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Abstract

The primary objective of the European Space Agency’s 7" Earth Explorer mission, BIOMASS, is to
determine the worldwide distribution of forest above-ground biomas8)A&Gorder to reduce the
major uncertainties in calculations of carbon stocks and fluxes associdtedhe terrestrial
biosphere, including carbon fluxes associated with Land Use Change, forest degraddtforest
regrowth. To meet this objective it will carry, for the firghé in space, a fully polarimetric P-band
synthetic aperture radar (SAR). Three main products will be provideoialghaps of both AGB and
forest height, with a spatial resolution of 200 m, and maps of sevesst fdisturbance at 50 m
resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions).
After launch in 2022, there will be a 3-month commissioning phase, followedl#ymonth phase
during which there will be global coverage by SAR tomography. In the sungemdérferometric
phase, global polarimetric interferometry Pol-InSAR coverage will be&eaed every 7 months up to
the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be wsetiminate scattering
from the ground (both direct and double bounce backscatter) in forests. In deisa forests AGB
can then be estimated from the remaining volume scattering using non-lineaiomveisa
backscattering model. Airborne campaigns in the tropics also indicatA@fais highly correlated
with the backscatter from around 30 m above the ground, as measured by tomograpintrast,
double bounce scattering appears to carry important information about Bi@fAtareal forests, so
ground cancellation may not be appropriate and the best approach for suth rem&sins to be
finalized. Several methods to exploit these new data in carbon cycle calcutsiansiready been
demonstrated. In addition, major mutual gains will be made by combining BIOMA&Swith data
from other missions that will measure forest biomass, structuighthend change, including the
NASA Global Ecosystem Dynamics Investigation lidar deployed on the &tienal Space Station
after its launch in December 2018, and the NASA-ISRO NISAR L- and S-bandds&Ror launch
in 2022. More generally, space-based measurements of biomass are a core componariiaof a
cycle observation and modelling strategy developed by the Group on Eartha@bservSecondary
objectives of the mission include imaging of sub-surface geologitaitstes in arid environments,
generation of a true Digital Terrain Model without biases cabgddrest cover, and measurement of

3
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glacier and icesheet velocities. In addition, the operations needed feplemiz correction of the
data will allow very sensitive estimates of ionospheric Total Electamedt and its changes along

the dawn-dusk orbit of the mission.

1. Introduction: The role of biomass in the global carbon cycle and climate
For millennia, humanity has depended on woody biomass from forests asca ebmaterials and
energy (Rackham and Moody, 1996; Radkau, 2012), and this dependence shows no sign of abating.
For example, around a third of the world’s population relies on biomass for energy, and in sub-
Saharan Africa around 81% of the energy use by households is providechimghwmoody biomass
(World Bank, 2011). At the same time, forest, and its associated bidmassiten been treated as an
impediment to development, and huge tracts have been cleared, and continue to be cleates, to
way for agriculture, pasture and agro-forestry (FAO, 2016). Howevergraficant shift in the
relationship between mankind and biomass has occurred as climate change has becessangf pr
international concern and the role of forest biomass within this @dwes become clearer (IPCC,

2007, 2013).

{Formatted: Line spacing: Double

Climate change is intimately connected with the global carbon balance and tiseofiigreenhouses
gases, especially carbon dioxide @Obetween the Earth’s surface and the atmosphere
(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In particulaneguivocal
indication of man’s effect on our planet is the accelerating growth of atmosphericCO,. The principal
contribution (around 88%) to this growth is emissions from fos®l burning, with most of the
remainder arising from Land Use Change in the tropics (Le Quéré, 2018). However, the increase in the
concentration of atmospheric @Oetween 2007 and 2016 is only about halPgi4f the emissions.
Because C@is chemically inert in the atmosphere, the “missing” half of the emissions must flow back

into the Earth’s surface.

Current estimates (Le Quéré et al., 2018) suggest that around 28% of tleenistibns are taken up

by the land and 22% by the oceans (leaving around 6% unaccounted for), but thengeare la




93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

uncertainties in these values, especially the land uptake, whose value hashemmigtimatbas a

residual thaersures the total amount of carbon is conserved, as expressed in eq. (1):

Uiana= Ext + B — (ACaimos+ Uoceay) - ()

Here E denotes fossil fuel emissions;, 5 net land biospheric emissions, comprising both Land Use

Change and ecosystem dynamics, and including alterations to biomass lgtked to proces

responses to climate change, nitrogen deposition and rising atmosphendCg63<is the change in

atmospheric C@ and U,ngand U.apare net average uptake by the land and ocean respedtivety.

(1) the quantities on the right-hand side are typically estimated on an amsisob as a decadal

average, using a mixture of measurements and models, to yigldHdwever, in Le Quéré et al.

(2018) U.nqis estimated independently using dynamic global vegetation models.

approaches k)4 has the largest uncertainty of any term in eq. (1), estimated as 0.8,G@tQigh is

26% of its estimated value of 3.0 GtC/yr (1 GtC 2 t16f C which is equivalent to 3.67x10of CQy).
Moreover, the Land Use Change flux (which is the difference between emissiorferfestrioss and

uptake of CQ by forest regrowth) has an uncertainty of 0.7 GtC/yr, which is bfi%s estimated



119 value of 1.3 GtC/yr. Since the fractional carbon content of dry biomaseuadb0% (though with

120 significant inter-species differences [Thomas and Martin, 2012]), beowetsange is a fundamental
121 component in these two land fluxes, controlling the emissions from fdistatbance and the uptake
122 of carbon by forest growth (e.g. Pan et al. 2011). Thishy above-ground biomass (AGB) is
123 recognised as an Essential Climate Variable (ECV) within the Globala®i®bserving System

124 (2015, 2017

125 | Climate change concerns have therefore made it imperative to obtain accuratessifrbémass [Formatted: Line spacing: Double

126 and its changes. Unfortunately, where this information is most neetthedtropics- is where almost

127 | no data have been gathered (Schimel et al., 20h&.is in contrast to forests in the temperate and

128 | southern parts of the boreal zones whose economic importance has drivegvetaprdent of

129 | extensive national inventories (although there are vast areas of AlaskieriNdCanada, and East

130 | Eurasia that do not have forest inventories because of their low economic imgortance

131

132

133

134 | eceneomic-importancelhe tropical forests cover an enormous area (~18 millio?) knd offer huge

135 logistical challenges for ground-based biomass inventory. They areratsal in political efforts to
136 mitigate climate change. In particular, the United Nations Conventiddlimate Change (UNFCCC)
137 through its Reduction of Emissions from Deforestation and Degradg§BR&DD+) initiative
138 (UNFCCC, 2016) aims to use market and financial incentives to transfer fiendshe developed
139 world to the developing countries in the tropical belt to help them reglmigsions by preservation

140 and management of their forests (UN-REDD Programme, 2008).

141 Estimates of biomass losses have focused on deforestation, i.e. conversi@stdfhd to other land
142  use, which results in complete removal of AGB. However, also signifitam missing from most

143  current estimates, is forest degradation. This is the loss of part of Biofoainstance removal of
144 large stems for timber or of understorey plants for replacemenbdnagcor through increased fire

145 along forest edges.
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UN-REDD and related programmes have given significant impetus to theitogua$ more in situ
data in developing countries and this adds to the information available in thdipeeports of the
United Nations (UN) Food and Agriculture Organisation (FAO) (F2@6, 2010, 2016). However
national data in many cases have large gaps, sampling biases, inconsisteethods, lack spatially
explicit information and contain unrepresentative samples, particularly inogé@wglcountries. As a
result, major efforts have been made to formulate more consistent globehcms that combine
forest inventory and satellite data to estimate AGB. Such endeavourbdevegreatly hampered by

the fact that, up until the launch of the Global Ecosystem Dynamicstiyatgsn (GEDI) instrument

(see below), there has never been any spaceborne sensor designed to measure biomass, so space-based

estimates of biomass have relied on opportunistic methods applied to noatcgimors, with the

limitations this implies.

In the tropics, the most significant developments have been based on faybstekémates derived
from the Geoscience Laser Altimeter System (GLAS) onboard the Icad @iod land Elevation
Satellite (ICESat) before its failure in 2009 (Lefsky, 2005, 2010). CombiBIgS data with other
EO and environmental datasets and in situ biomass measurements has led dduttéoprof two
pan-tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012} atgles of 1 km and 500 m
respectively; differences between these maps and differences between the mapsitarthia are
discussed in Mitchard et al. (2013, 2014). Refinements of these maps haverddereg by

Avitabile et al. (2016) and Baccini et al. (2017) based on essentially the same satelkts.datas

For boreal and temperate forests, methods have been developed to estowdig Stock Volunfe

(GSV, defined as the volume of wood in all living trees in an artrmdidmeter at breast height above

a_given threshold) from very long time series of C-band Envidalitaradar data (Santoro et al.

2011). Multiplying these GSV estimates by wood density allowed Thurner(8Da#) to estimate the

carbon stock of forests north of 30°N. Reliable GSV estimates using niethiods are only possible

at spatial resolutions much coarser than the underlying radar data: bygiageio 0.5°, the relative

RMS difference between estimated GSV and reference data was consistendlyofdie in the range

20-30% (Santoro et al. 2013). Further refinements to the methodology and iténation with

[ Formatted: Line spacing: Double
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ALOS PALSAR-2 data are given in the Final Report of the ESA GlaiB&s project (Schmullius et

al., 2017).

L-band radar offers access to biomass values up to around 100 t/ha bsiftgesénsitivity (e.g.

Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALeD&Nd PALSAR-1

acquired a systematic five-year archive of forest data before its faildpril 2011 (Rosengvist et

al., 2014). PALSAR-2 launched in spring 2014 and has continued this systaowiisition strategy,

but current JAXA data policy makes scene data very expensive. Annual mosdieglgravailable

and have been used to map woodland savanna biomass at continental scale (Bou26t18},dbut

the mosaics combine data from different times and environmental conditiohstrey processing

may be needed to exploit them for biomass estimation (Schmullius 20HF). L-band data will also

be acquired by the two Argentinian Microwave Observation Satellites (SAMQCBe first of which

was launched on October 8, 2018, with the second due in 2019. Their main objectves

measurements of soil moisture and monitoring of hazards, such as oil spills anddftmbtieeir value

for global forest observations is not yet clear.

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are ibubrkitthese

frequencies most of the backscatter is from the leaves and small twibsyshave limited value for

biomass estimation except within the context of long time series at C-8antbio et al. 2011) and,

for TanDEM-X, when a ground Digital Terrain Model (DTM) is available and thehitwdgbiomass

allometry is robust (Persson et al., 2017; Askne et al.,)2017
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An exciting new development is the deployment on the International Space Statlon MASA

GEDI lidar instrument after its launch on December 5, 2018 (see Sectiofhl®)nission aims to
sample forest vertical structure across all forests betweeh SBd 51.5N, from which estimates
of the mean and variance of AGB on a 1 km grid will be derived. IniaddiCESat-2 launctd on
September 15, 2018; although it is optimised for icesheet, cloud and agpplcétions, and uses a
different technical approach from ICESat-1 based on photon counting, preliminaty segigest that

it can provide information on both forest height and structure.



226 It is against this scientific and observational background that BIOMAES selected by the
227 European Space Agency (ESA) in 2013 as its 7th Earth Explorer missiorheasdtellite is now
228 under production by a consortium led by Airbus UK for launch in 2022. Thalinitssion concepsi
229 described in Le Toan et al. (2011), but there have been major developmenthatiticeetin almost
230 all aspects of the mission: the measurement and calibration conceptsjetiteics context, the
231 methods to recover biomass from the satellite data, the exploitatioioroéss in carbon cycle and
232 climate modelling, the availability of P-band airborne campaign data and higty guaitu data, and
233 the overall capability to estimate biomass from space. It is trerefimely to providea

234  comprehensive description of the current mission concept, and this paper sets out to do so.

235 After a review of the mission objectives (Section 2), the associatedureedent techniques
236  (polarimetry, polarimetric interferometry [Pol-InNSAR] and SAR tgraphy [TomoSAR)] are
237 described in Section 3Pol-INSAR and TomoSAR require the combination of multi-temporal stacks
238 of data; this imposes very strong conditions on the BIOMASS quditern, with significant
239 consequences for the production of global biomass products (Section 4). Th@atidiin also
240 imposes strong requirements on the ability of the AGB and height inwegesibniques, discussed in
241  Section 5, to adapt to changing environmental conditions. Section 6 déathevuse of BIOMASS
242 data to estimate severe forest disturbance, while Section 7 describesdlopment of the reference
243 datasets to be used for algorithm calibration and product validation. In rSeétive discuss
244 developments in how BIOMASS data can be used to estimate key carbon cyclenatel ediriables.
245  Section 9 addresses a range of secondary objectives. Section 10 paovieeson how BIOMASS
246  complements other upcoming missions devoted to forest structure and biompasjcular the
247 GEDI lidar and the NASA-ISRO NISAR L- and S-band mission. Finallyti@ed 1 discusses how
248 BIOMASS will contribute to an overall system for measuring bionaassits changes in the context

249 of a global carbon cycle management scheme and presents our general conclusions.
250 2. BIOMASS mission objectives and data properties

251 The primary objective of the BIOMASS mission is to determine thédwitte distribution of forest

252  above-ground biomass (AGB) in order to reduce the major uncertaimtiegdculations of carbon

10
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stocks and fluxes associated with the terrestrial biosphere, including carkes d&ssociated with
Land Use Change, forest degradation and forest regrowth. In doing sd, giravide support for
international agreeménsuch 8 REDD+ and UN Sustainable Development Goals (#13: climate
action; #15: life on land)In addition it has several secondary objectives, including mapping sub-

surface geology, measuring terrain topography under dense vegetation and nestileaier and

icesheet velocities (ESA, 2012).

Although BIOMASS aims at full global coverage, it will at least cdeeested areas between° 18

and 56 S, subject to US Department of Defense Space Object Tracking R&IER) $estrictions.
These restrictions do not currently allow BIOMASS to operate wihierof-sight of the SOTR
radars and mainly exclude the North American continent and Europe (Figprbduced from
Carreiras et al., 2017). For secondary applications, if global coverage [ssible, data will be

collected on a best effort basis after covering the primary objectitbspriorities defined as in ESA

(2015).

L | 5
0 ! \;‘f a2
15° g ./"""\h p,
30° W

150° 120° 90° 60° 30° 0° 30° 60° 90° 120° 150°

Tropical desert

Tropical shrubland Subtropical desert Temperate desert

Tropical mountain system Subtropical steppe Temperate steppe Boreal mountain system
I Tropical dry forest I Subtropical mountain system Temperate mountain system Boreal tundra woodland
I Tropical moist forest W Subtropical dry forest I Temperate continental forest Il Boreal coniferous forest
N Tropical rainforest I Subtropical humid forest I Temperate oceanic forest & Polar

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Spjees

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas be&&8&outh and 85

North are represented (figure reproduced courtesy of Joao Carreiras).
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The BIOMASS data product requirements to meet the primary mission objecti(&Sare2015):

1. Above-ground forest biomass (AGB), defined as the dry weight of liganic matter above

the soil, including stem, stump, branches, bark, seeds and foliage woodypeatieit area
expressed in t Aa(FAO, 2009). It does not include dead mass, litter and below-ground
biomass. Biomass maps will be produced with a grid-size of 200m x 200m (4 ha).

Forest height, defined as upper canopy height according to the H100 standardforgedrin
expressed in m, mapped using the same 4 ha grid as for bid#ifs.is defined as the
average height of the 100 tallest trees/ha (Philip, 1994).

Severe disturbance, defined as an area where an intact patch of fordstehasleared,
expressed as a binary classification of intact vs deforested or logged atbaigtection of

forest loss being fixed at a given level of statistical significance.

Further properties of these products are defined in Table 1. Note that:

The biomass and height products will be produced on a 4 havgrith the disturbance

product is at the full resolution of the instrument after averaging tol&lin azimuth, i.e.,

around 50 m x 50 pauhdethe-dishrbaneoprodustatihefullreselubienothetnstment
after-averaging-to-6-looks—in-azimuth—-e—around-50-m—x-5This is because the large

changes in backscatter associated with forest clearance mean that distcalbaneeletected

using less precise estimates of the polarimetric covariance and coherericesntiéin are
neecakdfor biomass and height estimation.

If the true AGB exceeds 50 t fidhen the RMS error (RMSE) of its estimate is expected to
depend on biomass and be less th@®B/5. For all values oAGB < 50 t ha' the RMSE is
stipulated to be 10 t Haor better, though it is likely that changes in ground conditions, such
as soil moisture, may cause the RMSE to increase beyond this Setilarly, the RMSE of
estimates of forest height should be less than 30% of the true fordst teeitrees higher

than 10 m

12



296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

e Below-ground biomass cannot be measured by BIOMASS (or any other reemsing

instrument), but can be inferred from above-ground biomass using allomeaimnel

combined with climate data (Cairn et al., 1997; Mokany et al., 2006; Thurakr 2014). In

particular, Ledo et al. (2018) used an extensive tropical, temperate and bastalédaset to

develop a regression, with just tree size and mean water deficit ast@rediriables, which

explains 62% of the variance in the rdotshoot ratio. Therefore, throughout this paper,

‘biomass’ denotes ‘above-ground biomass’Below-greund-biomass—cannot-be—measured by

Table 1 Summary of primary BIOMASS Level 2 products. Achieving global coverageires 425
days during the initial Tomographic Phase and 228 days for each cycle of the subsequent
Interferometric Phase. RMSE indicates Root Mean Square Efftsbal” is to be understood as

subject to Space Object Tracking Radar restrictions (Carreiras et al), 2017

Level 2
Definition Information Requirements
Product
Forest Above-ground biomass expressq « 200 m resolution
biomass intha™. e RMSE of 20% or 10 t h& for biomass <
50 t ha'

¢ 1 biomass map every observation cycle

¢ global coverage of forested areas

Forest height Upper canopy height defined e 200 m resolution

according to the H100 standard | e accuracy required is biome-dependent,

13
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323
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328

329

330

RMSE should be better than 30% for tre
higher than 10 m
¢ 1 height map every observation cycle

¢ global coverage of forested areas

Severe Map product showing areas of | ¢ 50 m resolution
disturbance | forest clearance o detection at a specified level of significan
¢ 1 map every observation cycle

o global coverage of forested areas

3. The BIOMASS system and measurement techniques

BIOMASS will beafully polarimetric SAR mission operating at P-band (centre frequéB6yMHz)
with 6 MHz bandwidth as permitted by the International Telecommunications Union uader
secondary allocation (the primary allocation is to the SOTR syst€h®. choice of P-band is
mandatory for measuring biomass with a single radar satellite (aegéss affordability within the

ESA cost envelope) for three main reasons (ESA, 2008, 2012; Le Toan et al., 2011):

1. P-band radiation can penetrate the canopy in all forest biomes and interacts prefengtitiall

the large woody vegetation elements in which most of the biomass resides;

2. Backscatter at P-band is more sensitive to biomass than at higher freq(¥no&s S- and

L-bands); lower frequencies (e.qg. VHF) display even greater sensiffignsson et al.,

2000) but present formidable challenges for spaceborne SAR because of ionospheric

14
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3. P-band displays high temporal coherence between passes separated by seksrawen in
dense forest (Ho Tong Minh et al., 2012), allowing the use of Pol-InSAdRtimate forest

height and retrieval of forest vertical structure using tomography.

Here (1) is the crucial physical condition: it underlies the sensitivity imp¢2) and, through the
relative positional stability of the large woody elements, combinedthétlyreater phase tolerance at

longer wavelengths, permits the long-term coherence needed for (3).

The satellite will carry a 12 m diameter reflector antenna, yielding aesiogk azimuth resolution of
~7.9 m. A polarimetric covariance product will also be generated by awvgrédooks in azimuth,
giving pixels with azimuth resolution ~50 m. Because of the allottbtH& bandwidth, the single-
look slant range resolution will be 25 m, equivalent to a ground range resaliitE0.2 m at an
incidence angle of 25 Roll manoeuvres will allow the satellite to successively genehnate sub-
swaths of width 54.32, 54.41 and 46.06 km, giving a range of incidence angles acrossbihedom
swath from 23to 33.2. It will be in a sun-synchronous orbit with a near dawn-dusk (06:00 + 15 min)
equatorial crossing time; the Local Time of the Ascending Node (LTANYw on the dawn-side,
the system will be left-looking and the orbit inclination will be?,9&ith the highest latitude in the
northern hemisphere attained on the night-side. This orbit is chosen to lev@evere scintillations
that occur in the post-sunset equatorial ionosphere (Rogers et al., 2013).a@dsemwill be made

during both the ascending and descending passes.

BIOMASS displays major advances compared to all previous SAR misBioits use of three
complementary technologies to provide information on forest propertiesimpetry (PolSAR), Pol-
INSAR and TomoSAR. All acquisitions will be fully polarimetric, ilee tamplitude and phase of the
HH, VV, HV & VH channels will be measured (HV indicates horizontal ppégion on transmit and
vertical polarization on receive, with the other channels being siyndafined). This is in itself an
advance, but BIOMASS will also be the first mission to systematicaiploy the Pol-InNSAR
technique to measure forest height. Even more innovative is its tomogcapiaioility, which will

allow three-dimensional imaging of forests.
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The Tomographic Phase will immediately follow the initial 3-month Comumigsg Phase, and will
provide tomographic mapping of all imaged forest areas. Global coverage retfibrelmys (~14
months) in order to provide 7 passes, each separated by 3 days, for ezglapbinc acquisition. The
remainder of the 5-year mission will be taken up by the Interferometric Rhas® which 3 passes,
each separated by 3 days, will be combined in 3-baseline Pol-InSAR. Each ofycthe
Interferometric Phaswill require 228 days (~7 months) to provide global coverage. Note that these
technigues are nested: the data gathered for tomography will yield mubiplleSAR and PolSAR

measurements, and each Pol-InSAR image triplet also provides three PolSAR.imag

Associated with the highly innovative measurement concepts of the missionnapéetety new
challenges in external calibration arising from the orbital pattern ndéed#te tomographic and Pol-
INSAR phases of the mission (Section 4), the strong effects of theploere at P-band, and the lack
of pre-existing P-band data except over very limited parts of the glaigether these create
problems that can only be solved by combining infrequent visits to instrunealii@tion sites with
systematic exploitation of the properties of distributed targetstargets of opportunity. An overall
approach to addressing these problems, including ionospheric correction, radiantepaarimetric

calibration, and providing the required geolocation accuracy is described in QuegdAGt&)!
4. The BIOMASS orbit and its implications

In the Tomographic Phase, BIOMASS needs to be placed in a very precise repaatwhich a

given scene is imaged 7 times with 3-day spacing. These acquisitibhe iiibm slightly different

positions separatday 15% of the critical baseline (i.e. 0.823 km) at the equator, which is necessary to
preserve coherence. In this orbit, it takes 18 days to acquire the 7 images needed for each of the 3 sub-
swaths, so that tomography over the full swath (comprising the 3nasthsy occupies a periad 60

days. Once this has been achieved, a drift manceuvre will raise the satellite in altitude and then return

it to its nominal altitude of 671.9 km. This allows the Earth to rotateabtie satellite, and the next
tomographic acquisition period covers a new swath that is adjacent to the previous one. Repeating this
sequence 6 + 1/3 times yields global coverage and takes 425 days (the extrarthsponds to

coverage in swath 1). The orbit pattern for the Interferometric Phase ssegialy the same
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concept, but because only 3 images are needed to form the Pol-InSAR produag ianfgl swath

requires only 24 days, and global coverage takes 228 days.

These properties of the BIOMASS orbit pattern, driven by the requiremegiofml coverage using
coherent imaging techniques, have profound implications for biomass retriethaleirand space.
Acquisitions in adjacent swaths are separated by 2 monthe Tomographic Phase and by a little
less than a month in each cycle of the Interferometric Phase. Hence thekelpr® Ibe significant
changes in environmental conditions between different swaths that make uphthlecghverage. In
addition, because each cycle of the Interferometric Phase takes 7 months, thécasgbistome
steadily more out of phase with annual geophysical cycles, such as thenfanaanod West African

inundation cyclesThis means that the BIOMASS inversion algorithms have to be sufficieilist

that they are negligibly affected by environmental chaRigissmeans-that-the-BIOMASS-inversion

Incomplete compensation for such changes will manifest themselves as systeffextnogis

between adjacent swaths or repeat swaths gathered in different cyclesexesrgate, boreal forests
freeze during winter and their backscatter significantly decreasebeswinter season will most

likely not be useful for biomass estimation.

5. Forest AGB and height estimation techniques

BIOMASS will exploit properties of all three SAR techniques, PolSRB;INSAR and TomoSAR
to estimate biomass, while both Pol-InSAR and TomoSAR will providenatgts of forest height.
However, because BIOMASS will be the first spaceborne P-band SAR, the exaticata needed
to support the development and testing of these techniques is based on lnpitetw aand ground-
based measurements. Six major ESA airborne campaigns were carried oARBioS and -3n
the boreal zone, and three in tropical ecosystems: TropiSARemcirGuiana, AfriSAR in Gabon
and Indrex-2 in Indonesia) using the E-SAR and F-SAR (DLR, Germany) anHISENERA,

France) P-band SARs (see Table 2, which includes the objectives of the cammadgessential
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properties of the test-sites). These campaigns have provided the moateaaodrcomplete set of P-
band SAR (PoISAR, Pol-InSAR and TomoSAR) and associated in situ data guaneaitbble over
boreal and tropical forests. In addition, long-term continuous P-band based measurements were
made in French Guiana (Tropiscat), Ghana (Afriscat) and Sweden (BoreascaBstigate diurnal
and seasonal variations in backscatter and temporal coherence. Earlier P-baets deam the
NASA AirSAR system were also helpful, especially tropical fodzga from Costa Rica, to extend
the range of tropical biomass values (Saatchi et al., 2011), and NASA waly realved in the
AfriSAR campaign, providing lidar coverage of the AfriSAR test-siflesbriere et al., 2018). No
specific ESA campaigns were conducted in temperate forests, but substantial ahtmmegyraphic

data are available for such forests from experimental campaigns carried out by DLR.

Table 2 Campaign data used in developing and testing BIOMASS retrieval algorithms.

Campaign Objectives Test sites Time Forest conditions
TropiSAR, SETHI Biomass estimation | Paracou & Aug. 2009 | Tropical rain
(Dubois-Fernandez et in tropical forest; Nouragues, forest,AGB 300-
al., 2012) temporal stability of | French Guiana 500 t/ha, lowland
coherence and hilly terrain
Indrex-2, E-SAR Height retrieval in Sungai-Wai & Nov. 2004 | Tropical rain
(Hajnsek et al., tropical forest Mawas, Borneo, forest.
2009a) ; not measurement of Indonesia Sungai-Wai:
tomographic repeat-pass temporg lowland,AGB <
decorrelation 600 t/ha; Mawas:
peat swampAGB
<200 t/ha
Tropiscat: Measurement of Paracou, French| Aug. 2011| Tropical rain
Ground-based high | long-term temporal | Guiana - Dec | forest,AGB ca.
temporal resolution | coherence and 2012 400 t/ha
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measurements

(Koleck et al., 2012)

temporal variation of
backscatter in

tropical forest

BioSAR-1, E-SAR Biomass estimation | Remningstorp, | Mar. - | Hemi-boreal
(Hajnsek et al., 2008)| and measurement of southern Sweder| May 2007 | forest, low
multi-month topographyAGB
temporal <300 t/ha
decorrelation
BioSAR-2, E-SAR Topographic Krycklan, Oct. 2008 | Boreal forest,
(Hajnsek et al., influence on biomasy northern Sweden hilly, AGB <300
2009b) estimation t/ha
BioSAR-3, E-SAR Forest change and | Remningstorp, | Sep. 2010 | Hemi-boreal
(Ulander et al., 20114 multi-year coherence southern Sweder| forest, low
b) relative to BioSAR-1 topographyAGB
<400 t/ha (more
high biomass
stands than in
BIOSAR-1)
AfriSAR, SETHI and | Biomass estimation | Sites at Lopé, July 2015| Tropical forest and
F-SAR in tropical forest; Mondah, (SETHI) savannah, AGB
temporal stability of | Mabounie and Feb. 2016 from 50 to 500
coherence Rabi, Gabon (F-SAR) t/ha
Afriscat: Ground- Measurement of Ankasa, Ghana | July 2015| Tropical forest,
based high temporal | long-term temporal - July | low topography,
resolution coherence and 2016 AGB from 100 to
measurements temporal variation of 300 t/ha

backscatter in

19



423

424

425

426

427

428

429

430

431

432

433

434

435

436

tropical forest

Borealscat: Ground- | Time series of Remningstorp, Dec. 2016, Hemi-boreal
based high temporal | backscatter, southern Sweder| ongoing forest, spruce-
resolution tomography, dominated stand,
measurements coherence and low topography,
(Ulander et al., 2018 | environmental AGB = 250 t/ha

Monteith and Ulander| parameters in borea

2018) forest.

5.1 Estimating AGB

Some key findings from these campaigns are illustrated in Fig. 2, wieefe-lband HV backscatter
(given as/® in dB) is plotted against the biomass of reference plots frooreabsite (Remningstorp,
Sweden) and two tropical sites (Paracou, French Guiana and La Selva, Cajtd ke data are not
corrected for topographic or soil moisture effects, and the lines corregpbnédar regression fits to
the log-log form of the data. The sensitivity of backscatter to &ésnis clear across the whole range
of biomass covered, though with large dispersion in the boreal forest ahijhhbiomass tropical
forest in French Guiana. Also clear is that, for a given biomassi\thbackscatter is considerably
larger in boreal than tropical forest. This corrects an error in Fig.L2 Toan et al. (2011) where
mean backscatter differences between the boreal and tropical data evitredat® calibration errors
and removed by shifting the data. The careful calibration of the datasets shdagn2iinéicates that
the difference is real and that different physical and biologictbrfa¢such as forest structure) are at

play in the different forest types.
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Fig. 2. P-band backscatter at HV polarisatigrf,() over tropical and boreal forests against the
biomass of in situ reference plots. Data from Paracou, French Guiaraaeeeiired by the SETHI

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the
AIRSAR system (Antonarakis et al., 2011) and those from RemningstoggeBwby the E-SAR

system in 2007 (Sandberg et al., 2011).

The regression lines indicate that in natural units the HV backscatepproximately related to
biomass, W, by a power law relationship, i.e.

Yiv = cW? (2)
where ¢ and p are parameters. Analysis in Schlund et al. (2018) indicates atichstgps are found
for the full set of available P-band SAR datasets that are suppgrtedequate in situ data except
where there is strong topography. Although the model coefficients (and trefficients of
determination) vary across datasets, they are not significantly difighemt similar AGB ranges are
consideed
Despite this strong regularity in the relation between HV backscatid biomass, exploiting to

estimate biomass faces a number of problems:
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a. Dispersion in the data For the boreal data in Fig. 2, major factors causing dispersitmein

backscatter values are slope and soil moisture variatidhs. Krycklan campaign over boreal

forest in Sweden (Table 2) clearly shows that topography severelysatfeet power law

relationship given by eq. (2) (Soja et al., 2B&8 Krycklan—campaigh—over—berealforest in

by-eg—(2)Seja—etak—2013 This is particularly obvious in Krycklan because in this regiostm

of the highest biomass stands are located in sloping areas. As datechistrSoja et al. (2013),
however, adding terms involving the/y2, ratio and slope to the regression significantly
reduces the dispersion, at the expense of including two extra parametershaahe HH/VV

ratio was included because of its lower sensitivity to soil moisture, and that the mynefesred

from the Krycklan site in N. Sweden could be successfully transferredrtmiRgstorp 720 km
away in S. Sweden. The associated relative RMSEs in AGB using the combined BioSAR21 and -
data were 27% (35 t/ha) or greater at Krycklan and 22% (40 t/ha) or gaed&emningstorp.
However, more recent unpublished analysis including the BIOSAR-3 datateslithat further
coefficients are needed to achieve adequate accuracy. Another study for Reormi{®ndberg

et al., 2014) found that AGB change could be estimated more accurateAGBaitself: analysis
based on 2007 and 2010 data gave a RMSE of 20 t/ha in the estimated biomass change, i.e.
roughly half the RMSEs of the individual AGB estimates. The algoritised was based on
finding areas of little or no change using the HH/VV ratio and apgplpiolarization-dependent
correction factors to reduce the effect of moisture variation.

Unlike in Sweden, very little environmental change occurred during the TrBpiS&paigrin
French Guiana, and the major effect affecting the relation given by egag2ppography, which
greatly increased the dispersion. Methods to reduce this were based ioig tb&atspatial axes

and normalization to account for the variatiorthe volume and double bounce backscatter with
incidence angle (Villard and Le Toan, 2015). This allowed the sensitivity of the HV baeksoat
biomass to be recovered, and AGB could then be estimated from the polarim&triwittia
relative RMSE < 20%. However, because the approach is based on regressi@neandsHittle
temporal change in conditions during the campaign, it contains no provision for dealing with large
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seasonal variations in backscatter like those observed in the TropiscéBdiaét al., 2018) and
expected in BIOMASS data.

b. Algorithm training . Regression methods need training data, but in many parts of the world, a
especially in the tropics, there are very few high quality permanent inasitpliag plots, almost
all funded under science grants. Significant efforts are being made hyife&#\laboration with
NASA, to work with and extend the existing in situ networks in otdegstablish a set of well-
documented reference sites that could be using for training and validRdibot the challenge in
doing so is to ensure that the set of reference sites is large enough arehtativesenough to
capture the major variations in forest types and conditions.

c. Physical explanation Despite its remarkable generality, as demonstrated in Schlund et al.
(2018), the physical basis of eq. (2) is not well-understood exceajgriain limiting cases (see
below). Hence it is essentially empirical and at present we cannot inrabattach meaningful
physical properties to the fitting parameters or derive them fronesgagtimodels. In particular,
it has no clear links to well-known decompositions of polarimetric battkscmto physical
mechanisms (e.g. Freeman and Durden (1998); Cloude and Pottier (1996)). Imantdiimreal
forests this relation depends on both total AGB and tree number densihgtasmnambiguous
estimates of AGB require information on number density or use of heigiination combined

with height- biomass allometric relations (Smith-Jonforsen et al., 2007)

To get round these problems with the regression-based approaches, the cupleagiseis on
estimating biomass using a model-based approach that brings together thrésctkes: the
capabilities of the BIOMASS system, the observed properties of thealedistribution of forest
biomass and our knowledge about the physics of radar-canopy interaientbodied in scattering

models.

Its starting point is a simplified scattering model that descritedackscattering coefficient in each
of the HH, HV and VV channels as an incoherent sum of volume, surface and daufde-bo
scattering (Truong-Loi et al., 2015). The model involves 6 real parameterdarézation, which are

estimated using a combination of a scattering model and reference data. Bsmihaieaghness and
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soil moisture are then treated as variables to be estimated from thimitiataanalysis found that this
model was too complex and the associated parameter estimation was too upstdbtetd be a
viable approach for BIOMASS. However, a crucial technical development was to deateisat
both tomographic and Pol-InSAR data can be used to cancel out the tertrgntioe ground
(surface scatter and double bounce) and isolate the volume scatteriniyfteionti(d’ Alessandro et
al., 2013; Mariottid’Alessandro et al., 2018). In the Truong-Loi et al. (2015) formulation, this term

can be written as

cos6

BpgWPpa
Opg = ApgW 1 cos 6 (1 — exp (—LD (3)

whered,,, Byq, a,q andp,, are coefficients for polarization configuration M,is AGB, andd is
the local incidence angle. The coefficients, and S,, relate to forest structurd,, > 0 is an
extinction coefficienandA,, > 0 is a scaling factor.

Assuming thatd,,, By, @,q andf,, are space-invariant at a certain scale, these parameters and

pq’
AGB can be estimated simultaneously from the measured valugls of the three polarizations, pg

= HH, HV and VV, using a non-linear optimization scheme (Soja et al., 2017, 20d8gvElr, in

quwﬁpq

model (3), the two biomass-dependent factdys, W *»¢ and 1 — exp (— s

), both increase

with increasing AGB for realistic parameters, > 0 and §,, > 0), so interactions between
@pq» Bpq and By, render the inversion difficult. This problem can be mitigated by usiogspecial
cases of the model, both of which lead to a power law expression as in eq. (2). For the lowesttenuat
case, i.e.quWBm « 1, eg. (3) can be simplified using a series expansion to:
opq = A'WP 4

wherep = a,,; + B, andA’ = A,,B,,, and in the high-attenuation case, iB,,WFra > 1, eq. (3
can be simplified to:

opq = A'WP cos 0 ®)
wherep = a,, andA’ = A,,. In both casesd’, W andp can then be estimated using the scheme

proposed in Soja et al. (2017, 2018).
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Note that there is still an inherent scaling ambiguity since the sctemet distinguish the unbiased
estimate of AGBJW,, from any function of the formW®, wherea andb are calibration constants.
Hence reference data are needed, but these data do not need to cover a wide bacigeatter,
slope and incidence angle conditions, as would be required if any of the n®)de(5)(were to be
trained directly. One complication is that the temporal and spatial ivagadf a and b are are
currently unknown and further work is needed to quantity them. Furtfieements may also be
needed to reduce residual effects from moisture variatigrf®r example, use of the VV/HH ratio in
boreal forests as discussed above.

The effectiveness of this approach is illustrated by Fig. 3, whidk pldues of AGB estimated with
this scheme against AGB values estimated from in situ and airborne laseingodata for a set of
200 m x 200 m regions of interest (ROIs). The airborne P-band data eséwrarthe AfriSAR
campaign and were filtered to 6 MHz to match the BIOMASS bandwidth. The estimateghdye hi
correlated with the reference data (r = 0.97), exhibit only a small anobunids across the whole

biomass range, and give a RMSE of 41 t/ha (16% of the average biomass).

Biomass estimation results

600
E RMSE=41 t/ha (16%)
E 500 4 I’=0.97 & '
N a o
g 400 : S
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Fig. 3. Estimated AGB using the approach described in the text against AGB estfroatdd situ
and airborne laser scanning at the La Lopé site in Gabon during tB&ARfeampaign. The running
average given by the blue line indicates only a small positive bias abeogghble range of AGB.

ROI denotes Region of Interest.
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553  Further confirmation of the importance of isolating the volume backststtesing the full power of

554  tomography is from the TropiSAR tropical forest campaign, where theg@phic intensity (in dB)
555 measured at 30 m above the ground (representing scattering from canopy elemees bet 17.5
556 m and 42.5 m, given the roughly 25 m vertical resolution of tomographicngjagias found to be
557 highly correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observedigiyss about 50

558 tons/ha per dB, and the correlation coefficient is about 0.84 at theeafchlha. This striking result
559 has been replicated in the forest sites investigated during the AfriSAR campaign (Fig. 4), and suggests
560 that the backscatter from the forest layer centred 30 m above grioould $e strongly correlated
561 with total AGB in the case of dense tropical forests.

562 Importantly, this findingis consistent with the TROLL ecological model (Chave, 1999), which
563 predicts that for dense tropical forests the fraction of biomass contagtegen 20 m and 40 m
564  accounts for about 35% to 40% of the total AGB, and that thisoelatistable over a large range of
565 AGB values (Ho Tong Minh et al., 2014). Another element in support of the éalloglevance of
566 the 30 m layer is provided by two recent studies of tropical forests, which observed ¢hatelajion

567 between AGB and the area occupied at different heights by large treesiyasl diemm lidar) is

568 maximal at a height of about 30 m (Meyer et al., 2017); b) about 35% aftéhedlume tends to be
569 concentrated at approximately 24-40 m above the ground (Tang, 2018).

570 However, tomographic data will only be available in the first phaséhefnission. In addition,
571 exploiting the relation betweehGB and the 30 m tomographic layer requires knowledge of how the
572  regression coefficients vary in time and space, hence substantial anfduaitsirng data. In contrast,
573 ground cancellation can be carried out with both tomographic and Pol-ld&#Rso throughout the
574 mission). This allows the volume scattering term (eQ) {8 be isolated and hence AGB to be
575 estimaéd using the scheme described in Soja et al. (2018), which makes much less dentad on t

576 availability of reference data.
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Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measured by tomography
against in situ AGB in 1 ha plots at tropical forest sites invatstdyduring the TropiSAR (Paracou

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns.

The value of tomography for estimating AGB in boreal and temperatdsaseless clear, since (a)
these forests in general have smaller heights than in the tropicsgsoadte problematical to isolate
the signal from a canopy layer without corruption by a ground cotitihuwjiven the roughly 25 m
vertical resolution of the tomographic product from BIOMASS), and (& double bounce
mechanism appears to be important in recovering A8 of boreal forests. Hence ground
cancellation (which also cancels double bounce scattering, since this appgaumndtlevel in the
tomographic image) may noto help biomass estimation in such forestsegméfirred algorithm for
BIOMASS in these cases is still notdt Recent results indicate that ground cancellation improves
results in Krycklan, but not in Remningstorp, most likely because it suppreiisect ground
backscattering, which is unrelated to AGB but is of higher relatipmiitance in Krycklan due to the

pronounced topography.

5.2 Estimating forest height
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Forest height estimates will be available throughout the Tomographic aneronesfric Phases, in
the latter case using polarimetric interferometric (Pol-InSAR) techniquesd€bnd Papathanassiou,
1998, 2003; Papathanassiou and Cloude, 2001) applied to three polarimetric acspisifiommed in
a 3-day repeat-pass interferometric mode. The use of Pol-INSAR rnmatstiorest height has been
demonstrated at frequencies from X- to P-band for a variety of temperegal &od tropical sites,
with widely different stand and terrain conditions (Praks et al., ;2Q0@ler et al., 2014; Hajnsek et
al., 2009; Garestier et al., 2008), and several dedicated studies have addressey perfiketance

and limitations when applied to BIOMASS data.

Estimation of forest height from Pol-InSAR requires a model tHates forest height to the Pol-
INSAR measurements (i.e. primarily to the interferometric coherencedexedif polarisations and for
different spatial baselines) together with a methodology to invert theisstbimodel. Most of the
established inversion algorithms use the two-layer Random Volume overd3f@\MeG) model to
relate forest height to interferometric coherence (Treuhaft et al., 1996. relies on two
assumptionsl) all polarizations “see” (up to a scalar scaling factor) the same vertical distribution of
scatterers in the vegetation (volume) layer; 2) the ground layempenietrable, i.e. for all
polarizations, the reflectivity of the ground scattering componentvenddy a Dirac delta function
modulated by a polarimetrically dependent amplitude. The RVoG model has beenvektensi
validated and its strong and weak points are well understood. Use ofdtied to obtain a forest
height map is illustrated in Fig. 5 which is derived by inverting P-basidnSAR data acquired
during the AfriSAR campaign in February 2017 over the Pongara National Rey&nGThis site is

covered mainly by mangrove forests, which are among the tallest manfgm@sts in the world,

towering up to 60 m.
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Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquirethev@ongara

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017.

The main challenge for BIOMASS is therefore the development of an ionei@imulation able to
provide unique, unbiased and robust height estimates, and which accounts for: 1)ttémmgca
characteristics at P-band, since the limited attenuation by the forest cameempg that a ground
scattering component is present in all polarisations; 2) the constimptsed by the BIOMASS
configuration, both the 6 MHz bandwidth and the fact that some temporal datonrés inevitable
in the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015). To meet teisgehal flexible multi-
baseline inversion scheme has been developed that allows the inversion of theni®delGby
including: 1) a polarimetric three-dimensional ground scattering comp@jeatvertical distribution
of volume scattering that can adapt to high (tropical) and low (hoag@inuation scenarios; 3) a
scalar temporal decorrelation that accounts for wind-induced temporal d&tonref the vegetation
layer. The inversion can then be performed using the three polarimetric aoqgsisiti the

Interferometric Phase, allowing global forest height maps to be produced every 7 months.

The main limitations in generating the forest height product arisiamtthe inversion methodology
but from the 6 MHz bandwidth, which constrains the generation of large baselines as et
spatial resolution of the data, and the low frequency, which reduces the ggrsitforest height in
certain sparse forest conditions. On the other hand, the low frequency willigohigh temporal
stability over the 3-day repeat period of the Interferometric Phase, whigdcéssary to establish

unigueness and optimum conditioning of the inversion problem.

An alternative approach to estimating forest height is by tracing the appelope of the observed
tomographic intensities, as reported in Tebaldini and Rocca (2012) and Ho Tongt\ihi{2016)

for boreal and tropical forests, respectively. This has the advantageingf less computationally
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expensive than model-based inversion, iarén be applied in the absence of a specific model of the
forest vertical structure. Importantly,has been demonstrated using synthetic 6 MHz data simulating
BIOMASS acquisitions over boreal forests (Tebaldini and Rocca, 2012)eWowthis approach will

only be possible during the Tomographic Phase of the mission.

6. Severe forest disturbance
The BIOMASS disturbance product aitesdetect high-intensity forest disturbance (effectively forest
clearance) occurring between satellite revisit times. This is a naturaluse of the data gathered for
biomass and height estimation, rather than a driver for the BIOMAS$missid will contribute to
the overall capability to measure forest loss from space using ofgtigal Hansen et al., 2013) and
radar sensors (e.g., the pair of Sentinel-1 C-band radar satellites). Cliardpes polarimetric
covariance matrix caused by deforestation are relatively;lésgexample, Fig. 1 indicates thgf,
changes by 5 dBsbiomass decreases from 500 t ha nearly zero, while a change in AGB from
100 to 200 t hda causeyy, to change by only ~1 dB. Hence change detection is less affected by the
statistical variability inherent in the radar sigralowing the disturbance produit be produced at a
spatial resolution of ~50 m, instead of 200 m, as for the biomass and height products.
The method proposed for detecting disturbance is firmly rooted in theisthsbperties of the 6-
look polarimetric covariance data and uses a likelihood ratio (Conradsan 2016) to test, at a
given level of statistical significance, whether change has occutetiyedo previous acquisitions in
each new polarimetric acquisition over forest. Note that this appraes not specify the detection
probability, which would require an explicit form of the multi-variate prolitgtdistribution function
associated with disturbed forest. This would be very difficult to charaetgrisny general sense
because change may affect the covariance matrix in many different ways. litspeadides a
quantitative way to determine how sure we are that change has occurred;rgsgigct it is closely
related to the Constant False Alarm Rate approach to target detection (e.g.19&arf

A current unknown in this approach is to what extent changes in the covariangeomaitidisturbed

forest caused by environmental effects, such as changing soil moistute chiefall events, will
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roeisture-due-teainfall-eventswilHinerease-thefalse-detectionrafefurther issue is that detect®n
are only sought in forest pixels, so an accurate initial forest map is required, prefeiataieesfrom
the radar data themselves but possibly from some other source; thisevgptogressively updated
after each new acquisition.

Some insight into the performance of this approach can bedyasing multi-temporal polarimetric
data from PALSAR-2. Fig. 6 shows at the top Pauli format slant rangesesgpations of a pair of
images gathered on 8 August 2014 and 8 August 2015 (so in this case tkerigaéhas length 2)
below left the detection of change at 99% significance and below Hghpixels at which change
occurred marked in red on the image from 2014 (with no forest mask applieal). be seen that the
areas where change was detected occur in the non-forest regions, while detedimfarést regions
occur as isolated pixels consistent with the 1% false alarm ratiedhipt the level of significance of

the test.
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Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014/arglit 2015
displayed in Pauli image format (red = HH + VV; blue = HH - VVegr = 2HV) and slant range
geometry. (Bottom left) Detection of change at 99% significance lekahged pixels are marked as

black. (Bottom rightImage from 8 Augus2014 with changed pixels marked as red.

7. Insitu and lidar reference biomass data
Although the model-based inversion proposed for estimating biomass (Sectiamiiirh)ses the
need for in situ reference data, such data are critical for #igordevelopment and testing,
investigation of regression-based approaches, and product calibration andovelitla¢i BIOMASS
mission faces three major challenges in providing these supporting Jdtze ey region where
reference data are needed is the tropics, but high quality biomass dateitakle at only a very

limited number of tropical sites; (ii) biomass will be estimated atale of 4 ha (200 m by 200 m
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pixels) but most plot data are available at scales of 1 ha or less agebtiraphical locations of the
plots is often not known to high accuracy; (iii) because of SOTRiatens (Section 2), reference
sites in the temperate and boreal zones will need to be outside N America and Europe.

ESA are addressing challengé &ind (ii) by working with existing networks to develop suitable

extensive in situ reference data before launch through the Forest OloseSsatem|littp://forest

observation-system.ngt/ A further encouraging development is the HSASA initiative to

collaborate in developing the in situ data requirements for GEDI, BIOMASSE NISAR. Co-

operation along these lines is already in evidence from joint contributathe AfriSAR campaign
by ESA and NASA. As regards (iii), for the temperate zone, southern ptesmis sites, e.g. in
Tasmania, would be suitable, while Siberia is the most desirable region fimrée¢ zone. However,
concrete plans to gather in situ data in these regions are not currently in place.

An important complement to in situ data that helps to address challenge (ii) is@ilidar data. This

can provide a forest height map and information on canopy structure which,cotmémed with

field data, allows biomass to be estimated. Lidar data offer many advantagetinoncl

e A scanning lidar provides a relatively fine scale and accurate map of bionisls,can be

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects iabiéy in

biomass at sub-resolution size to be assessed). Precision at thiis sgpically below 10%

and the vast majority of relevant studies indicate that the associatetbpianttallometry

(Chave et al. 2014) has neqgligible bias.

e Lidar mapping can cover landscapes with a wide range of biomass levels and tdifiersn

conditions (degraded, regrowth, selectively logged, etc.).

Forest height can be estimated at the same time as biomass, and with fuimne@ound 1 ¥+
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Hence the validation strategy for BIOMASS will involve a combimatid in situ reference forest
plots and lidar-derived biomass/height maps.

8. Exploiting BIOMASS data in carbon cycle and climate analysis

Although the primary objectives of BIOMASS are to reduce the major @muties in carbon fluxes
linked to Land Use Change, forest degradation and regrowth and to provide $oppdernational
agreements (UNFCCC & REDD+), its products will also play a kg in advancing fundamental
knowledge of forest ecology and biogeochemistry. For example, BIOMASS vdktdelp in
constraining critical carbon cycle parameters, initialising and testingatftedomponent of carbon
cycle and Earth System models (ESMs), and quantifying the forest disturbance regime.
Differences between ESM forecasts of the carbon cycle are currigmtificant, and lead to major
uncertainties in predictions (Exbrayat et al., 2018). These differences have kedrdimariations in
the internal processing of carbon, particularly in the large pools inas®mand soil organic matter
(Friend et al. 2014). Linking biomass mapping to estimates of net prjgnadyction (NPP) provides
a constraint on the turnover rate of the biomass pool, a criticdélngdiagnostic (Carvalhais et al.,
2014; Thurner et al., 2014). A recent study (Thurner et al., 2017) found observed borealpanatéem
forest carbon turnover rates up to 80% greater than estimates frioah gigetation models involved
in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) $éavski et al., 2014). The
relative difference between modelled and observed values is shown in figerg, the red boxes
indicate regions analysed in Thurner et al. (2017) in order to explain these dis@gpanttie boreal

zone (boxes bl - 4) they were mainly attributed to the neglect of theseffeftost damage on
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mortality in the models, while most of the models did not reproduce observation-baskixhsklps

between mortality and drought in temperate forest transects (box8y t1 -
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Fig 7. Relative difference between modelled carbon turnover rates and turnoveinfertesd from
observations. 1.0 means modelled rate is 100% higher (from Thurner2€xll), Red boxes labelled
b (boreal) and t (temperate) were analysed further in Thurner et al. (201&8plain these

discrepancies (figure reproduced courtesy of Martin Thurner).

The more accurate estimates from BIOMASS, patrticularly over the trdq@ttalvill greatly improve
estimation of turnover across the tropics (Bloom et al., 2016). This iafamwill support improved
parameterisation of carbon cycling for ESMs, allowing identificatioregfonal variations in carbon
turnover currently missing from tropical plant functional types (Exbrayat., 2018a). A sensitivity
analysis performed using the CARDAMOM system (Bloom et al., 2@Mbrayat et al. 2019b
indicates an average reduction of 49.5 + 29.2% (mean + 2 std) in the 95% confidenad of the
estimated vegetation carbon turnover time when the recent pan-tropical bioagadsie to Avitabile
et al. (2016) is assimilated. The analysis shows how this errorti@ias clear spatial variability
with latitude and between continents (Fig. 8).

Another component of uncertainty in ESMs is in their initialisation of bisnséscks, arising from
the paucity of data in the tropics, Land Use Change and internal model steady Btia from
BIOMASS will provide the modelling community with a compelling resourcéh wihich to
understand both steady state and transient forest carbon dynamics. Gisemiathe disturbance

regime will constrain modelling of both natural processes of distuebamd mortality and the role of
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777 humans (Williams et al., 2013). The potential for BIOMASS to monitor detjcsdéartial loss of
778 biomass) will be critical for modelling the subtle and slow proceskearbon loss associated with

779 forest edges, fires and human communities (Ryan et al, 2012; Brinck et al., 2017).

40°N 100

: S

20°N - o 8o ©

k5

i P o

0° 60 -

=

20°S A 40 ©

g

40°S - 20 ¢&

=

60°S . . . ; ; ; Flg <
120°W  80°W  40°W 0° 40°E 80°E  120°E  160°E

780

781 Fig. 8. The relative reductionin the size of the 95% confidence interval of estimated vegetation
782  carbon turnover times when using a prior value for bioragsach pixel compared to a run witheut
783  biomass prior. Turnover times were estimated using the CARDAMOMmysthe darker areas

784  show where reduction in relative uncertainty is largest.

785 Repeated measurements of biomass will allow significant improvenergkbal monitoring of
786 forest dynamics, and analysis of associated carbon cycling at fine spated. Current biomass
787 maps (e.g., Saatchi et al., 2011) provide maps of stocks at a fixe¢btic@mbine observations from
788 several times). While such data help to constrain the steady state bimtess)t at regional scales
789  (~1°), they give little information on the dynamics of forestéirar (ha to k) scales over time.
790 BIOMASS will allow detailed, localised, and temporally resolved analgéésrest dynamics to be
791 constrained. The value of such detailed information has been illustrated énlevsitanalysis for an
792 aggrading forest in North Carolina (Smallman et al., 2017). Using in shorcatock information as
793 a baseline, the analysis showed that a model analysis constrained purelgirbjaten of 9
794  sequential annual biomass estimates (corresponding to the BIOMASS scenaribeatimate in the
795 Tomographic Phase and 8 in the Interferometric Phase) together with time séees$ Afea Index
796 (LAl e.g. from an operational satellite like Sentinel-2) led to sicguiftly smaller bias and narrower

797 confidence intervals in biomass increment estimates than when LAl and jusiboress estimate, or
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798 only management information, were assimilated. Bias in estimated carborficise®f (the ratio of
799 NPP to gross primary production) was also significantly reducee@pmsated biomass observations.
800 This indicates the potential of BIOMASS to improve significantly onowdedge of the internal

801 processing of carbon in forests.

802 9. Secondary objectives

803 BIOMASS will be the first P-band SAR in space and thus will offeeviously unavailable
804  opportunities for measuring properties of the Earth. As a resudsioni planning includes provision
805 for several secondary objectives, including mapping sub-surface geaboggsuring terrain
806 topography under dense vegetation, estimating glacier and ice sheet velocities/estigating
807 properties of the ionospre

808 9.1 Sub-surface geology

809 In very dry environments, long wavelength SAR is able to probe theusiazes down to several
810 metres, as was demonstrated at L-band (1.25 GHz) during the first Smatendg Radar SIR
811 mission (Elachi et al., 1984), which revealed buried and previously unknown -oiataeage
812 channels in southern Egypt (McCauley et al., 198&illou et al., 2003). More complete L-band
813 coverage of the eastern Sahara acquired by the JAXA JERS-1 satellite wés misetlice the first
814 regional-scale radar mosaic covering Egypt, northern Sudan, eastern Libya and r@intggrfrom
815 which numerous unknown crater structures were identified (Paillou et al.).2B02006, JAXA
816 launched the Advanced Land Observing Satellite (AUYSarrying a fully polarimetric L-band SAR,
817 PALSAR, which offered higher resolution and much better sigmaloise ratio than JERS-1. This
818 provided an unprecedented opportunity to study the palaememént and palaeo-climate of
819 terrestrial deserts (Paillou et al., 2010), and led to treodisy of two major pakorivers in North
820 Africa: the Kufrah river, a 900 km long palaeo-drainage systemg¢hwi the past connesd
821 southeastern Libya to the Gulf of Sirt (Paillou et al., 20®4illou et al., 2012), and the Tamanrasett
822 River in Mauritania, which conneal a vast ancient river system in the western Sahara to a large
823 submarine channel system, the Cap Timiris Canyon (Skonieczny, @045). Besides its valua

824  studying the past climates of desert regions, the sub-surface imegadility of L-band SAR also
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helpsto build more complete and accurate geological maps in suppartusé fwater prospecting in

arid and semi-arid regions (Paillou, 2017).

Deeper probingf the sub-surface requires longer radar wavelengths: while Ldzmngenetrate 2-

m into dry sand, a P-band system should be able to probe daworéothan 5 m. In June 2010, the
first ever airborne P-band SAR campaign over the Sahara wasctehdua desert site in southern
Tunisia using the SETHI system developed by ONERA (Paillou.et2@l1). Figure 9 shows a
comparison between an ALOS-2 L-band scene and a P-band scenedalogBETHI over the Ksar
Ghilane oasis, an arid area at the border between past Igtliaes and present day sand duneke T
P-band data better reveal the sub-surface features under énicgalsand layer because of the higher
penetration depth and lower sensitivity to the covering sarfdcsu A two-layer scattering model for
the surface and sub-surface geometry is able to reproduce both the tbamd fReasured backscatter
levels, and indicates that the backscatter from the sub-slafsres about 30 times weaker than from
the surface at L-band, while at P-band the sub-surface agdribs about 30 times stronger than that
from the surface. As a result, the total backscatter is compataBleand L-band, as the data show, but
the P-band return is dominated by the sub-surface layer (Paillou et a)., @6hée BIOMASS should
be a very effective tool for mapping sub-surface geologiedl leydrological features in arid areas,

offering a unique opportunity to reveal the hidden and still unknastark of deserts.
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Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in gontfiunisia: palaeo-channels are
hidden by aeolian sand deposits. Middle: ALOS-2 L-band rewiage, showing sub-surface features
but blurred by the return from the superficial sand layer. tRigETHI P-band radar image, clearly

revealing sub-surface hydrological features.

9.2 Terrain topography under dense vegetation
As an integral part of its ability to make height-resolved measursneérihe backscatter in forest
canopies, the tomographic phase of the mission will gain access to the ghasegd and hence will
be able to derive a true Digital Terrain Model (DTM) that is un&fdy forest cover (Mariotti
d’Alessandro and Tebaldini, 2018) and expected to have a spatial resolution of ca. 100 m x 100 m.
This contrasts with the Digital Elevation Models (DEMs) produced diar sensors at higher
frequencies, such as SRTM (Rodriguez et al., 2015) or Tandem-X (Wessel et g),,ir2Qt&@ich
attenuation and scattering by dense forest canopies cause biases. Sincetoghaggbphic
acquisitions occupy the first phase of the mission, this improved DT\&viavailable early in the
Interferometric Phase, and will be used to improve the products based on Pol-InSAR and PolSAR

9.3 Glacier and ice sheet velocities

The velocity fields of glaciers and icesheets can be measured usingassescbf SAR techniques:
differential SAR Interferometry (DINSAR) (Massonnet et al., 1993) aifskt tracking (Gray et al.,
1998; Michel & Rignot, 1999). These techniques measure the ice displacement between
observations and require features in the ice or coherence between the olnseBHEIMASS has the
potentialto supplement ice velocity measurements from other SAR missions, snledt-iboking
geometry with an inclination angle larger than 90° means that the geam Antarctica will be
smaller than for most other SAR missions, which are right-looking.pbee gap will be larger in

Greenland, but the Greenland ice sheet cannot be mapped due to SOTRorsstiitte primary
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advantage of BIOMASS is the higher coherence and longer coherence time resutirigef lower
frequency of BIOMASS compared to all other space-based SAR systetosgks wavelength with
deeper penetration into the firn ensures less sensitivity to snosufethce melt and aeolian processes
(Rignot, 2008). This is seen when comparing L-band and C-band results (Rignot, 2008; Baigori et
2010), and explains the long coherence time observed in airborne P-band datal hgdbe Danish
Technical University POLARIS SARh the percolation zone of the Greenland ice sheet (Dall et al.

2013).

The range and azimuth components of the ice velocity field will most ligelyneasured with
differential SAR interferometry (DINSAR) and offset tracking,pegtively. At lower latitudes two
velocity components might instead be obtained by combining DINSAR from asceadihg
descending orbits, since the range resolution of BIOMi&380 coarse for offset tracking to provide
the range component (Dall et al. 2013). Generally DINSAR ensures less noisy, rasdl phase
unwrapping is facilitated by the fact that the fringe rate of BIOMABSSAR data will be 1/12 of
that of Sentinel-1 data, assuming a 6-day baseline in both cases. Thewacg lvelocities in the
interior of Antarctica call for a long temporal baseline, but a %F0bdeseline has been successfully
used at C-band (Kwok et al., 2000), and therefore sufficiently high P-band cahesemat unlikely
with the 228-day baseline provided by the BIOMASS observation cycle.etowionospheric
scintillation is severe at high latitudes, and without accurate correction will corragtehvelocity
maps, possibly prohibitively. Assessment of whether proposed corrgéetibniques (Kim et al.,

2015; Li et al., 2015) are sufficiently accurate will only be possible when BIOMASS is in orbit.

9.4 lonospheric properties
A major concern in initial studies for BIOMASS was the effecthef ionosphere on the radar signal,
and a crucial factor in the selection of the mission was demonsttatibrthese effects could be
compensated or were negligible in the context of the mission primary obgéRegers et al., 2013;
Rogers and Quegan, 2014). However, correction of ionospheric effects (particuladgyFestation,
but also scintillation, as noted in Section 9.3) necessarily involvesumieg them, which then

provides information on the ionosphere. The dawn-dusk BIOMASS orbitoviir major features of
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the ionosphere, including the fairly quiescent ionosphere at low and rhididst, steep gradients
around the dusk-side mid-latitude trough, and large irregularities in theabawals and polar cap.
Measurements of ionospheric Total Electron Content, derived from Fareidaipm (Wright et al.,

2003) and/or interferometric measurements (Tebaldini et al., 2018), shquiddible along the orbit
at spatial resolutions of around a km, giving an unprecedented capabilityasurae these spatial

structures and their changes, since they will be viewed every two hours as the orbit repeats.

10. The role of BIOMASS in an overall observing system

BIOMASS will have unique capabilities to map biomass in dense forestajilbtdrm only part of
the overall system of sensors providing information on forest bioamakbiomass change, and more
generally on the global carbon cycle. In fact, the next few years wéll ase unprecedented
combination of sensors either dedicated to or capable of measuring fanestretrand biomass.
Particularly important for their links to BIOMASS will be th@&lobal Ecosystem Dynamics

Investigation (GEDI) and NISAR missions.

GEDI will be a near infrared (1064 nm wavelength) light detection and rarglag &ensor onboard
the International Space Station with a 2-year lifetime from deploymdate 2018. Ifs focusing on
tropical and temperate forests to address thegeidsues: 1) quantifying the above-ground carbon
balance of the land surface; 2) clarifying the role played by the land sumfagtigating atmospheric
CG; in the coming decades; 3) investigating how ecosystem structures dffgoitat quality and
biodiversity. GEDI will provide the first sampling of forest veal structure across all forests
between 51.5S and 51.5N, from which estimates of canopy height, ground elevation and vertical
canopy profile measurements will be derived. Further processing of the ~0h@62&otprint

measurements will then yield estimates of the mean and variance of AGB on a 1 km grid.

NISAR (launch 2021) is a joint project between NASA and ISRO (the IndpateSResearch
Organization) to develop and launch the firshledfoequency SAR satellite, with NASA providing the
L-band (24 cm wavelength) and ISRO the S-band (12 cm wavelength) sénadlisneasureAGB

and its disturbance and regrowth globally in 1 ha grid-cells for arkase AGB does not exceed 100
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t/ha, and aims to achieve an accuracy of 20 t/ha or better over 880@asif these areas. Its focus is
therefore on lowr biomass forests, which constitute a significant portion of baedltemperate
forests and savanna woodlands. NISAR will give unprecedented L-band covespgeénand time,
being able to provide HH and HV observations every 12 days in ascending and desositsirand
covering forests globl every 6 days. The mission is also designed to give global irderétric

SAR measuremésifor surface deformation and cryosphere monitoring.

These three missions have significant overlaps in science objectives ahdattpr but focus on
different observations, cover different regions, and retrieve different comparfeAGB at differen
spatial and temporal scales. Ttheomplementary nature is brought out by Fig. 10, which shows the
coverage of the three sensors on a map indicating approximate mean AGB. BIQWAB8us on
tropical and sub-tropical woodlands at 4 ha resolution (though will @ser the temperate and
boreal forests of Asia and the southern hemisphere), NISAR will gjioleal coverage at lah
resolution but with AGB estimates limited to areas where AGB < 100afftthGEDI will cover the

full range of AGB, but with sample footprints limited to lie kWit £51.5 latitude. Hence without the
data from all three missions, watl-wall estimation of global forest biomass will not be possible

There will, however, still be lack of temporal and/or spatial coveragedions where BIOMASS

cannot operate because of SOTR exclusions and where AGB exceeds the 100 tioid thoes

For lower values of AGB (less than about 50 t/ha) P-band measuremertis wilich more affected
by soil conditions than L-band, and NISAR should provide more accurate AGB estinEte high
temporal frequency of NISAR observations will also allow theat of soil moisture changes and
vegetation phenology to be mitigated. Currently the theoretical battie aflgorithms proposed for
NISAR and BIOMASS are the same (Truong-Loi et al., 2015), which offerspossibility ofa
combined L- and P-band algorithm that optimises the capabilities of éaaddition, GEDI forest

height and biomass products will be available before the NISAR and BIOMASS missicas, help
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to initialize their algorithms and valitather products. GEDI estimates of the vertical structure of
forests will also be of enormous value in interpreting the BIOMASEIFSAR and tomographic
measurements and in producing a consistent forest height and digital terrain modetatisl scale
(around 1 ha). Conversely, height or backscatter products from N&BAMBIOMASS missions can
provide information on the spatial variability of forest structanel biomass; this may be used in

future reprocessing to improve both the algorithms that form the @E@ded height and biomass

products and the resolution of these products.

Hence the three sensors will be highly complementary, and their combinationrovitie an

unparalleled opportunity to estimate forest AGB, height and structure lglotigh unprecedented

accuracy, spatial resolution and temporal and spatial coverage.

(50% area) ‘\\ i
5100 Mg/ha

<100 Mg/ha

<20 Mg/ha

No Woody Biomass_h v

Fig. 10 Coverage of ESA and NASA-ISRO satellite measurements of forestust and above-
ground biomass (AGB). The background shows the global coverage area of NISAR,wilhbe
sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includegtbal toelt,

the temperate and boreal zones of Asia, and the southern hemisphere, while the GEMBillLidar
sample latitudes betweeh 51.8. These two sensors will cover the full range of forest AGB

providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR.
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Along with its role in quantifying the biomass and its change, it jgoiant to realize that the
BIOMASS instrument, particularly in its interferometric and tomographic moesapable of
producing global measures of important forest properties that areysimgolailable for almost all of
the Earth. Some of these are practical measurements whose value has been kyeans.foFor
example, in forestry the ability to predict yield or increase in bionsasgreased greatly when one
knows both mass and height, so much so that tree height has been usklitabig-based forestry to
quantify the so-called site-index, the quality of a site for forest ergergtience the information from
the BIOMASS satellite and the modern digital offspring of classic tigrggeld tables could be used
to make informed estimates of expected net production of forest biomasimilar vein, Section 8
notes how the combination of biomass with NPP allows the turnover timelaincavithin forest
vegetation to be estimated. Both examples illustrate that although famestdsi, height, structure and
change are all individually important, their full significance fomelte, carbon cycle, biodiversity,
resource management, etc., is only fully realised when they are combined atitbtkar and with

other sources of information.

This perception of biomass as a key variable within a wider informatystem is implicit in the
recognition of AGB as an ECV (GCOS, 2017). More explicit analysissdiinction within a carbon
information and management system is provided by the Group on Earth Olbssr¢&i:O) (Ciais et
al., 2010) and the response to this report in the CEOS Strategy for Carbowa@tisgrfrom Space
(CEOS, 2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the ledarétes where
biomass fits within the set of key GEO satellite requirement amadscore GEO observational
elements necessary to quantify the current state and dynamics of the aéraston cycle and its
components. Central to the GEO Carbon Strategy is the combination of datatenmdayaie models,
not least because models provide the only way in which the many avapalblke-lsased and in situ
measurements can be integrated into a single consistent structure farmpeyf carbon flux

calculations.

There are many possible forms for these models but data can interathemithn essentially four

ways: by providing estimates of cuntenodel state variables, estimates of model parameters, tracking
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of processes and testing of model predictions. In addition, data and roaddde even more tightly
bound by combining them in a data assimilation structure where both ameledgas sources of
information whose relative contribution to carbon flux estimates ighted by their uncertainty.
There are already significant developments in exploiting biomass data & lags, for example
initializing the age structure of forests when estimating the European carbon l{Bleltecssen et al.,

2011), estimating carbon turnover time (Thurner et al., 2017), testing Dyr@lobal Vegetation

Models (Cantu et al., 2018), and full-scale data assimilation (Bloom et al., Fd8)er progress in

this direction is to be expected as we move towards launch in 2022.

Conclusions

BIOMASS mission will be the first space-based P-band radar, and this ceippletv view from
space will yield both predictable and unforeseen opportunities to learn tidgouwarth and its
dynamics. Within the operational constraints imposed by the Space Obgeging Radar system
(Section 2) the 5-year mission will provide global mapping cd$bAGB, height and change at 200
m spatial resolution by combining three different radar techniques, ealbnofinnovative. This is
the first space-based radar mission for which all observations willillyeplolarimetric, which is
necessary both to recover biomass information and to correct ionasmitatts. Even more
innovative will be this first systematic use of Pol-InSAR teasure forest height globally, and the
first use of SAR tomography to identify the vertical structure wddts globally. In parallel with these
major technological developments, considerable progress is being made inpidgvatew
understanding and gquantitative methods that will allow these measuremeatexpldited in carbon
cycle and climate models. This link between measurements and models forms aal geseruf
meeting the primary objective of the BIOMASS mission, which is terdehe the worldwide
distribution of forest AGB in order to reduce the major uncertaintieslitulations of carbon stocks
and fluxes associated with the terrestrial biosphere, including carbon flsoesatesd with Land Use
Change, forest degradation and forest regrowth. Of major mutual advantageting this objective
will be the information provided by other space missions flyiithiw the next five years, for which

pride of place goes to GEDI and NISAR, but supplemented by optical andradaermissions. Of
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great importance is that the structures for making use of these teew a@&rbon cycle and climate
models are being developed and implemented.

The physical and technical capabilities embedoiethe BIOMASS mission in order to measure
biomass can be turned to many other uses. At present, known applications Budsierface
imaging in arid regions, estimating glacier and icesheet velocitiespraddiction of a true DTM
without biases caused by forest cover. An originally unforeseen appilicing from the need to
correct the radar signal for ionospheric effects is to exploit thedeigsitivity of the P-band signal to
Total Electron Content testimate ionospheric properties and changes along the satellite’s dawn-dusk
orbit. This is likely to be just one amongst many novel uses of IB&BISS data, whose scope will

only become clear once BIOMASS is in orbit.
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Figure captions

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Sbges

Tracking Radar (SOTR) stations highlighted in yellow. Only land areas bet&8outh and 85

North are represented (figure reproduced courtesy of Joao Carreiras).

Fig. 2. P-band backscatter at HV polarisatigrf,() over tropical and boreal forests against the

biomass of in situ reference plots. Data from Paracou, French Guiasaaegired by the SETHI

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the

AIRSAR system (Antonarakis et al., 2011) and those from RemningstogreBwby the E-SAR

system in 2007 (Sandberg et al., 2011).

Fig. 3. Estimated AGB using the approach described in the text against AGB estfroated situ

and airborne laser scanning at the La Lopé site in Gabon during th&Rfo&mpaign. The running

average given by the blue line indicates only a small positive bias akeoggoble range of AGB.

ROI denotes Region of Interest.

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground medsutethography

agains in situ AGB in 1 ha plots at tropical forest sites investigated duhiaglropiSAR (Paracou

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns.

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquirethevongara

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017.

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014Aampist 2015

displayed in Pauli image format (red = HH + VV; blue = HH - VVeem = 2HV) and slant range
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geometry. (Bottom left) Detection of change at 99% significance leveigeldapixels are marked as

black. (Bottom rightImage from 8 August 2014 with changed pixels marked as red.

Fig 7. Relative difference between modelled carbon turnover rates and turnoveinfeiesl from

observations. 1.0 means modelled rate is 100% higher (from Thurner2étl&)), Red boxes labelled

b (boreal) and t (temperate) were analysed further in Thurner et al. (201&%pl@in these

discrepancies (figure reproduced courtesy of Martin Thurner).

Fig. 8. The relative reductioin the size of the 95% confidence interval of estimated vegetation

carbon turnover times when using a prior value for biomass at eaclt@mpéared to a run without a

biomass prior. Turnover times were estimated using the CARDAMOMemysthe darker areas

show where reduction in relative uncertainty is largest.

Figure 9. Left: SPOT image of the Ksar Ghilane oasis region inhewatTunisia: palaeo-channels are

hidden by aeolian sand deposits. Middle: ALOS-2 L-band risdage, showing sub-surface features

but blurred by the return from the superficial sand layer. tRi§BTHI P-band radar image, clearly

revealing sub-surface hydrological features.

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forastuse and above-

ground biomass (AGB). The background shows the global coverage area of NISAR, wilhibe

sensitive to AGB values < 100 t/ha (green and vyellow). BIOMASS coverage includestbal toelt,

the temperate and boreal zones of Asia, and the southern hemisphere, while the GERillLidar

sample latitudes betweeh 51.5. These two sensors will cover the full range of forest AGB

providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR.
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*Highlights (for review)

o BIOMASS will be the first spaceborne P-band mission

e Global estimates of forest biomass and height, subject to US DoD restrictions
e The first systematic use of Pol-InSAR to measure forest height from space

e The first systematic use of spaceborne SAR tomography

e Sub-surface imaging, icesheet motion estimation and a bias-free DTM
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Abstract

The primary objective of the Europe8pace Agency’s 7" Earth Explorer mission, BIOMASS, is to
determine the worldwide distribution of forest above-ground biomass (AGB) im wrdeduce the
major uncertainties in calculations of carbon stocks and fluxes associatedthei terrestrial
biosphere, including carbon fluxes associated with Land Use Change, forest degraahtiorest
regrowth. To meet this objective it will carry, for the first timesjpace, a fully polarimetric P-band
synthetic aperture radar (SAR). Three main products will be provided: giatpas of both AGB and
forest height, with a spatial resolution of 200 m, and maps of severe foresbatiseirat 50 m
resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions).

After launch in 2022, there will be a 3-month commissioning phase, followedlgymonth phase
during which there will be global coverage by SAR tomography. In the succeedinigriometric
phase, global polarimetric interferometry Pol-INSAR coverage will be ach@xesg 7 months up to

the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used timaginscattering

from the ground (both direct and double bounce backscatter) in forests. In dense wogstslXGB

can then be estimated from the remaining volume scattering using non-linearomvefsa
backscattering model. Airborne campaigns in the tropics also indicate thatsA@ghly correlated

with the backscatter from around 30 m above the ground, as measured by tomography. In contrast
double bounce scattering appears to carry important information about the AGRalf fooests, so
ground cancellation may not be appropriate and the best approach for such forasis terbe
finalized. Several methods to exploit these new data in carbon cycle calculatiansiready been
demonstrated. In addition, major mutual gains will be made by combining BIOMASS diatdata

from other missions that will measure forest biomass, structure, height and chmehgging the
NASA Global Ecosystem Dynamics Investigation lidar deployed on the Inmahtspace Station

after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SARyrdaarfch

in 2022. More generally, space-based measurements of biomass are a core component of a carbon
cycle observation and modelling strategy developed by the Group on Earth Observations.rpeconda
objectives of the mission include imaging of sub-surface geological straidtusgid environments,
generation of a true Digital Terrain Model without biasesehby forest cover, and measurement of
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glacier and icesheet velocities. In addition, the operations needed for ionogheation of the
data will allow very sensitive estimates of ionospheric Total Electrone@band its changes along

the dawn-dusk orbit of the mission.

1. Introduction : The role of biomass in the global carbon cycle and climate

For millennia, humanity has depended on woody biomass from forests as a source iafsnaaugr

energy (Rackham and Moody, 1996; Radkau, 2012), and this dependence shows no sign of abating.

For example, around a third of the world’s population relies on biomass for energy, and in sub-
Saharan Africa around 81% of the energy use by households is provided by moathgbiomass

(World Bank, 2011). At the same time, forest, and its associated biomas$telnaseen treated as an

impediment to development, and huge tracts have been cleared, and continue to be cleared, to make

way for agriculture, pasture and agro-forestry (FAO, 2016). Howeveaigraficant shift in the

relationship between mankind and biomass has occurred as climate change has become of pressing

international concern and the role of forest biomass within this process hassbeeaner (IPCC,

2007, 2013).

Climate change is intimately connected with the global carbon balance and the flgxesntfouses
gases, especially carbon dioxide (fLObetween the Earth’s surface and the atmosphere
(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In partiaulaneguivocal
indication of man’s effect on our planet is the accelerating growth of atmospheri€CO,. The principal
contribution (around 88%) to this growth is emissions from fossil fuel burmiith most of the
remainder arising from Land Use Change in the tropics (Le Quéré, 2018). However, the increase in t
concentration of atmospheric @Between 2007 and 2016 is only about halPg}4f the emissions.
Because C@is chemically inert in the atmosphere, the “missing” half of the emissions must flow back

into the Earth’s surface. Current estimates (Le Quéré et al., 2018) suggest that around 2Béstoffat
emissions are taken up by the land and 22% by the oceans (leaving around 6% unaccoubted for)
there are large uncertainties in these values, especially the land uptake, whesesuadually been

estimated as a residual tleasures the total amount of carbon is conserved, as expressed in eq. (1):
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Uland: Eff + EIb - (Acatmos+ Uocear) . (1)

Here E denotes fossil fuel emissions;, B net land biospheric emissions, comprising both Land Use
Change and ecosystem dynamics, and including alterations to biomass stocks linkeded® proc
responses to climate change, nitrogen deposition and rising atmospherd’¢:6sis the change in
atmospheric Cg and W,,g and Uceanare net average uptake by the land and ocean respedtivety.

(1) the quantities on the right-hand side are typically estimated on an amasisglob as a decadal
average, using a mixture of measurements and models, to yigldHdwever, in Le Quéré et al.
(2018) U..q is estimated independently using dynamic global vegetation models. Under both
approaches R4 has the largest uncertainty of any term in eq. (1), estimated as 0.8 GtQiffr,is

26% of its estimated value of 3.0 GtC/yr (1 GtC £ t16f C which is equivalent to 3.67x100f CQ).
Moreover, the Land Use Change flux (which is the difference between emissions fesiridses and
uptake of CQ by forest regrowth) has an uncertainty of 0.7 GtC/yr, which is 54%s adsiimated
value of 1.3 GtCl/yr. Since the fractional carbon content of dry biomass is arounftHsfgh with
significant inter-species differences [Thomas and Martin, 2012]), biomass cisaageindamental
component in these two land fluxes, controlling the emissions from forestdister and the uptake

of carbon by forest growth (e.g. Pan et al. 2011). Thisvhy above-ground biomass (AGB) is
recognised as an Essential Climate Variable (ECV) within the Global E€li@bserving System

(2015, 2017.

Climate change concerns have therefore made it imperative to obtain aestiratges of biomass
and its changes. Unfortunately, where this information is most neettedtropics- is where almost

no data have been gathered (Schimel et al., 2015). This is in contrast te fortee temperate and
southern parts of the boreal zones whose economic importance has driven the devedbpment
extensive national inventories (although there are vast areas of AlaskagrNoftanada, and East
Eurasia that do not have forest inventories because of their low economic imporfdrecé&ppical
forests cover an enormous area (~18 milliorf)kend offer huge logistical challenges for ground-
based biomass inventory. They are also crucial in political efforts toateitigimate changenl

particular, the United Nations Convention on Climate Change (UNFCCC) thraugteduction of



121 Emissions from Deforestation and Degradation (REDD+) initiative (UNFCCC, 28ih6) to use
122  market and financial incentives to transfer funds from the developed world to tepdey countries
123 in the tropical belt to help them reduce emissions by preservation and managethent fofrests

124  (UN-REDD Programme, 2008).

125 Estimates of biomass losses have focused on deforestation, i.e. conversion adridrésokher land
126 use, which results in complete removal of AGB. However, also significantnisstng from most
127 current estimates, is forest degradation. This is the loss of part of biomasstdoce removal of
128 large stems for timber or of understorey plants for replacement by cocoa, omtlimoreased fire

129 along forest edges.

130 UN-REDD and related programmes have given significant impetus to the acquisitioorefin situ

131 data in developing countries and this adds to the information available in the periodic o€ pugts

132  United Nations (UN) Food and Agriculture Organisation (FAO) (FAO 2006, 2010, 2dt@)ever

133 national data in many cases have large gaps, sampling biases, inconsistency of methsmigidtyg

134  explicit information and contain unrepresentative samples, particularly inopévglcountries. As a

135 result, major efforts have been made to formulate more consistent global apprsetheombine

136 forest inventory and satellite data to estimate AGB. Such endeavours have beerhgnaadised by

137 the fact that, up until the launch of the Global Ecosystem Dynamics Investi¢g&EDI) instrument

138 (see below), there has never been any spaceborne sensor designed to measure biomass, so space-based
139 estimates of biomass have relied on opportunistic methods applied to non-optistak seith the

140 limitations this implies.

141 In the tropics, the most significant developments have been based on forbsebtigates derived
142 from the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and laatioBlev
143  Satellite (ICESat) before its failure in 2009 (Lefsky, 2005, 20COmbining GLAS data with other
144 EO and environmental datasets and in situ biomass measurements has led to the produaiion of
145 pan-tropical biomass maps (Saatchi et al. 2010; Baccini et al. 2012) atajesl st1 km and 500 m

146 respectively; differences between these maps and differences between the mapsitandatia are
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discussed in Mitchard et al. (2013, 2014). Refinements of these maps have deecegrby

Avitabile et al. (2016) and Baccini et al. (2017) based on essentially the same sateBg¢sdat

For boreal and temperate forests, methods have been devedopstimate Growing Stock Volume
(GSV, defined as the volume of wood in all living trees in an area with diamebeeast height above
a given thresholdfrom very long time series of C-band Envisat satellite radar data (Saettaio
2011). Multiplying these GSV estimates by wood density allowed Thurner(20&#)to estimate the
carbon stock of forests north of 30°N. Reliable GSV estimates using these methodyg possible
at spatial resolutions much coarser than the underlying radaratveraging to 0.5°, the relative
RMS difference between estimated GSV and reference data was consistentliofioeiia the range
20-30% (Santoro et al. 2013). Further refinements to the methodology and its coombivéti
ALOS PALSAR-2 data are given in the Final Report of the ESA GlobBiomas<p(8ighmullius et

al., 2017).

L-band radar offers access to biomass values up to around 100 t/ha before lositigtgede.g.
Mitchard et al., 2009). Under the JAXA Kyoto and Carbon Initiative, the ALOS L-band RRLIS
acquireda systematic five-year archive of forest data before its failure in 201 (Rosenqyvist et

al., 2014). PALSAR-2 laund@d in spring 2014 and has continuhis systematic acquisition strategy,

but current JAXA data policy makes scene data very expensive. Annual mosdieebr available

and have been uséo map woodland savanna biomass at continental scale (Bouvet et al., 2018), but
the mosaics combine data from different times and environmental conditionsthe&y farocessing

may be needed to exploit them for biomass estimation (Schmullius et al., R43af)d data will also

be acquired by the two Argentinian Microwave Observation Satellites (SAOCOMisthef which

was launched ro October 8, 2018, with the second due in 2019.irTmeain objectives are
measurements of soil moisture and monitoring of hazards, such as oil spills and floods, and their value

for global forest observations is not yet clear.

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar instruments are in orbitHaseat
frequencies most of the backscatter is from the leaves and small twigs, so tdynitad value for

biomass estimation except within the context of long time series at CBantbro et al. 2011) and
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for TanDEM-X, whena ground Digital Terrain Model (DTM) is available and the heighbiomass

allometry is robust (Persson et al., 2017; Askne et al., 2017).

An exciting new development is the deployment on the International Space Station diSile N
GEDI lidar instrument after its launch on December 5, 2018 (see Section 10). i¥iisnnaims to
sample forest vertical structure across all forests betweef Sahd 51.5N, from which estimates
of the mean and variance of AGB on a 1 km grid will be derived. In addi@iGat-2 launodd on

September 15, 2018; although it is optimised for icesheet, cloud and asgwpBoations, and uses a

different technical approach from ICESat-1 based on photon counting, preliminary results suggest that

it can provide information on both forest height and structure.

It is against this scientific and observational background that BIOMASS wastesklby the
European Space Agency (ESA) in 2013 as its 7th Earth Explorer mission, and tiite satebw
under production by a consortium led by Airbus UK for launch in 2022. The initial missioept $
described in Le Toan et al. (2011), but there have been major developments sitice timaalmost
all aspects of the mission: the measurement and calibration concepts, theicsaentéxt, the
methods to recover biomass from the satellite data, the exploitation of bion@sban cycle and
climate modelling, the availability of P-band airborne campaign data and higly guaiitu data, and
the overall capability to estimate biomass from space. It is therefim@ytto provide a

comprehensive description of the current mission concept, and this paper sets out to do so.

After a review of the mission objectives (Section 2), the associated me®sr techniques

(polarimetry, polarimetric interferometry [Pol-INSAR] and SAR tomographgnj@dSAR) are

described in Section 3Pol-InSAR and TomoSAR require the combination of multi-temporal stacks

of data; this imposes very strong conditions on the BIOMASS orbit patterh, sighificant
consequences for the production of global biomass products (Section 4). The odoit pkbd
imposes strong requirements on the ability of the AGB and height inversion techrligaassed in
Section 5, to adapt to changing environmental conditions. Section 6 deals with thdBIGMASS

data to estimate severe forest disturbance, while Section 7 describes the devedbpmecraference

datasets to be used for algorithm calibration and product validation. In Section dBseuss
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developments in how BIOMASS data can be used to estimate key carbon cycle and climagsyariabl
Section 9 addresses a range of secondary objectives. Section 10 provides a viewBtQMASS
complements other upcoming missions devoted to forest structure and biomass,ciapdtie
GEDI lidar and the NASA-ISRO NISAR L- and S-band mission. Finally, Sectionsclisies how
BIOMASS will contribute to an overall system for measuring biomass and its chianpescontext

of a global carbon cycle management scheme and presents our general conclusions.
2. BIOMASS mission objectives and data properties

The primary objective of the BIOMASS mission is to determine the workdistribution of forest
above-ground biomass (AGB) in order to reduce the major uncertainties inatialtuilof carbon
stocks and fluxes associated with the terrestrial biosphere, including carbonaéscesated with
Land Use Change, forest degradation and forest regrowth. In doing so, it will psoyidert for
international agreeménsuch as REDD+ and UN Sustainable Development Goals (#13: climate
action; #15: life on land)In addition it has several secondary objectives, including mapping sub-
surface geology, measuring terrain topography under dense vegetation and estimatnggtac

icesheet velocities (ESA, 2012).

Although BIOMASS aims at full global coverage, it will at least coverdiae areas between /N
and 56 S, subject to US Department of Defense Space Object Tracking Radar (8&3friR)ions.
These restrictions do not currently allow BIOMASS to operate within lirgghit of the SOTR
radars and mainly exclude the North American continent and Europe (Frgprbduced from
Carreiras et al., 2017). For secondary applications, if global coverage is not patibleiill be
collected on a best effort basis after covering the primary objectives, vathigs defined as in ESA

(2015).
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Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects
Tracking Radar (SOTR) stations highlighted in yellow. Only land areas betw2&o@th and 85

North are represented (figure reproduced courtesy of Joao Carreiras).

The BIOMASS data product requirements to meet the primary mission objectives are (ESA, 2015):

1. Above-ground forest biomass (AGB), defined as the dry weight of live argaatiter above
the sail, including stem, stump, branches, bark, seeds and foliage woody mattet aexauni
expressed in t Ha(FAO, 2009). It does not include dead mass, litter and below-ground
biomass. Biomass maps will be produced with a grid-size of 200m x 200m (4 ha).

2. Forest height, defined as upper canopy height according to the H100 standard usedyn forest
expressed in m, mapped using the same 4 ha grid as for biomass. H100 is defined as the
average height of the 100 tallest trees/ha (Philip, 1994).

3. Severe disturbance, defined as an area where an intact patch of forest hatedessl,
expressed as a binary classification of intact vs deforested or loggedveatbagetection of

forest loss being fixed at a given level of statistical significance.

Further properties of these products are defined in Table 1. Note that:
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e The biomass and height products will be produced on a 4 ha grid, while the disturbanc
product is at the full resolution of the instrument after averaging to 6 lackgimuth, i.e.,
around 50 m x 50 m. This is because the large changes in backscatter assotidtaesi
clearance mean that disturbance can be detected using less precise estimates of the
polarimetric covariance and coherence matrices than areechéad biomass and height
estimation.

e If the true AGB exceeds 50 t Hahen the RMS error (RMSE) of its estimate is expected to
depend on biomass and be less tA&B/5. For all values oAGB < 50 t ha' the RMSE is
stipulated to be 10 t Haor better, though it is likely that changes in ground conditions, such
as soil moisture, may cause the RMSE to increase beyond this Sahilarly, the RMSE of
estimates of forest height should be less than 30% of the true fordst toeigyees higher
than 10 m

e Below-ground biomass cannot be measured by BIOMASS (or any other remote sensing
instrument), but can be inferred from above-ground biomass using allometric relations
combined with climate data (Cairn et al., 1997; Mokany et al., 2006; Thurner 204). In
particular, Ledo et al. (20)8sed an extensive tropical, temperate and boreal forest dataset to
develop a regression, with just tree size and mean water deficit ast@rediriables, which
explains 62% of the variance in the rdotshoot ratio. Therefore, throughout this paper,

‘biomass’ denotes ‘above-ground biomass’.

Table 1 Summary of primary BIOMASS Level 2 products. Achieving global coverage regiilfes
days during the initial Tomographic Phase and 228 days for each cycle of the subsequent
Interferometric Phase. RMSE indicates Root Mean Square Eftdsbal” is to be understood as

subject to Space Object Tracking Radar restrictions (Carreiras et al), 2017

Level 2
Definition Information Requirements
Product
Forest Above-ground biomass expressq « 200 m resolution

11
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275

276

biomass intha'. e RMSE of 20% or 10 t hafor biomass <
50 t ha'
¢ 1 biomass map every observation cycle

e global coverage of forested areas

Forest height Upper canopy height defined ¢ 200 m resolution

according to the H100 standard | e accuracy required is biome-dependent,
RMSE should be better than 30% for trg
higher than 10 m

¢ 1 height map every observation cycle

¢ global coverage of forested areas

Severe Map product showing areas of | ¢ 50 m resolution
disturbance | forest clearance « detection at a specified level of significan
¢ 1 map every observation cycle

¢ global coverage of forested areas

3. The BIOMASS system and measurement techniques

BIOMASS will beafully polarimetric SAR mission operating at P-band (centre frequency 435 MHz)
with 6 MHz bandwidth as permitted by the International Telecommunications Union urader
secondary allocation (the primary allocation is to the SOTR system). The dabfoieeband is
mandatory for measuring biomass with a single radar satellite (necemsaffjofdability within the

ESA cost envelope) for three main reasons (ESA, 2008, 2012; Le Toan et al., 2011):

1. P-band radiation can penetrate the canopy in all forest biomes and interacts preferetitially wi

the large woody vegetation elements in which most of the biomass resides;

2. Backscatter at P-band is more sensitive to biomassatt@gher frequencieéX-, C-, S- and
L-bands); lower frequencies (e.g. VHF) display even greater sensitivitps@éna et al.,

2000) but present formidable challenges for spaceborne SAR because of ionospheric effects

12



277 3. P-band displays high temporal coherence between passes separated by several wéeks, even
278 dense forest (Ho Tong Minh et al., 2012), allowing the use of Pol-INSAR to esfonese

279 height and retrieval of forest vertical structure using tomography.

280 Here (1) is the crucial physical condition: it underlies the sensitivity in p@htand, through the
281 relative positional stability of the large woody elements, combined with dsegrphase tolerance at

282 longer wavelengths, permits the long-term coherence needed for (3).

283 The satellite will carry a 12 m diameter reflector antenna, yieldsiggde-look azimuth resolution of
284 ~7.9 m. A polarimetric covariance product will also be generated by averagimfsSitoazimuth,

285 giving pixels with azimuth resolution ~50 m. Because of the allotted 6 MHz ldtichihe single-
286 look slant range resolution will be 25 m, equivalent to a ground range resolut&h2ofm at an
287 incidence angle of 25Roll manoeuvres will allow the satellite to successively generate shiee
288 swaths of width 54.32, 54.41 and 46.06 km, giving a range of incidence angles across the combined
289  swath from 23to 33.9. It will be in a sun-synchronous orbit with a near dawn-dusk (06:00 = 15 min)
290 equatorial crossing time; the Local Time of the Ascending Node (LTAN) will be on the-slden
291 the system will be left-looking and the orbit inclination will be?,9®&ith the highest latitude in the
292 northern hemisphere attained on the night-side. This orbit is chosen to avoid tleessaudlations

293 that occur in the post-sunset equatorial ionosphere (Rogers et al., 2013). Obsenkhtimsnade

294  during both the ascending and descending passes.

295 BIOMASS displays major advances compared to all previous SAR missions ineitsf ulree
296 complementary technologies to provide information on forest properties: petari(fPolSAR), Pol-
297 InSAR and TomoSAR. All acquisitions will be fully polarimetric, i.e. the atagk and phase of the
298 HH, VV, HV & VH channels will be measured (HV indicates horizontal podion on transmit and
299 vertical polarization on receive, with the other channels being simdafiped). This is in itself an
300 advance, but BIOMASS will also be the first mission to systematically employohénSAR
301 technique to measure forest height. Even more innovative is its tomographic tapahikh will

302 allow three-dimensional imaging of forests.
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The Tomographic Phase will immediately follow the initial 3-month CommissipRhase, and will
provide tomographic mapping of all imaged forest areas. Global coverage requires 4251days (
months) in order to provide 7 passes, each separated by 3 days, for each tomagagiton. The
remainder of the 5-year mission will be taken up by the Interferometric Phaisg, which 3 passes,

each separated by 3 days, will be combined in 3-baseline Pol-InNSAR. Each cycle of the
Interferometric Phase will require 228 days (~7 months) to provide global coveragethitothese
techniques are nested: the data gathered for tomography will yield multiple R&-b& PolSAR

measurements, and each Pol-InSAR image triplet also provides three PoISAR images.

Associated with the highly innovative measurement concepts of the mission are completely new
challenges in external calibration arising from the orbital pattern need#tkftomographic and Pol-
INSAR phases of the mission (Section 4), the strong effects of the ionospRebarad, and the lack

of pre-existing P-band data except over very limited parts of the globe. Together rthatse c
problems that can only be solved by combining infrequent visits to instrumentaditat sites with
systematic exploitation of the properties of distributed targets and tafgapportunity. An overall
approach to addressing these problems, including ionospheric correction, radiometri@anc{vad

calibration, and providing the required geolocation accuisadgscribed in Quegan et al. (2018).

4. The BIOMASS orbit and its implications

In the Tomographic Phase, BIOMASS needs to be placed in a very precise repeat whiihi a

given scene is imaged 7 times with 3-day spacing. These acquisitions will bslifybity different

positions separated by 15% of the critical baseline (i.e. 0.823 km) at the equator, which is necessary t
preserve coherence. In this orbit, it takes 18 days to acquire the 7 images needed for each of the 3 sub-
swaths, so that tomography over the full swath (comprising the 3 sub-swaths) ocqeiesiaf 60

days. Once this has been achieved, a drift manceuvre will raise the satellite in altitude and then return

it to its nominal altitude of 671.9 km. This allows the Earth to rotate below tbkitsatind the next
tomographic acquisition period covers a new swath that is adjacent to the previous one. Repeating this
sequence 6 + 1/3 times yields global coverage and takes 425 days (the extra thegpbods to

coverage in swath 1). The orbit pattern for the Interferometric Phase usesalgse same

14



330 concept, but because only 3 images are needed to form the Pol-InSAR product, imadisgattul

331 requires only 24 days, and global coverage takes 228 days.

332 These properties of the BIOMASS orbit pattern, driven by the requirement for gtnkehge using
333 coherent imaging techniques, have profound implications for biomass retrievaleiratid space.
334  Acquisitions in adjacent swaths are separated by 2 months in the Tomographic Phasa #&tile by
335 less than a month in each cycle of the Interferometric Phase. Hence there are lileekigoificant
336 changes in environmental conditions between different swaths that make up the glebadeoin
337 addition, because each cycle of the Interferometric Phase takes 7 months, the acgbisitone
338 steadily more out of phase with annual geophysical cycles, such as the Amazonian andidéest Af
339 inundation cycles. This means that the BIOMASS inversion algorithms have to be sijfimbnst
340 that they are negligibly affected by environmental changes. Incomplete comperfsatisumch
341 changes will manifest themselves as systematic differences between adjacenbsvegibat swaths
342 gathered in different cycles. As an example, boreal forests freeze dunieg amd their backscatter
343 significantly decreases, so the winter season will most likely not be useful for biomamgiesti

344

345 5. Forest AGB and height estimation techniques

346

347 BIOMASS will exploit properties of all three SAR techniques, PolSAR, Pol-R&Ad TomoSAR,
348 to estimate biomass, while both Pol-InSAR and TomoSAR will provide estiroatiesest height.
349 However, because BIOMASS will be the first spaceborne P-band SAR, the experita¢mtatéeded
350 to support the development and testing of these techniques is based on lirngeteaénd ground-
351 based measurements. Six major ESA airborne campaigns were carried out (BioSAR-1, -thand -3
352 the boreal zone, and three in tropical ecosystems: TropiSAR in French GMEB&R in Gabon
353 and Indrex-2 in Indonesia) using the E-SAR and F-SAR (DLR, Germany) and SETHI @NER
354 France) P-band SARs (see Table 2, which includes the objectives of the campaignsmatial ess
355  properties of the test-sites). These campaigns have provided the most atdiredenplete set of P-

356 band SAR (PolSAR, Pol-InSAR and TomoSAR) and associated in situ data currently awaitable
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366

boreal and tropical forests. In addition, long-term continuous P-band tower-based measurements w

made in French Guiana (Tropiscat), Ghana (Afriscat) and Sweden (Borealscat) igateestirnal

and seasonal variations in backscatter and temporal coherence. Earlier P-band fdatasiis

NASA AirSAR system were also helpful, especially tropical forest data Costa Rica, to extend

the range of tropical biomass values (Saatchi et al., 2011), and NASA way heasved in the

AfriSAR campaign, providing lidar coverage of the AfriSAR test-sites (leabriet al., 2018). No

specific ESA campaigns were conducted in temperate forests, but substantial amtmmégyphic

data are available foueh forests from experimental campaigns carried out by DLR.

Table 2 Campaign data used in developing and testing BIOMASS retrieval algorithms.

Campaign Objectives Test sites Time Forest conditions
TropiSAR, SETHI Biomass estimation | Paracou & Aug. 2009 | Tropical rain
(Dubois-Fernandez ef in tropical forest; Nouragues, forest,AGB 300-
al., 2012) temporal stability of | French Guiana 500 t/ha, lowland
coherence and hilly terrain
Indrex-2, E-SAR Height retrieval in Sungai-Wai & Nov. 2004 | Tropical rain
(Hajnsek et al., tropical forest Mawas, Borneo, forest.
2009a) ; not measurement of Indonesia Sungai-Wai:
tomographic repeat-pass temporg lowland,AGB <
decorrelation 600 t/ha; Mawas:
peat swampAGB
<200 t/ha
Tropiscat: Measurement of Paracou, French| Aug. 2011| Tropical rain
Ground-based high | long-term temporal | Guiana - Dec. | forest,AGB ca.
temporal resolution | coherence and 2012 400 t/ha

measurements

(Koleck et al., 2012)

temporal variation of

backscatter in
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tropical forest

BioSAR-1, E-SAR Biomass estimation | Remningstorp, | Mar. - | Hemi-boreal
(Hajnsek et al., 2008)| and measurement of southern Sweder] May 2007 | forest, low
multi-month topographyAGB
temporal <300 t/ha
decorrelation
BioSAR-2, E-SAR Topographic Krycklan, Oct. 2008 | Boreal forest,
(Hajnsek et al., influence on biomasg northern Sweden hilly, AGB <300
2009b) estimation t/ha
BioSAR-3, E-SAR Forest change and | Remningstorp, | Sep. 2010 | Hemi-boreal
(Ulander et al., 2011a multi-year coherence southern Sweder forest, low
b) relative to BioSAR-1 topographyAGB
<400 t/ha (more
high biomass
stands than in
BIOSAR-1)
AfriSAR, SETHI and | Biomass estimation | Sites at Lopg July 2015 Tropical forest and
F-SAR in tropical forest; Mondah, (SETHI) savannahAGB
temporal stability of | Mabounie and Feb. 2016 from 50 to 500
coherence Rabi, Gabon (F-SAR) t/ha
Afriscat: Ground- Measurement of Ankasa, Ghana | July 2015| Tropical forest,
based high temporal | long-term temporal - July | low topography,
resolution coherence and 2016 AGB from 100 to
measurements temporal variation of 300 t/ha
backscatter in
tropical forest
Borealscat: Ground- | Time series of Remningstorp, Dec. 2016,/ Hemi-boreal
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368

369
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371

372

373

374

375

376

377

378

379

380

based high temporal | backscatter, southern Swedern ongoing forest, spruce-

resolution tomography, dominated stand,
measurements coherence and low topography,
(Ulander et al., 2018 | environmental AGB = 250 t/ha

Monteith and Ulander| parameters in borea

2018) forest.

5.1 Estimating AGB

Some key findings from these campaigns are illustrated in Fig. 2, where the P-bdatkdcatter
(given as/’ in dB) is plotted against the biomass of reference plots from a bore@Rsiteingstorp,
Sweden) and two tropical sites (Paracou, French Guiana and La Selva, Costa Ridaja®ne not
corrected for topographic or soil moisture effects, and the lines correspond tadigression fits to
the log-log form of the data. The sensitivity of backscatter to biomassaisadross the whole range
of biomass covered, though with large dispersion in the boreal forest and the highshimpasi
forest in French Guiana. Also clear is that, for a given biomass, the Hgdadier is considerably
larger in boreal than tropical forest. This corrects an error in Fig. 2 dfohe et al. (2011) where
mean backscatter differences between the boreal and tropical data wédredascdalibration errors
and removed by shifting the data. The careful calibration of the datasets showr2imEigates that
the difference is real and that different physical and biological fatoch as forest structure) are at

play in the different forest types.
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Fig. 2. P-band backscatter at HV polarisatiorf,{) over tropical and boreal forests against the
biomass of in situ reference plots. Data from Paracou, French Guiana, were acquiredsByHI

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2004 by the
AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by thie E-SA

system in 2007 (Sandberg et al., 2011).

The regression lines indicate that in natural units the HV backscatsgpisximately related to
biomass, W, by a power law relationship, i.e.

Yiw = cW? (2)
where ¢ and p are parameters. Analysis in Schlund et al. (2018) indicates suuhstéfadiare found
for the full set of available P-band SAR datasets that are supported by adecitedata except
where there is strong topography. Although the model coefficients (and their coeffiofents
determination) vary across datasets, they are not significantly diffghemt similar AGB ranges are
consideed
Despite this strong regularity in the relation between HV backscatek biomass, exploiting to

estimate biomass faces a number of problems:
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a. Dispersion in the data For the boreal data in Fig. 2, major factors causing dispersion in the

backscatter values are slope and soil moisture variations. The Krycklan campaidooreal

forest in Sweden (Table 2) clearly shows that topography severely affects the power |
relationship given by eq. (2) (Soja et al., 2013). This is particularly obviousyoklién because

in this region most of the highest biomass stands are located in sloping areasoAstagad in

Soja et al. (2013), however, adding terms involvingthe/y?, ratio and slope to the regression
significantly reduces the dispersion, at the expense of including two extra pasarNete that

the HH/VV ratio was included because of its lower sensitivity to soil tom@is and that the
regression inferred from the Krycklan site in N. Sweden could be sudbedsfnsferred to
Remningstorp 720 km away in S. Sweden. The associated relative RMSEs in AGBhesing t
combined BioSAR-1 and -2 data were 27% (35 t/ha) or greater at Krycklan and 22%aj4dr t/
greater at Remningstorp. However, more recent unpublished analysis includinD®&RB3

data indicates that further coefficients are needed to achieve adequate accuracy.stuhttier
Remningstorp (Sandberg et al., 2014) found that AGB change could be estimated more accurately
than AGB itself: analysis based on 2007 and 2010 data gave a RMSE of 20 t/ha in the estimated
biomass change, i.e. roughly half the RMSEs of the individual AGB estimates. gdréhah

used was based on finding areas of little or no change using the Hidtivand applying
polarization-dependent correction factors to reduce the effect of moisture variation.

Unlike in Sweden, very little environmental change occurred during the Tropt@Aipaignin

French Guiana, and the major effect affggthe relation given by eq. (2) was topography, which
greatly increased the dispersion. Methods to reduce this were based on tbamtpatial axes

and normalization to account for the variatiarthe volume and double bounce backscatter with
incidence angle (Villard and Le Toan, 2015). This allowed the sensitivity of the HV backszatter t
biomass to be recovered, and AGB could then be estimated from the polarimetric Hata wit
relative RMSE < 20%. However, because the approach is based on regression amdsttitite
temporal change in conditions during the campaign, it contains no provision for dealing with large
seasonal variations in backscatter like those observed in the Tropiscat daagBa2018) and
expected in BIOMASS data.
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b. Algorithm training . Regression methods need training data, but in many parts of the world, and
especially in the tropics, there are very few high quality permanent isasitpling plots, almost
all funded under science grants. Significant efforts are being made by ESAalrocation with
NASA, to work with and extend the existing in situ networks in ordesstablish a set of well-
documented reference sites that could be using for training and validation. tRartbéllenge in
doing so is to ensure that the set of reference sites is large enough and repesemtagh to
capture the major variations in forest types and conditions.

c. Physical explanation Despite its remarkable generality, as demonstrated in Schlund et al.
(2018), the physical basis of eq. (2) is not well-understood except in certaindigises (see
below). Hence it is essentially empirical and at present we cannot in genachl mttaningful
physical properties to the fitting parammster derive them from scattering models. In particular,
it has no clear links to well-known decompositions of polarimetric backscatterphysical
mechanisms (e.g. Freeman and Durden (1998); Cloude and Pottier (1996)). In additimaain
forests this relation depends on both total AGB and tree number density, so thatguoasbi
estimates of AGB require information on number density or use of heiginination combined

with height- biomass allometric relations (Smith-Jonforsen et al., 2007)

To get round these problems with the regression-based approaches, the currentseisphrasi
estimating biomass using a model-based approach that brings together three key tfators:
capabilities of the BIOMASS system, the observed properties of the vertit@budion of forest
biomass and our knowledge about the physics of radar-canopy interactions as emboditeringsc

models.

Its starting point is a simplified scattering model that describes the ldteksw coefficient in each

of the HH, HV and VV channels as an incoherent sum of volume, surface and double-bounce
scattering (Truong-Loi et al., 2015). The model involves 6 real parameters per polarizhibbnans
estimated using a combination of a scattering model and reference data. Biorhassglkoess and

soil moisture are then treated as variables to be estimated from the dateanaitfals found that this

model was too complex and the associated parameter estimation was too unsttiidetéobe a
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453 viable approach for BIOMASS. However, a crucial technical development was to demaihstrate
454  both tomographic and Pol-InSAR data can be used to cancel out the terms involvgrguhe
455  (surface scatter and double bounce) and isolate the volume scatteriniyfteionti d’ Alessandro et
456  al., 2013; Mariottid’ Alessandro et al., 2018). In the Truong-Loi et al. (2015) formulation, this term

457  can be written as

B
458 Opq = ApqgWacos 6 <1 — exp (— W)) 3

cos 6

459  whereA,,, B,q, apq andp,, are coefficients for polarization configuratipa, Wis AGB, andd is

460 the local incidence angle. The coefficients, and f,, relate to forest structureg,, > 0 is an

461  extinction coefficienandA,, > 0 is a scaling factor.

462  Assuming thatd,,, B, a,q andp,, are space-invariant at a certain scale, these parameters and
463 AGB can be estimated simultaneously from the measured valuglg of the three polarizations, pg

464 = HH, HV and VV, using a non-linear optimization scheme (Soja et al., 2017, 2018). Hpimever

quwﬂpq
os 6

465 model (3), the two biomass-dependent factdrs, W e and 1 — exp (— ) both increase

466 with increasing AGB for realistic parametera,4 > 0 and f,, > 0), so interactions between

467  apq, Bpg and B,, render the inversion difficult. This problem can be mitigated by using two special
468 cases of the model, both of which lead to a power law expression as in eq. (2). For the low-attenuation
469 case, i.e.quWBM « 1, eg. (3) can be simplified using a series expansion to:

470 opq = A'WP 4)

471  wherep = ay,q + B, andA’ = A,,B,,, and in the high-attenuation case, iE%WBPq > 1,eq. (3

472  can be simplified to:

473 opq = A'WP cos 6 (5)
474  wherep = ap,, andA’ = A,,. In both casesd’,W andp can then be estimated using the scheme

475 proposed in Soja et al. (2017, 2018).
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Note that there is still an inherent scaling ambiguity since the scheme cagiimgfuish the unbiased
estimate of AGBJW,, from any function of the formW®, wherea andb are calibration constants.
Hence reference data are needed, but these data do not need to cover a wide rakgeattehac
slope and incidence angle conditions, as would be required if any of the mgde{5)(&ere to be
trained directly. One complication is that the temporal and spatial variaiffonsand b are are
currently unknown and further work is needed to quantity them. Furtheemefnts may also be
needed to reduce residual effects from moisture variations by, for exarsplef the VV/HH ratio in
boreal forests as discussed above.

The effectiveness of this approach is illustrated by Fig. 3, which plaisesvaf AGB estimated with
this scheme against AGB values estimated from in situ and airborne laser schtaihg a set of
200 m x 200 m regions of interest (ROIs). The airborne P-band data used arhdréfriSAR
campaign and were filtered to 6 MHz to match the BIOMASS bandwidth. The estimateshdye hig
correlated with the reference data (r = 0.97), exhibit only a small amoumsohtross the whole

biomass range, and give a RMSE of 41 t/ha (16% of the average biomass).

Biomass estimation results

600
E RMSE=41 t/ha (16%)
E 500 r=0.97 & ‘
N o
T 400 - ®
= ® > %
O () o ©
© 300+ T —
®

[od A &
&5 200- > o e ROIs
2 W 2 bias line
© 1001 @ oy Oy
Q L — 1-1line
&

0 100 200 300 400 500 600

Airborne lidar [t/ha]

Fig. 3. Estimated AGB using the approach described in the text against AGB estiroateid situ
and airborne laser scanning at the La Lopé site in Gabon during the Afad&#Apgaign. The running
average given by the blue line indicates only a small positive bias across tleeraime of AGB.

ROI denotes Region of Interest.
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Further confirmation of the importance of isolating the volume backscatigsify the full power of
tomography is from the TropiSAR tropical forest campaign, where the tomogragdnsity (in dB)
measured at 30 m above the ground (representing scattering from canopy elements between ca. 17.
m and 42.5 m, given the roughly 25 m vertical resolution of tomographic imagagjound to be

highly correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observedis#nss about 50
tons/ha per dB, and the correlation coefficient is about 0.84 at thedadchliea. This striking result

has been replicated in the forest sites investigated during the AfriSAR campaign (Fig. 4), and suggests
that the backscatter from the forest layer centred 30 m above ground shatiidnigdy correlated

with total AGB in the case of dense tropical forests.

Importantly, this findingis consistent with the TROLL ecological model (Chave, 1999), which
predicts that for dense tropical forests the fraction of biomass containedebe2@em and 40 m
accounts for about 35% to 40% of the total AGB, and that this reiatstable over a large range of

AGB values (Ho Tong Minh et al., 2014). Another element in support of the ecolodaainee of

the 30 m layer is provided by two recent studies of tropical forests, which observed that: a) correlation
between AGB and the area occupied at different heights by large trees (&gl devyin lidar) is
maximal at a height of about 30 m (Meyer et al., 2017); b) about 35% of thedlot@me tends to be
concentrated at approximately 24-40 m above the ground (Tang, 2018).

However, tomographic data will only be available in the first phase of thgiam. In addition,
exploiting the relation betwee®GB and the 30 m tomographic layer requires knowledge of how the
regression coefficients vary in time and space, hence substantial amouaisitng data. In contrast,
ground cancellation can be carried out with both tomographic and Pol-INSAR datao(ghtut the
mission). This allows the volume scattering term (eq) {8 be isolated and hend&GB to be
estimaed using the scheme described in Soja et al. (2018), which makes much less dentsnd on t

availability of reference data.
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Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground measutechdiyraphy
against in sittAGB in 1 ha plots at tropical forest sites investigated during the TropiSAR (Paracou

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns.

The value of tomography for estimating AGB in boreal and temperate fasdstssiclear, since (a)
these forests in general have smaller heights than in the tropics (switeigoroblematical to isolate
the signal from a canopy layer without corruption by a ground contributioen gihe roughly 25 m
vertical resolution of the tomographic product from BIOMASS), and (b) thebldobounce
mechanism appears to be important in recovering Al of boreal forests. Hence ground
cancellation (which also cancels double bounce scattering, since this appears atay@uindthe
tomographic image) may noto help biomass estimation in such forests, and ¢éneegralgorithm for
BIOMASS in these cases is still notdit Recent results indicate that ground cancellation improves
results in Krycklan, but not in Remningstorp, most likely because it suppresses givend
backscattering, which is unrelated to AGB but is of higher relative impcgtin Krycklan due to the

pronounced topography.

5.2 Estimating forest height

25



537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

Forest height estimates will be available throughout the Tomographic and Interferdthesses, in
the latter case using polarimetric interferometric (Pol-InSAR) techniques (Cloude and RPagsitha
1998, 2003; Papathanassiou and Cloude, 2001) applied to three polarimetric acquisitomegerf
a 3-day repeat-pass interferometric mode. The use of Pol-InSAR to estinestehfeight has been
demonstrated at frequencies from X- to P-band for a variety of temperate, dmtdabpical sites,
with widely different stand and terrain conditions (Praks et al., 200g@leK et al., 2014; Hajnsek et
al., 2009; Garestier et al., 2008), and several dedicated studies have addressedptrfdratance

and limitations when applied to BIOMASS data.

Estimation of forest height from Pol-InNSAR requires a model that relatestfheight to the Pol-
INSAR measurements (i.e. primarily to the interferometric coherence aediffgslarisations and for
different spatial baselines) together with a methodology to invert the sk&blinodel. Most of the
established inversion algorithms use the two-layer Random Volume over Ground (Ri¢dél) to
relate forest height to interferometric coherence (Treuhaft et al., 19965. relies on two
assumptions: 1) all polarizatiofisee” (up to a scalar scaling factor) the same vertical distribution of
scatterers in the vegetation (volume) layer; 2) the ground layer is impenetrabldor all
polarizations, the reflectivity of the ground scattering component is givengaa delta function
modulated by a polarimetrically dependent amplitude. The RVoG model has been extensively
validated and its strong and weak points are well understood. Use of this modeditoaofiirest
height map is illustrated in Fig. 5 which is derived by inverting P-band Pol-In&A& acquired
during the AfriSAR campaign in February 2017 over the Pongara National Park, GabositeT s

covered mainly by mangrove forests, which are among the tallest mangrous forédse world,

towering up to 60 m.
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Fig. 5. Forest height map obtained from inverting P-band Pol-INSAR data acquired over theaPong

National Park, Gabon, in the framework of the AfriSAR campaign in February 2017.

The main challenge for BIOMASS is therefore the development of an inversioolébion able to
provide unique, unbiased and robust height estimates, and which accounts for: 1) témmgcat
characteristics at P-band, since the limited attenuation by the forest canopy haaasgtound
scattering component is present in all polarisations; 2) the constraints imposee BIOMASS
configuration, both the 6 MHz bandwidth and the fact that some temporal decorriglatievitable

in the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015). To meet this challeripeanfulti-
baseline inversion scheme has been developed that allows the inversion of the RVoGymodel
including: 1) a polarimetric three-dimensional ground scattering componente2jiaahdistribution

of volume scattering that can adapt to high (tropical) and low (boaéiafyuation scenarios; 3) a
scalar temporal decorrelation that accounts for wind-induced temporal decorrelatiervefjetation
layer. The inversion can then be performed using the three polarimetric acquisitidhg i

Interferometric Phase, allowing global forest height maps to be produced every 7 months.

The main limitations in generating the forest height product arise nottfrefmnversion methodology
but from the 6 MHz bandwidth, which constrains the generation of large baselines as wed|
spatial resolution of the data, and the low frequency, which reduces the sersitfoitgst height in
certain sparse forest conditions. On the other hand, the low frequency will pregidéemporal
stability over the 3-day repeat period of the Interferometric Phase, which is ngdessatablish

unigueness and optimum conditioning of the inversion problem.

An alternative approach to estimating forest height is by tracing the uppeoeawf the observed
tomographic intensities, as reported in Tebaldini and Rocca (2012) and Ho Tong Min2e1ay. (

for boreal and tropical forests, respectively. This has the advantage oflé&ssngomputationally

27



501

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

expensive than model-based inversion, iaman be applied in the absence of a specific model of the
forest vertical structure. Importantly,has been demonstrated using synthetic 6 MHz data simulating
BIOMASS acquisitions over boreal forests (Tebaldini and Rocca, 2012). Howeseapgroach will

only be possible during the Tomographic Phase of the mission.

6. Severe forest disturbance
The BIOMASS disturbance product aitasdetect high-intensity forest disturbance (effectively forest
clearance) occurring between satellite revisit times. This is a natural s&td the data gathered for
biomass and height estimation, rather than a driver for the BIOMASS mission, landnivibute to
the overall capability to measure forest loss from space using optical (angerHet al., 2013) and
radar sensors (e.g., the pair of Sentinel-1 C-band radar satellites). Changespaiathmetric
covariance matrix caused by deforestation are relatively;lésgexample, Fig. 1 indicates thgf,
changes by 5 dsbiomass decreases from 500 tta nearly zero, while a change in AGB from
100 to 200 t ha causey ), to change by only ~1 dB. Hence change detection is less affected by the
statistical variability inherent in the radar sigralowing the disturbance product be produced at a
spatial resolution of ~50 m, instead of 200 m, as for the biomass and height products.
The method proposed for detecting disturbance is firmly rooted in the statstpaities of the 6-
look polarimetric covariance data and uses a likelihood ratio (Conradsén 201%) to test, at a
given level of statistical significance, whether change has occurred edlajpvevious acquisitions in
each new polarimetric acquisition over forest. Note that this approach doggecdy the detection
probability, which would require an explicit form of the multi-variate probafdistribution function
associated with disturbed forest. This would be very difficult to characterise igem®ral sense
because change may affect the covariance matrix in many different ways. Insteaddésa
guantitative way to determine how sure we are that change has occurredyéspbid it is closely
related to the Constant False Alarm Rate approach to target detection (e.g.198arf
A current unknown in this approach is to what extent changes in the covarianceomasturbed

forest caused by environmental effects, such as changing soil moisture daefall events, will
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618 increase the false detection rate. A further issue is that deteatieronly sought in forest pixels, so

619 an accurate initial forest map is required, preferably estimated from the dath themselves but

620 possibly from some other source; this will be progressively updated after each new acquisition.

621 Some insight into the performance of this approach can be gained using multi-tepapeniatetric

622 data from PALSAR-2. Fig. 6 shows at the top Pauli format slant range representatiorairobfa p

623 images gathered on 8 August 2014 and 8 August 2015 (so in this case the timeasdeegth 2)

624 below left the detection of change at 99% significance and below right taks pixwhich change

625 occurred marked in red on the image from 2014 (with no forest mask applied). It aanlibat the

626 areas where change was detected occur in the non-forest regions, while detections in the fogest region
627  occur as isolated pixels consistent with the 1% false alarm rate implitae bgvel of significance of

628 the test.

140808 150807
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Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 2Qfust
displayed in Pauli image format (red = HH + VV; blue = HH - VV; greePH¥) and slant range
geometry. (Bottom left) Detection of change at 99% significance lekiahged pixels are marked as

black. (Bottom rightImage from 8 August 2014 with changed pixels marked as red.

7. In situ and lidar reference biomass data
Although the model-based inversion proposed for estimating biomass (Section 5rh)sasnihe
need for in situ reference data, such data are critical for algomtewelopment and testing,
investigation of regression-based approaches, and product calibration and validatiBIONVASS
mission faces three major challenges in providing these supporting datee &gy region where
reference data are needed is the tropics, but high quality biomass datailmaeaat only a very
limited number of tropical sites; (ii) biomass will be estimated at a& safadl ha (200 m by 200 m
pixels) but most plot data are available at scales of 1 ha or less and the lgeabtagations of the
plots is often not known to high accuracy; (iii) because of SOTR resirictiSection 2), reference
sites in the temperate and boreal zones will need to be outside N America and Europe.

ESA are addressing challeng &nd (ii) by working with existing networks to develop suitable

extensive in situ reference data before launch through the Forest ObseByesiem |(ttp:/forest

observation-system.ngt/ A further encouraging development is tEESA-NASA initiative to

collaborate in developing the in situ data requirements for GEDI, BIOMASS andR\IEA-
operation along these lines is already in evidence from joint contributiohe #ftiSAR campaign
by ESA and NASA. As regards (iii), for the temperate zone, southern hemispheree.gjites,
Tasmania, would be suitable, while Siberia is the most desirable region for thezZboeaHowever,
concrete plans to gather in situ data in these regions are not currently in place.
An important complement to in situ data that helps to address challerigaifijorne lidar data. This
can provide a forest height map and information on canopy structure which, when comitimed
field data, allows biomass to be estimated. Lidar data offer many advantages, including:

e A scaming lidar provides a relatively fine scale and accurate map of biomass, whick can b

aggregated to the 4 ha resolution cell of BIOMASS (this will allow the effects of variability in
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biomass at sub-resolution size to be assessed). Precision at this scalelig bgdma 106
and the vast majority of relevant studies indicate that the associated paattedpimetry
(Chave et al. 2014) has negligible bias.
e Lidar mappingcancover landscapes with a wide range of biomass levels and different forest
conditions (degraded, regrtiwy selectively logged, efc.
e Forest height with fine resolution (around 1 m) can be estimated at the same time as biomass.
Hence the validation strategy for BIOMASS will involve a combination o$iin reference forest
plots and lidar-derived biomass/height maps.

8. Exploiting BIOMASS data in carbon cycle and climate analysis

Although the primary objectives of BIOMASS are to reduce the major uimtérsain carbon fluxes
linked to Land Use Change, forest degradation and regrowth and to provide supjperfiational
agreements (UNFCCC & REDD+), its products will also play a key role iaredvg fundamental
knowledge of forest ecology and biogeochemistry. For example, BIOMASS data willihelp
constraining critical carbon cycle parameters, initialising and testing thectangonent of carbon
cycle and Earth System models (ESMs), and quantifying the forest disturbance regime.
Differences between ESM forecasts of the carbon cycle are currently signitica lead to major
uncertainties in predictions (Exbrayat et al., 2018). These differences have bedndinfriations in
the internal processing of carbon, particularly in the large pools in biomasohmadganic matter
(Friend et al. 2014). Linking biomass mapping to estimates of net primary prodid¢Be) provides

a constraint on the turnover rate of the biomass pool, a critical model diagi@=stvalhais et al.,
2014; Thurner et al., 2014). A recent study (Thurner et al., 2017) found observed borealpanatéem
forest carbon turnover rates up to 80% greater than estimates from globatiwvagabdels involved
in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MI¥arézawski et al., 2014). The
relative difference between modelled and observed values is shown in Fig. 7, teheed boxes
indicate regions analysed in Thurner et al. (2017) in order to explain these dis@eplanttie boreal

zone (boxes bl - 4) they were mainly attributed to the neglect of the effefrtssibtlamage on
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mortality in the models, while most of the models did not reproduce observation-based relationships

between mortality and drought in temperate forest transects (boxes t1 - 3).
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Fig 7. Relative difference between modelled carbon turnover rates and turnover fetiesl irom
observations. 1.0 means modelled rate is 100% higher (from Thurner et al.,R€d Hoxes labelled
b (boreal) and t (temperate) were analysed further in Thurner et al. (201&)plain these

discrepancies (figure reproduced courtesy of Martin Thurner).

The more accurate estimates from BIOMASS, particularly over the tropicahiletireatly improve
estimation of turnover across the tropics (Bloom et al., 2016). This informaticsupport improved
parameterisation of carbon cycling for ESMs, allowing identification of rebiaréations in carbon
turnover currently missing from tropical plant functional types (Exbrayak e2018a). A sensitivity
analysis performed using the CARDAMOM system (Bloom et al., 2@&xbrayat et al. 2018b
indicates an average reduction of 49.5 + 29.2% (mean * 2 std) in the 95% confidenet drftdre
estimated vegetation carbon turnover time when the recent pan-tropical biomass nwap\iadite
et al. (2016) is assimilated. The analysis shows how this error reductiorehasptial variability
with latitude and between continents (Fig. 8).

Another component of uncertainty in ESMs is in their initialisation of biomass staxgsg from
the paucity of data in the tropics, Land Use Change and internal model steady statdsorba
BIOMASS will provide the modelling community with a compelling resourceh withich to
understand both steady state and transient forest carbon dynamics. Observatiendisifitbance

regime will constrain modelling of both natural processes of disturbance atalitpy@nd the role of
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humans (Williams et al., 2013). The potential for BIOMASS to monitor degradatioia{pass of
biomass) will be critical for modelling the subtle and slow processes of cark®mdsociated with

forest edges, fires and human communities (Ryan et al, 2012; Brinck et al., 2017).
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Fig. 8. The relative reductiom the size of the 95% confidence intervdl estimated vegetation
carbon turnover times when using a prior value for bioratisach pixel compared to a run withaut
biomass prior. Turnover times were estimated using the CARDAMOM systemdarker areas

show where reduction in relative uncertainty is largest.

Repeated measurements of biomass will allow significant improvements in globabnngnof
forest dynamics, and analysis of associated carbon cycling at fine spatial scatest Giomass
maps (e.g., Saatchi et al., 2011) provide maps of stocks at a fixed time (oneambérvations from
several times). While such data help to constrain the steady state biomass, atlegiohal scales
(~1°), they give little information on the dynamics of forestsirarf(ha to krf) scales over time.
BIOMASS will allow detailed, localised, and temporally resolved analysesrestf dynamics to be
constrained. The value of such detailed information has been illustrated in aditnkgysis for an
aggrading forest in North Carolina (Smallman et al., 2017). Using in situ cadmkniistormation as
a baseline, the analysis showed that a model analysis constrained purely blatassimoi 9
sequential annual biomass estimates (corresponding to the BIOMASS scenarfogstithate in the
Tomographic Phase and 8 in the Interferometric Phase) together with time series Arfelackridex
(LAI, e.g. from an operational satellite like Sentinel-2) led to signiflgesrhaller bias and narrower

confidence intervals in biomass increment estimates than when LAI and just one bidmase,ex
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only management information, were assimilated. Bias in estimated carboificisaay (the ratio of
NPP to gross primary production) was also significantly reduced by repeatedsisi observations.
This indicates the potential of BIOMASS to improve significantly our Kedge of the internal

processing of carbon in forests.

9. Secondary objectives
BIOMASS will be the first P-band SAR in space and thus will offer prewousiavailable
opportunities for measuring properties of the Earth. As a result, midsioning includes provision
for several secondary objectives, including mapping sub-surface geology, mgasemiain
topography under dense vegetation, estimating glacier and ice sheet velocities emtigaitivg
properties of the ionosphere.

9.1 Sub-surface geology
In very dry environments, long wavelength SAR is able to probe the sub-surface adeevetal
metres,as was demonstrated at L-band (1.25 GHz) during the first Shuttle Imaging Rad#x SIR-
mission (Elachi et al., 1984), which revealed buried and previously unknown patieager
channels in southern Egypt (McCauley et al., 198&illou et al., 2003). More complete L-band
coverage of the eastern Sahara acquired by the JAXA JERS-1 satellite wés pistlice the first
regional-scale radar mosaic covering Egypt, northern Sudan, eastern Libya and northerro@had, fr
which numerous unknown crater structures were identified (Paillou et al.)).2B08006, JAXA
launched the Advanced Land Observing Satellite (ALOS-1), carrying a fullsirpetaic L-band SAR,
PALSAR, which offered higher resolution and much better sigmadoise ratio than JERS-1. This
provided an unprecedented opportunity to study the palaeo-envirorandnipalaeo-climate of
terrestrial deserts (Paillou et al., 2010), and led to treodsy of two major pakorivers in North
Africa: the Kufrah river, a 900 km long palaeo-drainage system,hwirnicthe past connesd
southeastern Libya to the Gulf of Sirt (Paillou et al., 2009loBaet al., 2012), and the Tamanrasett
River in Mauritania, which connesd a vast ancient river system in the western Sahara to a large
submarine channel system, the Cap Timiris Cangkorieczny et al., 2015). Besidés valuein

studying the past climates of desert regions, the sub-surfacengnzapability of L-band SAR also
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helpsto build more complete and accurate geological maps in suppartuoé fwater prospecting in

arid and smii-arid regions (Paillou, 2017).

Deeper probing of the sub-surface requires longer radar wavedemgtile L-band can penetrate 1-2
m into dry sand, a P-band system should be able to probe dowrrédhan 5 m. In June 2010, the
first ever airborne P-band SAR campaign over the Sahara was aahduatdesert site in southern
Tunisia using the SETHI system developed by ONERA (Paillou et2@lL1). Figure 9 shows a
comparison between an ALOS-2 L-band scene and a P-band scene acq@EEtHbyover the Ksar
Ghilane oasis, an arid area at the border between past afilaiied and present day sand dunes.. The
P-band data better reveal the sub-surface features under the salsarfidilayer because of the higher
penetration depth and lower sensitivity to the covering sandcsuratwo-layer scattering model for
the surface and sub-surface geometry is able to reproduce both the L- and Redsumeanbackscatter
levels, and indicates that the backscatter from the sub-surfacéslapeut 30 times weaker than from
the surface at L-band, while at P-band the sub-surface comnlsitabout 30 times stronger than that
from the surface. As a result, the total backscatter is compata®leand L-band, as the data show, but
the P-band return is dominated by the sub-surface layer (Paillou et al., 2017)BHektzeSS should

be a very effective tool for mapping sub-surface geologiodl hydrological features in arid areas,

offering a unique opportunity to reveal the hidden and still unkrustory of deserts.
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Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in soufhenisia: palaeo-channels are
hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar inshgeving sub-surface features
but blurred by the return from the superficial sand layer. RigAffHI P-band radar image, clearly

revealing sub-surface hydrological features.

9.2 Terrain topography under dense vegetation

As an integral part of its ability to make height-resolved measurements badkscatter in forest
canopies, the tomographic phase of the mission will gain access to the ground phasacandlh

be able to derive a true Digital Terrain Model (DTM) that is unaffectedolsst cover (Mariotti
d’Alessandro and Tebaldini, 2018) and expected to have a spatial resolution of ca. 100 m x 100 m.
This contrasts with the Digital Elevation Models (DEMs) produced by radar senshighat
frequencies, such as SRTM (Rodriguez et al., 2015) or Tandem-X (Wessel et al., 20ddghin
attenuation and scattering by dense forest canopies cause biases. Since oghagahphic
acquisitions occupy the first phase of the mission, this improved DTM wilba#able early in the
Interferometric Phase, and will be used to improve the products based on Pol-InSAR and PolSAR.

9.3 Glacier and ice sheet velocities

The velocity fields of glaciers and icesheets can be measured using tves da$AR techniques:
differential SAR Interferometry (DINSAR) (Massonnet et al., 1993) and offsekihg (Gray et al.,
1998; Michel & Rignot, 1999). These techniques measure the ice displacement between t
observations and require features in the ice or coherence between the obseBI&IMASS has the
potentialto supplement ice velocity measurements from other SAR missions, since itsokafigl
geometry with an inclination angle larger than 90° means that the geglam Antarctica will be
smaller than for most other SAR missions, which are right-looking. The polavitidge larger in

Greenland, but the Greenland ice sheet cannot be mapped due to SOTR resfficigmsmary
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807 advantage of BIOMASS is the higher coherence and longer coherence time resultitigefiomer

808 frequency of BIOMASS compared to all other space-based SAR systems. Its longer waweitng

809 deeper penetration into the firn ensures less sensitivity to snowfall, surfa@nohekolian processes

810 (Rignot, 2008). This is seen when comparing L-band and C-band results (Rignot, 2008; Boncori et al.,
811 2010), and explains the long coherence time observed in airborne P-band data bggteddanish

812 Technical University POLARIS SAR the percolation zone of the Greenland ice sheet (Dall et al.

813 2013).

814 The range and azimuth components of the ice velocity field will most likely dmsumed with
815 differential SAR interferometry (DINSAR) and offset tracking, respebti At lower latitudes two
816 velocity components might instead be obtained by combining DINSAR from ascending and
817 descending orbits, since the range resolution of BIOM#&3&o coarse for offset tracking to provide
818 the range component (Dall et al. 2013). Generally DINSAR ensures less noisy resufibased
819 unwrapping is facilitated by the fact that the fringe rate of BIOMASSSBR data will be 1/12 of
820 that of Sentinel-1 data, assuming a 6-day baseline in both cases. The very |l@oddées in the
821 interior of Antarctica call for a long temporal baseline, but a 70-day baselsbden successfully
822 used at C-band (Kwok et al., 2000), and therefore sufficiently high P-band cahererat unlikely
823 with the 228-day baseline provided by the BIOMASS observatiote.cytowever, ionospheric
824 scintillationis severe at high latitudes, and without accurate correction will corragtéhvelocity
825 maps, possibly prohibitively. Assessment of whether proposed correction techniqoegt(il.,

826  2015; Li et al., 2015) are sufficiently accurate will only be possible when BIOMASS is in orbit.

827 9.4 lonospheric properties

828 A major concern in initial studies for BIOMASS was the effect of dm@sphere on the radar signal,
829 and a crucial factor in the selection of the mission was demonstratiorhéisat ¢ffects could be
830 compensated or were negligible in the context of the mission primary objectivesrgRogl., 2013;
831 Rogers and Quegan, 2014). However, correction of ionospheric effects (particularly Fatatiay r
832 Dbut also scintillation, as noted in Section 9.3) necessarily involves measheng which then

833 provides information on the ionosphere. The dawn-dusk BIOMASS orbit will ecoagr features of
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834 the ionosphere, including the fairly quiescent ionosphere at low and mididatiteteep gradients
835 around the dusk-side mid-latitude trough, and large irregularities in the aowvataland polar cap.
836 Measurements of ionospheric Total Electron Content, derived from Faraday r¢ttight et al.,
837 2003) and/or interferometric measurements (Tebaldini et al., 2018), should beepalssiglthe orbit
838 at spatial resolutions of around a km, giving an unprecedented capability to enteese spatial
839 structures and their changes, since they will be viewed every two hours as the orbit repeats.
840

841 10. The role of BIOMASS in an overall observing system

842 BIOMASS will have unique capabilities to map biomass in dense forests, bdionmillonly part of
843 the overall system of sensors providing information on forest biomass and biontags, emal more
844 generally on the global carbon cycle. In fact, the next few years will see arcedented
845 combination of sensors either dedicated to or capable of measuring forest structure angd. biomas
846  Particularly important for their links to BIOMASS will be the Glbbacosystem Dynamics

847 Investigation (GEDI) and NISAR missions.

848 GEDI will be a near infrared (1064 nm wavelength) light detection and rangiag) @ensor onboard

849 the International Space Station with a 2-year lifetime from deployment in late IR@&cusing on

850 tropical and temperate forests to address three key issues: 1) quartifyiagove-ground carbon

851 balance of the land surface; 2) clarifying the role played by the land surfacegatimifiatmospheric

852 CGO, in the coming decades; 3) investigating how ecosystem structure affedis loaiaility and

853 biodiversity. GEDI will provide the first sampling of forest verticatusture across all forests

854 between 51.5S and 51.5N, from which estimates of canopy height, ground elevation and vertical
855 canopy profile measurements will be derived. Further processing of the ~0.0625 ha footprint

856 measurements will then yield estimates of the mean and variance of AGB on a 1 km grid.

857 NISAR (launch 2021) is a joint project between NASA and ISRO (the Indian Speseaih
858 Organization) to develop and launch the first dual-frequency SAR sateltiteNASA providing the
859 L-band (24 cm wavelength) and ISRO the S-band (12 cm wavelength) sénsglisneasureAGB

860 and its disturbance and regrowth globally in 1 ha grid-cells for areas wikBalfes not exceed 100
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t/ha, and aims to achieve an accuracy of 20 t/ha or better over at #asf 8tese areas. Its focus is
therefore on lowr biomass forestawvhich constitute a significant portion of boreal and temperate
forests and savanna woodlands. NISAR will give unprecedented L-band coverage in spaoe,and ti
being able to provide HH and HV observations every 12 days in ascending and descendirgarbit
covering forests globlgl every 6 days. The mission is also designed to give global interferometric

SAR measurements for surface deformation and cryosphere monitoring.

These three missions have significant overlaps in science objectives and prbdudtecus on
different observations, cover different regions, and retrieve different components chtAdifiren
spatial and temporal scales. Ttheomplementary nature is brought out by Fig. 10, which shows the
coverage of the three sensors on a map indicating approximate mean AGB. BIOMA®BSusilbn
tropical and sub-tropical woodlands at 4 ha resolution (though will also dowetemperate and
boreal forests of Asia and the southern hemisphere), NISAR will give globetagey at 1 &
resolution but with AGB estimates limited to areas where AGB < 100afthGEDI will cover the
full range of AGB, but with sample footprints limited to lie withiB1.5 latitude. Hence without the
data from all three missions, wad-wall estimation of global forest biomass will not be possible.
There will, however, still be lack of temporal and/or spatial coverage inonegvhere BIOMASS
cannot operate because of SOTR exclusions and where AGB exceeds the 100 t/hal tfmeshol

NISAR.

For lower values oAGB (less than about 50 t/ha) P-band measurements will be much more affected
by soil conditions than L-band, and NISAR should provide more accurate AGB estimateBighhe
temporal frequency of NISAR observations will also allow the effects onsoigture changes and
vegetation phenology to be mitigated. Currently the theoretical basis of tréhaits proposed for
NISAR and BIOMASS are the same (Truong-Loi et al., 2015), which offers the possibilay
combined L- and P-band algorithm that optimises the capabilities of each. In addHEDhforest
height and biomass products will be available before the NISAR and BIOMASS missicas, help

to initialize their algorithms and valitathar products. GEDI estimates of the vertical structure of

forests will also be of enormous value in interpreting the BIOMASS Pol-In8AdR tomographic
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measurements and in producing a consistent forest height and digital terrain model at fingcapatial
(around 1 ha). Conversely, height or backscatter products from NISARI@MIAEBS missions can
provide information on the spatial variability of forest structure and bisnths may be used in
future reprocessing to improve both the algorithms that form the GEDI grideighit and biomass

products and the resolution of these products.

Hence the three sensors will be highly complementary, and their combination wiltlgrami
unparalleled opportunity to estimate forest AGB, height and structure globa&hyumwprecedented

accuracy, spatial resolution and temporal and spatial coverage.

(50% area)
5100 Mg/ha

< 100 Mg/ha

<20 Mg/ha
BIOMASS Coverage

No Woody Biomass_ &

Fig. 10. Coverage of ESA and NASA-ISRO satellite measurements of forest stractdr@bove-ground
biomass (AGB). The background shows the global coverage are&58RNMwhich will be sensitive to AGB
values < 100 t/ha (green and yellow). BIOMASS coverage includes theatrbelt, the temperate and boreal
zones of Asia, and the southern hemisphere, while the GEDI Lidar wiflledatitudes betweeh51.5. These
two sensors will cover the full range of forest AGB providing measenés where AGB >100 t/ha (red), so

inaccessible to NISAR.

Discussion

Along with its role in quantifying the biomass and its change, it is impottamealize that the
BIOMASS instrument, particularly in its interferometric and tomographic modegapable of

producing global measures of important forest properties that are simplylabkvéor almost all of
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915 the Earth. Some of these are practical measurements whose value has been knows. fdfoyea
916 example, in forestry the ability to predict yield or increase in bisnmicreased greatly when one
917 knows both mass and height, so much so that tree height has been usedtatbddddsed forestry to
918 guantify the so-called site-index, the quality of a site for forest enterprisee tminformation from
919 the BIOMASS satellite and the modern digital offspring of classic foregigt tables could be used
920 to make informed estimates of expected net production of forest biomass. lar swin, Section 8
921 notes how the combination of biomass with NPP allows the turnover time of cartion forest
922  vegetation to be estimated. Both examples illustrate that although forest bibeigist, structure and
923 change are all individually important, their full significance fomeite, carbon cycle, biodiversity,
924 resource management, etc., is only fully realised when they are combined with hexchnok with

925 other sources of information.

926  This perception of biomass as a key variable within a wider informationnsystémplicit in the

927 recognition of AGB as an ECV (GCOS, 2017). More explicit analysis of its umetithin a carbon
928 information and management system is provided by the Group on Earth Olsery&iEO) (Ciais et
929 al., 2010) and the response to this report in the CEOS Strategy for Carbon ObsenatioBpdce
930 (CEOS, 2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the reparftés where
931 biomass fits within the set of key GEO satellite requirement areas and E&@deoBservational
932 elements necessary to quantify the current state and dynamics of the teoadida cycle and its
933 components. Central to the GEO Carbon Strategy is the combination of data and carbaodgide
934 not least because models provide the only way in which the many available space-basesitand in
935 measurements can be integrated into a single consistent structure for perfoarbog flux

936 calculations.

937 There are many possible forms for these models but data can interact witinthesentially four
938 ways: by providing estimates of current model state variables, estimates of madettess, tracking
939 of processes and testing of model predictions. In addition, data and models can b®rmeviaghtly
940 bound by combining them in a data assimilation structure where both are regarsiaarces of

941 information whose relative contribution to carbon flux estimates is weightetthdiry uncertainty.
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There are already significant developments in exploiting biomass data in thesefovagxample
initializing the age structure of forests when estimating the European carbon b&leltecesén et al.,
2011), estimating carbon turnover time (Thurner et al., 2017), testing Dy@ioti@l Vegetation
Models (Cantu et al., 2018), and full-scale data assimilation (Bloom et al., 201@erRudgress in

this direction is to be expected as we move towards launch in 2022.

Conclusions

BIOMASS mission will be the first space-based P-band radar, and this completelyenefrom

space will yield both predictable and unforeseen opportunities to learn #igodarth and its
dynamics. Within the operational constraints imposed by the Space Objecingir®adar system
(Section 2) the 5-year mission will provide global mapping of forest Alt&yht and change at 200

m spatial resolution by combining three different radar techniques, eachrofrthevative. This is

the first space-based radar mission for which all observations will be dalarimetric, which is
necessary both to recover biomass information and to correct ionospheric effects. @een m
innovative will be this first systematic use of Pol-InSAR to measurestfdreight globally, and the

first use of SAR tomography to identify the vertical structure of foigstsally. In parallel with these

major technological developments, considerable progress is being made in developing new
understanding and quantitative methods that will allow these measurements to becdekplcgirbon

cycle and climate models. This link between measurements and models forms an essenfial part o
meeting the primary objective of the BIOMASS mission, which is to deterrtihe worldwide
distribution of forest AGB in order to reduce the major uncertaintieslizulations of carbon stocks

and fluxes associated with the terrestrial biosphere, including carbon fluxemesswith Land Use
Change, forest degradation and forest regrowth. Of major mutual advantageing rtiégtobjective

will be the information provided by other space missions flying withénrtext five years, for which

pride of place goes to GEDI and NISAR, but supplemented by optical and other rasi@ansiOf

great importance is that the structures for making use of these new datiaoim cgcle and climate

models are being developed and implemented.
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968 The physical and technical capabilities embediuhethe BIOMASS mission in order to measure

969 biomass can be turned to many other uses. At present, known applications include sub-surface
970 imaging in arid regions, estimating glacier and icesheet velocitiespranidiction of a true DTM

971 without biases caused by forest cover. An originally unforeseen applicasorgdrom the need to

972  correct the radar signal for ionospheric effects is to exploit the high sepsifithe P-band signal to

973  Total Electron Content to estimate ionospheric properties and changes along the satellite’s dawn-dusk

974  orbit. This is likely to be just one amongst many novel uses of the BIOMASS data, whoseidicope

975 only become clear once BIOMASS is in orbit.
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Figure captions

Fig. 1. Global ecological regions of the world (FAO 2012) with the area affected by Space Objects
Tracking Radar (SOTR) stations highlighted in yellow. Only land areas betw2&o@h and 85

North are represented (figure reproduced courtesy of Joao Carreiras).

Fig. 2. P-band backscatter at HV polarisatiorf{) over tropical and boreal forests against the
biomass of in situ reference plots. Data from Paracou, French Guiana, were acqtiredsBy HI

SAR system in 2011 (Dubois-Fernandez et al., 2012), those from La Selva, Costa Rica, in 2804 by th
AIRSAR system (Antonarakis et al., 2011) and those from Remningstorp, Sweden, by the E-SA
system in 2007 (Sandberg et al., 2011).

Fig. 3. Estimated AGB using the approach described in the text against AGB estiroateid situ

and airborne laser scanning at the La Lopé site in Gabon during the Afd&ABaign. The running
average given by the blue line indicates only a small positive bias across tleeraige of AGB.

ROI denotes Region of Interest.

Fig. 4. Plot of HV backscatter intensity at height 30 m above the ground medsutethography
against in situ AGB in 1 ha plots at tropical forest sites investigated dimen@ropiSAR (Paracou

and Nouragues) and AfriSAR (Lopé, Rabi, Mondah) campaigns.

Fig. 5. Forest height map obtained from inverting P-band Pol-INSAR data acquired over theaPong
National Park, Gabon, in the framework of the AfriSAR campaign in February 2017.

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 201

displayed in Pauli image format (red = HH + VV; blue = HH - VV; greePHV) and slant range
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1369 geometry. (Bottom left) Detection of change at 99% significance leahged pixels are marked as

1370 black. (Bottom rightimage from 8 August 2014 with changed pixels marked as red.

1371 Fig 7. Relative difference between modelled carbon turnover rates and turnover fetes! ifrom
1372 observations. 1.0 means modelled rate is 100% higher (from Thurner et al.,R&d Hoxes labelled
1373 b (boreal) and t (temperate) were analysed further in Thurner et al. (2018yplain these

1374 discrepancies (figure reproduced courtesy of Martin Thurner).

1375 Fig. 8. The relative reductiomn the size of the 95% confidence interval of estimated vegetation
1376 carbon turnover times when using a prior value for biomass at each pixel edriparrun without a
1377 biomass prior. Turnover times were estimated using the CARDAMOM system. arker direas

1378 show where reduction in relative uncertainty is largest.

1379 Figure 9. Left: SPOT image of the Ksar Ghilane oasis region in southenisia: palaeo-channels are
1380 hidden by aeolian sand deposits. Middle: ALOS-2 L-band radar insag&ving sub-surface features
1381 but blurred by the return from the superficial sand layer. R§BTHI P-band radar image, clearly
1382 revealing sub-surface hydrological features.

1383 Fig. 10 Coverage of ESA and NASA-ISRO satellite measurements of forest stractiirabove-

1384 ground biomass (AGB). The background shows the global coverage area of NISAR, which will be
1385 sensitive to AGB values < 100 t/ha (green and yellow). BIOMASS coverage includes the tropical belt,
1386 the temperate and boreal zones of Asia, and the southern hemisphere, while the GEDIIILidar wi
1387 sample latitudes betweeh 51.5. These two sensors will cover the full range of forest AGB

1388 providing measurements where AGB >100 t/ha (red), so inaccessible to NISAR.
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