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Abstract 

Sediment samples from the Gulf of Alaska (GOA, IODP Expedition 341, Site U1417) 

have been analyzed to understand present and past diagenetic processes that 

overprint the primary sediment composition. No Sulfate-Methane Transition Zone 

(SMTZ) was observed at the zone of sulfate depletion, but a > 200 m thick sulfate- 

and methane-free sediment interval occurred between the depth of sulfate depletion 

(~200 m) and the onset of methanogenesis (~440 m). We suggest that this apparent 

gap in biogeochemical processing of organic matter is caused by anaerobic 

oxidation of methane fueled by sulfate which is released during dissolution of barites 

at the upper boundary of the methane rich layer. Beneath the methanogenic zone, at 

~650 m depth, pore-water sulfate concentrations increase again, indicating sulfate 

supply from greater depth feeding into a deep, inverse SMTZ. A likely explanation for 

the availability of sulfate in the deep sub-seafloor at U1417 is the existence of a deep 

aquifer related to plate bending fractures, which actively transports sulfate-rich water 

to, and potentially along, the interface between sediments and oceanic crust. Such 

inverse diagenetic zonations have been previously observed in marine sediments, 

but have not yet been linked to subduction-related plate bending. With the discovery 

of a deep inverse SMTZ in an intra-oceanic plate setting and the blocking of upward 

methane diffusion by sulfate released from authigenic barite dissolution, Site U1417 

provides new insights into sub-seafloor pore-fluid and gas dynamics, and their 

implications for global element cycling and the deep biosphere.      
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1. Introduction 

Early diagenesis plays an important role in global carbon (C) cycling by controlling 

the amount of organic C preserved in the sediment or recycled by microbial activity. 

Remineralization of organic matter (OM) follows a succession of microbially 

mediated redox reactions with organic carbon as the electron donor, and the electron 

acceptors oxygen, nitrate, manganese (oxyhydr)oxides, iron (oxyhydr)oxides and 

sulfate. Once all electron acceptors are depleted, the remaining OM is converted to 

methane (Froelich et al., 1979; Jørgensen, 2006). This so-called catabolic sequence 

follows the decreasing energy yields of the microbially mediated redox reactions 

(Froelich et al., 1979), with energetically less favorable sulfate reduction and 

methanogenesis occurring in the deeper parts of any sedimentary succession. The 

upper limit of the methanogenic zone is usually equivalent to the maximum depth of 

sulfate penetration into the sediments: In the Sulfate-Methane Transition Zone 

(SMTZ), an anaerobic, highly specialized bacteria-archaea consortium uses sulfate 

as an electron acceptor to anaerobically oxidize methane (Martens and Berner, 1977; 

Reeburgh, 1980; Niewöhner et al., 1998; Boetius et al., 2000). Despite the low 

energy yields provided by sulfate reduction and methanogenesis, these reactions 

account for most of the non-oxic OM decomposition in the global seafloor due to the 

high abundance of sulfate in seawater and pore-waters compared to other electron 

acceptors (Bowles et al., 2014). Thus, SMTZs exhibit significantly higher microbial 
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activity than surrounding sediments, and are biological and geochemical hotspots 

within the deep marine biosphere (Parkes et al., 2005; Harrison et al., 2009). SMTZs 

are also important biogeochemical reaction zones where distinct diagenetic 

signatures are generated. 

At an SMTZ, sulfate reduction leads to the production of hydrogen sulfide which, in 

turn, causes the reduction of mostly terrigenous iron (oxyhydr)oxides and the 

formation of iron sulfides (most commonly pyrite, FeS2). Beneath the SMTZ, barite 

(BaSO4) dissolves in the sulfate-free pore-waters, but the released Ba2+ re-

precipitates as authigenic barite from pore-water following its diffusion into or above 

the SMTZ (Von Breymann et al., 1992; Dickens, 2001; Kasten et al., 2001, 2012). 

Pyrite and barite are therefore common authigenic minerals at SMTZs, and their 

presence and isotopic compositions can be used to identify paleo-SMTZs in the 

geological record (Torres et al., 1996; Riedinger et al., 2006; Peketi et al., 2012). 

Two major aspects of diagenetic processes in marine sediments are of continuing 

interest: non-steady state diagenesis (Kasten et al., 2003), and deviations from the 

classic catabolic sequence (Froelich et al., 1979). Non-steady state diagenesis 

occurs in settings where external forcing (including sedimentation rates, OM 

deposition, methane flux) is highly variable on timescales from days to millennia 

(Kasten et al., 2003). In such situations, spatial fixation of specific biogeochemical 

zones over centuries to millennia can lead to the persistence of certain diagenetic 

processes in defined sediment intervals (e.g. accumulation of authigenic minerals at 

the expense of primary minerals). These diagenetic processes need to be active 

(and hence external conditions need to be stable) for tens to thousands of years to 

generate measurable changes in sediment composition. On these timescales, 

changes to external forcing can be induced by a multitude of climatic or 
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oceanographic events. In deep-sea fan sediments, for example, changes can result 

from drastic episodic decreases in sedimentation rates on glacial-interglacial 

timescales (e.g. Kasten et al., 1998; Riedinger et al., 2005; März et al., 2008, 2018). 

In fact, in marine settings affected by cyclic variations in climatic forcing, non-steady 

state conditions appear to be the rule rather than the exception and often leave 

distinguishable geochemical imprints in the sediment record (Kasten et al., 2003 and 

references therein; Riedinger et al., 2005; Contreras et al., 2013).  

Over the last years, it also emerged that the vertical catabolic redox succession, as 

proposed by Froelich et al. (1979), may not always apply in marine sediments. 

Prominent examples are inverse SMTZs where sulfate is supplied not from the 

overlying seawater, but from a sulfate pool located deeper in the sediment (DeLong, 

2004). Inverse STMZs above the interface between sediments and the oceanic 

crust/basement have been reported from various sites, but have so far not been 

conclusively explained. Most of these sites are located in geodynamically active 

settings of the ocean, including mid-ocean ridge flanks, seamounts (e.g. ODP Site 

1026 + IODP Site U1301, Engelen et al., 2008; ODP Sites 1225 and 1226, D’Hondt 

et al., 2003) or accretionary prisms (e.g. IODP Site C0012, Torres et al., 2015). Here, 

active hydrologic circulation provides sulfate-rich water to deeper sediment layers. 

Similar to conventional SMTZs, these inverse biogeochemical transitions are 

hotspots of deep microbial activity (e.g. DeLong, 2004; D'Hondt et al., 2004; Engelen 

et al., 2008).    

One depositional setting where both non-steady state diagenesis and a deep source 

of sulfate can be observed is Site U1417 drilled during Expedition 341 of the 

Integrated Ocean Drilling Program (IODP) in the Gulf of Alaska (GOA, Figure 1). As 

reported by Jaeger et al. (2014) and Gulick et al. (2015), the site has experienced 
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several order-of-magnitude variations in sedimentation rate since the late Miocene, 

and the sediments appear to be significantly overprinted by diagenesis. Most 

remarkably, non-steady state diagenesis at this location is induced by methane 

consumption without contact to sulfate in the upper parts of the sediment succession. 

In addition, there is a significant and unusual occurrence of pore-water sulfate below 

the methanogenic zone, disconnected from the overlying seawater. Jaeger et al. 

(2014) postulated the existence of a deep inverse SMTZ at Site U1417, but both the 

source of the deep sulfate and its potential impact on diagenetic pathways are 

unconstrained. Detailed downhole geochemical analyses at Site U1417, coupled 

with regional geophysical imaging of the sub-seafloor, offer the possibility to explore 

these two aspects of diagenesis in a deep-sea setting. 

Here, we present bulk sediment, pore-water and gas geochemical data from IODP 

Site U1417. We combine these data with sequential leaching of Fe and S species. 

Further, we use O- and H-indices as proxies of organic matter reactivity, and į34S 

data from pyrite to reveal the nature of the deep sulfate pool. 

Furthermore, we compare our observations at Site U1417 to previously drilled ODP 

and IODP sites worldwide where similar observations have been made and to results 

from DSDP Site 178 drilled ~40 years earlier at nearly the same location as Site 

U1417 (Kulm and Von Huene, 1973).  

 

2. Materials and Methods 

In 2013, IODP Expedition 341 drilled Site U1417 to ~700 m sediment depth 

(recovery 70.1%) in the GOA at 56.96˚ N and 147.11˚ E (Figure 1, Jaeger et al., 

2014). The site is located in 4200 m water depth on the Surveyor Fan. It is situated 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

approximately 60 km from the Surveyor Channel, which is the main sediment 

provider, ~70 km from the Kodiak-Bowie Seamount Chain to the southeast, and ~75 

km from the Aleutian Trench to the northwest.  

Holes A to E were cored at Site U1417 resulting in a continuous composite record of 

~700 m length (core composite depth below sea floor, scale B; CCSF-B). Information 

from earlier Deep Sea Drilling Project (DSDP) Leg 18 Site 178 (Kulm and Von 

Huene, 1973), of which Site U1417 is a re-drill, and seismic reflection data (Reece et 

al., 2011) revealed that the sediment-basement boundary lies at 794 ± 74 m depth, 

and coring at Site U1417 was terminated ~50-100 m above basement (Figure 2). 

The age model for Site U1417 (Gulick et al., 2015) is based on paleomagnetics (14 

datums), biostratigraphy (18 datums), and extrapolated to the basement. For this 

study, three basalt basal core samples from DSDP Site 178 were dated using the 

whole rock 40Ar/39Ar methods outlined in Benowitz et al. (2014), to attain a more 

robust age of the onset of sediment deposition at Site U1417. See supplementary 

text, figures and tables for more details on the 40Ar/39Ar methods and results. All 

dating points were included to construct minimum and maximum age models.  

Immediately after sectioning the core, samples for pore-gas analyses were taken, 

sealed, and heated to 70˚C. Headspace gas was captured and analyzed on board 

for methane, ethane, ethene, propane and propene using a Hewlett Packard 6890 

gas chromatograph equipped with a 2.4 m × 3.2 mm stainless steel column packed 

with 100/120 mesh HayeSep R and a flame ionization detector. For methane, the 

coefficient of variation was 1 to 5% (Jaeger et al., 2014).   

Pore-water from 72 whole-round core samples of 5 to 15 cm thickness was taken 

with variable depth resolution. The samples were squeezed at 5,000 to 30,000 psi (~ 
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345 to 2070 bars) and the expressed water was filtered through 0.45 µm Whatman 

polyethersulfone disposable filters. On-board geochemical analyses were conducted 

with the following instrumentation: Alkalinity was determined by titration with 0.1 N 

HCl and 0.1 N AgNO3 solutions, sulfate Ca2+ and Mg2+ concentrations were 

determined with a Metrohm 850 Professional ion chromatograph. Ammonium was 

determined with an Agilent Cary 100 double-beam UV/Vis spectrophotometer. Minor 

elements (Ba2+, Fe2+, Li+, Sr2+) were analyzed with a TeledyneProdigy high-

dispersion inductively coupled plasma atomic emission spectroscopy (ICP-AES). 

Coefficient of variation for all cations and anions was 3 to 5% (Jaeger et al., 2014). 

Pore-water data are presented in micromolar (ȝM) or millimolar (mM), pore-gas in 

milimolar (mM) concentrations.  

Onboard, total inorganic carbon (TIC) was measured with a UIC 5015 CO2 

coulometer. For this, 10 mg of freeze-dried sediment were reacted with 1M HCl and 

the liberated CO2 was back-titrated to a colorimetric end point. TIC was converted 

into CaCO3 by multiplying wt% TIC by 8.33 under the assumption that all TIC is 

present as CaCO3. The coefficient of variation for this analysis was ~1%. (Jaeger et 

al., 2014). 

For shore-based geochemical analyses, 163 sediment samples were taken at ~3 m 

resolution. This sampling strategy included splits of the pore-water squeeze cakes 

and additional discrete samples collected from working halves of the split cores. 

Sediment samples were either freeze-dried on board, or initially stored in vacuum 

sealed, gas-tight plastic bags with oxygen strippers followed by freeze-drying on 

shore. 
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On shore, splits of all sediment samples were homogenized using an agate mortar 

and pestle, and analyzed for Si, Al, Fe and Ba using a wavelength-dispersive XRF 

(Panalytical Axios max, 4 kW). For this, 700 mg of sample were mixed with 4200 mg 

di-lithiumtetraborate, pre-oxidized with 1g ammonium nitrate at 500° C and then 

fused to homogenous glass beads. Calibration of the XRF was done by using 52 

SRM and in-house samples resulting in an average absolute error based on all 52 

samples of 0.3 wt% Si (0.1), 0.1 wt% Al (0.2), 0.1 wt% Fe (0.2) and 31 mg/kg Ba (2) 

(in brackets: precision in % standard deviation for a typical sample). Total carbon 

(TC), total organic carbon (TOC) and total sulfur (TS) were quantified using Leco and 

Elementar combustion analyzers with a reproducibility better than 5% (TC) and 10% 

(TOC, TS), based on duplicates of every tenth sample. XRF, C and S data are 

presented as weight percent (wt%) or mg/kg of dry sediment. To account for 

depositional changes of the sedimentary matrix and dilution effects, chemical data 

are also reported as element to Al ratios. 

A sequential Fe and S extraction scheme following the methods of Canfield et al. 

(1986), Poulton and Canfield (2005), and März et al. (2012) was applied to 

operationally separate iron carbonates, amorphous/poorly crystalline iron 

(oxyhydr)oxides, crystalline iron oxides, and magnetite as well as iron mono-sulfides 

(e.g. mackinawite, greigite) and pyrite. Iron carbonates were extracted with 1M Na-

acetate at pH 4.5 for 24h, amorphous/poorly crystalline iron (oxyhydr)oxides with 1M 

hydroxylamine HCl and 25% acetic acid for 24h, crystalline iron oxides were 

extracted with a dithionite solution at pH 4.8 for 2h and magnetite was extracted with 

a 1M ammonium oxalate solution for 6h. Ten ml of each solution were applied to the 

same 0.1 g sample in sequence. For the S extraction, ~0.5 g of sample material 

were first boiled with 50 ml half-concentrated HCl for 45 min to dissolve all iron 
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mono-sulfides, then 12 ml fully reduced Cr(II)-chloride were added and boiled for 

another 45 min to oxidize pyrite. The resulting H2S of both fractions was trapped as 

silver sulfide (Ag2S), weighed and stochiometrically converted into amounts of Fe 

bound as FeS and FeS2, respectively. The iron fractions resulting from the different 

extraction steps are presented as ratios of highly reactive Fe (FeHR, sum of Fe in all 

extraction steps) over total Fe (determined by XRF) (FeHR/FeT), and of sulfide-

bound Fe (Fe-S, sum of Fe in mono-sulfides and pyrite) over highly reactive Fe (Fe-

S/FeHR). The latter ratio indicates how much of the available FeHR has been 

converted into iron sulfides (Poulton et al., 2004). The reproducibility of the Fe 

extraction was within 5% for all four fractions, as determined from triplicate analyses 

of five samples. The standard error of the S extraction was within 20%, as 

determined by triplicate analysis of three randomly selected samples, mainly due to 

low total S contents (0.13 – 0.2 wt%) in these samples. 

Following the S extraction, the isotopic composition of pyrite-bound S was 

determined on the precipitated silver sulfide. The two naturally most abundant S 

isotopes, 32S and 34S, were measured on 200 ȝg of silver sulfide homogenously 

mixed with 300-600 ȝg vanadium pentoxide using a ThermoFinnigan Delta Plus 

mass spectrometer coupled to a Carlo Erba Elemental Analyzer (EA-IRMS), as 

described in Strauss et al. (2012). Sulfur isotope compositions are presented in the 

standard delta notation (į34S) as per mil difference to the international reference 

material Vienna Canyon Diablo Troilite (V-CDT). Standard deviation on duplicate 

measurements was, on average 0.3 ‰ and above 1 ‰ in one sample only. 

Analytical performance was monitored with international (IAEA S1, S2, S3, NBS 127) 

and in-house laboratory (Ag2S) standards. 
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Another dataset of 7 samples below 600 m core depth (CCSF-B) was used to 

assess organic matter reactivity (Childress, 2016). These samples were taken 

independently from the above described sampling strategy and analyses. 

Subsamples for O- and H-index measurements were collected at ~15 m resolution 

and samples were stored frozen. Sediment samples were freeze-dried, after which a 

subsample of each was decarbonated via acidification with 4N HCl for 48 - 72 hours 

(Leithold and Blair, 2001). Subsamples of dried and ground marine sediments were 

analyzed by GeoMark Research using Rock-Eval 6 pyrolysis to determine the type 

and maturity of organic matter. The method consists of a programmed temperature 

heating to sequentially release free hydrocarbons, hydrocarbons generated by 

thermal cracking of nonvolatile organic matter, and CO2 from kerogen. The resulting 

data are used to calculate H/C (hydrogen index) and O/C (oxygen index) ratios. 

All pore-water and solid phase constituents are displayed against composite coring 

depth in meters below the sea floor on the CCSF-B scale (core composite depth 

below seafloor, a depth scale that is corrected for sediment expansion; Jaeger et al., 

2014). In the following, all depth information refers to sediment depth unless stated 

otherwise.  

 

3. Results 

Sediment ages extend back to 16.5 Ma (early Miocene) at the deepest drilled point 

of Site U1417 (Jaeger et al., 2014). The new 40Ar/39Ar dating of the basal basalt lava 

flow samples from DSDP Site 178 provides an age of 25.80 ± 0.36 Ma. This 

disagrees with previous assumptions. Originally, the basement age at Site U1417 

was assumed to be 37 – 41.2 Ma which is the estimated age of the mid oceanic 
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ridge basalt at this site (Jaeger et al., 2014). The new age determinations suggest 

that the basement at Site U1417 is formed by a younger overlying volcanic sill. The 

sediment at Site U1417 consists mainly of hemi-pelagic mud, distal turbidites, and 

interbedded layers of biosiliceous ooze (Jaeger et al., 2014).  

The sulfate content of the pore-water decreases gradually from 27.5 mM at the top of 

the sediment column to values between 0 and 2 mM at ~200 m depth (Figure 3). 

Concentrations remain low until ~640 m depth where they increase to 7 mM. 

Methane concentrations up to 1.2 mM were measured between ~440 and ~640 m, 

consistent with the absence of sulfate. Ammonium sharply increases from 0.16 mM 

at the top of the core to 1.2 mM in 30 mbsf and then decreases to 0.5 mM at the 

bottom of the core. Total alkalinity exhibits a two-peak profile. One maximum of ~16 

mM occurs around 20 mbsf. From there it decreases linearly down to 3 mM in 220 

mbsf. Below this TA rises back to 13 mM in 375 mbsf and decreases again 

downcore back to 2 mM in 700 mbsf at the end of the record. Pore-water Ba2+ 

concentrations increase slightly from ~8 to ~25 ȝM from 0 to ~200 m depth, followed 

by much higher values, ranging from 25 to 440 ȝM, between ~200 m and ~640 m 

depth. Deeper than ~640 m, concentrations remain around 25 ȝM. Pore-water Li+ 

and Ca2+ concentrations increase with depth. Both have their lowest concentrations 

at the sediment surface (Li+ ~24 ȝM, Ca2+ ~10 mM). Lithium shows a broad 

concentration maximum of ~55 ȝM between ~300 and 550 m depth, a minimum of 

~12 ȝM at ~560 m, and another increase towards the bottom of the core (~100 ȝM), 

Ca2+ increases to ~17 mM at ~220 m depth, displays minimum concentrations of ~14 

mM between ~300 and 500 m depth, and increases again to ~30 mM towards the 

bottom of the core. Fe2+ has a maximum concentration of ~50 µM at 3.8 m depth and 

a peak of ~57 µM at 22 m depth (Figure 3). From there, it decreases to background 
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levels of <2 µM at 45 m depth where it stays for the remainder of the section. Some 

minor peaks up to 10 µM only occur between 45 and 150 m depth. Fe2+ increases to 

4 µM in the deepest sample at ~700 m depth. Pore-water Mg2+ decreases from 50 to 

25 mM over the upper 200 mbsf. Below this depth it increases slightly to 30 mM 

around 400 mbsf and decreases to 15 mM towards the end of the record. Pore-water 

Sr2+ is around 100 µM at the sediment surface and increases to 160 - 180 µM at 260 

mbsf. It remains around these values down to 500 mbsf, and from there decreases 

slightly to 140 µM towards the bottom of the core. 

The main chemical constituents of the sediments at Site U1417 are Si (av. 26.4 wt%) 

and Al (av. 8.4 wt%), with a Si/Al similar to average shale (Wedepohl, 1971, 1991). 

Deeper than ~350 m, Si contents fluctuate significantly and exhibit several peaks 

that mirror minima in Al (Figure 4). This results in a high Si/Al ratio. These peaks do 

not have equivalents in Zr or Zr/Al, indicating that Si enrichment is probably caused 

by biogenic diatomaceous productivity and not by enrichment of coarse siliciclastic 

material.  

Total Fe contents display an average value of 5.7 wt%, but show excursions to much 

lower values below ~350 m, some of them anti-correlated with peaks in Si. These 

excursions are not visible in Fe/Al (Figure 5), indicating that Fe is not depleted but 

diluted by diatomaceous Fe-poor material. On average, 18.4 % of FeT resides in the 

FeHR fraction (Figure 5). Total S contents are generally low, averaging around 0.2 

wt%, but two distinct peaks at ~570 m and ~680 m depth exceed 2 wt% (Figure 4). 

These maxima occur in depth intervals also exceeding 2 wt% pyrite-bound sulfur, 

indicating that S enrichments are related to iron sulfide precipitation/accumulation 

(Figure 5). Iron mono-sulfides are below detection limit in all samples analyzed.  
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Total organic carbon (TOC) contents are generally low (av. 0.5 wt%) with a few 

maxima at ~470 m (1.7 wt%), ~570 m (2.7 wt%) and ~680 m (1.8 wt%) depth (Figure 

4).  

Maximum Ba/Al ratios up to 1200 (Ba/Al*104) are observed at ~160 m, between 

~350 and 425 m, and at ~640 m depth, and exceed the background levels of around 

80-100 (Ba/Al*104) recorded throughout the entire core (Figure 6). 

Calcium carbonate (CaCO3) is below 2 wt% in most samples and shows 3 distinct 

peaks of 7 wt% at ~200 mbsf in the zone of sulfate depletion, 20 wt% at 340 mbsf 

and 40 % at 450 mbsf right above the zone of methane accumulation (Figure 6). The 

peak at 450 m represents a highly cemented layer of authigenic carbonate which 

was difficult to penetrate and only poorly recovered during drilling. Shipboard X-ray 

diffraction (XRD) analysis identified this indurated carbonate layer as well-sorted 

quartz-feldspar sand cemented by low-Mg calcite (Jaeger et al., 2014). 

Pyrite į34S values are variable but generally negative (as low as -46‰) throughout 

the entire cored section. In contrast, at ~300 m and between ~560 and 620 m depth, 

į34S reaches maximum values of +60‰ (Figure 6).  

Below 640 m (in the lower zone of sulfate enrichment), H- and O-indices are low (H-

index ~30-50; O-index ~60-140) indicating a very low reactivity of organic matter 

(Figure 7; Childress, 2016). 

 

4. Discussion 

Based on sulfate and methane profiles, the core is divided into three distinctive 

diagenetic regimes: a) an upper zone defined by a decline in pore-water sulfate 
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concentrations down to ~220 mbsf followed by an interval of very low sulfate from 

~220 to 440  mbsf; b) a zone of methane accumulation between ~440 and 640 m, 

referred to here as the methanogenic layer; and c) a zone where sulfate increases 

below a sediment depth of ~640 m (Figure 6). In the upper part of the record, 

diagenesis is or has been driven by electron acceptor supply from the overlying 

seawater. Below the methanogenic layer, a deep SMTZ is formed due to a deep 

source of sulfate and possibly other electron acceptors. 

 

Diagenesis fuelled by diffusion of sulfate across the sediment-water interface (0-440 

m)     

The upper 200 m of the sediment succession at Site U1417 show a “concave-down” 

pore-water sulfate profile (Figure 3) and near-total sulfate depletion occurs at ~200 m. 

The minimum in sulfate is relatively deep compared to another deep-water site in the 

GOA (~75 m at Site U1418, Figure 1; Jaeger et al., 2014) but in the range of 

observed deep-sea SMTZ depths reported by Egger et al. (2018). These authors 

report an average SMTZ depth of 170 m below seafloor underlying a >3500 m water 

column. A reason for this deep sulfate penetration could be the absence of methane 

diffusing upwards beyond ~440 m sediment depth, hence no AOM-driven sulfate 

reduction occurs. This interpretation is supported by the concave-down shape of the 

sulfate profile, which indicates that organoclastic sulfate reduction accounts for most 

of the sulfate depletion in the upper ~200 m of sediment (Niewöhner et al., 1998; 

Kasten et al., 2003). According to Meister et al. (2013), the concave-down shaped 

sulfate profile also indicates that sufficient reactive OM is available to deplete sulfate. 
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Accordingly, the TOC profile shows a slight decrease over the top 200 mbsf, 

supporting OM degradation by organoclastic sulfate reduction. 

Elevated pyrite contents at Site U1417 only occur at ~70 m depth in a single peak, 

supporting ongoing or past sulfate reduction leading to pyrite precipitation in this 

sediment layer (Figure 5). An explanation for this localized diagenetic feature cannot 

be provided, as the profiles of other sediment components, e.g. TOC or Si, do not 

show any anomalies that allow us to attribute a process. The current zone of 

diagenetic Fe reduction lies higher in the sediment succession (at ~4 m depth) as 

indicated by the Fe2+ pore-water profile (Figure 3). 

The sediments below the sulfate reduction zone are dominated by a sediment 

interval of ~200 m thickness where sulfate and methane are both very low (~200 to 

440 mbsf, sulfate <3 mM, methane <1.5 µM). In this interval, the TOC content 

reaches its lowest values throughout the entire record (~0.5 wt%, Figure 4). This 

relationship indicates that organoclastic sulfate reduction depleted the reactive OM 

pool, and the remaining OM is too inert to support significant methanogenesis in this 

sediment interval. At the more coast-proximal IODP Site U1418 no sulfate and 

methane free interval has been detected but an SMTZ has been reported in ~75 

mbsf (Jaeger et al., 2014). This implies spatially variable OM deposition and 

degradation across the Surveyor Fan.  

Despite the lack of a shallow SMTZ at Site U1417, two clusters of high Ba/Al ratios 

occur at ~160 m and between ~325 and 425 m, most likely resulting from past and/or 

ongoing authigenic barite precipitation following dissolution of barite deeper in the 

sediment (Figure 6). When pore-water sulfate is depleted to become undersaturated 

with respect to barite, sedimentary barite dissolves, and when upward diffusing 
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dissolved Ba meets sulfate re-precipitating authigenic barite can build diagenetic 

fronts just above the SMTZ. Such authigenic barite fronts can re-dissolve again 

when the SMTZ moves upwards (Von Breymann et al., 1992; Torres et al., 1996). 

The Ba/Al peaks at ~160 m depth do not coincide with peaks in Si or Si/Al and 

therefore are most likely not caused by higher biosiliceous export productivity 

(Gingele et al 1999). More likely, they indicate ongoing barite formation around the 

maximum sulfate penetration depth, since that they are situated above the zone 

where the pore-water is enriched in Ba2+ (Figure 6). In contrast, the peaks between 

~325 and 425 m most likely formed at paleo-SMTZs and are currently dissolving, as 

indicated by elevated pore-water Ba2+ concentrations in these intervals, and parallel 

pyrite peaks and a CaCO3 peak around 350 m sediment depth (Figure 6). Some 

coinciding enrichment in Si/Al suggests that initially higher deposition of biosiliceous 

material could have caused a higher initial biogenic barite in this zone, too (Gingele 

et al., 1999). Temporary preservation of barite within sulfate-free pore-waters has 

been explained by in situ transformation of barite into more stable barium carbonate, 

which would not change the observed bulk Ba/Al records (Riedinger et al., 2006). 

Nevertheless, the pore-water Ba2+ profile at Site U1417 shows that these deeper 

barite accumulations are presently being dissolved due to sulfate depletion (Figure 

6), and therefore might represent transient features.  

 

The methanogenic layer (440-640 m) 

Below ~440 m, and extending down to ~640 m, pore-waters exhibit methane 

concentrations up to ~1.2 mM (Figure 3). The methane-enriched zone has markedly 

higher TOC contents (up to ~3 wt%) compared to the overlying section (~0.5 wt%), 
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supporting increased methane production related to higher amounts and/or reactivity 

of OM (Figure 4). Pore-water sulfate concentrations are very low throughout this 

entire interval, as expected for methane-rich sediments. 

The top of the methanogenic interval is marked by a strongly cemented carbonate 

layer at 450 m depth (Figure 6) that was poorly recovered during drilling due to its 

high degree of induration within largely soft sediments, and only yielded one angular 

fragment (~3 cm in diameter) of low-Mg calcite (Jaeger et al., 2014). Such 

carbonate-cemented layers can form when an SMTZ remains within a specific 

sediment depth for longer periods of time (e.g. ~2.4 Ma in the Bering Sea according 

to Pierre et al., 2016; Wehrmann et al., 2016). Due to the higher alkalinity in SMTZs 

produced by AOM, authigenic carbonate minerals precipitate, including calcite 

(CaCO3) with various amounts of Mg or pure dolomite (CaMg(CO3)2) (Hathaway and 

Degens, 1969; Middelburg et al., 1990; Pierre et al., 2016; Wehrmann et al., 2016). 

This type of cementation has been observed, for example, in sandy turbidite layers in 

the Bering Sea (Hein et al., 1979; Wehrmann et al., 2011).  

To evaluate if the current methane or Ca fluxes into the carbonate layer would be 

sufficient to cement the entire original pore-space within the time of sediment 

deposition at Site U1417, simple calculations based on Fick’s first law of diffusion 

were conducted:   

Eq. 1:   ܬ௦ௗ ൌ ߔ  כ ௦ௗܦ כ ܥ݀ Τݔ݀  

where: Jsed = diffusive CH4 flux in the sediment, ĭ = sediment porosity, Dsed = CH4 

diffusion coefficient and dC/dx = CH4 concentration gradient. An example calculation 

can be found in the appendix. 
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Based on a seawater diffusion coefficient for methane of 1.39*10-9 m2 s-1 (Boudreau, 

1997), measured pore-water composition and physical sediment parameters, we 

calculate a diffusive methane flux of 18.6 mM m-2 a-1, resulting in a duration of <300 

ka required to completely cement the original quartz-feldspar sand layer. With 

respect to the carbonate-cemented layer, the measured pore-water composition is 

sufficient for the precipitation of authigenic carbonate. Furthermore, the absolute 

measured methane concentrations are not fully representative for the concentrations 

in the sediments. Methane can dissipate due to pressure release during core 

recovery, in particular in the deeper cores that were recovered using rotary drilling. 

Thus, the calculation might underestimate the current methane availability. The 

profile of pore-water Mg2+ exhibits broad maxima between ~300 and ~500 mbsf. This 

could indicate lateral inflow of ions necessary for carbonate formation. Interestingly, 

this pattern is not observed in Ca2+ which is the main cation-constituent of the low-

Mg-calcite found in these layers (Jaeger et al., 2014).  

Similar carbonate-rich, cemented intervals have been reported at the same depth 

interval at DSDP Site 178, approximately 1.5 km from Site U1417 (Kulm and Von 

Huene, 1973). This correlation indicates that carbonate cementation of otherwise 

permeable sediment layers in the GOA might be a spatially extended phenomenon.  

A striking observation at U1417 is the relatively abrupt decrease of methane 

concentrations at 440 mbsf without the existence of an SMTZ. One possible reason 

for the methane not diffusing into the overlying sediments could be the installation of 

a physical barrier by the authigenic carbonate layers. The diffusive profiles of other 

pore-water constituents, however, appear unaffected across this sediment interval 

(e.g. NH4, Figure 3), and small amounts of methane occur above the carbonate layer 

at 450 mbsf. Hence, the carbonate layer does not seem to be acting as a diffusive 
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barrier to gases and ions dissolved in the pore-water. An alternative explanation 

could be the oxidation of methane by small amounts of sulfate above 440 mbsf. As 

indicated by Ba/Al peaks and elevated pore-water Ba2+ and Sr2+ concentrations, 

barite dissolution is occurring in the sediment interval above 450 mbsf, and this 

process would release minor amounts of sulfate to the pore-waters which could drive 

AOM. We therefore propose a zone of cryptic AOM driven by the release of sulfate 

from dissolving barite in 375-425 mbsf. This process was proposed earlier by Treude 

et al. (2014). Sulfate concentrations in this sediment interval do not differ from those 

in the methanogenic zone, probably because the excess sulfate is balanced by AOM 

immediately. Dissolved Ba2+ concentrations in this zone reach values of up to 400 

µM – the same order of magnitude as average measured methane concentrations in 

the methanogenic zone (in average ~500 µM in the methanogenic layer). One mole 

barite provides one mole of Ba2+ and one mole of sulfate to the pore-water, and one 

mole of sulfate is required to oxidize one mole of methane. Thus, the observed 

concentrations of Ba2+ and sulfate imply that barite dissolution is sufficient for total 

methane consumption above 440 mbsf. In support of this hypothesis, the alkalinity 

profile (Figure 3) indicates that AOM is occurring at present. Total alkalinity exhibits a 

second peak of 12 mM TA centered around 375 mbsf, coinciding with an enrichment 

in pore-water Ba2+. Anaerobic oxidation of methane releases 2 moles of total 

alkalinity per mole of methane into the pore-water according to the reaction:  

ସܪܥ  ܵ ସܱଶି ՜ ିܵܪ  ଷିܱܥܪ   ଶܱܪ

Hence, this alkalinity peak is indicative of considerable AOM in this zone. We 

therefore suggest that carbonate cementation acting as diffusive barrier for methane 

flux into the overlying pore-waters is an unlikely explanation and that a cryptic sulfate 

release, probably driven by dissolving barites limits methane diffusion into overlying 
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sediments. This cryptic process could also have caused the authigenic carbonate 

cementation. 

The sharp boundary between methane-bearing and methane-free sediments at Site 

U1417 further suggests that significant methanogenesis is only occurring below 440 

mbsf where sufficient reactive OM is available.  

The sediment Ba/Al ratio in the methanogenic layer below 440 mbsf is consistently 

low and reaches detrital background levels (Condie, 1993) whereas dissolved Ba2+ is 

high, indicating long-lasting sulfate-depleted conditions and near-quantitative 

dissolution of barite (Figure 6). The Fe-S/FeHR ratio is higher in the methanogenic 

layer (peak values of 0.2 - 0.6) than above it, reaching a maximum at ~575 m (Figure 

5). The elevated Fe-S/FeHR ratio most likely reflects the transformation of iron 

(oxyhydr)oxides into pyrite within a paleo-SMTZ (Canfield et al., 1992; Raiswell and 

Canfield, 1998). The dissolved Fe required for Fe-S precipitation could be provided 

by Fe-oxide reduction coupled to methane oxidation as proposed by Egger et al. 

(2017). However, the pore-water Fe content in the methanogenic layer is very low, 

indicating that this process is no longer operational (Figure 3).   

High values of FeHR/FeT co-occur with the Fe-S/FeHR enrichments, most likely 

related to higher inputs of reactive Fe minerals to Site U1417. This interpretation is in 

agreement with higher amounts/reactivity of TOC in the methanogenic layer. Excess 

terrestrial Fe (mainly as (oxyhydr)oxides that contribute to the FeHR pool) delivered 

to the GOA should have fertilized primary productivity in this part of the iron-limited 

North Pacific and enhanced marine OM export to the seafloor (e.g. Martin, 1990). 

Additionally, diagenetic mobilization of iron (oxyhydr)oxides could have led to the 

enrichment of FeHR in specific sediment intervals where changes in sedimentation 
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rate would have led to the fixation of the oxic-suboxic redox boundary, producing 

diagenetic accumulations of Fe (oxyhydr)oxides (Kasten et al., 1998).  

 

Deep sulfate reservoir and inverse SMTZ (below 640 m) 

The deepest 60 m of the sediment record (below 640 m depth) are characterized by 

a downcore increase in pore-water sulfate. Between the methanogenic layer and this 

deep sulfate enrichment lies an “inverse” SMTZ which, in contrast to a conventional 

SMTZ (e.g. Martens and Berner, 1977; Niewöhner et al., 1997), is characterized by 

methane diffusing down, and sulfate diffusing up.   

This inverse SMTZ is associated with the highest Ba/Al peak of the entire U1417 

record, likely representing a zone of long lasting and still ongoing authigenic barite 

formation (Figure 6). Therefore, an active SMTZ with an electron acceptor supply 

from below can be assumed. Pore-water Li+ and Ca2+ concentrations increase 

towards the base of the sediment succession, providing evidence for chemical 

interaction between sedimentary pore-waters and the oceanic crust (Figure 3). The 

Li+ and Ca2+ ions are leached out of the basaltic basement and diffuse into the pore-

waters of the overlying sediments. This trend indicates that the pool of sulfate-rich 

water is in contact with, or even circulating through, the oceanic basement (Gieskes 

et al., 1982).  

Deep SMTZs with an electron acceptor supply from the bottom of the sediment 

column have been reported previously from other ocean regions. Sites where this 

phenomenon has been described and studied generally fall into one of five 

categories: 
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(1) Seawater can enter deep sediment layers or the oceanic basement where 

these layers crop out at the seafloor, and circulation through the subsurface can be 

driven by thermal gradients. Oceanic spreading centers are common settings for this 

type of fluid circulation within sediments and the underlying oceanic crust. Here, 

thermal energy from the hot crust drives fluid flow, and the thin sediment cover 

supports seawater circulation into and out of the crust (Elderfield et al., 1999; 

Engelen et al., 2008; Kuhn et al., 2017). Seamount flanks play an even greater role 

in recharging deep aquifers at the base of the sediment cover, with reported fluid 

flow over distances of up to 50 km at the Juan de Fuca Ridge (ODP Leg 168; Fisher 

et al., 2003a, 2003b; Hutnak et al., 2006). Deep sulfate enrichments observed at 

ODP Sites 1225 and 1226 in the open Pacific Ocean off Peru could also be 

attributed to this hydrological regime, but since sulfate is not depleted throughout the 

sediment column at these sites, no inverse SMTZs are installed (D’Hondt et al., 

2003).  

(2) At accretionary wedges above subduction zones, compressional dewatering 

of the accreted and subducting sediments leads to an active regime of subsurface 

fluid flow. This has been observed, for example, in the Nankai Trough off Japan (e.g. 

Torres et al., 2015). A combination of spreading center and accretionary wedge fluid 

flow has been observed at the Chile Triple Junction, where a spreading center is 

being subducted (ODP Leg 141; e.g. Agar and Prior, 1995). 

(3) Along continental margins, contributions of terrestrial groundwater can be 

introduced into marine sediment layers and install aquifers with a chemistry deviating 

from the marine-derived pore-water. For the Southeast Greenland Margin, 

contributions of meteoric water derived from the coast of Greenland were suggested 

as an explanation for the observed pore-water profiles. These pore-waters also react 
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with volcanic ash layers, further modifying their chemistry (Larsen et al., 1994; 

Gieskes et al., 1998). Most recently, an expansive aquifer system was discovered 

with geophysical methods off the East Coast of the USA (Gustafson et al., 2019). 

(4) Sulfate supply from buried evaporitic deposits does not require active fluid 

flow but relies on diffusion alone. Sulfate can be provided by dissolution of deeper 

gypsum- or anhydrite-rich layers and can diffuse into the overlying sediment column. 

Prominent examples are several drill sites in the Mediterranean (ODP Expedition 

160; Böttcher et al., 1998), where thick and extensive evaporite layers formed during 

the Messinian Salinity Crisis (Hsü et al., 1973; Hsü et al., 1977). This process also 

plays a role at ODP Site 1229 at the Peru margin (Leg 201; D’Hondt et al., 2003).  

(5)  Sulfate rich pore-waters could have been buried by sharp increases in 

sedimentation rates. This scenario was proposed by Brumsack et al. (1992) in the 

Sea of Japan (ODP Sites 796 and 797). The authors state that very low 

sedimentation rates allowed seawater sulfate to penetrate deeply into the sediments. 

Sulfate diffusion rates from the overlying water column strongly exceeded the rate of 

sulfate reduction within the sediments, preventing significant sulfate depletion in the 

pore-waters. A subsequent rise in sedimentation rates led to a separation of the 

seawater sulfate from the deep pool. This explanation has been proposed for deep, 

sulfate-enriched pore-waters at ODP Site 898 (ODP Leg 149) on the Iberia abyssal 

plain (Meyers and Shaw., 1996; Meyers et al., 1996). A situation where, due to low 

sedimentation rates and organic matter reactivity, electron acceptors diffuse deep 

into the sediments without being depleted can currently be seen in the South Pacific 

Gyre (D’Hondt et al., 2009; Fischer et al., 2009). 

These documented scenarios of deep sulfate supply may not be fully applicable or 

satisfactory to explain the geochemical observations at Site U1417. The study site 
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lies on a subducting plate, but is presently ~75 km away from the subduction zone. 

Therefore, it is unlikely that subduction-related dewatering of accreting or subducting 

sediments accounts for the sub-seafloor hydrology at Site U1417. The transport of 

terrestrial groundwater to the site across the subduction zone is also an unrealistic 

scenario, since any groundwater would be confined to the continental shelf and 

upper slope. In this area of the North Pacific, no evaporite deposits have been 

reported and it is highly unlikely that they formed in this open-marine, high-latitude 

environment in the past. The oceanic basement at this site is buried beneath ~800 m 

of sediment, which is a fairly thick sediment cover compared to seamount or ridge 

flanks. In addition, minimal crustal heat flow can be expected in the GOA, with an 

oceanic basement age as old as ~43 million years (Gee and Kent, 2007) and 

overlying pillow basalt ages of ~26 Ma (this study). Seamounts as a source for the 

deep sulfate-rich water are a more likely explanation. The Giacomini Guyot and 

Kodiak Seamount are close to Site U1417 (Turner et al., 1973) and could provide 

entry points for seawater. However, at distances of 131 km (Kodiak) and 73 km 

(Giacomini), both are farther from the site than the 50 km reported by Fisher et al. 

(2003a, 2003b) and Hutnak et al. (2006).  

Another possiblescenario is that the sulfate pool at U1417 was buried during 

deposition of the deepest sediment layers in the Miocene and has since then not 

been consumed completely by bacterial sulfate reduction. Due to low organic matter 

reactivity in these deep Miocene sediments, sulfate may not have been fully reduced 

until today. Indeed, the lowest ~100 m of the sediment succession at Site U1417 

(615+ m) were deposited over a period of more than 8 Ma at low sedimentation rates 

(1 cm ka-1). An increase in sedimentation rates from 1 cm ka-1 to 6 cm ka-1 occurred 
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around 8 Ma (Jaeger et al., 2014), which is represented today by the sediment depth 

of ~615 m, shortly above the current inverse SMTZ in ~640 m depth.  

Besides the hypothesis of an old, residual sulfate pool preserved at depth at Site 

U1417, there is another explanation involving the active delivery of relatively “young” 

seawater sulfate to the base of the sediment succession. In the northern parts of the 

GOA, large-scale tectonic processes lead to plate bending as the Pacific Plate 

approaches the Aleutian subduction zone (Masson, 1991; Reece et al., 2013). This 

bending could have generated new hydrological pathways near the study site 

through the formation of plate bending faults. Extension due to plate bending 

generates an array of sub-parallel normal faults that are observed to offset from 

seafloor through the sediment sequence and the top of the oceanic crust (Reece et 

al., 2013). Such faults have previously been reported as an important process in 

hydrating subducted tectonic plates and exporting water into the mantle (e.g. Emry 

and Wiens, 2015; Naif et al., 2015; Cai et al., 2018; Shillington, 2018). Probably, in 

the GOA they could act as pathways for seawater supplying the observed deep 

sulfate pool at U1417. Based on existing seismic data within the GOA, plate bending 

faults are present within ~250 km of the Aleutian Trench (Figure 2). These faults 

occur near Site U1417 and for up to ~176 km to the southeast parallel to the 

direction of the Pacific Plate motion.  

 

Deep buried sulfate pool versus actively flowing deep aquifer 

In the following section we will attempt to distinguish between the possible origins of 

deep sulfate enrichment at Site U1417: a deep buried sulfate pool or an actively 
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flowing deep aquifer, either recharged through plate bending faults or from seamount 

flanks.  

In this context, the analysis of S isotopes can provide useful information on the 

source of deep pore-water sulfate at Site U1417. In marine sediments, bacterial 

sulfate reduction is accompanied by S isotope fractionation. Sulfate containing the 

lighter 32S isotope is preferably reduced to sulfide by bacteria and isotopically lighter 

(i.e. depleted in 34S) pyrite is precipitated compared to the parental seawater sulfate. 

Conversely, the remaining sulfate-S becomes isotopically heavier, i.e. enriched in 

34S (Hartmann and Nielsen, 1969; Jorgensen, 1979; Strauss, 1997, 1999; Canfield, 

2001). Sulfur isotopic fractionation associated with bacterial sulfate reduction can be 

as high as 70‰ (Rudnicki et al., 2001; Wortmann et al., 2001; Ono, 2008; Sim et al., 

2011). Pyrites depleted in 34S are generally only produced when an unlimited supply 

of sulfate is available for sulfate reduction (open system) and other environmental 

parameters (e.g. type and availability of OM as electron donor) remain stable (e.g. 

Leavitt, 2014). In contrast, bacterial sulfate reduction occurring under sulfate-limited 

conditions (closed system) leads to a progressive decrease of the sulfate pool, and 

its S isotopic composition of the formed pyrites becomes progressively more 

enriched in 34S (i.e. isotopically heavier; Canfield, 2001). Böttcher et al. (2006) 

showed that deep, tectonically sourced pools of sulfate have often already 

undergone sulfate reduction, leading to a sulfate-S enriched in the heavy isotopes. In 

our scenario involving an old buried pool of sulfate depleted to ~7 mM, even higher 

enrichments in the heavy isotope can be expected.  

Pyrite-S isotopes below 640 m depth are, however, strongly negative (-10‰ to -30‰, 

Figure 6), indicating an open system with limited sulfate depletion. About 40% of the 

total sedimentary Fe (up to 80% of the highly reactive Fe) are pyritized in samples 
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with high FeHR values (Figure 5). In samples below 640 m, there is a near 1:1 

relationship between FeHR/Fetot and Fe-S/FeHR (not shown). This finding indicates 

that samples with high FeHR contents are nearly completely pyritized. This high 

degree of pyritization suggests that, at present, no further authigenic pyrite 

precipitation takes place. The light S-isotopy of the pyrites is a strong indicator that 

the pyrites have either precipitated diagenetically before the installation of the deep 

sulfate pool, or under unlimited sulfate supply, either shortly after the establishment 

of the sulfate-rich buried pool or progressively under an unrestricted supply of “fresh”, 

sulfate which had not undergone significant sulfate reduction. If pyritization was 

already completed before either the deep sulfate pool was cut off or the deep aquifer 

was installed, the S isotopic composition of the pyrite would reflect the geochemical 

conditions before this event, as no further pyrite precipitation could have occurred 

due to the lack of excess FeHR. Since we have no further means to constrain the 

point in time at which pyritization was completed, nor the time period over which the 

pyrite-S isotope signatures were generated, further investigations are necessary to 

reveal the origin of the deep sulfate pool.  

A pronounced Ba/Al peak is found at the center of the current inverse SMTZ, 

indicating ongoing barite precipitation (Figure 6). The absence of Ba/Al peaks farther 

below or above suggests that this discrete zone of barite precipitation must have 

been fixed within the current sediment interval. It also indicates that either no 

diagenetic barite ever formed above or below this layer, or that barite precipitated 

above has been dissolved. In contrast, pyrite-rich layers occur above and below the 

current SMTZ (Figure 5). At ~570 m depth, a layer with an Fe-S/FeHR ratio of 0.6 is 

found, and pyrite-S isotopes are positive (up to +50‰; Figure 6). This result could 

indicate that the position of the pyrite enrichments marks the previous position of the 
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SMTZ.   

The strongly enriched į34S of pyrite at ~570 m depth indicates that it formed during a 

phase of severe sulfate limitation. This enrichment could provide support for the 

hypothesis of a deep residual sulfate pool that was disconnected from overlying 

seawater sulfate in the past. In a discrete sediment interval, a temporary increase in 

sulfate reduction rates, for example due to the presence of reactive OM, could have 

generated sulfate-limited conditions and accumulation of isotopically heavy pyrite. 

Indeed, higher TOC contents can still be found in the respective sediment intervals. 

If strongly increased sulfate reduction rates were short-lived, this could have 

consumed sulfate in relatively shallow sediments while leaving a residual sulfate pool 

still existing in deeper sediment layers unaffected. 

To assess the hypothesis of a deep residual sulfate pool that persisted within the 

deeply buried Miocene deposits at Site U1417, it is critical to know the nature of the 

organic material below 640 mbsf. If the organic material was easily degradable by 

microorganisms, it should have been remineralized by sulfate reduction over the last 

millions of years since its burial. If the organic material, in contrast, was highly 

refractory, it could have persisted in the Miocene sediments without supporting 

significant microbial sulfate reduction. Therefore, the reactivity of the organic matter 

within the sulfate-containing deep sediments at Site U1417 can indirectly provide 

useful information about the relative age of the deep sulfate pool.  

At Site U1417 below ~600 mbsf, the sediments contain relatively high amounts of 

organic matter (up to 2 wt% TOC; Figure 4). An HI of 30 – 50 mg HC/g TOC and an 

oxygen index (OI) of 60 – 140 mg CO2/g TOC in the deepest sediment interval 

indicates that all organic matter here is kerogen type IV (Figure 7), an unreactive 

material that is generally associated with coal-related carbon and can be considered 
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an inert end-member of detrital organic matter that has experienced significant 

thermal oxidation, biological degradation, and/or sedimentary recycling 

(Vandenbroucke and Largeau, 2007; Figure 7). These values suggest that the 

remaining organic matter in the deepest deposits at U1417 is predominantly 

unreactive. Consequently, it is conceivable that microbes could not use this organic 

material for dissimilatory sulfate reduction, implying that a Miocene buried sulfate 

pool could have been preserved within these deep sediment layers. However, as 

there is a contact between the sulfate- and the methane-rich zones, the question 

arises why the deep sulfate did not get reduced by AOM in the inverse SMTZ. To 

assess this question, we calculated the time it would take to deplete a sulfate pool at 

seawater sulfate concentration (28 mM) in these sediments by AOM. This calculation 

can again be done using Fick’s first law of diffusion (Eq. 1; example in appendix).   

With a seawater diffusion coefficient for sulfate of 9.95*10-10 m2 s-1 (Boudreau, 1997) 

and based on the current concentration gradient, we calculate a diffusive flux of 672 

ȝmol m-2 a-1 for sulfate. With this flux it would take ~3 Ma to consume the deep 

sulfate pool by AOM, a time period much shorter than the time since the Miocene 

when this deep sulfate pool would have been originally buried. Using the current 

sulfate flux as a benchmark, it can henceforth be concluded that having preserved 

an old, deeply buried sulfate pool at Site U1417 is an unrealistic scenario and that 

the sulfate-rich water must be replenished by another process. As stated earlier, we 

suggest that a tectonic driver was responsible for the installation of the deep sulfate-

enriched aquifer.  

To distinguish between possible tectonic drivers, Fick’s first law of diffusion can be 

used to estimate the time it has taken, under steady state conditions, to accumulate 

the Ba peak at 644 m depth (assuming it is exclusively composed of authigenic 
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barite at the present deep SMTZ). This calculation has to be based on the 

assumptions that the Ba layer formed within the same depth interval and that no 

dissolution and re-precipitation occurred. Peak dissolution would have occurred 

when the SMTZ moved and barite precipitation would have occurred in other 

sediment intervals as well. But in this case, relict Ba peaks should still be observable 

in these sediment intervals. As no relict Ba peaks can be observed above or below 

the main Ba peak, the assumption that the center of Ba formation has constantly 

been stable within the same sediment interval is plausible.  

The calculated time estimate can be compared to the onset of plate bending at Site 

U1417 and the eruption time of nearby seamounts. Based on seismic data within the 

Gulf of Alaska, Pacific plate bending faults are present within ~250 km distance of 

the Aleutian Trench. Relative to Site U1417, these faults occur up to ~176 km to the 

SE along the Pacific Plate vector. Using MORVEL2010 (DeMets et al., 2010) where 

the Pacific Plate at this location is moving at ~45 mm a-1 at a NW angle of -315.19˚, 

we calculate that Site U1417 passed through this location of expected plate bending 

fault onset (~176 km to SE) ~3.9 Ma ago and still lies within a zone of plate bending 

faults today (Figure 2). The closest seamounts, Giacomini and Kodiak, which could 

also have installed new hydrological pathways through the sediment, erupted at 19.9 

± 1.0 Ma and 22.6 ± 1.1 Ma, respectively (Turner et al., 1973), and the basalt layer at 

the basement of DSDP Site 178 (collocated with IODP Site 1417) was dated to 

25.80 ± 0.36 Ma (see above). 

Equation 1 is applied in this case with a seawater diffusion coefficient for Ba2+ of 

5.25 *10-10 m2s-1 (Boudreau, 1997) and based on the currently observed Ba2+ 

concentration gradient. Example calculations can be found in the appendix. The 

calculation was carried out using several estimates for the thickness of the Ba-
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enriched layer, as the low sampling resolution in these deep layers of the drill core 

makes it difficult to precisely constrain the amount of accumulated Ba at the SMTZ. 

The chosen combination of values and the derived calculations as well as an 

example calculation are presented in the Appendix. We calculate a diffusive 

downward flux of 5.92*10-5 moles*m-2*a-1 to cause the accumulation of the Ba peak. 

The Ba-enriched layer has an excess Ba enrichment of 0.73 wt% compared to 

background Ba concentrations (Wedepohl, 1971, 1991). Using these numbers, we 

calculate accumulation times of ~300 ka if the Ba-rich sediment interval spans 50 cm 

(minimum estimate based on the distance between the two Ba-rich samples) to ~6.1 

Ma assuming a constant Ba enrichment of 0.73 wt % over a 10 m sediment interval. 

Given the low sample resolution, even higher values for the Ba-rich sediment volume 

would be possible. However, the amounts of Ba required for even higher authigenic 

barite enrichments would imply unrealistically high primary barite deposition rates 

over the sedimentation history at Site U1417 (Pfeifer et al., 2001).  

These time estimates based on authigenic Ba accumulations are most similar to the 

calculated time of initiation of the plate bending faults, while the eruptions of the 

closest seamounts occurred much further in the past. We therefore suggest that 

plate bending delivered sulfate-bearing waters to the deep reservoir at the bottom of 

Site U1417. This hypothesis is further supported by clearly imaged plate bending 

faults in the vicinity of Site U1417 (Figure 2). The offset in time between our 

geochemistry- and tectonic-based estimates for the first appearance of this deep 

aquifer could be caused by variable fluxes of Ba2+ over time. Alternatively, a gradual 

increase in the effectiveness of plate bending normal faults as fluid conduits could be 

the reason, such as through the process of increasing fault gouge over time, as they 

approach the subduction zone. Furthermore, newly developed faults do not 
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necessarily act as an instantaneous connection between the seawater and the deep 

sediment layers, and seawater penetration to the base of the sediment column was 

likely retarded in the early stages of fault installation. Within the large uncertainties of 

our calculations, however, we conclude that the accumulation time for the authigenic 

Ba layer lies within the same order of magnitude as the onset of plate bending at Site 

U1417, and we propose that both processes are connected.  

 

Comparison with DSDP Site 178 (Leg 18) 

IODP Site U1417 is a re-drill (offset by ~1.5 km) of DSDP Site 178 (Kulm and Von 

Huene, 1973; Jaeger et al., 2014). In contrast to Site U1417, basement has been 

reached during drilling at Site 178. It is therefore imperative to compare geochemical 

profiles from Site U1417 to the profiles from Site 178. Figure 8 shows TOC and pore-

water results from Site 178 alongside the same data from Site U1417. The depth 

scales might not be entirely corresponding because of the spatial distance between 

both sites, however, the matching profiles of Ca, Mg and sulfate in the upper part of 

the record indicate that comparability is sufficient for the purpose of this study.  

The sulfate profile at Site 178 looks similar to the one at Site U1417 in the upper 200 

mbsf, implying that the same processes govern sulfate reduction and organic matter 

degradation at both sites. Below 200 m, sulfate at Site 178 is higher than in the same 

interval at Site U1417. Unfortunately, methane has not been analyzed at Site 178, 

but the sulfate concentrations suggest that methanogenesis only occurs below 440 

mbsf. The similar shapes of the TOC profiles further suggest that the processes of 

OM degradation are similar at both sites. A striking observation is that the lower 

sulfate pool at Site U1417 is not observed at Site 178. Sulfate only increases slightly 
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towards the basement. In contrast, dissolved Ba2+ is much higher in the lowest 

interval. These higher pore-water Ba2+ concentrations at Site 178 have originally 

been attributed to higher biogenic Ba deposition (Waterman et al., 1973). This could 

also explain the primary origin of the Ba which is diagenetically enriched at Site 

U1417. The differing pore-water sulfate profiles indicate that the process of sulfate 

enrichment at Site U1417 potentially is a spatially limited phenomenon. In the 

context of the processes described above, this observation challenges the 

hypothesis of an outcrop-to-outcrop flux between two seamounts, because this sort 

of flux should affect the entire seafloor between these outcrops. As sedimentation 

rates and organic matter flux are also similar at both sites, a deep buried pool of 

sulfate should therefore most likely also appear at both sites. Plate bending fault-

derived sulfate could, however, produce spatially variable diagenetic signals 

depending on the distance of the site from the fault.  

The cumulative evidence from geochemical observations, calculations of diffusive 

fluxes and mineral accumulations and the variation of geochemical profiles between 

the neighboring sites U1417 and 178 is mostly in accordance with plate bending 

faults as a way of recharging a deep aquifer and providing sulfate to the deeper 

sediments in the Gulf of Alaska (Figure 9). Plate bending has previously been 

reported as an important process in hydrating subducted tectonic plates and in 

exporting water into the mantle (e.g. Emry and Wiens, 2015; Naif et al., 2015; Cai et 

al., 2018; Shillington, 2018). For the first time, we are proposing a link of this process 

with low temperature biogeochemical element cycling in marine sediments. With 

respect to crustal hydration and water export into the Earth’s mantle in subduction 

zones, plate bending has been assigned similar importance as water circulation at 

seamount flanks and along mid-oceanic ridges (Cai et al., 2018; Shillington, 2018). It 
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is therefore plausible that it has equally far-reaching effects on sediment 

biogeochemistry. 

 

5. Conclusions 

At IODP Site U1417 in the GOA, inorganic and organic geochemical data unravel the 

complex evolution of early diagenetic processes with clear evidence for non-steady 

state conditions and a distinct deviation from the canonical catabolic sequence. We 

present two key observations. First, a spatial separation of the sulfate reduction and 

methane oxidation zones caused by methane consumption with sulfate which is 

released from dissolving barites. Second, an enrichment of sulfate is observed in the 

deeper sediment layers, well below a zone of sulfate depletion and a methane 

generating layer. The sulfate-rich water in the deep subsurface causes an inverse 

diagenetic zonation close to the sediment-basement interface. We propose that a 

deep aquifer, recharged through extensional faults generated by plate bending, 

provides this sulfate-containing seawater. Based on the findings at Site U1417, the 

area of the global seafloor where deep aquifers and multiple sulfate-methane 

transition zones may exist has to be expanded to include portions of the seafloor 

which are affected by plate bending. This result can have far-reaching implications 

for deep biosphere biomass estimations and the global carbon and sulfur cycles. 
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Figure Captions: 

 

Figure 1: Bathymetric map showing position of Sites U1417 and U1418 IODP 

Expedition 341 and Site 178 DSDP Leg 18; red line across Site U1417 indicates 

seismic profile of Figure 2; arrow indicates direction of Pacific Plate movement 

(DeMets et al., 2010). Map created with Ocean Data view (Schlitzer, 2015). 

 

Figure 2: Seismic profile shown in seconds two-way travel time across Site U1417; 

position indicated by red line A - A' in Figure 1. Blue dashed line indicates borehole 

position, green line represents gamma ray downhole logging (Jaeger et al., 2014). 

Note presence of plate bending-related normal faults offsetting sediments from the 

seafloor to the top of ocean crust within the sediment adjacent to Site U1417 

indicated by arrows. Basement occurs in ~6310 s TWT. 

 

Figure 3: From (Jaeger et al., 2014): pore-water downcore profiles of SO42-, pore-gas 

CH4, pore-water total alkalinity, NH4 (all in mM), Ba2+, Fe2+, Li+, Sr2+ ( all in ȝM) Ca2+ 

and Mg2+(in mM). Dashed lines indicate seawater concentrations (Li, 2000). 

 

Figure 4: Geochemical data at Site U1417. Sedimentary downcore profiles of TOC, 

Si, Al, Fe, S (all as wt%), Ba, Zr (both in mg/kg sediment), TOC (wt%), Si/Al, Zr/Al 

and sedimentation rate (in m/Ma). Dashed vertical lines indicate average shale 

contents (Wedepohl, 1971, 1991).  
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Figure 5: Fe and S speciation data. Fe/Al, S/Al, Fe-S/FeT, Fe HR/FeT and Fe-S/Fe 

HR ratios (all as g/g). 

 

Figure 6: Geochemical data relevant for authigenic mineral formation. Pore-water 

SO42-, pore-gas CH4 ( all in mM), Ba/Al, Pore-water Ba2+ (in ȝM), CaCO3 (in wt%), 

į34Spy (‰), vertical dashed line indicates zero-reference V-CDT standard. Gray 

shadings indicate three distinguished diagenetic zones. 

 

Figure 7: Pseudo-Van-Krevelen Plot for Site U1417 below 600 m CCSF-B. Numbers 

indicate depth of individual sample in mbsf CCSF-B. Data from Childress (2016). 

Roman numbers indicate kerogen type (Vandebroucke and Largeau, 2007). 

 

Figure 8: Comparison of TOC profiles (in wt %) and pore-water profiles of sulfate, 

total alkalinity (TA), Ca 2+, Mg2+ (in mM), Ba2+ and Sr2+ (in µM) from DSDP Site 178 

(red dots) and IODP Site U1417 (black dots). IODP TOC data from this study, IODP 

pore-water data from Jaeger et al. (2014), DSDP data from Kulm and Von Huene 

(1973).  

 

Figure 9: Schematic illustration of mechanism to create deep aquifer by plate 

bending faults (not to scale). 
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Highlights: 

1) Site U1417 in the Gulf of Alaska shows uncommon diagenetic profile 

2) No shallow sulfate-methane transition zone formed 

3) Methane consumption by barite dissolution prevents upward methane 

diffusion 

4) Deep, reversed sulfate-methane transition fuelled by deep aquifer 

5) Deep aquifer potentially fed through plate bending faults 
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