atmospheric

CO2 from combined paleosol measurements (Montañez et al., 2016; Royer,

2014), (a) with uncertainty determined as 16th and 84th percentiles and (b)

timeline of fraction of 30°N–30°S land above 1‐km elevation (Scotese &

Wright, 2018). Both timelines are shown against glacial periods as blue bars

(as compiled by Cather et al., 2009), the dark blue representing the most

severe glaciationwhere ice caps reached 40° of latitude. The thick red arrows

represent the estimated delay between maximum elevation and maximum

glaciation.
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In this paper we identify a mechanismwhich links mountain building, weathering, and CO2, using the LPIA

as a case study. Precipitation, runoff, and erosion are enhanced over orography (Maher & Chamberlain,

2014; West, 2012), but chemical weathering is limited by lower temperatures at high altitudes (Riebe

et al., 2004), resulting in three distinct phases for chemical weathering: an increase as mountain building

occurs, a decrease whenmountain height rises beyond a certain level, and an increase to its highest level tens

of million years after peak topographic height, when mountains have been somewhat denuded, providing a

significant source of erodible material and higher runoff temperature, while still allowing elevated precipi-

tation. The resulting effect on CO2 is to produce two dips in concentration—before and after peak topo-

graphic height, with the latter dip being the significantly more pronounced one which can allow low‐

latitude glaciation.

We demonstrate the proposed mechanism using a combination of physical climate and geochemical models.

The physical climate is represented by the Intermediate Global Circulation Model 4 (IGCM4) (Joshi et al.,

2015), which simulates the large‐scale global atmospheric circulation and hydrological cycle, and has been

extensively employed in studies of present‐day tropical circulation and climate (see Supporting Information

S1 for more details). The IGCM4 has a horizontal resolution of 64 × 128 (“T42”), exceeding the 40 × 48

(“R15”) resolution of FOAM, which has previously been applied to weathering during the LPIA (Goddéris

et al., 2017). The IGCM4 also performs well when compared to present‐day observed precipitation, as shown

in Supporting Information S1. The model is set up in three configurations (denoted S, M, and H, for short,

medium, and high, respectively), each with paleogeography broadly representative of the Permo‐

Carboniferous (Scotese & Wright, 2018; ~300 Ma; Figure S1), as this is the clearest example of a single

low‐latitude orogeny. The only difference between each configuration is that the maximum height of the

mountain range is varied to represent different states of denudation, with the highest being consistent

Figure 2. Time‐averaged climate in three IGCM4 runs: H (a, b), M (c, d), and S (e, f). (a), (c), and (e) are precipitation

(mm/day); (b), (d), and (f) are surface temperature (°C). The land‐ocean boundary is shown by the thick black contour.
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with previous work (Goddéris et al., 2017), while the continental configuration remains constant. The

present work is therefore isolating the effects of mountain range height on weathering, rather than

reconstructing climate history at this time, as was done in Goddéris et al. (2017). The ocean model is a so‐

called q‐flux slab.

Each configuration is run for a variety of CO2 levels. Silicate weathering rates associated with the changes in

climate during an orogenic cycle are parameterized using the model of West (2012) which takes runoff

volume and temperature from the IGCM4. The weathering model uses physically based parameterizations

of the combined effects of local temperature, runoff, and erosion rates to estimate the chemical silicate

weathering rate. We choose this model as, with appropriate parameter choices, it has been shown to fit a

broad range of catchment data (Maffre et al., 2018; West, 2012), and we further validate it here against a com-

pilation of present day major world rivers (Gaillardet et al., 1999; see Supporting Information S1). Erosion

Figure 3. Time‐averaged surface hydrology in three IGCM4 runs: H (a, b), M (c, d), and S (e, f). (a), (c), (e) are precipitation minus evaporation (mm/day); (b), (d),

and (f) are total silicate weathering (10
7
t·km

−2
·year

−1
) over land. The land‐ocean boundary is shown by the thick black contour.
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rates are calculated from local elevation using a previously derived global

relationship (Montgomery & Brandon, 2002), which relates the erosion

rate to mean local relief (see Supporting Information S1). See

Supporting Information S1 for more details of both models.

2. Results

Figure 2 shows time‐averaged precipitation and surface temperature from

the IGCM4 in Runs H, M, and S over the land surface at low latitudes. In

all three cases, a band of intense precipitation can be seen at low latitudes,

which is analogous to the present‐day intertropical convergence zone.

While the amount of precipitation over the ocean is similar in all cases,

the precipitation over land varies very strongly according to the height

of the topography. Runs H and M (Figures 2a and 2b) have intense preci-

pitation over land peaking above 10 mm/day on the flanks of the moun-

tains, while Run S (Figure 2c) has a much weaker and broader band of

land precipitation, peaking at 3 mm/day away from the coasts. The most

intense precipitation falls on the flanks of the mountains, where the sur-

face temperature is far lower than the sea‐level value; in Run H, the most

intense precipitation falls onto a surface that is up to 20 K colder than in

Run S (Figures 2b and 2f), while in Run M, the intense band of precipita-

tion is in an area that is up to 10 K colder than in Run S (Figures 2d

and 2f).

The differences in precipitation and temperature lead to differences in

runoff and chemical weathering. Our model run for High mountains

(H) has relatively low surface evaporation at the location of the precipita-

tion band because it lies at higher, colder altitudes than in Run M, mean-

ing that the remaining runoff is higher (Figures 3a and 3c). However,

Figures 3b and 3d show a clear increase in total silicate weathering flux

from Case H to Case M (i.e., mountain denuding) of ~20–50%, despite

decreases in both runoff and erosion associated with mountain height.

In other words, the effect of higher temperature in Run M dominates

the weathering response. As expected, Run S displays even lower rainfall

(Figure 2e) and a higher surface temperature, leading to more evapora-

tion, reduced runoff, and reduced chemical and physical weathering

(Figure 3e). The difference in weathering between Runs M and H might in reality be enhanced further by

very high erosion rates actually inhibiting weathering (Gabet & Mudd, 2009).

The global implications of these results are examined in Figure 4a, which shows globally integrated weath-

ering rates for the different IGCM runs against atmospheric CO2 concentration. There is a clear nonmono-

tonic relationship between weathering and orography: The largest weathering rates for a given CO2

concentration are in Case M for all values of pCO2 (purple line). Figure 4b shows the estimated stable level

of atmospheric CO2 for a fixed estimate of the assumed global weathering flux required to balance degassing

(taken as 1.2 × 108 t/year) and schematic arrows showing when the key geophysical, climatic, and chemical

processes are maximized as the mountain range is eroded away. Equilibrium CO2 is around ~550 ppmv at

maximum mountain height (i.e., Case H) and is reduced to ~250 ppmv after partial denudation (Case M),

before increasing back to ~500 ppmv oncemountains are denuded completely (Case S). This behavior is con-

sistent with the dynamics of CO2 concentration between ~320 and ~290 Ma (Montañez et al., 2016; Royer,

2014), during the initial denudation of the Hercynian range.

3. Discussion

Whether peak chemical weathering precedes or lags behind, peak erosion depends on differences in weath-

ering between mountain uplift and denudation periods. Three mechanisms suggest that the former phase

permits less integrated chemical weathering than the latter. First, the latter is simply longer‐lasting than

Figure 4. (a) Global chemical weathering rate (in units of 18
8
t/year) versus

CO2 inferred from the weathering model forced by IGCM output (see

Methods S1). The mountain configurations are H (blue), M (purple), and S

(orange). (b) Timeline of CO2 concentration required for atmospheric sta-

bility assuming a required weathering rate of 1.2 × 10
8
t/year in the “denu-

dation” phase, as the mountain range is eroded fromH, throughM, to S. The

colored bars beneath (b) show where runoff (blue), erosion (brown), and

runoff temperature or potential chemical weathering (red) are maximized,

causing a maximum in total weathering and CO2 drawdown (purple).
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the former (Abbott et al., 1997), although it should be noted that uplift timescales are still sufficiently long to

allow the silicate weathering feedback to equilibrate atmospheric CO2. Second, when weathering is kineti-

cally limited (i.e., physical weathering > chemical weathering), there must be accumulation of physically

weathered material in the system, either as mobile regolith or as sedimentary deposits (Gabet & Mudd,

2009; Hilley et al., 2010), some of which will be available for subsequent chemical weathering. This contrasts

with initial uplift where surface terrains are more likely to need physical erosion before fresh material is

available to be weathered. Furthermore, it has been suggested that in such old surfaces, weathering is also

inhibited by greater regolith thickness (Goudie & Viles, 2012). When fresh surface is finally exposed, the

steep, “spiky” terrain that emerges may strongly limit silicate weathering, due to very high erosion rates,

and favor dissolution of carbonate rather than silicate minerals, leading to no net long term CO2 drawdown

(Goudie & Viles, 2012). Third, while glaciers may lead to enhanced weathering through scour‐related pro-

cesses (Anderson et al., 1997), large ice caps will tend to suppress weathering, while retreating glaciers

may lead to enhanced carbonate and silicate weathering of glacial deposits (Anderson et al., 1997; Kump

&Alley, 1994), suggesting that the net effect of glaciation of high mountains is to pause chemical weathering

while accumulating weatherable material.

Figure 1 does strongly suggest that prior to both of the deep glaciations considered here, there is an ear-

lier period of CO2 drawdown, coincident with initial uplift, but less severe than that following ~20 Myr

after peak mountain height, with a rebound of CO2 in between, associated with the period of peak moun-

tain height. This is consistent with the idea that peak weathering will happen at intermediate erosion

rates (Carretier et al., 2014), but the potential for chemical weathering and thus deep glaciation is greater

as mountains denude. Present‐day global erosion rates in tectonically inactive regions are around 0.1

mm/year (Montgomery & Brandon, 2002), implying 1,000 m of mountain eroded over a timeframe of

~10 Myr. Although the Tibetan Plateau lies at a higher latitude than the LPIA‐era Hercynian range,

the intense monsoonal precipitation (and weathering) associated with this range is important when con-

sidering global weathering (see Figure S6). It is therefore possible that in the next 10–50 Myr, the erosion

of the Himalayas, and associated discharge of the weathering capacitor, may overwhelm the negative

feedbacks in the global carbon cycle, causing a severe icehouse period to develop in a similar manner

to the LPIA.

We conclude that a delayed, climate‐controlled capacitor may have allowed low‐latitude mountain building

to store weatherable silicates at high altitudes which are later discharged, greatly reducing atmospheric CO2

concentrations and establishing icehouse climates for periods of several tens of million year. The conceptual

picture (see Figure 4b) can explain the potential inconsistency between periods of low‐latitude mountain

building in the geological record and CO2 drawdown (see Figure 1). It also suggests that CO2 drawdown

may proceed in a transient pulse having a nonmonotonic dependence on mountain height, explaining

why such events are difficult to replicate in current zero‐dimensional biogeochemical models (Bergman

et al., 2004; Berner, 2006). Data sets with enhanced time resolution on these long timescales are needed in

order to test this hypothesized mechanism. While our results are most directly applicable to the LPIA, it is

possible that future discharge of the weathering capacitor may cause a similar icehouse period to develop

in the next 10–50 Myr.
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