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Tom Stratton1, ∗ and Sam R. Dolan1, †

1Consortium for Fundamental Physics,

School of Mathematics and Statistics,

University of Sheffield, Hicks Building,

Hounsfield Road, Sheffield S3 7RH, United Kingdom
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Abstract

We study the time-independent scattering of a planar gravitational wave propagating in the curved space-

time of a compact body with a polytropic equation of state. We begin by considering the geometric-optics

limit, in which the gravitational wave propagates along null geodesics of the spacetime; we show that a

wavefront passing through a neutron star of tenuity R/M = 6 will be focussed at a cusp caustic near

the star’s surface. Next, using the linearized Einstein Field Equations on a spherically-symmetric space-

time, we construct the metric perturbations in the odd and even parity sectors; and, with partial-wave

methods, we numerically compute the gravitational scattering cross section from helicity-conserving and

helicity-reversing amplitudes. At long wavelengths, the cross section is insensitive to stellar structure and,

in the limit Mω → 0, it reduces to the known low-frequency approximation of the black hole case. At higher

frequencies Mω & 1, the gravitational wave probes the internal structure of the body. In essence, we find

that the gravitational wave cross section is similar to that for a massless scalar field, although with subtle

effects arising from the non-zero helicity-reversing amplitude, and the coupling in the even-parity sector

between the gravitational wave and the fluid of the body. The cross section exhibits rainbow scattering

with an Airy-type oscillation superposed on a Rutherford cross section. We show that the rainbow angle,

which arises from a stationary point in the geodesic deflection function, depends on the polytropic index.

In principle, rainbow scattering provides a diagnostic of the equation of state of the compact body; but, in

practice, this requires a high-frequency astrophysical source of gravitational waves.
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I. INTRODUCTION

The first direct detection of gravitational waves (GW) from a binary black hole (BH) inspiral

was announced in 2016 [1], and the first catalogue of Gravitational Wave Transients (GWTC-1)

was released in late 2018 [2]. The catalogue comprises ten confirmed transient events, of which

nine are consistent with the GW signal generated by a binary black hole merger [3–6]; and one

(GW170817) is consistent with that generated by a binary neutron star inspiral [7]. The latter was

accompanied by a series of observations across the electromagnetic spectrum [8].

Gravitational waves (GWs) are generated by highly energetic astrophysical processes, such as

binary mergers and supernovae. GWs are subject to negligible scattering from the intervening dust,

gas and plasma between the source and Earth, due to their weak coupling to the matter sector.

GWs provide observers with relatively direct access to the physics at the heart of the source; in

contrast, electromagnetic signals are much more strongly affected by intervening matter. On the

other hand, by the equivalence principle, GWs feel the gravitational influence of matter/energy

sources, and so they can be significantly scattered in strongly-curved regions of spacetime, such as

near black holes or neutron stars.

A gravitational wave scattered by a neutron star bears the imprint of its gravitational potential.

Consequently, observations of scattered waves could, in principle, probe and inform models of the

Equation of State (EoS) of nuclear matter under immense pressures. In practice, such scattered

waves would be challenging to observe.

This study aims to improve our theoretical understanding of gravitational wave scattering in a

idealised scenario, in which a monochromatic gravitational wave of circular frequency ω impinges

upon a spherically-symmetric compact body of radius R and mass M in vacuum. We model the

compact body using three different polytropes, with indices n ∈ {0, 0.5, 1} (see below). We focus

particularly on computing the scattering cross section dσ/dΩ, i.e., the intensity of the flux scattered

to infinity as a function of scattering angle.

The time-independent scattering of waves by a black hole has received attention since 1968,

following the work of Matzner [9] and, later, Sanchez [10]. The work in Refs. [11–13] culminated in

a 1988 monograph by Futterman, Handler and Matzner [14]. In recent years, black hole scattering

calculations have been made by Crispino and coworkers [15–19] and several other groups [20–27].

The idealised scenario of time-independent scattering by compact objects has also received some

recent attention [28, 29] (see also related work [30–32]).

The scattering process depends, in part, on the compactness of the scattering body, described

here by the (dimensionless) tenuity Rc2/(GM) (henceforth we use units such that G = c = 1) and

the index n of the polytropic equation of state, with n = 0 corresponding to a star of constant

density. Some characteristic values include R/M ∼ 6 for neutron stars, ∼ 1.4× 103 for a massive

white dwarf (e.g. Sirius B), ∼ 9.4×103 for a typical white dwarf, 4.7×105 for the Sun, and 1.4×109

for Earth.

In Ref. [28] (henceforth Paper I) we studied the scattering of a scalar field Φ, governed by

the Klein-Gordon equation 2gΦ = 0, by a spherically-symmetric star of constant density (n = 0)

and mass M . We found that, for moderate-to-high frequencies Mω & 1, the scattering process
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FIG. 1. Formation of a cusp caustic on a neutron star spacetime. A congruence of null geodesics passing

through a compact body are shown as thin grey lines; the successive wavefronts, propagating from left to

right, are shown as alternating blue and purple solid lines; and the cusp caustic appears as a dotted red line.

may be understood via semi-classical arguments, with reference to a congruence of null geodesics

which pass through the star (see Figs. 1–3). In Paper I, we conjectured that gravitational waves

would, in essence, behave in a qualitatively similar fashion to massless scalar waves, with additional

features relating to spin transport, helicity-reversal and coupling to matter degrees of freedom. We

investigate this conjecture here, building on the foundation laid in the works of Ipser and Price [33];

Kojima [34]; Allen et al. [35]; Martel & Poisson [36]; Barack & Lousto [37]; and others [38–42].

Key features of the scattering process, in the semiclassical picture, are summarized in Figs. 1,

2 and 3. Figure 1 shows a congruence of null geodesics, initially parallel, encountering a constant

density star of tenuity R/M = 6. The rays come together at a cusp caustic, which may be inside

or outside the neutron star. Beyond the cusp, each wavefront has multiple segments. An observer

on-axis downstream would encounter the wavefront in two parts; arriving first, the segment that

scattered from the weak-field potential, and later, due to time dilation, the segment that passed

through the central potential. Figure 2 shows that the position of the cusp caustic, and the rainbow

angle θr of the wedge, depends on the polytropic index n of the matter distribution. The caustic

moves closer to the centre, and the wedge gets wider, as the body becomes more centrally dense

(see also Fig. 1 in Paper I and Fig. 2 in Ref. [43] for higher tenuities). Figure 3 shows the wave

scattering pattern for a scalar field Φ at moderate (Mω = 1) and high frequencies (Mω = 8). In

the latter case, significant amplification at the cusp caustic is evident.

Key features of the scattering cross section dσ/dΩ may be understood with reference to the
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FIG. 2. A congruence of null geodesics passing through a spherical compact body of tenuity R/M = 6 with

a polytropic equation of state index n = 0 (a), n = 0.5 (b), and n = 1 (c). The cusp caustic forms near the

surface of the body for n = 0, and deeper inside the body for higher polytropic indices. Asymptotically, the

cusp caustic defines a rainbow wedge with rainbow angle (a) θr = 59.6◦, (b) θr = 66.6◦, (c) θr = 79.7◦.

(a) (b)

FIG. 3. A unit amplitude plane wave consisting of a scalar field being scattered by a compact body (outline

in black). The compact body is a polytrope with index n = 1 and R/M = 6. The incident wave has coupling

(a) Mω = 1 and (b) Mω = 8. The amplitude can be increased by a factor up to approximately 4 and 20

for Mω = 1 and Mω = 8 respectively. For the higher frequency case, it is just possible to make out the

rainbow scattering feature of a primary peak at θ ≈ 79.7◦.

deflection function Θgeo(b), where b is the impact parameter of a ray (a null geodesic). The

‘classical’ scattering cross section, dσ
dΩ

∣

∣

cl
= b

sin θ |Θ′| with Θ′ = dΘ
db , is singular at the poles (θ = 0,

π), and also at stationary points of the deflection function, if they exist. In semiclassical theory

[44, 45], the singularities soften into familiar interference effects: glories arise near the poles, and

stationary points in the deflection function generate rainbow scattering oscillations. The standard

semiclassical prescription for rainbow scattering (reviewed in Paper I) leads to Airy’s formula [44],

dσ

dΩ
≈ 2πbr

ωq2/3 sin θ
Ai2

(

θ − θr

q1/3

)

, q ≡ Θ′′
r

2ω2
, (1)

where the condition Θ′(br) = 0 defines a rainbow impact parameter br, a rainbow angle θr ≡

4



|Θ(br)|, and a second derivative Θ′′
r ≡ d2Θ

db2
(br). Thus, the colours of the rainbow are separated

in angle according to wavelength, with the ‘primary’ peak appearing at θr − 0.237[λ2Θ′′
r ]

1/3 (see

Eq. (1)), where λ is the wavelength. The scattered intensity falls off rapidly in the classically-

forbidden shadow region for θ > θr, whereas on the bright side of the rainbow the cross section has

supernumerary peaks beyond the primary.

At low frequencies Mω ≪ 1, we anticipate that the scattering cross section for massless fields

encountering a compact body will be the same as for fields approaching a Schwarzschild black hole,

namely [20, 46–48],

lim
Mω→0

(

M−2 dσ

dΩ

)

=











cos4s(θ/2)

sin4(θ/2)
s = 0, 1

2 and 1,

cos8(θ/2)+sin8(θ/2)

sin4(θ/2)
s = 2 ,

(2)

The first line states the general result for spin 0 (scalar), 1/2 (spinor), and 1 (electromagnetic)

waves. The second line is the result for a gravitational wave (s = 2). The extra ‘anomalous’ term

arises from a scattering amplitude associated with the reversal of the helicity of the incident wave

(see e.g. [20]).

This paper is organised as follows. In Sec. II we describe our methods, focussing on the stellar

model IIA; the gravitational perturbations outside the star II B, inside the star II C and at the

surface IID; the construction of a physical solution II E; the gravitational plane wave II F; the

scattering cross section IIG; and the numerical methods employed IIH. In Sec. III we present a

selection of results. In Sec. IV we conclude with a discussion of physical implications, analogies,

and future work. The − + ++ signature and units such that G = c = 1 are used throughout.

Commas and semi-colons are used to denote partial and covariant derivatives, respectively.

II. MODEL AND METHODS

We model time-independent scattering of a gravitational plane wave by a spherically symmet-

ric compact body, such as a neutron star. Standard perturbation theory is employed, where the

metric is expressed as gTµν = gµν + hµν . The background metric, gµν , is a known solution to the

Einstein field equations (EFE). The gravitational perturbation, hµν , is governed by the linearised

perturbed EFE. Many authors have studied perturbations of the Schwarzschild (exterior) spacetime

[49–51]. Typically a spherical harmonic decomposition is used, and possibly a Fourier decomposi-

tion. We employ a powerful gauge-invariant and covariant formalism for metric perturbations on

Schwarzschild, developed by Martel and Poisson [36].

The primary object of interest is the scattering cross section dσ/dΩ: the flux of the scattered

radiation per unit solid angle. To calculate it, we follow the standard approach in [14]: we compute

hµν and ‘match’ it to a plane wave in the far field, extracting the scattered part of the wave. The

details of our calculation differ from the standard approach which employs Weyl scalars and the

Newman-Penrose formalism [14]. Instead, we work with the metric perturbation directly, using the

Martel-Poisson formalism.
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A. Metric and stellar model

The line element for the background space-time of a spherically-symmetric star in Schwarzschild

coordinates {t, r, θ, φ} may be written as

ds2 = gµνdx
µdxν = gabdx

adxb + r2ΩABdx
AdxB. (3)

Here, lower case Latin indices run over {t, r}, upper case Latin indices run over {θ, φ}, and Greek

indices run over all coordinates (unless specified otherwise). We have

gabdx
adxb = −A(r) dt2 +B−1(r) dr2, ΩABdx

AdxA = dθ2 + sin2 θ dφ2, (4)

where A(r) and B(r) are radial functions that depend on the matter distribution. Lower and upper

case Latin indices are lowered with gab and ΩAB respectively, and raised with the corresponding

inverse metrics. Greek indices are lowered and raised with gµν and its inverse gµν .

A spherically-symmetric star composed of an ideal fluid has the stress energy tensor

Tµν = (ρ+ p)uµuν + pgµν (5)

where uµ(r) is the fluid 4-velocity, p(r) the pressure, and ρ(r) the energy density. It is convenient

to define a function m(r) in terms of the metric function B via

B(r) = 1− 2m(r)

r
. (6)

The (t, t) and (r, r) components of the EFE give

1

A

dA

dr
= − 2

ρ+ p

dp

dr
,

dm

dr
= 4πr2ρ. (7)

From the conservation of energy-momentum, Tµν
;ν = 0, one can then derive the Tolman-

Oppenheimer-Volkov (TOV) equation of hydrostatic equilibrium for the interior of the star,

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)
. (8)

For details see e.g. Chap. 10 of Schutz [52].

Outside the star, the mass is constant and thus A(r) = B(r) = 1−2M/r, by Birkhoff’s theorem.

Inside the star, we must specify an Equation of State (EoS) before we can solve Eqs. (7)-(8) to

find p(ρ). A simple and effective model is a polytropic star, with EoS

p(ρ) = κρ1+1/n, (9)

where n is the polytropic index and κ is a constant. By solving (8) numerically for a given n, κ

and central density ρ(0), we obtain the pressure and density profiles, p(r) and ρ(r), and also the

radius and mass of the star, R and M .

The speed of sound in the star is

c2s = c2
∂p

∂ρ

∣

∣

∣

∣

S

, (10)
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where the derivative is taken at constant entropy, S. For a typical white dwarf or neutron star the

temperature is effectively zero everywhere, so that the specific entropy is also negligible everywhere

[53].

As n → 0 the fluid that makes up the star becomes stiffer. The case n = 0 corresponds to a

star of constant density (Schwarzschild’s interior solution [54]) with an infinite speed of sound [55].

Keeping in mind its paradoxical nature, the constant density star is nevertheless interesting as a

limit of the sequence of decreasing n. In the n = 0 case, the solution can be found analytically.

The metric functions for a constant density star are

A(r) =
1

4R3

(

√

R3 − 2Mr2 − 3R
√
R− 2M

)2
,

B(r) = 1− 2Mr2

R3
. (11)

For the polytropes with n 6= 0, we found it necessary to match the numerical solution to an

analytical polytropic ‘atmosphere’ [33]. To obtain more suitable neutron star models, we took

n ∈ {0.5, 1} (see for example [35]). Higher values of n are typically used to model more diffuse

stars.

B. The exterior perturbation

We now consider the metric perturbation equations in three regions: in the vacuum exterior;

in the interior of the compact body; and at its surface. It is important to note that the metric

perturbation itself, denoted hµν , is not gauge invariant. Under a small coordinate transformation

xµ → x′µ = xµ+ ξµ, where ξµ = O(ǫ) is small, the linear metric perturbation transforms according

to hµν → h′µν = hµν − 2ξ(ν;µ). Different gauges have different technical benefits. For example, the

asymptotic plane wave solution (Sec. II F) is expressed in transverse-traceless gauge, whereas it is

simplest to solve for the metric perturbation in the stars interior in Regge-Wheeler (RW) gauge

(Sec. II C). The main quantity of interest in this work – the energy flux of the scattered radiation

– is gauge-invariant.

Far from the compact body in asymptotically Cartesian coordinates, as r → ∞, the radiative

parts of the metric perturbation in spherical coordinates scale as [36]

hradab ∼ r−1, hradaB ∼ r0, hradAB ∼ r1. (12)

Working in a specific radiation gauge in which tahab = 0 = tahaB, where ta is the timelike

Killing vector, Martel and Poisson [36] showed that the radiative part of a metric perturbation on

Schwarzschild can be written as a sum over modes, as

hradAB = r
∑

p=±1

∞
∑

l≥2

m=l
∑

m=−l

Φp
lm(r, t)X lmp

AB (θ, φ), (13)

where X lmp
AB are the tensor spherical harmonics, and Φ±

lm are the master functions defined in [36]1.

They also show that the leading order parts of hradab and hradaB are zero in this gauge. The parity of a

1 Martel and Poisson denote X
lm+

AB and X
lm−
AB by X

lm
AB and Y

lm
AB respectively

7



mode is either polar/even (p = 1) or axial/odd (p = −1). The polar and axial master functions, Φ+
lm

and Φ−
lm, are also known as the Zerilli-Moncrief and Cunningham-Price-Moncrief master functions,

respectively [36]. These functions may be decomposed in Fourier modes Φ̃±
lm(r, ω) using

Φ±
lm(r, t) =

1

2π

∫ ∞

−∞
dω Φ̃±

lm(r, ω)eiωt. (14)

The master functions Φ̃±
lm, which do not depend on the choice of gauge, are governed by a pair

of second order ODEs, namely

d2Φ̃±
lm

dr2∗
+
(

ω2 − V ±
l (r)

)

Φ̃±
lm = 0. (15)

Here V −
l (r) is the Regge-Wheeler potential,

V −
l (r) := A

(

l(l + 1)

r2
− 6M

r3

)

, (16)

and V +
l (r) the Zerilli potential

V +
l (r) :=

A

Λ2

[

µ2

(

µ+ 2

r2
+

6M

r3

)

+
36M2

r4

(

µ+
2M

r

)]

, (17)

with µ := (l − 1)(l + 2) and Λ := µ+ 6M/r. The tortoise coordinate r∗ is defined by

dr

dr∗
=

√
AB. (18)

In the far field, the solutions to Eq. (15) behave asymptotically as

Φ̃p
lm(r, ω) ∼ Ain

lp(ω)e
iωr∗ +Aout

lp (ω)e−iωr∗ , (19)

where Ain
lp and Aout

lp are complex constants. The full radiative perturbation in the far field can be

reconstructed as

htotalAB ∼ r

∫ ∞

−∞
dω





∑

p=±1

∞
∑

l≥2

m=l
∑

m=−l

(

Ain
lp (ω)e

iωr∗ +Aout
lp (ω)e−iωr∗

)

eiωtX lmp
AB



 . (20)

C. The interior perturbation

Although there are works on gauge-invariant formalisms for a general spherically symmetric

spacetime [56, 57], we found it convenient to work in Regge-Wheeler (RW) gauge. In particular,

we make use of the formalisms of Kojima [34], and Allen et al. [35], for the odd and even parity

sectors respectively. The even (odd) parity sector couples (does not couple) to fluid perturbations

[58].
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1. Odd parity

In RW gauge, the odd-parity perturbations for a general spherically symmetric spacetime are

determined by a single scalar function, Q̃lm(r, ω), used in the decomposition of hµν (see for example

[34] where Q̃lm → Xlm, or [58]). This function is governed by the radial equation

d2Q̃lm

dr2∗
+
(

ω2 − Vl(r)
)

Q̃lm = 0, (21)

where

Vl(r) := A(r)

[

l(l + 1)

r2
− 6m(r)

r
− 4π(prad − ρ)

]

. (22)

In vacuum, Vl(r) reduces to V −
l , and thus Q̃lm satisfies the Regge-Wheeler equation and it is

proportional to Φ̃−
lm,

Φ̃−
lm(r, ω) =

2

iω
Q̃lm. (23)

2. Even parity

The even-parity spacetime perturbations couple to the fluid perturbations. Ipser and Price

reduced the problem to a fourth-order system of ODEs working in frequency space [33], or alterna-

tively a coupled pair of second-order equations. Allen et al. investigated even-parity perturbations

as an initial value problem [35], also in RW gauge. They formulated the problem as three second-

order wave equations and a constraint equation. Two of these equations are for space-time variables,

Slm(r, t) and Flm(r, t); see Eqs. (10) and (11) of [35] for their relations to the metric perturbation.

The constraint can be used to eliminate the third variable, describing the fluid perturbations, again

reducing the problem to two coupled wave equations (Eqs. (14) and (18) of [35]). Here we make use

of these two coupled equations. The Fourier transforms of the variables of Allen et al., S̃lm(r, ω)

and F̃lm(r, ω), are governed by

d2S̃

dr2∗
+

[

ω2 +
A

r3
(

4πr3 (ρ+ 3p) + 2m− l(l + 1)r
)

]

S̃

= −4A2

r5

[

(

m+ 4πpr3
)2

(r–2m)
+ 4πρr3 − 3m

]

F̃ , (24)

and

d2F̃

dr2∗
−
(

1− 1

c2s

)

√

A

B

1

r2
(

m+ 4πpr3
) dF̃

dr∗

+

[

ω2

c2s
+

A

r3

(

4πr3
(

3ρ+
p

c2s

)

–m

(

1− 3

c2s

)

− l(l + 1)r

)]

F̃

=

(

1− 1

c2s

)

r

√

B

A

dS̃

dr∗
+

[

2B +

(

1− 1

c2s

)

l(l + 1)

2
− 8π(p+ ρ)r2

]

S̃, (25)

9



where we have dropped mode labels lm for brevity, and here m = m(r) refers to the mass function

defined in Eq. (6).

In vacuum, the even-parity master function Φ̃+
lm is related to S̃lm and F̃lm by

Φ̃+
lm(r, ω) =

2

l(l + 1)

[

F̃lm +
2

Λ

(

2AF̃lm − rA∂rF̃lm + r2S̃lm

)

]

. (26)

D. Perturbations at the stellar surface

The continuity of the first and second fundamental forms at the stellar surface r = R implies

the continuity of Q̃lm, S̃lm, F̃lm, ∂rQ̃lm, and ∂rS̃lm there, and a junction condition for F̃lm [33, 35],

[∂rF̃lm]+− = − ρ

2ω2r2(p+ ρ)

[

r
(

l(l + 1)− 2ω2r2A−1
)

S̃lm + r2l(l + 1)∂rS̃lm

+
((

l(l + 1)− ω2r2A−1
)

∂rA− 2ω2r2
)

F̃lm + 2ω2r2∂rF̃lm

]

∣

∣

∣

∣

∣

r=R−

. (27)

The notation [z(r)]+− denotes limǫ→0[z(R + ǫ) − z(R − ǫ)] and the right-hand side of Eq. (27) is

evaluated on the surface by taking the limit from below.

In addition, on the stellar surface the Lagrangian change in pressure should vanish [33]. This

yields a boundary condition in the form of a single constraint relating S̃lm, ∂rS̃lm, F̃lm and ∂rF̃lm

just inside the stellar surface (see Eq. (5.2) in [33]). This constraint is equivalent to the radial

derivative of the Hamiltonian constraint in [35].

E. Construction of a physical solution

In the odd-parity sector, we start with a solution that is regular at the origin, Q̃lm ∼ rl+1, and

use the differential equation (21) to extend it into the exterior, using the continuity of Q̃lm and its

derivative across the stellar surface. Outside the star, we may use Eq. (23) to relate Q̃lm to the

master variable Φ̃−
lm.

In the even-parity sector, there are two independent solutions to Eqs. (25) and (24) that satisfy

regularity at the origin,

{S̃1
lm, F̃ 1

lm} ∼ {rl+1, a1r
l+3}, (28)

{S̃2
lm, F̃ 2

lm} ∼ {rl+3, a2r
l+1} as r → 0, (29)

where a1 and a2 are constants determined by the metric/stellar model. We may write our solution

as a linear sum Y = α1Y1 + α2Y2, where Y = [S̃lm, ∂rS̃lm, F̃lm, ∂rF̃lm]t, and Yi refer to the two

independent solutions above. Just inside the stellar surface, we must apply the boundary condition

that arises from insisting that the Lagrangian change in pressure vanishes (Eq. (5.2) in [33]). This

constraint yields a unique F̃lm and S̃lm that satisfies the boundary conditions at the stellar surface

and the origin, up to an overall scaling. We may then extend this solution beyond the surface using

the junction conditions of Sec. IID.

10



F. Plane waves

A left circularly-polarized gravitational plane wave of angular frequency ω0 travelling up the z

axis and expressed in a spherical coordinate system, {t, r, θ, φ}, on flat space in transverse-traceless

gauge is

hij = Re



























Hei(2φ−χ)
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. (30)

where H is the amplitude of the wave; χ ≡ ω0(t− z); indices (i, j) run over spatial coordinates; s

and c are shorthand for sin θ and cos θ, respectively. All other components are zero.

The physical solution we seek is, qualitatively, the sum of a plane wave and an outgoing radiative

component in the far field. However, a plane wave is not a valid solution on the Schwarzschild

background, even in the far-field region, due to the long-range 1/r nature of the field. Following

convention (see [14]) we replace (30) with a distorted plane wave by making the substitution

r → r∗ in the exponent of Eq. (30) (i.e. z → z∗ = r∗ cos θ). From this metric perturbation, we may

compute the master variables Φplane
lmp .

We construct our solution for Φlmp so that its ingoing part matches, asymptotically, the ingoing

part of the distorted plane wave Φplane
lmp . The outgoing, scattered component of the radiation is

then

Φscat
lmp = Φlmp − Φplane

lmp . (31)

The master functions for a left-handed circularly-polarized distorted plane wave can be expanded

in the far field as

Φplane
l2,−1(r, t) =

2πHCl2

ω0

(

(−1)l+1e−iω0r∗ + eiω0r∗
)

e−iω0t +O
(

r−1
)

, (32)

Φplane
l2,+1(r, t) = −2πiHCl2

ω0

(

(−1)l+1e−iω0r∗ + eiω0r∗
)

e−iω0t +O
(

r−1
)

, for l ≥ 2. (33)

where

Cl2 =

(

(2l + 1)

4π

(l − 2)!

(l + 2)!

)1/2

. (34)

It follows from the reality condition on hµν that Φl,−m,p = Φ∗
lmp. Only the m± 2 and l ≥ 2 modes

are needed; all other modes (l < 2 or m 6= ±2) are zero for the plane wave (see Appendix A).

G. Scattering cross section

Once the scattered radiation has been found via Eq. (31), the associated energy flux at infinity

can be calculated. The scattering cross section, dσ/dΩ, is the energy flux per unit solid angle in

the scattered radiation, divided by the energy flux per unit area in the incident plane wave. As

11



shown in Appendix B (see also Ref. [14]), the cross section can be written as the sum of the square

modulus of a helicity-preserving scattering amplitude, f(θ), and a helicity-reversing amplitude,

g(θ),

dσ

dΩ
= |f(θ)|2 + |g(θ)|2, (35)

where

f(θ) :=
π

ω

∑

l,p

(

(2l + 1)

4π

)1/2
(

e2iδ
p
l − 1

)

−2Y
l2(θ), (36)

g(θ) :=
π

ω

∑

l,p

p

(

(2l + 1)

4π

)1/2
(

e2iδ
p
l − 1

)

2Y
l2(θ). (37)

The spherical harmonics with spin-weight s, sY
lm(θ, φ), were introduced by Goldberg [59], and we

have suppressed the φ dependence. The phase shifts δpl are defined in terms of the mode coefficients

A
in/out
lp in Eq. (20) by

e2iδ
p
l = (−1)l+1

Aout
lp

Ain
lp

. (38)

H. Numerical method

In Sec. II E we outlined how a regular solution satisfying physically-motivated boundary condi-

tions could be constructed. Here, we give details of how we compute Aout
lp and Ain

lp, and thus the

scattering coefficients e2iδ
p
l in practice.

The odd-parity master function for the interior perturbation has a regular Frobenius series

solution at the origin

Q̃lm ∼ rl+1
k
∑

j=0

q2jr
2j . (39)

The series coefficients qj can be found by inserting this series into Eq. (21), and fixing the normal-

isation by choosing q0 = 1.

For the even parity system, the ODE system has regular singular points at r = 0 and at r = R.

We can find series solutions near the origin (r0 = 0) and near the surface (r0 = R) by expressing

the equations in matrix form,

Y′ =
1

z
M ·Y, (40)

where Y = [S̃lm, F̃lm, zS̃′
lm, zF̃ ′

lm]t, z = |r − r0|, Y′ denotes dY/dz, and M is a 4× 4 matrix. One

may then expand the matrix in a power series,

M =

∞
∑

j=0

zjMj , (41)

12



where Mj are constant matrices, and make the ansatz

Y = zσ
∞
∑

j=0

zjYj . (42)

Substituting Eqs. (41) and (42) into Eq. (40), and equating coefficients of zσ gives

(M0 − σI) ·Y0 = 0, (43a)

[M0 − (σ + k) I] ·Yk = −
k
∑

j=1

Mj ·Yk−j . (43b)

Equation (43a) determines the eigenvalues σ and the corresponding eigenvectors Y0, and Eq. (43b)

generates the higher terms Yj in the series solutions. At the origin, two of these series are regular,

{Y(1),Y(2)}, with eigenvalues σ = l+1. Starting with initial conditions Y(1), Y(2) and Q̃ at r = ǫ,

where ǫ is some small value, we then numerically integrate the coupled ODEs (21), (24), and (25),

to extend the solutions to r = R. Typically we use ǫ = 10−6R and we expand the series to order

k = 15.

For the polytropes with n 6= 0, the speed of sound goes to zero at the stellar surface (cs → 0 as

r → R−), and Eq. (25) cannot be used reliably near r = R. Keeping only the terms of order 1/c2s in

Eq. (25) allows us to solve for Yj between r = R− ǫ and r = R. Imposing the boundary condition

and utilising the junction conditions gives the odd and even parity master functions, Φ̃±
lm(R,ω) ,

at the (outer) surface (see Section IID). We integrate these out to some large value of r = rmax,

typically choosing rmax ≈ 100R.

In the far field we compute generalised series solutions for Φ̃±
lm about r = ∞ of the form

Φ̃out
lmp(r, ω) ∼ e−iωr∗

N
∑

j=0

bjr
−j , Φ̃in

lmp(r, ω) = Φ̃out∗
lmp (r, ω). (44)

We choose N = 15 to achieve accurate results. We then match this to the numerical solution to

obtain the mode coefficients by solving

(

Φ̃out
lmp Φ̃in

lmp

∂rΦ̃
out
lmp ∂rΦ̃

in
lmp

)(

Aout
lp

Ain
lp

)

=

(

Φ̃lmp

∂rΦ̃lmp

)∣

∣

∣

∣

∣

r=rmax

. (45)

III. RESULTS

The scattering process is encapsulated by the specific stellar model or compact object used, and

the dimensionless parametersMω = πRS

λ and R
M = 2R

RS
, where RS = 2M is the Schwarzschild radius

and λ is the wavelength of the incident wave. We consider a range of couplings Mω ∼ 0.1 − 10,

and the tenuity R/M = 6, which is comparable to that of a neutron star. After fixing the tenuity,

the polytropic index n determines the stellar structure in our model.

Low-frequency (Mω ≪ 1) analytic approximations for scattering by a black hole are summarised

in Eq. (2). In Fig. 4 we compare the approximations with numerically-determined scattering cross

13
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FIG. 4. Helicity preserving (red) and helicity reversing (blue) gravitational scattering cross sections for a

polytropic (PT) star with tenuity R/M = 6, polytropic index n = 1, and coupling Mω = 0.1. The cross

section for a scalar wave incident on the star is also shown (green). The low-frequency approximations for

black hole (BH) scattering cross sections, given in Eq. (2), are shown as dotted lines.

sections for an n = 1, R/M = 6 polytrope with Mω = 0.1. We find that the cross sections are

very similar, and the polytrope cross sections appear to approach the low frequency black hole

approximations as Mω → 0. This is consistent with the interpretation that long wavelength waves

do not ‘see’ the strong-field structure of the scatterer if λ ≫ R, and thus the cross section is

insensitive to the nature of the central body.

The universality of the cross section at low Mω, seen in Fig. 6, does not persist at higher

frequencies. Figure 5 shows the case Mω = 1, where the cross sections for GWs scattering from

a compact body (R/M = 6) are clearly different from those for scattering from a black hole, with

visible differences occurring at large angles (θ & 20◦). The differences become more marked at

shorter wavelengths (higher frequencies), as the wave can resolve and probe the details of the

internal structure of the body.

Figure 6 shows the cross sections for a polytropic star with n = 1, R/M = 6, and a range

of couplings Mω. At low Mω, the helicity-reversing cross section |g|2 plays a role in large-angle

scattering. As shown in plots (b), (c) and (d), the contributions from |g|2 diminishes at higher

Mω, and it is negligible for Mω = 4. Once the coupling is sufficiently large, Mω & 2, a rainbow

pattern appears in the cross section. That is, a primary peak at some θp, which may be followed by

supernumerary troughs and peaks at θ < θp, and a falling off of the cross section into the ‘shadow

zone’, θ > θp. The primary peak is close to the rainbow angle, θr, which is the maximum deflection

angle for a null geodesic incident on the compact body (for details of how θr is calculated see [28]).

The rainbow feature is superposed on a Rutherford-type scattering cross section, with a forward
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FIG. 5. Gravitational wave scattering cross sections for a polytropic star with R/M = 6, polytropic index

n = 1 (black, solid) and a Schwarzschild black hole (red, dashed). The coupling is Mω = 1.

R/M

n
0 0.5 1

5 81.1◦ 92.1◦ 115◦

6 59.6◦ 66.6◦ 79.7◦

7 47.3◦ 52.4◦ 61.5◦

TABLE I. Rainbow angles, θr, for polytropes with tenuity R/M and polytropic index n.

divergence, which essentially arises because we are modelling a plane wave of infinite extent in

a long-range field. In the semiclassical regime, Mω ≫ 1, θp approaches θr from below, and the

width of the oscillations in the cross section decreases, as may be anticipated from Airy’s formula,

Eq. (1).

We find that rainbow scattering is seen for a range of stellar models at higher frequencies.

Figure 7 shows the scattering cross sections for polytropes with polytropic index n = 0, 1, 2, with

n = 0 corresponding to a star of constant density. Generally, as n increases, the bodies mass

becomes more concentrated in the centre, and the star becomes ‘less stiff’, with a slower internal

speed of sound. As a consequence, the maximally-deflected geodesic, which passes through the

body, scatters through a greater angle. This is confirmed for the small sample of polytropes we

consider in Table I. Consequently, the rainbow pattern of supernumerary peaks and troughs is

shifted to higher angles for larger n, as shown in Figure 7. The stellar structure is clearly affecting

the scattering cross section. The inverse problem of determining stellar structure from a scattering

cross section would be worth addressing, in principle.
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FIG. 6. Scattering cross sections for a polytropic star with R/M = 6, polytropic index n = 1 and coupling

(a) Mω = 0.1, (b) Mω = 1, (c) Mω = 2 and (d) Mω = 4. The helicity preserving (reversing) part of the

GW cross section is shown in dashed blue (dot-dashed red), and the cross section for a scalar wave is shown

in dotted green. The rainbow angle, θr ≈ 79.7◦, is shown as a solid vertical line for the two higher frequency

cases.

IV. DISCUSSION AND CONCLUSIONS

In the preceding sections, we have presented numerical results for GW scattering cross sections

for compact bodies of tenuity R/M = 6, modelled as spherically-symmetric polytropes. We may

now draw several conclusions.

1. The cross section for the gravitational wave is qualitatively similar to that for a scalar field

Φ which is not directly coupled to the matter sector (studied in Paper I [28]), with some

minor differences at lower frequencies.

2. At low frequencies (long wavelengths) Mω ≪ 1, the scattering cross section is insensitive to

the internal structure of the compact body, and the cross section for a compact body reduces

to that for a Schwarzschild black hole of the same mass, given by Eq. (2). At low frequen-

cies and large angles θ & 90◦ there is a significant contribution from the helicity-reversing
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FIG. 7. Rainbow scattering for three polytropes with n = 1 (black, solid), n = 0.5 (blue, long-dashed),

and n = 0 (red, short-dashed). For smaller n the rainbow angle, and thus the positions of the primary and

supernumerary troughs and peaks, are shifted to smaller angles. The rainbow angles are indicated with

vertical lines with the same style as the corresponding cross section. The rainbow angle is θr ≈ 59.6◦, 66.6◦,

and 79.7◦ for n = 0, 1, and 2 respectively. The generic rainbow scattering pattern, superimposed on a

divergence at θ = 0, remains for all cases.

amplitude |g|2, due to the fact that the phase shift for odd and even-parity perturbations

differs (see Fig. 4).

3. The contribution from the helicity-reversing amplitude diminishes as the frequency increases,

becoming negligible in practice for Mω & 1 (see Fig. 6).

4. The even-parity perturbation in the gravitational wave couples directly to the fluid degrees

of freedom of the star, whereas the odd-parity part does not. However, the lack of a sig-

nificant helicity-reversing amplitude, implying that the odd and even-parity phase shifts are

approximately equal, would appear to imply that this coupling plays no major role in time-

independent scattering. (Fluid motions could be important in the time-dependent context,

as suggested by Allen et al. [35].)

5. At high frequencies, the gravitational wave exhibits the expected features of rainbow scat-

tering (see Figs. 6 and 7), as anticipated from the ray analysis in Fig. 1–3, Eq. (1) and Paper

I.

6. A wavefront passing through a neutron star will be focussed at a cusp caustic (see Figs. 1

and 3). For tenuity R/M = 6 the cusp caustic may form inside the star, or just outside,

depending on the polytropic index n.
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7. The rainbow angle θr is sensitive to both the polytropic index n and tenuity R/M (see Fig. 7

and Table I).

The direct coupling between the gravitational wave and fluid motions appears to be inconsequential

in time-independent scattering. On the other hand, the internal structure of the fluid star, deter-

mined by its EoS, is certainly not. Constraining the EoS for a neutron star is an important goal

where multiple disciplines overlap including nuclear, particle and gravitational physics. The EoS

determines the body’s density and pressure profiles, which consequently alter the space-time curva-

ture, the effective potential and thus the scattering of the incident wave. We have shown here that

the rainbow angle, and thus the position of the primary rainbow maximum for moderate-to-high

frequencies, is sensitive to the EoS.

Rainbow scattering is a wave phenomenon that arises on disparate scales in physics. In the

context of ion-scattering experiments [60–62], rainbow scattering was used to discriminate between

competing models of the nuclear potential (see e.g. Fig. 11 in [62]). In fact, in the nuclear case the

quantum-mechanical deflection function possesses two stationary points, linked to the (repulsive)

long-ranged Coulomb interaction and the (attractive) short-range nuclear interaction, respectively:

see Fig. 9 in [62]. The former leads to small-angle rainbow scattering and the latter to the wide-

angle rainbow features from which one may infer basic properties of the nuclear potential.

Let us now consider gravitational wave scattering by neutron stars in an astrophysical context.

A typical neutron star has a mass of M ≈ 1.5M⊙, corresponding to a gravitational radius of

rg = GM/c2 ≈ 2.2 km. For this mass, the range of frequencies considered here, Mω ∼ 0.1− 10 in

geometric units, corresponds to wave frequencies in the range ω ∼ 104–106 Hz. Known astrophysical

sources emit GWs with frequencies ω . 103 Hz [63], with the highest frequency source being

millisecond pulsars. (The fastest-spinning pulsar known, PSR J1748-2446ad, has a frequency of

716 Hz. If it is not axisymmetric about its rotation axis, it will emit gravitational waves [64, 65]

with ω = 9×103 Hz). Thus the low-frequency approximation, Eq. (2), is likely to be approximately

valid for generic time-independent scattering scenarios involving gravitational waves and neutron

stars. At low frequencies, the cross section is insensitive to the internal structure of the star, and

so rainbow scattering is not manifest.

The conditions for rainbow scattering will arise naturally for gravitational waves impinging upon

larger, less compact bodies such as white dwarfs (R/M ∼ 1400); or upon intermediate-mass black

holes (102–105M⊙) and supermassive black holes M & 105M⊙ surrounded by a shell of matter [27].

The rainbow interference effect can arise naturally, too, for other weakly-interacting fields.

Motivated by neutrino oscillations, Alexandre and Clough recently investigated the plane wave

scattering of coupled and flavoured massive scalars on a Schwarzschild black hole background

[25]. They showed that a long-range interference pattern will form, altering the flavour oscillation

probability. They postulate that this effect may also be seen for neutrinos, and that unexpected

neutrino detection patterns could be observed when a black hole is situated between a terrestrial

detector and neutrino source. The consequences of replacing the black hole with a dense compact

body are yet to be explored fully. For example, it is not known if the rainbow scattering cross

sections for neutron stars can be accurately calculated via a sum of Regge poles (see Ref. [66] for

18



recent progress in the black hole context).

An open question is whether a rainbow from (quasi-)time independent scattering could ever be

detected in practice, in the gravitational context. To verify the diffraction pattern, a detector would

need to sample at least one peak and trough of the interference pattern. This would certainly require

a fortuitous alignment of scatterer and source, such that a detector lay just inside the rainbow angle

θr. As the angle of observation θobs would be essentially fixed, the detector would need to sample

across a range of frequencies ∆ω. This would necessitate a gravitational wave source that is either

multiband, like an eccentric binary, or which sweeps across a range of frequencies over time, like a

binary inspiral. The Airy formula (1) yields an estimate ∆ω
ω ∼ 2q

θr−θobs
for the range of frequencies

that would be needed to sample the rainbow.

One interesting avenue for further work is to consider the possible physical consequences of the

cusp caustic that forms in the gravitationally-scattered wavefront (Fig. 1), due to the focussing

effect of gravity. The position of the cusp caustic is sensitive to the density and compactness of

the compact body. Whereas for a neutron star it can form inside the star, or close to its crust, for

a dilute body like the Sun it will form at a distance of approximately 550 astronomical units [67].

Cusp caustics also arise naturally in other wave-propagation contexts. For example, in shallow

water, a wave propagates more slowly wherever it passes over a submerged island. Berry [68, 69]

has described how cusp caustics may arise in tsunamis due to seabed topography, leading to the

focussing of energy, with potentially devastating consequences. There are close parallels between

shallow water wave propagation and gravitational waves on a curved spacetime which we may

explore in future work.
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Appendix A: Plane wave matching

The scattered part of the metric perturbation is found by matching to the total metric pertur-

bation and the plane wave via

hscatAB = htotalAB − hplaneAB . (A1)

In order to carry this subtraction out in a gauge invariant way we instead use the master functions,

as in Eq. (31). We assume that the scattered part is all outgoing in the far field

Φ̃scat
lmp(r, ω) ∼ αlmp(ω)e

−iωr∗ . (A2)

The leading order behaviour of the scalar master functions for a left circularly polarized distorted

plane wave in the far field is given by Eqs. (32) and (33). The method for finding the master
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functions of a given perturbation is described in Martel and Poisson (MPo) [36], and Barack and

Lousto (BL) [37]. Table III of BL provides the necessary differential operations to apply to hµν to

find the coefficients of their particular spherical harmonic decomposition. The decomposition of

MPo is similar to that of BL, so it is simple to then deduce the decomposition coefficients of MPo

that define the master functions in their Eqs. (4.23) and (5.13). Substituting Eqs. (19), (32) and

(33) into Eq. (31), gives

αlm−(ω) =
(2π)2HCl2

ω

(

e2iδ
−
l
(ω) − 1

)

[δm2δ(ω0 − ω)− δm,−2δ(ω0 + ω)] , (A3)

αlm+(ω) = −(2π)2HCl2

ω
i
(

e2iδ
−
l
(ω) − 1

)

[δm2δ(ω0 − ω) + δm,−2δ(ω0 + ω)] . (A4)

The metric perturbation corresponding to the scattered wave in the far field can then be recon-

structed with Eq. (13),

hscatAB ∼ r

2π

∫ ∞

−∞
dω





∑

l,m,p

αlmp(ω)e
iω(t−r∗)X lmp

AB



 . (A5)

It is convenient to be able to switch to using spin-weighted spherical harmonics, sY
lm, defined

in [59], where s is the spin weight. They satisfy sȲ
lm = (−1)m+s

(−s)Y
l(−m), where an over-bar

denotes the complex conjugate. The MPo harmonics can be written in terms of spin-weight ±2

spherical harmonics,

X lm−
AB =

i

2

√

(l − 1)l(l + 1)(l + 2)
(

2Y
lmm̄Am̄B − −2Y

lmmAmB

)

, (A6)

X lm+
AB =

1

2

√

(l − 1)l(l + 1)(l + 2)
(

2Y
lmm̄Am̄B + −2Y

lmmAmB

)

, (A7)

where mA = 2−1/2(1, i sin θ). Note X
l(−m)p
AB = (−1)mX̄ lmp

AB .

Appendix B: Scattered flux

The energy flux per unit solid angle in the scattered radiation is given by (pg 72 [14]),

dE

dt dΩ
= lim

r→∞
r2T r

t . (B1)

A gauge invariant way to calculate the stress energy of a metric perturbation is to use a space-time

averaging process [70, 71], denoted by placing angular brackets around the quantity to be averaged,

〈· · ·〉. The Brill-Hartle (BH) averaged stress energy tensor of a metric perturbation is

〈Tµν〉 =
1

32π

〈

hρτ ;µhρτ ;ν
〉

. (B2)

The radiative part of the relevant component of the stress energy tensor is

〈T r
t 〉 ∼

1

r4
1

32π

〈

∂rh
AB∂thAB

〉

as r → ∞. (B3)
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Substituting Eq. (A5) into Eq. (B3), expressing the MPo spherical harmonics in terms of spin

weighted spherical harmonics (Eq. (A6)), and performing the BH averaging over a region much

larger than the wavelength, results in

〈

dE

dt dΩ

〉

=
H2

16π

(

∣

∣

∣
π
∑

l,p

(

(2l + 1)

4π

)1/2
(

e2iδ
p
l
(ω0) − 1

)

−2Y
l2(θ)

∣

∣

∣

2

+
∣

∣

∣
π
∑

l,p

p

(

(2l + 1)

4π

)1/2
(

e2iδ
p
l
(ω0) − 1

)

2Y
l2(θ)

∣

∣

∣

2
)

. (B4)

The flux per unit area in the incident plane wave is

dE

dt dA

∣

∣

∣

∣

P lane

=
H2ω2

16π
. (B5)

The scattering cross section is defined as

dσ

dΩ
:=

dE

dt dΩ

/

dE

dt dA

∣

∣

∣

∣

P lane

. (B6)

Substituting Eq. (B4) and (B5) into Eqs. (B6) gives Eq. (35), the scattering cross section for

gravitational plane wave scattering.
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