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 ϭϮ 

Abstract ϭϯ 

A pore-network model (PNM) was developed to simulate non-Darcy flow through porous ϭϰ 

media. This paper investigates the impact of micro-scale heterogeneity of porous media on the ϭϱ 

inertial flow using pore-network modelling based on micro X-ray Computed Tomography ϭϲ 

(XCT) data. Laboratory experiments were carried out on a packed glass spheres sample at flow ϭϳ 

rates from 0.001 to 0.1 l/s. A pore-network was extracted from the 3D XCT scanned volume ϭϴ 

of the 50 mm diameter sample to verify the reliability of the model. The validated model was ϭϵ 

used to evaluate the role of micro-heterogeneity in natural rocks samples. The model was also ϮϬ 

used to investigate the effect of pore heterogeneity on the onset of the non-Darcy flow regime, Ϯϭ 

and to estimate values of the Darcy permeability, Forchheimer coefficient and apparent ϮϮ 

permeability of the porous media. The numerical results show that the Reynold’s number at Ϯϯ 

which nonlinear flow occurs, is up to several orders of magnitude smaller for the heterogeneous Ϯϰ 

porous domain in comparison with that for the homogeneous porous media. For the Estaillades Ϯϱ 

carbonate rock sample, which has a high degree of heterogeneity, the resulting pressure Ϯϲ 

distribution showed that the sample is composed of different zones, poorly connected to each Ϯϳ 

other. The pressure values within each zone are nearly equal and this creates a number of Ϯϴ 

stagnant zones within the sample and reduces the effective area for fluid flow. Consequently, Ϯϵ 

the velocity distribution within the sample ranges from low, in stagnant zones, to high, at the ϯϬ 

connection between zones, where the inertial effects can be observed at a low pressure gradient. ϯϭ 

 ϯϮ 



  Ϯ 

Keywords: Non-Darcy Flow; Pore-network modelling; Forchheimer equation; ϯϯ 

heterogeneous porous media. ϯϰ 

1. Introduction ϯϱ 

Many engineering transport phenomena are controlled by flow through porous media. To ϯϲ 

reliably predict the flow, it is important to understand pore-scale factors and determine the ϯϳ 

boundaries between different flow regimes. Neglecting the non-linear inertial effects according ϯϴ 

to Stokes law, flow through porous media is usually modelled using Darcy’s law (Equation 1) ϯϵ 

(Darcy, 1856). ϰϬ 

െ οܲܮ ൌ ܭߤ  (1) ݒ

Darcy’s law is a linear relationship between the pressure drop (ǻP) between two points ϰϭ 

separated by distance (L) and the superficial or Darcy velocity (ݒ ൌ ), where q is the ϰϮ 

volumetric fluid discharge, A is the whole cross-sectional area perpendicular to the flow ϰϯ 

direction, µ is the fluid dynamic viscosity and ܭ is the Darcy permeability. However, for ϰϰ 

higher velocities, i.e. when the pressure drop due to inertial effects is ≥ 1% of the total pressure ϰϱ 

loss (Section 2.2.2), Equation 1 is no longer valid, and the inertial terms cannot be neglected. ϰϲ 

Hence, the relationship between the pressure gradient and the superficial velocity becomes ϰϳ 

non-linear. ϰϴ 

In porous media, inertial effects can be expressed in the form of drag forces, and as was shown ϰϵ 

by experiments, the pressure drop in such case is proportional to the summation of two terms; ϱϬ 

one term includes the fluid velocity and represents the force exerted to overcome fluid ϱϭ 

viscosity, whilst the other term includes the squared value of fluid velocity and represents the ϱϮ 

force exerted to overcome fluid-medium interactions. The second term represents the inertial ϱϯ 

effects which is a function of pore geometry, permeability and Reynold’s number (Vafai & ϱϰ 

Tien, 1981; Zeng & Grigg, 2006). Flow through the hyporheic zone, near groundwater wells, ϱϱ 

or within hydraulic fractures in underground reservoirs are examples of flow in real ϱϲ 

environment that show non-Darcy behaviour. For the non-Darcy flow regime, normally the ϱϳ 

Forchheimer’s equation is applied (Forchheimer, 1901). Forchheimer’s equation (Equation 2) ϱϴ 

is an extension to Darcy’s law and was developed by adding a quadratic velocity term to ϱϵ 

account for the non-linear inertial effects:  ϲϬ 

െ οܲܮ ൌ ிܭߤ ݒ   ଶ (2)ݒߚߩ



  ϯ 

where ܭி is the Forchheimer permeability, that is very close to, but not the same as, Darcy ϲϭ 

permeability (ܭ), and ȡ is the fluid density. ȕ is the non-Darcy coefficient, also known as ϲϮ 

Forchheimer coefficient, which is a medium dependent value similar to permeability. The non-ϲϯ 

Darcy coefficient accounts for the inertial effects due to convergence, divergence and tortuosity ϲϰ 

in the flow path geometry (Thauvin & Mohanty, 1998; Balhoff & Wheeler, 2009). Normally, ϲϱ 

the ȕ coefficient and the onset of non-Darcy flow regime are determined experimentally, ϲϲ 

whereas some authors developed empirical relationships that predict ȕ as a function of the ϲϳ 

medium permeability, porosity and tortuosity (e.g. Thauvin and Mohanty (1998) and Liu et al. ϲϴ 

(1995)).  ϲϵ 

To determine ȕ and ܭி from Forchheimer’s equation, a linearized form of Equation 2 can be ϳϬ 

used to determine the relation between οఓ௩ or ଵೌ, where ܭ is the apparent permeability, ϳϭ 

against ఘ௩ఓ . This should result in a straight line with slope ȕ and intercept ͳȀܭி (Equation 3). ϳϮ  οܲݒߤܮ ൌ ͳܭ ൌ ͳܭி  ߚ ߤݒߩ  (3) 

All experimental work has limitations, either due to difficulties or uncertainties in measuring ϳϯ 

some quantities, mainly rooted from the complexity of the process. In such cases, ϳϰ 

computational methods provide an alternative tool to gain insight into the processes. The ϳϱ 

computational methods used for studying flow in porous media can be divided into ϳϲ 

conventional continuum-scale numerical models and pore-scale models. Pore-scale models ϳϳ 

have advantages over the continuum-scale numerical models as they provide details of the ϳϴ 

physical process occurring at pore-scale, and their consequence at macroscale (Joekar-Niasar  ϳϵ 

& Hassanizadeh, 2012). Moreover, the medium parameters estimated from pore-scale studies ϴϬ 

can be used to parameterize macro-scale equations (e.g. El-Zehairy et al., 2018). ϴϭ 

To simulate single phase, incompressible, non-Darcy flow in a fully-saturated porous medium ϴϮ 

at the macro-scale, typically the Navier-Stokes equations are used, simplified, averaged over ϴϯ 

the simulation domains (fluid and solid phases), and then solved numerically. For example, ϴϰ 

Zimmerman et al. (2004) and Zhang and Xing (2012) solved Navier-Stokes equations for ϴϱ 

nonlinear flow using a finite-element mesh; Aly and Asai (2015) simulated non-Darcy flow ϴϲ 

through porous media by the incompressible smooth particle hydrodynamics method and ϴϳ 

Belhaj et al. (2003) used the Forchheimer equation to derive a finite difference model for Darcy ϴϴ 

and non-Darcy flow in porous media. Many Computational Fluid Dynamics (CFD) software ϴϵ 

packages such as ANSYS CFX, Fluent, and OpenFOAM solve these equations. However, there ϵϬ 



  ϰ 

are other models that can be used to simulate non-Darcy flow such as the Barree and Conway ϵϭ 

model, the hydraulic radius model, A. V. Shenoy’s Model, and the Fractal Model. Further ϵϮ 

details about these models can be found in the review by Wu et al. (2016). ϵϯ 

1.1. Pore-scale modelling:  ϵϰ 

Pore-scale models can be subdivided into six different groups: Lattice-Boltzmann (LB) models ϵϱ 

(e.g., Kuwata and Suga, 2015), smoothed particle hydrodynamics (SPH) approach (e.g., ϵϲ 

Bandara et al. 2013), level-set models (e.g., Akhlaghi Amiri and Hamouda, 2013), percolation ϵϳ 

models (e.g., Wilkinson, 1984), pore-network models (e.g., Bijeljic et al., 2004; Joekar-Niasar ϵϴ 

et al. 2009) (Joekar-Niasar  & Hassanizadeh, 2012) and direct numerical simulation (DNS) ϵϵ 

(e.g., Raeini et al., 2012; Bijeljic et al., 2013b;  Aziz et al., 2018). Percolation models cannot ϭϬϬ 

reveal any transient processes information and all other methods are computationally more ϭϬϭ 

expensive compared to pore-network models (Celia et al., 1995; Wang et al., 1999; Bijeljic et ϭϬϮ 

al., 2004; Bijeljic & Blunt, 2007; Joekar-Niasar  & Hassanizadeh, 2012; Blunt et al., 2013; ϭϬϯ 

Oostrom et al., 2016). The SPH approach is a particle-based method, which although it has the ϭϬϰ 

advantage of not being constrained by lattice points (e.g. similar to Lattice Boltzmann), it is ϭϬϱ 

computationally more expensive (Tartakovsky et al., 2015). Dealing with a wide range of ϭϬϲ 

contact angles in the level set method is challenging and significant efforts are spent on that. ϭϬϳ 

DNS has been used mainly to simulate creeping flow through porous media, however, it could ϭϬϴ 

also be used to simulate other flow regimes (e.g. Muljadi et al., 2015). Using DNS, the Navier-ϭϬϵ 

Stokes equations are solved numerically on a mesh based on the voxelised X-ray Computed ϭϭϬ 

Tomography (XCT) data of the medium. Using large mesh elements or large time steps will ϭϭϭ 

lead to some errors at the small scales which will be transferred to the large scale and corrupt ϭϭϮ 

the solution (Poinsot et al., 1995; Moin & Mahesh, 1998; Alfonsi, 2011; Mousavi Nezhad & ϭϭϯ 

Javadi, 2011; Mousavi Nezhad et al., 2011). ϭϭϰ 

In pore network modelling (PNM), the large pores constrained between the grains are referred ϭϭϱ 

to as pore bodies (PB). The pore bodies are connected to each other by narrow paths which are ϭϭϲ 

referred to as pore throats (PTh). Generally, the pore bodies are represented using spheres and ϭϭϳ 

the pore throats are represented by cylinders or conical shapes. However, there are some studies ϭϭϴ 

that considered other shapes for pore bodies and pore throats to enhance the accuracy of model ϭϭϵ 

predictions (e.g. Joekar-Niasar et al., 2010). Connectivity is defined by the coordination ϭϮϬ 

number which is the number of pore throats connected to a pore body. The PNM approach can ϭϮϭ 

provide a simplified structure of complex porous media and allow the investigation of pore-ϭϮϮ 



  ϱ 

scale processes. It can also provide details of flow velocities and pressure fields for complex ϭϮϯ 

heterogeneous pore spaces. Such information is essential to understand the flow behaviour and ϭϮϰ 

for studying solute transport in heterogenous porous media.  ϭϮϱ 

Although many researchers have used pore-network modelling to investigate flow through ϭϮϲ 

porous media, few have studied the flow within the laminar non-Darcy regime. The first study ϭϮϳ 

was conducted by Thauvin and Mohanty (1998) and was limited to 3D regular lattice pore-ϭϮϴ 

networks. To simulate the converging-diverging flow behaviour, Thauvin and Mohanty (1998) ϭϮϵ 

used modified forms of two equations originally proposed by Bird et al. (1960) for modelling ϭϯϬ 

pressure loss due to sudden expansion (diverging) and contraction (converging). Wang et al. ϭϯϭ 

(1999) extended Thauvin and Mohanty’s work for modelling non-Darcy flow through ϭϯϮ 

anisotropic pore-networks, which was also limited to regular structured pore-networks. Later, ϭϯϯ 

Lao et al. (2004) performed a study of non-Darcy flow using the Forchheimer equation ϭϯϰ 

implemented in a two-dimensional random irregular pore-network with the maximum ϭϯϱ 

coordination number of three. In another study, Lemley et al. (2007) used the Forchheimer ϭϯϲ 

equation to simulate flow in a random unstructured three-dimensional (3D) pore-network, with ϭϯϳ 

the upper limit of the coordination number in their network also three. The most recent study ϭϯϴ 

for non-Darcy flow through 3D irregular unstructured pore-networks using the Forchheimer ϭϯϵ 

equation is the work of Balhoff and Wheeler (2009). They argued that the equations presented ϭϰϬ 

by Bird et al. (1960), are valid only for turbulent flow, despite the fact that these equations can ϭϰϭ 

be derived from Bernoulli, continuity and momentum equations, so they are valid for all flow ϭϰϮ 

conditions including laminar flow. Balhoff and Wheeler (2009) approximated the geometry of ϭϰϯ 

pore throats by axisymmetric sinusoidal ducts and calculated the pressure loss through these ϭϰϰ 

throats by solving the Navier-Stokes equations using a finite element method (FEM). After ϭϰϱ 

doing the FEM simulations for pore throats with different dimensions, they provided a ϭϰϲ 

relatively complex approximated equation that describes the pressure loss due to expansion ϭϰϳ 

and contraction through each pore throat. Their equation depends on the flow rate and the pore ϭϰϴ 

throat and the pore body geometries. However, their equation was developed for axisymmetric ϭϰϵ 

ducts, and they defined the geometries of these ducts by a sinusoidal equation that implies the ϭϱϬ 

pore bodies at the two ends of a pore throat to have an equal size, which is not likely to happen ϭϱϭ 

in real porous media. None of these mentioned previous studies investigated the effect of pore ϭϱϮ 

body and pore throat shape factors (G) on the flow simulation, which is considered of high ϭϱϯ 

importance for natural porous media containing pores with irregular shapes. It is also necessary ϭϱϰ 

for simulating two or multi-phase flow within the non-Darcy flow regime.   ϭϱϱ 



  ϲ 

In porous media, heterogeneity can be expressed as the variation in shapes, sizes and ϭϱϲ 

interconnectivity of the pores. Sahimi (2011) divided the heterogeneity of natural media into ϭϱϳ 

four main categories; microscopic heterogeneities, macroscopic heterogeneities, field-scale ϭϱϴ 

heterogeneities and gigascopic heterogeneities. Large-scale reservoirs can only be fully ϭϱϵ 

determined if their measurable properties and features are detected at these different length ϭϲϬ 

scales. With the help of modern imaging techniques, the internal morphologies of highly ϭϲϭ 

complex material can be visualized and quantified in 3D. These geometric properties can be ϭϲϮ 

detected at the resolution of few microns, with a field of view of a few millimetres (Knackstedt ϭϲϯ 

et al., 2001). ϭϲϰ 

In this paper, a 3D pore-network model was developed to simulate non-Darcy laminar flow ϭϲϱ 

through porous media to address the impact of pore heterogeneity on the inertial flow and ϭϲϲ 

hydraulic properties of the porous media. The model has been verified against experimental ϭϲϳ 

data from packed glass spheres and some numerical results achieved through direct numerical ϭϲϴ 

simulations. This work particularly focuses on the simulation of flow through natural porous ϭϲϵ 

media using micro XCT 3D images. The effect of pore-scale flow processes (e.g. expansion ϭϳϬ 

and contraction of flow) on macro-scale inertial flow behaviour has been investigated. It is ϭϳϭ 

important to determine the velocity threshold above which the Darcy’s law is not valid and a ϭϳϮ 

non-Darcy model should be applied. Therefore, the model is applied to four porous media with ϭϳϯ 

different structures and degrees of heterogeneity. The onset of a non-Darcy flow regime for ϭϳϰ 

each sample has been determined, discussed and compared to previous research.  ϭϳϱ 

2. Methodology  ϭϳϲ 

2.1. Pore-network extraction  ϭϳϳ 

The reliability of predictions from pore-network modelling depends on firstly how accurately ϭϳϴ 

the approximated pore-network represents the porous medium; and secondly, on the accuracy ϭϳϵ 

of equations and the numerical schemes used for simulating the physical or chemical process ϭϴϬ 

in the porous medium (Balhoff & Wheeler, 2009).  ϭϴϭ 

Pore-networks can be generated in three ways. The first approach is to extract the pore-network ϭϴϮ 

directly from 3D images obtained using imaging technologies, such as XCT imaging, focused ϭϴϯ 

ion beams, scanning electron microscopy and nuclear magnetic resonance (Xiong et al., 2016). ϭϴϰ 

The second approach generates a representative pore-network using (geo)statistical ϭϴϱ 

information such as pore body and pore throat size distributions, throat length distribution, ϭϴϲ 

coordination number distribution and spatial correlation length (Al-Raoush et al., 2003; Gao et ϭϴϳ 



  ϳ 

al., 2012; Babaei & Joekar-Niasar, 2016). The third approach, the grain-based model, generates ϭϴϴ 

a pore-network based on the solid phase properties such as grain diameters and grain positions ϭϴϵ 

(Bryant & Blunt, 1992). This approach was further extended to generate pore-networks from ϭϵϬ 

grains affected by swelling, compaction or sedimentation (e.g. Bryant et al., 1993). ϭϵϭ 

In this study, for verification purposes, the first method is used to extract the pore-networks ϭϵϮ 

from four XCT 3D images: one packed glass spheres with average diameter (davg) = 1.84 mm, ϭϵϯ 

which is the same sample used in the experimental work, and the three other samples of ϭϵϰ 

beadpack, Bentheimer sandstone, and Estaillades carbonate published in Muljadi et al. (2015) ϭϵϱ 

using the pore-network extraction code developed by Raeini et al. (2017). The pore-network ϭϵϲ 

extraction code can generate pore bodies and pore throats with triangular, square or circular ϭϵϳ 

cross-sections. The shape of the pore cross-sections is selected based on the level of irregularity ϭϵϴ 

over the wall of the narrow pores, which is quantified with shape factor, G. The shape factor is ϭϵϵ 

a dimensionless parameter, defined as ܩ ൌ మ , where a is the average cross-sectional area of ϮϬϬ 

the pore throat or the pore body and p is the average perimeter (Mason & Morrow, 1991; ϮϬϭ 

Valvatne & Blunt, 2004). The value of the shape factor decreases when the shape of the surface ϮϬϮ 

of the pore space wall becomes irregular. According to geometrical definitions of 2D ϮϬϯ 

geometries, the value of shape factor ranges from zero, for a slit shape triangle, to ξଷଷ for ϮϬϰ 

equilateral triangle, whilst for squares and circles, the shape factor has values of ଵଵ and ଵସగ, ϮϬϱ 

respectively (Oren et al., 1998; Valvatne & Blunt, 2004). The shape factor definition for more ϮϬϲ 

complex geometries such as hyperbolic polygonal cross-sections can be found in Joekar-Niasar ϮϬϳ 

et al. (2010). ϮϬϴ 

2.2. Mathematical modelling  ϮϬϵ 

2.2.1. Darcy flow modelling ϮϭϬ 

 Ϯϭϭ 

Fig. 1 Schematic of a pore throat (i-j) and two pore bodies (i and j). ϮϭϮ 



  ϴ 

In Darcy flow, the inertial effects are neglected and the flow rate (ݍି) between two pore Ϯϭϯ 

bodies i and j is given analytically by Hagen–Poiseuille equation (Hagen, 1839; Poiseuille, Ϯϭϰ 

1841) Ϯϭϱ 

ିݍ ൌ ߂ ିǡ௧௧ܭ ܲି௩ ൌ ݃ିǡ௧௧ܮିǡ௧௧ ߂ ܲି௩  (4) 

Where ܭିǡ௧௧ ൌ షೕǡషೕǡ , ݃ିǡ௧௧ is the fluid conductance, ܮିǡ௧௧ is the length between the Ϯϭϲ 

two pore body centres and ߂ ܲି௩  represents the viscous pressure drop between the two pore Ϯϭϳ 

bodies i and j. The conductance between the two pore bodies i and j is defined as harmonic Ϯϭϴ 

mean of the conductances through the pore throat and the connected pore bodies (Oren et al., Ϯϭϵ 

1998; Valvatne & Blunt, 2004), given by ϮϮϬ  ିǡ௧௧݃ିǡ௧௧ܮ ൌ ݃ܮ  ି݃ିܮ   ݃ (5)ܮ

where i-j indicates the connecting throat, Li-j is the pore throat length excluding the lengths of ϮϮϭ 

the two connected pore bodies i and j, Li and Lj are the pore body lengths from the pore throat ϮϮϮ 

interface to the pore centre (Fig. 1). For laminar flow in a circular tube the conductance gpore is ϮϮϯ 

given analytically by the Hagen–Poiseuille equation (Hagen, 1839; Poiseuille, 1841)  ϮϮϰ 

݃ ൌ ݇ ܽଶߤܩ ൌ ͳʹ ܽଶߤܩ  (6) 

For equilateral triangular and square cross-sections, analytical expression can also be ϮϮϱ 

developed (Patzek & Silin, 2001; Valvatne & Blunt, 2004) with k equal to 3/5 and 0.5623 ϮϮϲ 

respectively. It has been also found that the conductance of irregular triangles can be ϮϮϳ 

approximated by equation (6), using the same constant (k = 3/5) as for an equilateral triangle ϮϮϴ 

(Oren et al., 1998; Valvatne & Blunt, 2004). The pore cross-sectional area (ܽ) can be related ϮϮϵ 

to the shape factor as ܽ ൌ మସீ, where r is the radius of the inscribed circle inside the pore (Oren ϮϯϬ 

et al., 1998). Ϯϯϭ 

For each pore body i, considering incompressible steady flow, the mass conservation can be ϮϯϮ 

expressed as Ϯϯϯ   ேאିݍ ൌ Ͳ (7) 

where ܰ is the coordination number of pore body i. Ϯϯϰ 



  ϵ 

For the whole pore-network, Equation 4 is applied for each pore throat and Equation 7 is Ϯϯϱ 

invoked at each pore body. In all simulations, no-flow boundary condition is applied for all Ϯϯϲ 

pore-network boundaries except the inlet and outlet boundaries where constant pressure values Ϯϯϳ 

are applied. This process results in a system of N linear equations, where N is the total number Ϯϯϴ 

of pore bodies in the pore-network. Solving this system of equations using the method Ϯϯϵ 

described in Babaei and Joekar-Niasar (2016), the pressure value at each node can be obtained ϮϰϬ 

and by applying Equation (4), the discharge through each pore throat can be estimated. Finally, Ϯϰϭ 

the overall permeability (KD) of the pore-network can be obtained by applying Darcy’s law ϮϰϮ 

(Equation 1) for the whole pore-network.  Ϯϰϯ 

In all simulations, the same fluid parameters used by Muljadi et al. (2015) are applied, water is Ϯϰϰ 

considered as the working fluid with dynamic viscosity ȝ = 0.001 kg/ms and density ȡ = 1000 Ϯϰϱ 

kg/m3. The overall volumetric fluid discharge q is obtained by summing all pore throat Ϯϰϲ 

discharges either at the inlet or the outlet of the pore-network, while the flow superficial Ϯϰϳ 

velocity (ݒ) is estimated as ݒ ൌ  . However, for highly heterogeneous media such as Ϯϰϴ 

Estaillades carbonate, the pore’s cross-sectional area may differ significantly from one location Ϯϰϵ 

to another, so using the whole cross-sectional area will cause uncertainties in q and KD values. ϮϱϬ 

For that reason, for Estaillades carbonate, the average pore velocity is estimated, then the Ϯϱϭ 

superficial velocity (ݒ) is derived as the average pore velocity times the medium porosity (߶). ϮϱϮ 

2.2.2. Non-Darcy flow modelling Ϯϱϯ 

Following Muljadi et al. (2015) and Comiti et al. (2000), the onset of non-Darcy flow is Ϯϱϰ 

assumed to be the point at which the pressure drop due to the linear term becomes less than Ϯϱϱ 

99% of the total pressure drop. Using ඥܭ to replace the characteristic length (Lcharc) in the Ϯϱϲ 

conventional Reynold’s number ሺܴ݁ሻ, so   Ϯϱϳ  ܴ݁ ൌ ఘ ௩ ౙ౨ౙఓ   (8) ܴ݁ ൌ ఘ ௩ ඥವఓ   (9) 

where ඥܭ is the Brinkman screening length (Durlofsky & Brady, 1987), i.e. the characteristic Ϯϱϴ 

length is replaced by the square root of Darcy permeability to give the permeability based Ϯϱϵ 

Reynold’s number ሺܴ݁ሻ.  ϮϲϬ 

For relatively high flow velocities, the inertial effects cannot be neglected as in the Darcy Ϯϲϭ 

creeping flow regime. To consider the inertial effects due to expansion, when flow moves from ϮϲϮ 



  ϭϬ 

a pore throat to a connected pore body, and contraction, when flow moves from a pore body to Ϯϲϯ 

a connected pore throat, the pressure loss due to these two processes should be considered in Ϯϲϰ 

the calculation of total pressure drop through any pore throat. In the developed model, the Ϯϲϱ 

pressure losses due to the inertial effects, expansion and contraction, are expressed using Ϯϲϲ 

equations 10 and 11 (Kays, 1950; Abdelall et al., 2005; Guo et al., 2010; Momen et al., 2016).  Ϯϲϳ 

ο ܲି௫ ൌ ܭ ఘ௩షೕమଶ ൌ ቈ൬షೕೕ ൰ଶ ൫ʹ ݇ ݀ െ ൯ߙ  ିߙ െ ʹ ݇݀ି ൬షೕೕ ൰ ఘ௩షೕమଶ   (10) 

where ο ܲି௫ is the pressure loss due to expansion, ܭ is the expansion coefficient, ܽି and ܽ Ϯϲϴ 

are the cross-sectional areas of the pore throat and the connected pore body j, and ݒି is the Ϯϲϵ 

average fluid velocity through pore throat that connects the two pore bodies i and j. kd and Į ϮϳϬ 

are the dimensionless momentum and kinetic-energy coefficients which depend on the velocity Ϯϳϭ 

profile in each pore. For laminar flow, when the velocity is low and its profile is parabolic, kd ϮϳϮ 

is equal to 1.33, 1.39 and 1.43 for circular, square and equilateral triangular cross-sections Ϯϳϯ 

respectively, while Į is equal to 2 for circular cross-sections. For turbulent flow, when the Ϯϳϰ 

velocity is high and its profile is almost uniform, kd and Į are equal to ~1.0 (Kays, 1950).  Ϯϳϱ 

ο ܲି௧ ൌ ܭ ఘ௩షೕమଶ ൌ ൞ଵିఈషೕ ቆೌషೕೌೕ ቇమିଶ ௗషೕାଵିቆೌషೕೌೕ ቇమ൩మିଶమ ൢ ఘ௩షೕమଶ     (11) 

ܿܥ ൌ ͳ െ ଵି ೌషೕೌೕଶǤ଼ ቆଵି ೌషೕೌೕ ቇାǤହଷଵ    (12) 

where ο ܲି௧ is the pressure loss due to contraction, ܭ is the contraction coefficient, ܽ is the Ϯϳϲ 

cross-sectional area of the connected pore body i, Cc is the dimensionless jet contraction-area Ϯϳϳ 

ratio (Vena-contraction) which can be estimated using Equation 12 (Geiger, 1964). Ϯϳϴ 

It has been found that using kd and Į equal to 1.0 provides better representation of the non-Ϯϳϵ 

Darcy flow which is characterised by higher velocities compared to the Darcy flow. This also ϮϴϬ 

agrees with the experimental findings of Abdelall et al. (2005) and Guo et al. (2010) performed Ϯϴϭ 

on small channels. They showed that when using kd = 1.33 or Į = 2.0 in equations 10 and 11, ϮϴϮ 

this result in overestimation of Ke and Kc in most of the cases they tested. Moreover, when flow Ϯϴϯ 

passes through a sudden expansion or contraction, this creates eddies and turbulence that make Ϯϴϰ 

a flat velocity profile a better approximation for the flow. Using kd and Į equal to 1.0, equations Ϯϴϱ 

10 and 11 can be simplified and this results in the well-known Borda-Carnot equations (Crane, Ϯϴϲ 

1942; Bird et al., 1961). Ϯϴϳ 



  ϭϭ 

The total pressure loss for any pore throat in the network can be given according to Equation Ϯϴϴ 

13 as follows: Ϯϴϵ 

ο ܲି௧௧ ൌ ο ܲି௩  ο ܲି௫  ο ܲି௧ ൌ షೕǡషೕǡ൨ ିݍ  ܭ ఘషೕమଶషೕమ  ܭ ఘషೕమଶషೕమ  , 

which can be written as 
(13) 

ିଶݍ ܣ  ିݍ ܤ  ܥ ൌ ͲǤͲ   (14) 

where  ϮϵϬ 

ܣ ൌ ሾܭ  ሿܭ ఘଶషೕమ ܤ ,  ൌ షೕǡషೕǡ൨, ܥ ൌ െ ο ܲି௧௧ Ϯϵϭ 

To apply the continuity equation at each node, Equation 13 is rewritten in the form of a simple ϮϵϮ 

quadratic equation (Equation 14), its positive root is equal to ݍି ൌ ିାටమିସଶ . For the Ϯϵϯ 

whole pore-network, Equation 13 is applied for each pore throat and Equation 7 is invoked at Ϯϵϰ 

each pore body. This process results in a system of N non-linear equations, where N is the total Ϯϵϱ 

number of pore bodies in the pore-network. A FORTRAN code was developed with the use of Ϯϵϲ 

HSL NS23 routine (HSL, 2013) to solve the resulting system of equations. The initial guess of Ϯϵϳ 

the pressure values at each node is provided from the Darcy flow case, then the HSL NS23 Ϯϵϴ 

routine iterates until the final solution is achieved within an acceptable predefined error Ϯϵϵ 

criterion (until the sum of squares of residuals is less than 10-10). By solving this nonlinear ϯϬϬ 

system of equations, the pressure value at each node can be obtained and the discharge through ϯϬϭ 

each pore throat is estimated by applying Equation 13. Finally, the non-Darcy coefficient (ȕ) ϯϬϮ 

and Forchheimer permeability (ܭி) can be obtained by fitting a linear relationship to the ϯϬϯ 

obtained results when ଵೌ is plotted against ఘ௩ఓ  (see Equation 3).  ϯϬϰ 

2.3. XCT-scanning and experimental work  ϯϬϱ 

To validate the proposed model, a porous medium sample (referred to as “packed spheres”) ϯϬϲ 

composed of uniform spherical glass beads, with an average diameter (davg) of 1.84 േ 0.14 mm ϯϬϳ 

was packed in a Perspex circular pipe of 300 mm length and 50 mm internal diameter. The ϯϬϴ 

porous sample was placed in a recirculating pipe system with a sump of approximately 2.5 m3. ϯϬϵ 

Water was used as a working fluid at different discharges ranging from 0.001 to 0.1 l/s. For ϯϭϬ 

each run, the discharge was measured manually. The head loss measurements were performed ϯϭϭ 

using two manometer tubes located 50 mm distance after the sample inlet and before the sample ϯϭϮ 

outlet to eliminate the effect of boundaries on the flow, i.e. the head loss was measured through ϯϭϯ 



  ϭϮ 

a distance of 200 mm in the porous medium. To ensure the accuracy of manometric ϯϭϰ 

measurements at low pressure gradients, an SPI digital depth gauge with accuracy േ 0.01 mm ϯϭϱ 

was used to measure the manometric heads inside fixed, 25 mm wide manometric tubes. ϯϭϲ 

Moreover, before taking any measurements, water was allowed to run through the recirculating ϯϭϳ 

system for a period sufficient to remove any air from the system. ϯϭϴ 

The middle part of the packed spheres sample used in the experimental work, which has the ϯϭϵ 

dimensions of 50 mm  50 mm  177 mm, was scanned to determine the representative ϯϮϬ 

elementary volume (REV) and to extract the equivalent pore-network. An REV can be defined ϯϮϭ 

as a representative portion or subvolume of the medium, when selecting such volume at ϯϮϮ 

different location in the sample, the resulting parameters (߶, KD or ȕ) of the subvolumes should ϯϮϯ 

not vary significantly (Bear, 1972). To find an REV of the sample, a conventional approach ϯϮϰ 

was followed, a code was written to generate random coordinates of cubic subvolumes with ϯϮϱ 

different cube lengths (5, 10, 15, 20, 25, 30, 35 and 50 mm), and 10 different crops at random ϯϮϲ 

locations have been tested for each cube size. For each single crop, a pore-network was ϯϮϳ 

extracted, and the proposed pore-network model was used to estimate the porosity (߶), Darcy-ϯϮϴ 

permeability (KD) and non-Darcy coefficient (ȕ), as in Section 3.3.  ϯϮϵ 

Four XCT scans were performed to examine the packed spheres sample utilising Nikon XT H ϯϯϬ 

225/320 LC. The XCT settings were chosen to achieve optimum penetration and minimise ϯϯϭ 

noise based on the grey values of the radiographs. A physical radiation filter of Tin (Sn) was ϯϯϮ 

used to reduce beam hardening and cupping errors. The resolution of the scans was achieved ϯϯϯ 

based on the diameter of the specimen. The scans were combined to provide the full volume of ϯϯϰ 

the medium.  ϯϯϱ 

3. Results and discussion ϯϯϲ 

3.1. Determining the representative elementary volume (REV) ϯϯϳ 

Fig. 2 shows the effect of cube lengths on determining the porous medium properties. It can be ϯϯϴ 

produced by applying the proposed model to the pore-networks extracted from all subvolume ϯϯϵ 

crops of the packed spheres CT-image. In Fig. 2, it is observed that a suitable REV might be a ϯϰϬ 

cube with length of 30 mm, which is a common value of the plateaus in figures 2a, 2b and 2c ϯϰϭ 

associated with minimum fluctuation, i.e. minimum standard deviation. However, this is not ϯϰϮ 

the case for the relatively small sample of 50 mm diameter used in the laboratory, considering ϯϰϯ 

its large average bead diameter of 1.84 mm. For this specific case, using REV length less than ϯϰϰ 

50 mm will result in eliminating the effect of the containing pipe wall or boundaries. Due to ϯϰϱ 



  ϭϯ 

the small size of the sample, the boundaries of the containing pipe have an effect on the ϯϰϲ 

estimated medium parameter as shown in Fig. 2. For that reason, an REV cube length of 50 ϯϰϳ 

mm was selected to consider the effect of external pipe on the medium structure and on the ϯϰϴ 

flow behaviour through the medium.               ϯϰϵ 

 ϯϱϬ 
Fig. 2 Variation of a) porosity, b) Darcy-permeability and c) non-Darcy coefficient for different ϯϱϭ 
cubic subvolumes (10 crops for each REV length). The error bars represent the standard ϯϱϮ 
deviation of the estimated parameter for each REV length.  ϯϱϯ 

   ϯϱϰ 



  ϭϰ 

3.2. Extracted pore-networks from CT-images ϯϱϱ 

Properties of the CT-images used to extract each of the four pore-networks shown in Fig. 3 are ϯϱϲ 

provided in Table 1.  ϯϱϳ 

 ϯϱϴ 

Fig. 3 The pore spaces of (a) beadpack, (b) Bentheimer, (c) Estaillades and (d) packed ϯϱϵ 

spheres (davg = 1.84 mm), and the equivalent pore-networks (e), (f), (g) and (h) respectively. ϯϲϬ 

  ϯϲϭ 



  ϭϱ 

 ϯϲϮ 

Table 1*: The properties and characteristics length of the samples.  ϯϲϯ 

Sample Resolution 
(µm) 

Porosity, ߶ 
Characteristic 

length, Lcharc (µm) Total voxels Pore voxels 

ܭ ൈ ͳͲିଵଶ 
(m2) 
obtained by 
Muljadi et 
al. (2015) or 
in the 
experiments. 

Beadpack 2.0 0.359 100 300300300 9,700,082 5.57 
Bentheimer 3.0035 0.211 139.9 500500500 26,413,875 3.50 
Estaillades 3.3113 0.108 253.2 500500500 13,522,500 0.17 
Packed 
spheres 
(davg =1.84 
mm)  

65.99 0.364 1,837 758758758 124,612,700 2250 

*For the first three samples, the characteristic length (Lcharc) values are obtained from Muljadi et al. (2015); for ϯϲϰ 
the unconsolidated beadpack they chose Lcharc = 100 µm, while for consolidate porous media (Bentheimer and ϯϲϱ 
Estaillades) they followed the methodology in Mostaghimi et al. (2012) to determine Lcharc as a function of the ϯϲϲ 
specific surface area of the pore-grain interface (the surface area divided by the whole volume including pores ϯϲϳ 
and grains). For the packed spheres (davg = 1.84 mm) sample, the characteristic length (Lcharc) is the beads average ϯϲϴ 
diameter (davg).  ϯϲϵ 
 ϯϳϬ 

The 300300300 voxels beadpack image (Fig. 3a) represents a random packing of spheres of ϯϳϭ 

uniform size. The image was created by Prodanović and Bryant (2006) to represent the ϯϳϮ 

experimental measurements of the sphere centres obtained by Finney (1970). The only ϯϳϯ 

available CT-image of Bentheimer sandstone sample used by Muljadi et al. (2015) is a ϯϳϰ 

100010001000 voxels image. Unfortunately, the 500500500 voxels cropped image used ϯϳϱ 

in their work is not available. Few trials were performed to crop that large image into a ϯϳϲ 

500500500 voxels image at arbitrary locations, but this resulted in properties different to ϯϳϳ 

those reported by Muljadi et al. (2015). To cope with that, the first 500 voxels in X, Y, and Z ϯϳϴ 

directions of the large image (100010001000 voxels) were arbitrary cropped, then the pore-ϯϳϵ 

network was extracted from that cropped image. This process will result in some uncertainties ϯϴϬ 

with respect to the Bentheimer sandstone sample. The extracted pore-network properties of the ϯϴϭ 

beadpack, Bentheimer sandstone, Estaillades carbonate and REV of the packed spheres (davg = ϯϴϮ 

1.84 mm) samples are shown in Table 2 and Fig. 3e-h. The histograms of inscribed pore body ϯϴϯ 

and pore throat radii distributions for the four samples are shown in Fig.4.   ϯϴϰ 

Investigations on pore-scale flow behaviour and the morphological characteristics of ϯϴϱ 

Bentheimer sandstone and Estaillades carbonate, have revealed that Estaillades is more ϯϴϲ 



  ϭϲ 

heterogeneous than Bentheimer (Bijeljic et al., 2013a; Bijeljic et al., 2013b; Guadagnini et al., ϯϴϳ 

2014; Muljadi et al., 2015). This was also confirmed by plotting the semi-variograms of pore ϯϴϴ 

body radii and coordination numbers of each sample (Figure S1 and S2 in supplementary ϯϴϵ 

materials).  ϯϵϬ 

Table 2: The properties of the extracted pore-networks.  ϯϵϭ 

Sample Beadpack Bentheimer 

(500500500 

voxels) 

Estaillades Packed 

spheres (davg 

= 1.84 mm)  

Number of PBs 347 1033 954 10315 

Number of PThs 1424 2418 1649 53960 

Average coordination number 7.9 4.5 3.4 10.4 

Maximum coordination number 21 23 19 30 

Maximum inscribed PB radius (mm) 0.0344 0.0862 0.0692 0.7673 

Average inscribed PB radius (mm) 0.0178 0.0231 0.0196 0.4103 

Minimum inscribed PB radius (mm) 0.0051 0.0058 0.0064 0.1408 

Maximum inscribed PTh radius (mm) 0.0287 0.0571 0.0575 0.6958 

Average inscribed PTh radius (mm) 0.0089 0.0122 0.0116 0.1952 

Minimum inscribed PTh radius (mm) 0.0009 0.0015 0.0016 0.0320 

 ϯϵϮ 



  ϭϳ 

 ϯϵϯ 
Fig. 4 Histograms of inscribed pore body and pore throat radii for the four samples; a) ϯϵϰ 
beadpack, b) Bentheimer, c) Estaillades and d) packed spheres. ϯϵϱ 



  ϭϴ 

3.3. Darcy permeability (KD) and the non-Darcy coefficient (ȕ)   ϯϵϲ 

The Darcy permeability (KD) values obtained from PNM, by applying Darcy’s law while ϯϵϳ 

neglecting the inertial effects, are in a good match (varying less than 15.2%) with the ϯϵϴ 

corresponding values in Muljadi et al. (2015) or obtained from experiments, as presented in ϯϵϵ 

Table 3. Relatively large discrepancies (14% and 15.2%) are observed for Bentheimer and the ϰϬϬ 

packed spheres (davg=1.84 mm) because the large Bentheimer image was cropped in an ϰϬϭ 

arbitrary location and because the packed spheres sample was scanned prior to experiments, so ϰϬϮ 

during experiments the position of some particles might have changed slightly under the effect ϰϬϯ 

of flow at large velocities. Also, the pore-network extraction code defines the parameters of ϰϬϰ 

pore-network elements using single phase direct numerical simulation on the CT-image, these ϰϬϱ 

details can be found in Raeini et al. (2017) and Raeini et al. (2018). That is why the PNM ϰϬϲ 

simulations can accurately reproduce the results predicted with direct simulation (by Muljadi ϰϬϳ 

et al., 2015) and differ from the results achieved by experiments.  ϰϬϴ 

Fig. 5 shows a Forchheimer plot which is a plot of the inverse of apparent permeability ൬ ଵೌ൰ ϰϬϵ 

versus ቀఘ௩ఓ ቁ. The slope of each graph represents the non-Darcy coefficient (ȕ) and it is equal to ϰϭϬ 

1.49×105, 4.67×106, 2.82×108 and 5.232×103 (1/m) for Beadpack, Bentheimer, Estaillades and ϰϭϭ 

packed spheres, respectively. The corresponding ȕ values obtained from Muljadi et al. (2015) ϰϭϮ 

and in the Laboratory are 2.57×105, 2.07×106, 6.15×108 and 10.87×103 (1/m), see Table 3. It ϰϭϯ 

is noticeable that ȕ values from PNM are in good match (within the same order of magnitude ϰϭϰ 

and with maximum variation of 54%) with the values obtained by Muljadi et al. (2015) except ϰϭϱ 

Bentheimer which has larger discrepancy (126%) because the cropped image used differs from ϰϭϲ 

the image used by Muljadi et al. (2015). These discrepancies related to ȕ values might be ϰϭϳ 

because of the simplifications of pore shapes during the pore-network extraction. The shift in ϰϭϴ 

the horizontal part of each curve when comparing PNM results to these by Muljadi et al. (2015), ϰϭϵ 

or from experiments, are due to the difference in KD obtained from different methodologies, ϰϮϬ 

whilst the trend of each curve depends mainly on the pressure losses obtained at different ϰϮϭ 

velocities.    ϰϮϮ 



  ϭϵ 

 ϰϮϯ 

 ϰϮϰ 
Fig. 5 Forchheimer plot for a) Beadpack, b) Bentheimer c) Estaillades and d) experimental ϰϮϱ 

work vs. PNM. The vertical dashed lines represent the onset of non-Darcy flow.  ϰϮϲ 

Table 3: The permeability (KD) and Forchheimer coefficient (ȕ) for the four samples compared ϰϮϳ 

to those obtained by Muljadi et al. (2015) and by experiments.  ϰϮϴ 

Sample Image total 
voxels 

ܭ ൈͳͲିଵଶ 
(m2), 
PNM 

ܭ ൈͳͲିଵଶ 
(m2) by 
Muljadi et 
al. (2015) 
or from 
Lab. 

 ܭ
difference 
[%] 

ȕ×105 
(m-1), 
PNM 

ȕ×105 (m-

1) by 
Muljadi et 
al. (2015) 
or from 
Lab.  

ȕ 
difference 
[%], 

Beadpack 300300300 5.43 5.57 2.5 1.49 2.57 42 
Bentheimer 500500500 3.01 3.50 14.0 46.7 20.7 126 
Estaillades  500500500 0.19 0.170 11.8 2820 6150 54 
Packed 
spheres 758758758 2593 2250 15.2 0.0523 0.1087 52 

 ϰϮϵ 

3.4. Onset of non-Darcy flow  ϰϯϬ 

Fig. 6 shows the pressure gradient versus superficial velocity at different Reynold’s numbers, ϰϯϭ 

the figure indicates also the onset of non-Darcy flow. The figure shows a good match with the ϰϯϮ 

previous results obtained by Muljadi et al. (2015) for Beadpack, Bentheimer and Estaillades ϰϯϯ 

whilst there are larger discrepancies between PNM and laboratory results. A main cause of ϰϯϰ 



  ϮϬ 

these larger discrepancies between PNM and laboratory is that the pores of the packed spheres ϰϯϱ 

sample used in the experiments are significantly larger than the other three samples. When a ϰϯϲ 

fluid enters a pore, its velocity profile is more likely to be uniform. The fluid then travels a ϰϯϳ 

specific distance, known as the entrance length (Lh), until its velocity profile becomes fully ϰϯϴ 

developed, i.e. parabolic velocity profile in case of pores with circular cross-section. In the ϰϯϵ 

entrance length, the friction between the pore walls and the fluid is higher compared to fully ϰϰϬ 

developed flow, and the Hagen–Poiseuille equation is not valid. For laminar flow, Lh is a ϰϰϭ 

function of Reynold’s number and the pore diameter. It can be estimated as ܮ୦ ؆ ͲǤͲͷ ܴ݁ ܦ ϰϰϮ 

(Çengel & Cimbala, 2006), where Re is the pore Reynold’s number and Dpore is the pore ϰϰϯ 

diameter which is considered as the characteristic length of the pore. For small pores, Re is low ϰϰϰ 

and Lh is small and can be neglected compared to the total pore length. For that reason, the flow ϰϰϱ 

in the majority of pores in the packed spheres sample is a developing flow, i.e. the pore ϰϰϲ 

diameters are large and their lengths are not sufficiently long for a fully developed flow to be ϰϰϳ 

achieved. This causes an underestimation of the friction factor of each pore in the sample if ϰϰϴ 

Hagen–Poiseuille equation is used. This explains why the pressure losses obtained by PNM are ϰϰϵ 

less than those obtained in the lab (Fig. 6d). ϰϱϬ 

By estimating the average values of the entrance region (Lh) for all pore throats in the four ϰϱϭ 

samples within the applied ranges of pressure gradients, it was found that Lh increases when ϰϱϮ 

the applied pressure gradient increases. At the maximum applied pressure gradients, the ϰϱϯ 

average values for Lh as a percentage of the average pore throats length were equal to 29%, ϰϱϰ 

11% and 3% for the Beadpack, Bentheimer, and Estaillades, respectively. For the packed ϰϱϱ 

spheres sample, at the maximum applied pressure gradients, the average value of Lh, as a ϰϱϲ 

percentage of the average pore throats length, reached 374%, which means that the pore lengths ϰϱϳ 

are very short and even shorter than Lh. This demonstrates that the PNM approach has ϰϱϴ 

limitations and the proposed set of equations cannot be applied for coarse media with large ϰϱϵ 

pores. ϰϲϬ 

Another possible reason for the discrepancy between the predicted results and those achieved ϰϲϭ 

in the laboratory or through direct numerical simulations presented by Muljadi et al., (2015) is ϰϲϮ 

the simplification that was implemented by PNM to describe the geometry of the samples. ϰϲϯ 

Also, the mesh size used by Muljadi et al., (2015) may have effects on the accuracy of their ϰϲϰ 

results. ϰϲϱ 

According to the Forchheimer equation, the fluid velocity at any pressure gradient is a function ϰϲϲ 

of two parameters (KD and ȕ) which are dependent on the geometry of the porous samples. The ϰϲϳ 



  Ϯϭ 

superficial velocities calculated using the PNM at the onset of non-Darcy flow are 0.018, 0.001, ϰϲϴ 

0.0001 and 0.0005 m/s for Beadpack, Bentheimer, Estaillades and packed spheres (davg = 1.84 ϰϲϵ 

mm) sample respectively, while the corresponding values presented in Muljadi et al. (2015) ϰϳϬ 

and measured in the lab are 0.0279, 0.0014, 0.000227, and 0.004 m/s, see Table 4. It is ϰϳϭ 

noticeable that the onset of non-Darcy flow by PNM is in a good match with that obtained by ϰϳϮ 

Muljadi et al. (2015), but one order of magnitude lower than the values obtained from ϰϳϯ 

experimental measurements which is attributed to the large pore sizes for packed spheres ϰϳϰ 

sample and the large entrance length of its pores are explained earlier. In general, it is noticeable ϰϳϱ 

that the onset of non-Darcy flow occurs earlier, at lower velocities, when the medium has ϰϳϲ 

higher degree of heterogeneity. This is due to a reduction in the effective area for fluid flow in ϰϳϳ 

heterogeneous media, as shown in Section 3.5. ϰϳϴ 

 ϰϳϵ 
Fig. 6 The pressure gradient versus superficial velocity for both linear Darcy flow and ϰϴϬ 

nonlinear Forchheimer flow compared to the results by Muljadi et al. (2015) and laboratory ϰϴϭ 

measurements; a) is Beadpack, b) is Bentheimer, c) is Estaillades and d) is the packed spheres ϰϴϮ 

sample. The error bars show the difference between the pressure gradient (at specific velocity ϰϴϯ 

values) for the Forchheimer flow case and the corresponding values obtained either by Muljadi ϰϴϰ 

et al. (2015) or via experimental measurements.   ϰϴϱ 

Considering the dimensionless apparent permeability (K*) as  ϰϴϲ 



  ϮϮ 

כܭ ൌ ೌವ    (15) 

and following the same definition for the onset of non-Darcy flow in Section 2.2.2., from ϰϴϳ 

equations 1 and 3, the onset of non-Darcy flow can be determined when K* is equal to 0.99 in ϰϴϴ 

Figs. 7 and 8. The predicted superficial velocities and Reynold’s number values for the onset ϰϴϵ 

of non-Darcy flow and the corresponding values obtained either in Muljadi et al. (2015) work ϰϵϬ 

or in the laboratory are shown in Table 4.  ϰϵϭ 

In Fig. 7 and Fig. 8, the dimensionless apparent permeability (K*) is plotted against ReK and ϰϵϮ 

ReL while using the same characteristic lengths (Lcharc) used in Muljadi et al. (2015). PNM ϰϵϯ 

curves in Fig. 7 and Fig. 8 have similar trends to those in Muljadi et al. (2015) and in the ϰϵϰ 

laboratory, but a better match is obtained, especially for Estaillades, in Fig. 7 when ReK is used ϰϵϱ 

instead of ReL. According to equations 3, 8, 9 and 15 this mismatch is attributed either to the ϰϵϲ 

change in superficial velocities or pressure losses in both studies. Therefore, these ϰϵϳ 

discrepancies are attributed to the difference between PNM Darcy flow and Forchheimer flow ϰϵϴ 

curves in Fig. 6 compared to the difference between the two curves in Muljadi et al. (2015) or ϰϵϵ 

in the experimental results. Fig. 7 and Fig. 8 also confirm that the onset of non-Darcy flow ϱϬϬ 

occurs earlier, at low Reynold’s number, in highly heterogenous media as in the case of ϱϬϭ 

Estaillades carbonate. After determining the non-Darcy coefficients (ȕ) for each sample (as ϱϬϮ 

shown in Section 3.3), and when the dimensionless apparent permeability (K*) is plotted versus ϱϬϯ 

Forchheimer number ቀܨ ൌ ವ ఉ ఘ ఓ ቁ in Fig. 9, the curves of all the samples coincide. This ϱϬϰ 

unique relationship can be derived mathematically from the Forchheimer Equation (Ruth & ϱϬϱ 

Ma, 1992; Ruth & Ma, 1993). In petrophysics, the relationship shown in Fig. 9 can be used to ϱϬϲ 

predict the apparent permeability for media with known KD and ȕ, without the need to perform ϱϬϳ 

laboratory experiments at different flow rates. KD and ȕ can be determined using literature data ϱϬϴ 

or empirical relationships such as those proposed by Kozeny (1927), Carman (1937), Ergun ϱϬϵ 

(1952), and Janicek and Katz (1955). In Fig. 9, the onset of non-Darcy flow occurs when K* = ϱϭϬ 

0.99, and this corresponds to ܨ ൎ ͲǤͲͳ for all PNM simulations and ܨ ൌ ͲǤͳ for experimental ϱϭϭ 

results. These Fo values are in agreement with the range (0.01-0.1) proposed by Andrade et al. ϱϭϮ 

(1999).   ϱϭϯ 

It is importance to take into consideration the non-Darcy coefficient (ȕ) when determining the ϱϭϰ 

onset on non-Darcy flow for different media. For that reason, in Fig. 10, the pressure gradient ϱϭϱ 

is plotted versus Forchheimer number, as this is a better comparison tool for follow up studies. ϱϭϲ 

The resulting plots are straight lines as expected according to Forchheimer equation (Equation ϱϭϳ 



  Ϯϯ 

2). The onset of non-Darcy flow shown in the figure is determined using the superficial velocity ϱϭϴ 

at K* = 0.99.  ϱϭϵ 

 ϱϮϬ 

 ϱϮϭ 
Fig. 7 The dimensionless permeability K* versus ReK (Equation 9), compared to the results ϱϮϮ 

from Muljadi et al. (2015) and experiments. ϱϮϯ 

 ϱϮϰ 

 ϱϮϱ 
Fig. 8 The dimensionless permeability K* versus ReL (Equation 8), compared to the results ϱϮϲ 

from Muljadi et al. (2015) and experiments. ϱϮϳ 

 ϱϮϴ 



  Ϯϰ 

 ϱϮϵ 
Fig. 9 The dimensionless permeability K* versus Fo, compared to the results from ϱϯϬ 

experiments. ϱϯϭ 

 ϱϯϮ 
Fig. 10 The pressure gradient versus Forchheimer number (Fo); a) Beadpack, b) Bentheimer c) ϱϯϯ 

Estaillades and d) glass-bead packing experiments vs. pore-network modelling results.  ϱϯϰ 

  ϱϯϱ 



  Ϯϱ 

Table 4: Reynold’s number and superficial velocity values for the onset of non-Darcy flow. ϱϯϲ 

Sample Onset of non-Darcy 

flow (pore-network 

modelling) 

Onset of non-Darcy flow 

obtained by Muljadi et al. 

(2015) or in the 

experiments. 

Difference [%], 

v 

(mm/s) 

ReK ReL v (mm/s) ReK ReL v 

(mm/s) 

ReK ReL 

Beadpack 17.83 4.15 

× 10-

2 

1.78 27.9 6.64 × 

10−2 

2.79 36 38 36 

Bentheimer 0.99 1.72 

× 

10−3 

0.14 1.4 2.64 × 

10−3 

0.196 29 3 29 

Estaillades 0.11 4.79 

× 

10−5 

0.028 0.227 9.4 × 

10−5 

0.023 52 5 22 

Packed 

spheres 

(davg=1.84 

mm) 

0.51 2.60 

× 10-

2 

0.94 4.09 1.94 × 

10-1 

7.54 88 87 88 

 ϱϯϳ 

3.5. Effect of heterogeneity on Pressure distribution ϱϯϴ 

One of the advantages of the pore-network modelling approach is that it provides a detailed ϱϯϵ 

overview of the pressure field at the pore-scale as presented in Fig. 11. Fig. 11 shows the ϱϰϬ 

pressure value at each pore body versus distance (X) along the flow direction when applying ϱϰϭ 

10000 Pascal pressure drop. The 3D pressure distribution at each pore body is shown at the top ϱϰϮ 

right corner for each sub-figure. The dotted black curve represents the average pressure value ϱϰϯ 

at any cross-section perpendicular on the flow direction. Inspection of Fig. 11 shows that for ϱϰϰ 

the media with low degree of heterogeneity, i.e. beadpack, Bentheimer and packed spheres, ϱϰϱ 

there is a regular change of pressure over distance. At any vertical cross-section perpendicular ϱϰϲ 

to the flow direction, the maximum pressure variation between pores remains within 25% of ϱϰϳ 

the overall pressure drop in the case of beadpack, 10% in the packed spheres and 45% in the ϱϰϴ 

Bentheimer. Nevertheless, for highly heterogeneous media, Estaillades, the pressure variation ϱϰϵ 



  Ϯϲ 

between pores at one cross-section may extend up to 98% of the overall pressure drop. This is ϱϱϬ 

mainly caused by the medium heterogeneity that creates some stagnant zones with low pressure ϱϱϭ 

values next to the zones with high pressure. The pressure distribution in Fig. 11c shows that ϱϱϮ 

the sample is composed of several zones, poorly connected to each other. Therefore, the ϱϱϯ 

pressure values within each zone are nearly equal and are significantly different from the ϱϱϰ 

pressure values of other zones. Consequently, the velocity distribution within the sample ranges ϱϱϱ 

from low in stagnant zones to high at the connection between zones where the inertial effects ϱϱϲ 

can be observed even at low pressure gradients. ϱϱϳ 

 ϱϱϴ 

Fig. 11 Pressure values at each pore body vs. distance (X) along the flow direction when ϱϱϵ 
applying 10000 Pascal pressure drop; a) Beadpack, b) Bentheimer, c) Estaillades and d) Packed ϱϲϬ 
spheres. The 3D pressure distribution at each pore body is shown at the top right corner of each ϱϲϭ 
sub-figure. The dotted black curve represents the average pressure value at any cross-section ϱϲϮ 
perpendicular on the flow direction. The flow direction is from left to right.  ϱϲϯ 

3.6. Friction factor ϱϲϰ 

Similar to Hagen–Poiseuille equation (Hagen, 1839; Poiseuille, 1841) for laminar flow through ϱϲϱ 

pipes, Moody chart (Moody, 1944) is the most widely used chart for designing flow through ϱϲϲ 

pipes in all flow regimes. It is used to estimate the dimensionless friction factor (f) of a pipe at ϱϲϳ 



  Ϯϳ 

specific Reynold’s number, and from this friction factor, the pressure needed to pass the flow ϱϲϴ 

at specific rate through the pipe can be determined. Thinking of porous media as a group of ϱϲϵ 

connected pipes, (Carman, 1937) developed a similar chart that relates the dimensionless ϱϳϬ 

friction factor to Reynold’s number for porous media in all possible flow regimes (Holdich, ϱϳϭ 

2002). This friction factor can be used to evaluate the medium resistance to flow, or in other ϱϳϮ 

words, it can be used to estimate the pressure needed to pass flow at a specific rate through the ϱϳϯ 

porous medium within any flow regime (Hlushkou & Tallarek, 2006). ϱϳϰ 

The friction factor (f) in porous media can be determined by neglecting the small difference ϱϳϱ 

between KD and KF, then Equation 2 can be rewritten as ݂ ൌ ଵி  ͳ, where ݂ ൌ οఉఘ௩మ and ܨ ൌϱϳϲ  ವఉఘ௩ఓ  (Macdonald et al., 1979; Macedo et al., 2001; Pamuk & Özdemir, 2012). Fig. 12 shows ϱϳϳ 

that the friction between the medium particles and the fluid decreases with increasing the ϱϳϴ 

Forchheimer number, i.e. when the fluid velocity increases. Friction factor and Forchheimer ϱϳϵ 

number predictions for all samples are in excellent agreement with each other and in agreement ϱϴϬ 

with the experimentally measured values. This agreement is because all the parameters (f, KD ϱϴϭ 

and ȕ) used to develop the figure are predicted from Forchheimer equation. However, this is ϱϴϮ 

not the case when the friction factor is plotted versus Reynold’s number (not presented), and ϱϴϯ 

this shows that Forchheimer number is a better dimensionless parameter that can be used to ϱϴϰ 

describe flow through porous media. The resulting friction factor versus Forchheimer number ϱϴϱ 

curve is a unique relationship that agrees very well to the results presented by Geertsma (1974) ϱϴϲ 

and can be used for all samples regardless of its degree of heterogeneity.   ϱϴϳ 

 ϱϴϴ 
Fig. 12 The medium friction factor (f) versus Forchheimer number (Fo). ϱϴϵ 



  Ϯϴ 

3.7. Tortuosity   ϱϵϬ 

Wang et al. (1999) defined tortuosity in isotropic media as  ϱϵϭ  ߬ ൌ ෨  (16) 

where ܮ is the average streamwise flow path or the actual distance including any encountered ϱϵϮ 

curves between two points and ܮ෨ୣ is the straight distance between these two points. Other ϱϵϯ 

authors define tortuosity as the square of this ratio (Dullien, 1992). Thauvin and Mohanty ϱϵϰ 

(1998) and Wang et al. (1999) investigated the effect of tortuosity on the non-Darcy coefficient ϱϵϱ 

and concluded that its effect is negligible. As it is difficult to obtain tortuosity either ϱϵϲ 

experimentally or numerically, Muljadi et al. (2015) used the method proposed by Duda et al. ϱϵϳ 

(2011) and Koponen et al. (1996) to obtain tortuosity from the fluid velocity field without the ϱϵϴ 

need to determine flow paths as follows: ϱϵϵ  ߬ ൌ ۄ௩ೣۃۄȁ௩ೝೞȁۃ  ͳ  (17) 

where ۃȁݒ୧୬୲ୣ୰ୱȁۄ is the average magnitude of interstitial velocity over the entire volume and ϲϬϬ   is the volumetric average of its component along the macroscopic flow direction. ϲϬϭ ۄ௫ݒۃ

In the proposed PN model, the discharge through each pore throat can be easily determined ϲϬϮ 

after solving the pressure value at each node, then the velocity of flow in each pore throat can ϲϬϯ 

be determined by dividing the discharge value in each pore throat by the cross-sectional area ϲϬϰ 

of that throat. The velocity through the connected pore bodies can be determined by dividing ϲϬϱ 

the pore throat discharge by the cross-sectional area of the pore body as well. Then the overall ϲϬϲ 

average fluid velocity (ݒିǡ௧௧) through the pore throat and the two connected pore bodies can ϲϬϳ 

be estimated as the length harmonic average of the velocities (Equation 18, Fig. 1). ϲϬϴ  ିǡ௧௧ݒିǡ௧௧ܮ ൌ ݒܮ  ିݒିܮ    (18)ݒܮ

where vi-j is the velocity of flow through the pore throat that connects the two pore bodies i ϲϬϵ 

and j, vi and vj are the fluid velocity through the pore bodies i and j.   ϲϭϬ 

Finally, the volumetric average interstitial velocity ۃȁݒ௧௦ȁۄ can be obtained as   ϲϭϭ 

ۄ௧௦ȁݒȁۃ ൌ σ൫௩షೕǡ షೕ൯σ షೕ   (19) 

Similarly, ݒ௫ for each pore throat can be estimated as the X-component, along the macroscopic ϲϭϮ 

flow direction, corresponding to each ݒିǡ௧௧. Then, ݒۃ௫ۄ can be obtained by replacing ϲϭϯ 



  Ϯϵ 

 ௫ in Equation 19. Fig. 13 shows that tortuosity increases slightly with increasing ϲϭϰݒ ିǡ௧௧ byݒ

the Reynold’s number, this is due to the increase in velocities and the possible occurrence of ϲϭϱ 

some eddies. All samples in Fig. 13 have a trend similar to that obtained by Muljadi et al. ϲϭϲ 

(2015) and Chukwudozie et al. (2012) and are in agreement (varying with in less than 8%) with ϲϭϳ 

the values obtained by Muljadi et al. (2015). It is noticeable that in Fig. 13c, the increasing ϲϭϴ 

trend of ߬ is delayed compared to Muljadi et al. (2015), this is attributed to some discrepancies ϲϭϵ 

in predicting the flow velocities and pressures loss (as in Fig. 6c) for Estaillades. Due to the ϲϮϬ 

heterogeneity of Estaillades, its tortuosity is larger than other samples. This is due to the poor ϲϮϭ 

connectivity between different zones in the sample, as in Section 3.5., so each fluid particle ϲϮϮ 

may need to travel a longer path.    ϲϮϯ 

 ϲϮϰ 
 ϲϮϱ 

Fig. 13 Tortuosity versus ReL for; a) Beadpack, b) is Bentheimer, c) Estaillades and d) Packed ϲϮϲ 

sphere samples. ϲϮϳ 

4. Conclusion ϲϮϴ 

In this work, Darcy permeability, apparent permeability, non-Darcy coefficient and tortuosity ϲϮϵ 

were estimated for four porous samples (beadpack, Bentheimer sandstone, Estaillades ϲϯϬ 

carbonate and packed spheres) with different degrees of heterogeneity using pore-network ϲϯϭ 

modelling and applying the Forchheimer equation. The proposed model overcomes most of the ϲϯϮ 

limitations in previous studies that used pore-network modelling to simulate non-Darcy flow; ϲϯϯ 

limited coordination number, 2D simulations only, inaccuracy of some equations, limitation ϲϯϰ 



  ϯϬ 

regarding the use of regular structured networks only and lack of calibration. In addition, the ϲϯϱ 

onset of non-Darcy flow was fully investigated in detail for all samples.  ϲϯϲ 

Based on findings of this research, it is concluded that Forchheimer number (Fo), instead of the ϲϯϳ 

permeability-based Reynold’s number (ReK) or standard Reynold’s number (ReL), can be used ϲϯϴ 

as a criterion to determine the onset of non-Darcy flow. This is because Forchheimer number ϲϯϵ 

accounts for Darcy permeability, the Forchheimer coefficient and the medium degree of ϲϰϬ 

heterogeneity. The onset of non-Darcy flow, determined at K*=0.99 and using ReK, is highly ϲϰϭ 

dependent on the degree of heterogeneity. For Bentheimer sandstone the onset of non-Darcy ϲϰϮ 

flow is one order of magnitude smaller than in the case of beadpack, and for Estaillades the ϲϰϯ 

onset of non-Darcy flow is three orders of magnitudes smaller than in the case of beadpack. ϲϰϰ 

Nevertheless, the Forchheimer number values for the onset of non-Darcy flow for the four ϲϰϱ 

samples ranged from 0.01 to 0.1 and this is in agreement with Andrade et al. (1999).   ϲϰϲ 

The Darcy Permeabilities (KD) and Forchheimer coefficients (ȕ) for all samples are in a good ϲϰϳ 

agreement (varying within 15.2% and 54% respectively) with the values obtained either in the ϲϰϴ 

laboratory or by Muljadi et al. (2015) for the same samples, except in the case of Bentheimer, ϲϰϵ 

its ȕ value varied 126%.   ϲϱϬ 

The medium friction factor is a good feature that can be used to calculate the pressure gradient ϲϱϭ 

at different velocities for different flow regimes, regardless the heterogeneity of the medium, ϲϱϮ 

if the Darcy permeability and Forchheimer coefficient are known. It was found that the medium ϲϱϯ 

friction coefficient decreases when the fluid velocity increases. Following the Forchheimer ϲϱϰ 

equation, the medium friction factor versus Forchheimer number curve is identical for all media ϲϱϱ 

regardless of their degree of heterogeneity. Tortuosity was found to increase slightly with ϲϱϲ 

increasing the flow velocity, in all samples.  ϲϱϳ 

For highly heterogeneous media, i.e. Estaillades, the pressure variation between pores at one ϲϱϴ 

cross-section (perpendicular to the flow direction) may extend up to 98% of the overall pressure ϲϱϵ 

drop. This is mainly caused by the medium heterogeneity that creates some stagnant zones with ϲϲϬ 

low pressure values next to other zones with high pressure values. ϲϲϭ 

The pore-network modelling approach has been shown to be computationally more efficient in ϲϲϮ 

comparison with direct flow simulations and could dramatically reduce the running time from ϲϲϯ 

few hours (3 hours and 37 minutes for the Estaillades model in Muljadi et al. (2015) work) ϲϲϰ 

using 16 parallel computer nodes to less than one minute using a standard PC, but it is still ϲϲϱ 

relatively memory demanding when a large number of pore bodies is used, especially for non-ϲϲϲ 



  ϯϭ 

linear flow simulations. For instance, a pore-network with 120,000 pore bodies requires 185 ϲϲϳ 

GB Ram. Nevertheless, in terms of pore geometries, direct numerical simulation is believed to ϲϲϴ 

be more accurate than pore-network modelling which simplifies the irregular pore shapes into ϲϲϵ 

pores with simple geometries for which the analytical flow equations can be applied.   ϲϳϬ 
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ĚŽŝ͗ϭϬ͘ϭϭϬϯͬPŚǇƐRĞǀLĞƚƚ͘ϴϮ͘ϱϮϰϵ ϲϵϱ 

Aǌŝǌ͕ R͕͘ JŽĞŬĂƌͲNŝĂƐĂƌ͕ V͕͘ Θ MĂƌƚŝŶĞǌͲFĞƌƌĞƌ͕ P͘ ;ϮϬϭϴͿ͘ PŽƌĞͲƐĐĂůĞ ŝŶƐŝŐŚƚƐ ŝŶƚŽ ƚƌĂŶƐƉŽƌƚ ĂŶĚ ŵŝǆŝŶŐ ϲϵϲ 
ŝŶ ƐƚĞĂĚǇͲƐƚĂƚĞ ƚǁŽͲƉŚĂƐĞ ĨůŽǁ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ŽĨ MƵůƚŝƉŚĂƐĞ FůŽǁ͕ ϲϵϳ 
ϭϬϵ͕ ϱϭͲϲϮ͘ ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ŝũŵƵůƚŝƉŚĂƐĞĨůŽǁ͘ϮϬϭϴ͘Ϭϳ͘ϬϬϲ ϲϵϴ 

BĂďĂĞŝ͕ M͕͘ Θ JŽĞŬĂƌͲNŝĂƐĂƌ͕ V͘ ;ϮϬϭϲͿ͘ A ƚƌĂŶƐƉŽƌƚ ƉŚĂƐĞ ĚŝĂŐƌĂŵ ĨŽƌ ƉŽƌĞͲůĞǀĞů ĐŽƌƌĞůĂƚĞĚ ƉŽƌŽƵƐ ϲϵϵ 
ŵĞĚŝĂ͘ AĚǀĂŶĐĞƐ ŝŶ WĂƚĞƌ RĞƐŽƵƌĐĞƐ͕ ϵϮ͕ ϮϯͲϮϵ͘ ϳϬϬ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĂĚǀǁĂƚƌĞƐ͘ϮϬϭϲ͘Ϭϯ͘Ϭϭϰ ϳϬϭ 

BĂůŚŽĨĨ͕ M͘ T͕͘ Θ WŚĞĞůĞƌ͕ M͘ F͘ ;ϮϬϬϵͿ͘ A PƌĞĚŝĐƚŝǀĞ PŽƌĞͲSĐĂůĞ MŽĚĞů ĨŽƌ NŽŶͲDĂƌĐǇ FůŽǁ ŝŶ PŽƌŽƵƐ ϳϬϮ 
MĞĚŝĂ͘ SPE JŽƵƌŶĂů͕ ϭϰ;ϬϯͿ͕ ϱϳϵͲϱϴϳ͘  ϳϬϯ 

BĂŶĚĂƌĂ͕ U͘ C͕͘ TĂƌƚĂŬŽǀƐŬǇ͕ A͘ M͕͘ OŽƐƚƌŽŵ͕ M͕͘ PĂůŵĞƌ͕ B͘ J͕͘ GƌĂƚĞ͕ J͕͘ Θ )ŚĂŶŐ͕ C͘ ;ϮϬϭϯͿ͘ ϳϬϰ 
SŵŽŽƚŚĞĚ ƉĂƌƚŝĐůĞ ŚǇĚƌŽĚǇŶĂŵŝĐƐ ƉŽƌĞͲƐĐĂůĞ ƐŝŵƵůĂƚŝŽŶƐ ŽĨ ƵŶƐƚĂďůĞ ŝŵŵŝƐĐŝďůĞ ĨůŽǁ ŝŶ ϳϬϱ 
ƉŽƌŽƵƐ ŵĞĚŝĂ͘ AĚǀĂŶĐĞƐ ŝŶ WĂƚĞƌ RĞƐŽƵƌĐĞƐ͕ ϲϮ͕ PĂƌƚ C͕ ϯϱϲͲϯϲϵ͘ ϳϬϲ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĂĚǀǁĂƚƌĞƐ͘ϮϬϭϯ͘Ϭϵ͘Ϭϭϰ ϳϬϳ 

BĞĂƌ͕ J͘ ;ϭϵϳϮͿ͘ DǇŶĂŵŝĐƐ ŽĨ FůƵŝĚƐ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͘ EůƐĞǀŝĞƌ͕ NĞǁ YŽƌŬ͘ ϳϬϴ 
BĞůŚĂũ͕ H͘ A͕͘ AŐŚĂ͕ K͘ R͕͘ NŽƵƌŝ͕ A͘ M͕͘ BƵƚƚ͕ S͘ D͕͘ VĂǌŝƌŝ͕ H͘ H͕͘ Θ IƐůĂŵ͕ M͘ R͘ ;ϮϬϬϯͿ͘ NƵŵĞƌŝĐĂů ϳϬϵ 

MŽĚĞůŝŶŐ ŽĨ FŽƌĐŚŚĞŝŵĞƌΖƐ EƋƵĂƚŝŽŶ ƚŽ DĞƐĐƌŝďĞ DĂƌĐǇ ĂŶĚ NŽŶͲDĂƌĐǇ FůŽǁ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͘ ϳϭϬ 



  ϯϮ 

PĂƉĞƌ ƉƌĞƐĞŶƚĞĚ Ăƚ ƚŚĞ SPE AƐŝĂ PĂĐŝĨŝĐ Oŝů ĂŶĚ GĂƐ CŽŶĨĞƌĞŶĐĞ ĂŶĚ EǆŚŝďŝƚŝŽŶ͕ JĂŬĂƌƚĂ͕ ϳϭϭ 
IŶĚŽŶĞƐŝĂ͘ ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϮϭϭϴͬϴϬϰϰϬͲMS ϳϭϮ 

BŝũĞůũŝĐ͕ B͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϬϳͿ͘ PŽƌĞͲƐĐĂůĞ ŵŽĚĞůŝŶŐ ŽĨ ƚƌĂŶƐǀĞƌƐĞ ĚŝƐƉĞƌƐŝŽŶ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ ϳϭϯ 
WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϯ;ϭϮͿ͕ WϭϮSϭϭ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϮϬϬϲWRϬϬϱϳϬϬ ϳϭϰ 

BŝũĞůũŝĐ͕ B͕͘ MŽƐƚĂŐŚŝŵŝ͕ P͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϭϯĂͿ͘ IŶƐŝŐŚƚƐ ŝŶƚŽ ŶŽŶͲFŝĐŬŝĂŶ ƐŽůƵƚĞ ƚƌĂŶƐƉŽƌƚ ŝŶ ϳϭϱ 
ĐĂƌďŽŶĂƚĞƐ͘ WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϵ;ϱͿ͕ ϮϳϭϰͲϮϳϮϴ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϮͬǁƌĐƌ͘ϮϬϮϯϴ ϳϭϲ 

BŝũĞůũŝĐ͕ B͕͘ MƵŐŐĞƌŝĚŐĞ͕ A͘ H͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϬϰͿ͘ PŽƌĞͲƐĐĂůĞ ŵŽĚĞůŝŶŐ ŽĨ ůŽŶŐŝƚƵĚŝŶĂů ĚŝƐƉĞƌƐŝŽŶ͘ ϳϭϳ 
WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϬ;ϭϭͿ͕ WϭϭϱϬϭ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϮϬϬϰWRϬϬϯϱϲϳ ϳϭϴ 

BŝũĞůũŝĐ͕ B͕͘ RĂĞŝŶŝ͕ A͕͘ MŽƐƚĂŐŚŝŵŝ͕ P͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϭϯďͿ͘ PƌĞĚŝĐƚŝŽŶƐ ŽĨ ŶŽŶͲFŝĐŬŝĂŶ ƐŽůƵƚĞ ϳϭϵ 
ƚƌĂŶƐƉŽƌƚ ŝŶ ĚŝĨĨĞƌĞŶƚ ĐůĂƐƐĞƐ ŽĨ ƉŽƌŽƵƐ ŵĞĚŝĂ ƵƐŝŶŐ ĚŝƌĞĐƚ ƐŝŵƵůĂƚŝŽŶ ŽŶ ƉŽƌĞͲƐĐĂůĞ ŝŵĂŐĞƐ͘ ϳϮϬ 
PŚǇƐŝĐĂů RĞǀŝĞǁ E͕ ϴϳ;ϭͿ͕ ϬϭϯϬϭϭ͘  ϳϮϭ 

BŝƌĚ͕ R͘ B͕͘ SƚĞǁĂƌƚ͕ W͘ E͕͘ Θ LŝŐŚƚĨŽŽƚ͕ E͘ N͘ ;ϭϵϲϬͿ͘ TƌĂŶƐƉŽƌƚ ƉŚĞŶŽŵĞŶĂ͘ NĞǁ YŽƌŬ͗ JŽŚŶ WŝůĞǇ ĂŶĚ ϳϮϮ 
SŽŶƐ͘ ϳϮϯ 

BŝƌĚ͕ R͘ B͕͘ SƚĞǁĂƌƚ͕ W͘ E͕͘ Θ LŝŐŚƚĨŽŽƚ͕ E͘ N͘ ;ϭϵϲϭͿ͘ TƌĂŶƐƉŽƌƚ ƉŚĞŶŽŵĞŶĂ͕ JŽŚŶ WŝůĞǇ ĂŶĚ SŽŶƐ͕ IŶĐ͕͘ ϳϮϰ 
NĞǁ YŽƌŬ ;ϭϵϲϬͿ͘ ϳϴϬ ƉĂŐĞƐ͘ Ψϭϭ͘ϱϬ͘ AICŚE JŽƵƌŶĂů͕ ϳ;ϮͿ͕ ϱJͲϲJ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϮͬĂŝĐ͘ϲϵϬϬϳϬϮϰϱ ϳϮϱ 

BůƵŶƚ͕ M͘ J͕͘ BŝũĞůũŝĐ͕ B͕͘ DŽŶŐ͕ H͕͘ GŚĂƌďŝ͕ O͕͘ IŐůĂƵĞƌ͕ S͕͘ MŽƐƚĂŐŚŝŵŝ͕ P͕͘ PĂůƵƐǌŶǇ͕ A͕͘ Θ PĞŶƚůĂŶĚ͕ C͘ ϳϮϲ 
;ϮϬϭϯͿ͘ PŽƌĞͲƐĐĂůĞ ŝŵĂŐŝŶŐ ĂŶĚ ŵŽĚĞůůŝŶŐ͘ AĚǀĂŶĐĞƐ ŝŶ WĂƚĞƌ RĞƐŽƵƌĐĞƐ͕ ϱϭ͕ ϭϵϳͲϮϭϲ͘ ϳϮϳ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĂĚǀǁĂƚƌĞƐ͘ϮϬϭϮ͘Ϭϯ͘ϬϬϯ ϳϮϴ 

BƌǇĂŶƚ͕ S͕͘ Θ BůƵŶƚ͕ M͘ ;ϭϵϵϮͿ͘ PƌĞĚŝĐƚŝŽŶ ŽĨ ƌĞůĂƚŝǀĞ ƉĞƌŵĞĂďŝůŝƚǇ ŝŶ ƐŝŵƉůĞ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ PŚǇƐŝĐĂů ϳϮϵ 
RĞǀŝĞǁ A͕ ϰϲ;ϰͿ͕ ϮϬϬϰͲϮϬϭϭ͘  ϳϯϬ 

BƌǇĂŶƚ͕ S͘ L͕͘ MĞůůŽƌ͕ D͘ W͕͘ Θ CĂĚĞ͕ C͘ A͘ ;ϭϵϵϯͿ͘ PŚǇƐŝĐĂůůǇ ƌĞƉƌĞƐĞŶƚĂƚŝǀĞ ŶĞƚǁŽƌŬ ŵŽĚĞůƐ ŽĨ ϳϯϭ 
ƚƌĂŶƐƉŽƌƚ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ AICŚE JŽƵƌŶĂů͕ ϯϵ;ϯͿ͕ ϯϴϳͲϯϵϲ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϮͬĂŝĐ͘ϲϵϬϯϵϬϯϬϯ ϳϯϮ 

CĂƌŵĂŶ͕ P͘ C͘ ;ϭϵϯϳͿ͘ FůƵŝĚ ĨůŽǁ ƚŚƌŽƵŐŚ ŐƌĂŶƵůĂƌ ďĞĚƐ͘ CŚĞŵŝĐĂů EŶŐŝŶĞĞƌŝŶŐ RĞƐĞĂƌĐŚ ĂŶĚ DĞƐŝŐŶ͕ ϳϯϯ 
ϳϱ͕ SϯϮͲSϰϴ͘ ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬSϬϮϲϯͲϴϳϲϮ;ϵϳͿϴϬϬϬϯͲϮ ϳϯϰ 

CĞůŝĂ͕ M͘ A͕͘ RĞĞǀĞƐ͕ P͘ C͕͘ Θ FĞƌƌĂŶĚ͕ L͘ A͘ ;ϭϵϵϱͿ͘ RĞĐĞŶƚ ĂĚǀĂŶĐĞƐ ŝŶ ƉŽƌĞ ƐĐĂůĞ ŵŽĚĞůƐ ĨŽƌ ϳϯϱ 
ŵƵůƚŝƉŚĂƐĞ ĨůŽǁ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ RĞǀŝĞǁƐ ŽĨ GĞŽƉŚǇƐŝĐƐ͕ ϯϯ;SϮͿ͕ ϭϬϰϵͲϭϬϱϳ͘ ϳϯϲ 
ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϵϱRGϬϬϮϰϴ ϳϯϳ 

ÇĞŶŐĞů͕ Y͘ A͕͘ Θ CŝŵďĂůĂ͕ J͘ M͘ ;ϮϬϬϲͿ͘ FůƵŝĚ ŵĞĐŚĂŶŝĐƐ͗ FƵŶĚĂŵĞŶƚĂůƐ ĂŶĚ ĂƉƉůŝĐĂƚŝŽŶƐ͘ BŽƐƚŽŶ͗ ϳϯϴ 
MĐGƌĂǁͲHŝůůHŝŐŚĞƌ EĚƵĐĂƚŝŽŶ͘ ϳϯϵ 

CŚƵŬǁƵĚŽǌŝĞ͕ C͘ P͕͘ TǇĂŐŝ͕ M͕͘ SĞĂƌƐ͕ S͘ O͕͘ Θ WŚŝƚĞ͕ C͘ D͘ ;ϮϬϭϮͿ͘ PƌĞĚŝĐƚŝŽŶ ŽĨ NŽŶͲDĂƌĐǇ ϳϰϬ 
CŽĞĨĨŝĐŝĞŶƚƐ ĨŽƌ IŶĞƌƚŝĂů FůŽǁƐ TŚƌŽƵŐŚ ƚŚĞ CĂƐƚůĞŐĂƚĞ SĂŶĚƐƚŽŶĞ UƐŝŶŐ IŵĂŐĞͲBĂƐĞĚ ϳϰϭ 
MŽĚĞůŝŶŐ͘ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͕ ϵϱ;ϯͿ͕ ϱϲϯͲϱϴϬ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϭϮϰϮͲϬϭϮͲϬϬϲϮͲϱ ϳϰϮ 

CŽŵŝƚŝ͕ J͕͘ SĂďŝƌŝ͕ N͘ E͕͘ Θ MŽŶƚŝůůĞƚ͕ A͘ ;ϮϬϬϬͿ͘ EǆƉĞƌŝŵĞŶƚĂů ĐŚĂƌĂĐƚĞƌŝǌĂƚŝŽŶ ŽĨ ĨůŽǁ ƌĞŐŝŵĞƐ ŝŶ ϳϰϯ 
ǀĂƌŝŽƵƐ ƉŽƌŽƵƐ ŵĞĚŝĂ Ͷ III͗ ůŝŵŝƚ ŽĨ DĂƌĐǇΖƐ Žƌ ĐƌĞĞƉŝŶŐ ĨůŽǁ ƌĞŐŝŵĞ ĨŽƌ NĞǁƚŽŶŝĂŶ ĂŶĚ ϳϰϰ 
ƉƵƌĞůǇ ǀŝƐĐŽƵƐ ŶŽŶͲNĞǁƚŽŶŝĂŶ ĨůƵŝĚƐ͘ CŚĞŵŝĐĂů EŶŐŝŶĞĞƌŝŶŐ SĐŝĞŶĐĞ͕ ϱϱ;ϭϱͿ͕ ϯϬϱϳͲϯϬϲϭ͘ ϳϰϱ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬSϬϬϬϵͲϮϱϬϵ;ϵϵͿϬϬϱϱϲͲϰ ϳϰϲ 

CƌĂŶĞ͘ ;ϭϵϰϮͿ͘ FůŽǁ ŽĨ ĨůƵŝĚƐ ƚŚƌŽƵŐŚ ǀĂůǀĞƐ͕ ĨŝƚƚŝŶŐƐ ĂŶĚ ƉŝƉĞ͘ CŚŝĐĂŐŽ͕ III͗ CƌĂŶĞ ĐŽ͘ ϳϰϳ 
DĂƌĐǇ͕ H͘ ;ϭϴϱϲͿ͘ LĞƐ FŽŶƚĂŝŶĞƐ PƵďůŝƋƵĞƐ ĚĞ ůĂ VŝůĞ ĚĞ DŝũŽŶ͘ VŝĐƚŽƌ DĂůŵŽŶĚ͕ PĂƌŝƐ͘  ϳϰϴ 
DƵĚĂ͕ A͕͘ KŽǌĂ͕ )͕͘ Θ MĂƚǇŬĂ͕ M͘ ;ϮϬϭϭͿ͘ HǇĚƌĂƵůŝĐ ƚŽƌƚƵŽƐŝƚǇ ŝŶ ĂƌďŝƚƌĂƌǇ ƉŽƌŽƵƐ ŵĞĚŝĂ ĨůŽǁ͘ PŚǇƐŝĐĂů ϳϰϵ 

RĞǀŝĞǁ E͕ ϴϰ;ϯͿ͕ Ϭϯϲϯϭϵ͘  ϳϱϬ 
DƵůůŝĞŶ͕ F͘ A͘ L͘ ;ϭϵϵϮͿ͘ PŽƌŽƵƐ MĞĚŝĂ͗ FůƵŝĚ TƌĂŶƐƉŽƌƚ ĂŶĚ PŽƌĞ SƚƌƵĐƚƵƌĞ͘ SĂŶ DŝĞŐŽ͗ AĐĂĚĞŵŝĐ PƌĞƐƐ͘ ϳϱϭ 
DƵƌůŽĨƐŬǇ͕ L͕͘ Θ BƌĂĚǇ͕ J͘ F͘ ;ϭϵϴϳͿ͘ AŶĂůǇƐŝƐ ŽĨ ƚŚĞ BƌŝŶŬŵĂŶ ĞƋƵĂƚŝŽŶ ĂƐ Ă ŵŽĚĞů ĨŽƌ ĨůŽǁ ŝŶ ƉŽƌŽƵƐ ϳϱϮ 

ŵĞĚŝĂ͘ TŚĞ PŚǇƐŝĐƐ ŽĨ FůƵŝĚƐ͕ ϯϬ;ϭϭͿ͕ ϯϯϮϵͲϯϯϰϭ͘ ĚŽŝ͗ϭϬ͘ϭϬϲϯͬϭ͘ϴϲϲϰϲϱ ϳϱϯ 
EůͲ)ĞŚĂŝƌǇ͕ A͘ A͕͘ LƵďĐǌǇŶƐŬŝ͕ M͘ W͕͘ Θ GƵƌǁŝŶ͕ J͘ ;ϮϬϭϴͿ͘ IŶƚĞƌĂĐƚŝŽŶƐ ŽĨ ĂƌƚŝĨŝĐŝĂů ůĂŬĞƐ ǁŝƚŚ ϳϱϰ 

ŐƌŽƵŶĚǁĂƚĞƌ ĂƉƉůǇŝŶŐ ĂŶ ŝŶƚĞŐƌĂƚĞĚ MODFLOW ƐŽůƵƚŝŽŶ͘ HǇĚƌŽŐĞŽůŽŐǇ JŽƵƌŶĂů͕ Ϯϲ;ϭͿ͕ ϭϬϵͲϳϱϱ 
ϭϯϮ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϬϬϰϬͲϬϭϳͲϭϲϰϭͲǆ ϳϱϲ 

EƌŐƵŶ͕ S͘ ;ϭϵϱϮͿ͘ FůƵŝĚ FůŽǁ ƚŚƌŽƵŐŚ PĂĐŬĞĚ CŽůƵŵŶƐ͘ CŚĞŵ͘ EŶŐ͘ PƌŽŐ͕͘ ϰϴ͕ ϴϵʹϵϰ͘  ϳϱϳ 
FŝŶŶĞǇ͕ J͘ L͘ ;ϭϵϳϬͿ͘ RĂŶĚŽŵ ƉĂĐŬŝŶŐƐ ĂŶĚ ƚŚĞ ƐƚƌƵĐƚƵƌĞ ŽĨ ƐŝŵƉůĞ ůŝƋƵŝĚƐ͘ I͘ TŚĞ ŐĞŽŵĞƚƌǇ ŽĨ ƌĂŶĚŽŵ ϳϱϴ 

ĐůŽƐĞ ƉĂĐŬŝŶŐ͘ PƌŽĐĞĞĚŝŶŐƐ ŽĨ ƚŚĞ RŽǇĂů SŽĐŝĞƚǇ ŽĨ LŽŶĚŽŶ͘ A͘ MĂƚŚĞŵĂƚŝĐĂů ĂŶĚ PŚǇƐŝĐĂů ϳϱϵ 
SĐŝĞŶĐĞƐ͕ ϯϭϵ;ϭϱϯϵͿ͕ ϰϳϵͲϰϵϯ͘ ĚŽŝ͗ĚŽŝ͗ϭϬ͘ϭϬϵϴͬƌƐƉĂ͘ϭϵϳϬ͘Ϭϭϴϵ ϳϲϬ 



  ϯϯ 

FŽƌĐŚŚĞŝŵĞƌ͕ P͘ ;ϭϵϬϭͿ͘ WĂƐƐĞƌďĞǁĞŐƵŶŐ ĚƵƌĐŚ BŽĚĞŶ͘ ZĞŝƚƐĐŚƌŝĨƚ ĚĞƐ VĞƌĞŝŶƐ ĚĞƵƚƐĐŚĞƌ IŶŐĞŶŝĞƵƌĞ ϳϲϭ 
ϰϱ͕ ŶŽ͘ ϭ͗ ϭϳϴϮʹϭϳϴϴ͘  ϳϲϮ 

GĂŽ͕ S͕͘ MĞĞŐŽĚĂ͕ J͘ N͕͘ Θ HƵ͕ L͘ ;ϮϬϭϮͿ͘ TǁŽ ŵĞƚŚŽĚƐ ĨŽƌ ƉŽƌĞ ŶĞƚǁŽƌŬ ŽĨ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ ϳϲϯ 
IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ĨŽƌ NƵŵĞƌŝĐĂů ĂŶĚ AŶĂůǇƚŝĐĂů MĞƚŚŽĚƐ ŝŶ GĞŽŵĞĐŚĂŶŝĐƐ͕ ϯϲ;ϭϴͿ͕ ϭϵϱϰͲϳϲϰ 
ϭϵϳϬ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϮͬŶĂŐ͘ϭϭϯϰ ϳϲϱ 

GĞĞƌƚƐŵĂ͕ J͘ ;ϭϵϳϰͿ͘ EƐƚŝŵĂƚŝŶŐ ƚŚĞ CŽĞĨĨŝĐŝĞŶƚ ŽĨ IŶĞƌƚŝĂů RĞƐŝƐƚĂŶĐĞ ŝŶ FůƵŝĚ FůŽǁ TŚƌŽƵŐŚ PŽƌŽƵƐ ϳϲϲ 
MĞĚŝĂ͘ SŽĐŝĞƚǇ ŽĨ PĞƚƌŽůĞƵŵ EŶŐŝŶĞĞƌƐ JŽƵƌŶĂů͕ ϭϰ;ϬϱͿ͕ ϰϰϱͲϰϱϬ͘ ĚŽŝ͗ϭϬ͘ϮϭϭϴͬϰϳϬϲͲPA ϳϲϳ 

GĞŝŐĞƌ͕ G͘ E͘ ;ϭϵϲϰͿ͘ SƵĚĚĞŶ ĐŽŶƚƌĂĐƚŝŽŶ ůŽƐƐĞƐ ŝŶ ƐŝŶŐůĞ ĂŶĚ ƚǁŽͲƉŚĂƐĞ ĨůŽǁ͘ ;PŚ͘D͘ ƚŚĞƐŝƐͿ͕ ϳϲϴ 
UŶŝǀĞƌƐŝƚǇ ŽĨ PŝƚƚƐďƵƌŐŚ͕ PŝƚƚƐďƵƌŐŚ͕ PA͘      ϳϲϵ 

GƵĂĚĂŐŶŝŶŝ͕ A͕͘ BůƵŶƚ͕ M͘ J͕͘ RŝǀĂ͕ M͕͘ Θ BŝũĞůũŝĐ͕ B͘ ;ϮϬϭϰͿ͘ SƚĂƚŝƐƚŝĐĂů SĐĂůŝŶŐ ŽĨ GĞŽŵĞƚƌŝĐ ϳϳϬ 
CŚĂƌĂĐƚĞƌŝƐƚŝĐƐ ŝŶ MŝůůŝŵĞƚĞƌ SĐĂůĞ NĂƚƵƌĂů PŽƌŽƵƐ MĞĚŝĂ͘ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͕ ϭϬϭ;ϯͿ͕ ϳϳϭ 
ϰϲϱͲϰϳϱ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϭϮϰϮͲϬϭϯͲϬϮϱϰͲϳ ϳϳϮ 

GƵŽ͕ H͕͘ WĂŶŐ͕ L͕͘ YƵ͕ J͕͘ YĞ͕ F͕͘ MĂ͕ C͕͘ Θ Lŝ͕ )͘ ;ϮϬϭϬͿ͘ LŽĐĂů ƌĞƐŝƐƚĂŶĐĞ ŽĨ ĨůƵŝĚ ĨůŽǁ ĂĐƌŽƐƐ ƐƵĚĚĞŶ ϳϳϯ 
ĐŽŶƚƌĂĐƚŝŽŶ ŝŶ ƐŵĂůů ĐŚĂŶŶĞůƐ͘ FƌŽŶƚŝĞƌƐ ŽĨ EŶĞƌŐǇ ĂŶĚ PŽǁĞƌ EŶŐŝŶĞĞƌŝŶŐ ŝŶ CŚŝŶĂ͕ ϰ;ϮͿ͕ ϭϰϵͲϳϳϰ 
ϭϱϰ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϭϳϬϴͲϬϬϵͲϬϬϲϬͲϳ ϳϳϱ 

HĂŐĞŶ͕ G͘ ;ϭϴϯϵͿ͘ UĞďĞƌ ĚŝĞ BĞǁĞŐƵŶŐ ĚĞƐ WĂƐƐĞƌƐ ŝŶ ĞŶŐĞŶ ĐǇůŝŶĚƌŝƐĐŚĞŶ RƂŚƌĞŶ͘ AŶŶĂůĞŶ ĚĞƌ ϳϳϲ 
PŚǇƐŝŬ͕ ϭϮϮ;ϯͿ͕ ϰϮϯͲϰϰϮ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϮͬĂŶĚƉ͘ϭϴϯϵϭϮϮϬϯϬϰ ϳϳϳ 

HůƵƐŚŬŽƵ͕ D͕͘ Θ TĂůůĂƌĞŬ͕ U͘ ;ϮϬϬϲͿ͘ TƌĂŶƐŝƚŝŽŶ ĨƌŽŵ ĐƌĞĞƉŝŶŐ ǀŝĂ ǀŝƐĐŽƵƐͲŝŶĞƌƚŝĂů ƚŽ ƚƵƌďƵůĞŶƚ ĨůŽǁ ŝŶ ϳϳϴ 
ĨŝǆĞĚ ďĞĚƐ͘ JŽƵƌŶĂů ŽĨ CŚƌŽŵĂƚŽŐƌĂƉŚǇ A͕ ϭϭϮϲ;ϭʹϮͿ͕ ϳϬͲϴϱ͘ ϳϳϵ 
ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĐŚƌŽŵĂ͘ϮϬϬϲ͘Ϭϲ͘Ϭϭϭ ϳϴϬ 

HŽůĚŝĐŚ͕ R͘ G͘ ;ϮϬϬϮͿ͘ FƵŶĚĞŵĞŶƚĂůƐ ŽĨ ƉĂƌƚŝĐůĞ ƚĞĐŚŶŽůŽŐǇ͘ MŝĚůĂŶĚ IŶĨŽƌŵĂƚŝŽŶ TĞĐŚŶŽůŽŐǇ ĂŶĚ ϳϴϭ 
PƵďůŝƐŚŝŶŐ͕ SŚĞƉƐŚĞĚ͘ ϳϴϮ 

HSL͘ ;ϮϬϭϯͿ͘ A ĐŽůůĞĐƚŝŽŶ ŽĨ FŽƌƚƌĂŶ ĐŽĚĞƐ ĨŽƌ ůĂƌŐĞ ƐĐĂůĞ ƐĐŝĞŶƚŝĨŝĐ ĐŽŵƉƵƚĂƚŝŽŶ͘ ϳϴϯ 
ŚƚƚƉ͗ͬͬǁǁǁ͘ŚƐů͘ƌů͘ĂĐ͘ƵŬ͘  ϳϴϰ 

JĂŶŝĐĞŬ͕ J͕͘ Θ KĂƚǌ͕ D͘ ;ϭϵϱϱͿ͘ AƉƉůŝĐĂƚŝŽŶƐ ŽĨ ƵŶƐƚĞĂĚǇ ƐƚĂƚĞ ŐĂƐ ĨůŽǁ ĐĂůĐƵůĂƚŝŽŶƐ͘ IŶ͗ PƌŽĐĞĞĚŝŶŐƐ ŽĨ ϳϴϱ 
UŶŝǀĞƌƐŝƚǇ ŽĨ MŝĐŚŝŐĂŶ ƌĞƐĞĂƌĐŚ ĐŽŶĨĞƌĞŶĐĞ͘  ϳϴϲ 

JŽĞŬĂƌͲNŝĂƐĂƌ ͕ V͕͘ Θ HĂƐƐĂŶŝǌĂĚĞŚ͕ S͘ M͘ ;ϮϬϭϮͿ͘ AŶĂůǇƐŝƐ ŽĨ FƵŶĚĂŵĞŶƚĂůƐ ŽĨ TǁŽͲPŚĂƐĞ FůŽǁ ŝŶ ϳϴϳ 
PŽƌŽƵƐ MĞĚŝĂ UƐŝŶŐ DǇŶĂŵŝĐ PŽƌĞͲNĞƚǁŽƌŬ MŽĚĞůƐ͗ A RĞǀŝĞǁ͘ CƌŝƚŝĐĂů RĞǀŝĞǁƐ ŝŶ ϳϴϴ 
EŶǀŝƌŽŶŵĞŶƚĂů SĐŝĞŶĐĞ ĂŶĚ TĞĐŚŶŽůŽŐǇ͕ ϰϮ;ϭϴͿ͕ ϭϴϵϱͲϭϵϳϲ͘ ϳϴϵ 
ĚŽŝ͗ϭϬ͘ϭϬϴϬͬϭϬϲϰϯϯϴϵ͘ϮϬϭϭ͘ϱϳϰϭϬϭ ϳϵϬ 

JŽĞŬĂƌͲNŝĂƐĂƌ͕ V͕͘ PƌŽĚĂŶŽǀŝđ͕ M͕͘ WŝůĚĞŶƐĐŚŝůĚ͕ D͕͘ Θ HĂƐƐĂŶŝǌĂĚĞŚ͕ S͘ M͘ ;ϮϬϭϬͿ͘ NĞƚǁŽƌŬ ŵŽĚĞů ϳϵϭ 
ŝŶǀĞƐƚŝŐĂƚŝŽŶ ŽĨ ŝŶƚĞƌĨĂĐŝĂů ĂƌĞĂ͕ ĐĂƉŝůůĂƌǇ ƉƌĞƐƐƵƌĞ ĂŶĚ ƐĂƚƵƌĂƚŝŽŶ ƌĞůĂƚŝŽŶƐŚŝƉƐ ŝŶ ŐƌĂŶƵůĂƌ ϳϵϮ 
ƉŽƌŽƵƐ ŵĞĚŝĂ͘ WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϲ;ϲͿ͕ WϬϲϱϮϲ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϮϬϬϵWRϬϬϴϱϴϱ ϳϵϯ 

JŽĞŬĂƌ NŝĂƐĂƌ͕ V͕͘ HĂƐƐĂŶŝǌĂĚĞŚ͕ S͘ M͕͘ PǇƌĂŬͲNŽůƚĞ͕ L͘ J͕͘ Θ BĞƌĞŶƚƐĞŶ͕ C͘ ;ϮϬϬϵͿ͘ SŝŵƵůĂƚŝŶŐ ĚƌĂŝŶĂŐĞ ϳϵϰ 
ĂŶĚ ŝŵďŝďŝƚŝŽŶ ĞǆƉĞƌŝŵĞŶƚƐ ŝŶ Ă ŚŝŐŚͲƉŽƌŽƐŝƚǇ ŵŝĐƌŽŵŽĚĞů ƵƐŝŶŐ ĂŶ ƵŶƐƚƌƵĐƚƵƌĞĚ ƉŽƌĞ ϳϵϱ 
ŶĞƚǁŽƌŬ ŵŽĚĞů͘ WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϱ;ϮͿ͕ WϬϮϰϯϬ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϮϬϬϳWRϬϬϲϲϰϭ ϳϵϲ 

KĂǇƐ͕ W͘ M͘ ;ϭϵϱϬͿ͘ LŽƐƐ CŽĞĨĨŝĐŝĞŶƚ ĨŽƌ AďƌƵƉƚ CŚĂŶŐĞƐ ŝŶ FůŽǁ CƌŽƐƐ SĞĐƚŝŽŶ ǁŝƚŚ RĞǇŶŽůĚƐ NƵŵďĞƌ ϳϵϳ 
FůŽǁ ŝŶ SŝŶŐůĞ ĂŶĚ MƵůƚŝƉůĞ MƵďĞ SǇƐƚĞŵƐ͘ TƌĂŶƐĂĐƚŝŽŶƐ ŽĨ ƚŚĞ AŵĞƌŝĐĂŶ SŽĐŝĞƚǇ ŽĨ ϳϵϴ 
MĞĐŚĂŶŝĐĂů EŶŐŝŶĞĞƌƐ͕ ϳϮ͕ ϭϬϲϳͲϭϬϳϰ͘  ϳϵϵ 

KŶĂĐŬƐƚĞĚƚ͕ M͘ A͕͘ SŚĞƉƉĂƌĚ͕ A͘ P͕͘ Θ SĂŚŝŵŝ͕ M͘ ;ϮϬϬϭͿ͘ PŽƌĞ ŶĞƚǁŽƌŬ ŵŽĚĞůůŝŶŐ ŽĨ ƚǁŽͲƉŚĂƐĞ ĨůŽǁ ϴϬϬ 
ŝŶ ƉŽƌŽƵƐ ƌŽĐŬ͗ ƚŚĞ ĞĨĨĞĐƚ ŽĨ ĐŽƌƌĞůĂƚĞĚ ŚĞƚĞƌŽŐĞŶĞŝƚǇ͘ AĚǀĂŶĐĞƐ ŝŶ WĂƚĞƌ RĞƐŽƵƌĐĞƐ͕ Ϯϰ;ϯʹϴϬϭ 
ϰͿ͕ ϮϱϳͲϮϳϳ͘ ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬSϬϯϬϵͲϭϳϬϴ;ϬϬͿϬϬϬϱϳͲϵ ϴϬϮ 

KŽƉŽŶĞŶ͕ A͕͘ KĂƚĂũĂ͕ M͕͘ Θ TŝŵŽŶĞŶ͕ J͘ ;ϭϵϵϲͿ͘ TŽƌƚƵŽƵƐ ĨůŽǁ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ PŚǇƐŝĐĂů RĞǀŝĞǁ E͕ ϴϬϯ 
ϱϰ;ϭͿ͕ ϰϬϲͲϰϭϬ͘  ϴϬϰ 

KŽǌĞŶǇ͕ J͘ ;ϭϵϮϳͿ͘ ÜďĞƌ ŬĂƉŝůůĂƌĞ LĞŝƚƵŶŐ ĚĞƐ WĂƐƐĞƌƐ ŝŵ BŽĚĞŶ͘ AŬĂĚ͘ WŝƐƐ͘ WŝĞŶ͕ ϭϯϲ͕ ϮϳϭͲϯϬϲ͘ ϴϬϱ 
ĚŽŝ͗ĐŝƚĞƵůŝŬĞͲĂƌƚŝĐůĞͲŝĚ͗ϰϭϱϱϮϱϴ ϴϬϲ 

KƵǁĂƚĂ͕ Y͕͘ Θ SƵŐĂ͕ K͘ ;ϮϬϭϱͿ͘ LĂƌŐĞ ĞĚĚǇ ƐŝŵƵůĂƚŝŽŶƐ ŽĨ ƉŽƌĞͲƐĐĂůĞ ƚƵƌďƵůĞŶƚ ĨůŽǁƐ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ ϴϬϳ 
ďǇ ƚŚĞ ůĂƚƚŝĐĞ BŽůƚǌŵĂŶŶ ŵĞƚŚŽĚ͘ IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ŽĨ HĞĂƚ ĂŶĚ FůƵŝĚ FůŽǁ͕ ϱϱ͕ ϭϰϯͲϭϱϳ͘ ϴϬϴ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ŝũŚĞĂƚĨůƵŝĚĨůŽǁ͘ϮϬϭϱ͘Ϭϱ͘Ϭϭϱ ϴϬϵ 



  ϯϰ 

LĂŽ͕ H͘ W͕͘ NĞĞŵĂŶ͕ H͘ J͕͘ Θ PĂƉĂǀĂƐƐŝůŝŽƵ͕ D͘ V͘ ;ϮϬϬϰͿ͘ A ƉŽƌĞ ŶĞƚǁŽƌŬ ŵŽĚĞů ĨŽƌ ƚŚĞ ĐĂůĐƵůĂƚŝŽŶ ŽĨ ϴϭϬ 
ŶŽŶͲDĂƌĐǇ ĨůŽǁ ĐŽĞĨĨŝĐŝĞŶƚƐ ŝŶ ĨůƵŝĚ ĨůŽǁ ƚŚƌŽƵŐŚ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ CŚĞŵŝĐĂů EŶŐŝŶĞĞƌŝŶŐ ϴϭϭ 
CŽŵŵƵŶŝĐĂƚŝŽŶƐ͕ ϭϵϭ;ϭϬͿ͕ ϭϮϴϱͲϭϯϮϮ͘ ĚŽŝ͗ϭϬ͘ϭϬϴϬͬϬϬϵϴϲϰϰϬϰϵϬϰϲϰϮϬϬ ϴϭϮ 

LĞŵůĞǇ͕ E͘ C͕͘ PĂƉĂǀĂƐƐŝůŝŽƵ͕ D͘ V͕͘ Θ NĞĞŵĂŶ͕ H͘ J͘ ;ϮϬϬϳͿ͘ NŽŶͲDĂƌĐǇ FůŽǁ PŽƌĞ NĞƚǁŽƌŬ SŝŵƵůĂƚŝŽŶ͗ ϴϭϯ 
DĞǀĞůŽƉŵĞŶƚ ĂŶĚ VĂůŝĚĂƚŝŽŶ ŽĨ Ă ϯD MŽĚĞů͘ PĂƉĞƌ ƉƌĞƐĞŶƚĞĚ Ăƚ ƚŚĞ ASMEͬJSME ϮϬϬϳ ϱƚŚ ϴϭϰ 
JŽŝŶƚ FůƵŝĚƐ EŶŐŝŶĞĞƌŝŶŐ CŽŶĨĞƌĞŶĐĞ͘ ϴϭϱ 

LŝƵ͕ X͕͘ CŝǀĂŶ͕ F͕͘ Θ EǀĂŶƐ͕ R͘ D͘ ;ϭϵϵϱͿ͘ CŽƌƌĞůĂƚŝŽŶ ŽĨ ƚŚĞ NŽŶͲDĂƌĐǇ FůŽǁ CŽĞĨĨŝĐŝĞŶƚ͘ JŽƵƌŶĂů ŽĨ ϴϭϲ 
CĂŶĂĚŝĂŶ PĞƚƌŽůĞƵŵ TĞĐŚŶŽůŽŐǇ͕ ϯϰ;ϭϬͿ͕ ϲ͘ ĚŽŝ͗ϭϬ͘ϮϭϭϴͬϵϱͲϭϬͲϬϱ ϴϭϳ 

MĂĐĚŽŶĂůĚ͕ I͘ F͕͘ EůͲSĂǇĞĚ͕ M͘ S͕͘ MŽǁ͕ K͕͘ Θ DƵůůŝĞŶ͕ F͘ A͘ L͘ ;ϭϵϳϵͿ͘ FůŽǁ ƚŚƌŽƵŐŚ PŽƌŽƵƐ MĞĚŝĂͲƚŚĞ ϴϭϴ 
EƌŐƵŶ EƋƵĂƚŝŽŶ RĞǀŝƐŝƚĞĚ͘ IŶĚƵƐƚƌŝĂů Θ EŶŐŝŶĞĞƌŝŶŐ CŚĞŵŝƐƚƌǇ FƵŶĚĂŵĞŶƚĂůƐ͕ ϭϴ;ϯͿ͕ ϭϵϵͲϮϬϴ͘ ϴϭϵ 
ĚŽŝ͗ϭϬ͘ϭϬϮϭͬŝϭϲϬϬϳϭĂϬϬϭ ϴϮϬ 

MĂĐĞĚŽ͕ H͘ H͕͘ CŽƐƚĂ͕ U͘ M͘ S͕͘ Θ AůŵĞŝĚĂ͕ M͘ P͘ ;ϮϬϬϭͿ͘ TƵƌďƵůĞŶƚ ĞĨĨĞĐƚƐ ŽŶ ĨůƵŝĚ ĨůŽǁ ƚŚƌŽƵŐŚ ϴϮϭ 
ĚŝƐŽƌĚĞƌĞĚ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ PŚǇƐŝĐĂ A͗ SƚĂƚŝƐƚŝĐĂů MĞĐŚĂŶŝĐƐ ĂŶĚ ŝƚƐ AƉƉůŝĐĂƚŝŽŶƐ͕ Ϯϵϵ;ϯʹϰͿ͕ ϴϮϮ 
ϯϳϭͲϯϳϳ͘ ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬSϬϯϳϴͲϰϯϳϭ;ϬϭͿϬϬϮϱϳͲϲ ϴϮϯ 

MĂƐŽŶ͕ G͕͘ Θ MŽƌƌŽǁ͕ N͘ R͘ ;ϭϵϵϭͿ͘ CĂƉŝůůĂƌǇ ďĞŚĂǀŝŽƌ ŽĨ Ă ƉĞƌĨĞĐƚůǇ ǁĞƚƚŝŶŐ ůŝƋƵŝĚ ŝŶ ŝƌƌĞŐƵůĂƌ ϴϮϰ 
ƚƌŝĂŶŐƵůĂƌ ƚƵďĞƐ͘ JŽƵƌŶĂů ŽĨ CŽůůŽŝĚ ĂŶĚ IŶƚĞƌĨĂĐĞ SĐŝĞŶĐĞ͕ ϭϰϭ;ϭͿ͕ ϮϲϮͲϮϳϰ͘ ϴϮϱ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬϬϬϮϭͲϵϳϵϳ;ϵϭͿϵϬϯϮϭͲX ϴϮϲ 

MŽŝŶ͕ P͕͘ Θ MĂŚĞƐŚ͕ K͘ ;ϭϵϵϴͿ͘ DIRECT NUMERICAL SIMULATION͗ A TŽŽů ŝŶ TƵƌďƵůĞŶĐĞ RĞƐĞĂƌĐŚ͘ ϴϮϳ 
AŶŶƵĂů RĞǀŝĞǁ ŽĨ FůƵŝĚ MĞĐŚĂŶŝĐƐ͕ ϯϬ;ϭͿ͕ ϱϯϵͲϱϳϴ͘ ĚŽŝ͗ϭϬ͘ϭϭϰϲͬĂŶŶƵƌĞǀ͘ĨůƵŝĚ͘ϯϬ͘ϭ͘ϱϯϵ ϴϮϴ 

MŽŵĞŶ͕ A͘ M͕͘ SŚĞƌŝĨ͕ S͘ A͕͘ Θ LĞĂƌ͕ W͘ ;ϮϬϭϲͿ͘ AŶ AŶĂůǇƚŝĐĂůͲNƵŵĞƌŝĐĂů MŽĚĞů ĨŽƌ TǁŽͲPŚĂƐĞ SůƵŐ ϴϮϵ 
FůŽǁ ƚŚƌŽƵŐŚ Ă SƵĚĚĞŶ AƌĞĂ CŚĂŶŐĞ ŝŶ MŝĐƌŽĐŚĂŶŶĞůƐ͘ JŽƵƌŶĂů ŽĨ AƉƉůŝĞĚ FůƵŝĚ MĞĐŚĂŶŝĐƐ͕ ϴϯϬ 
VŽů͘ ϵ͕ NŽ͘ ϰ͕ ƉƉ͘ ϭϴϯϵͲϭϴϱϬ͘  ϴϯϭ 

MŽŽĚǇ͕ L͘ F͘ ;ϭϵϰϰͿ͘ FƌŝĐƚŝŽŶ FĂĐƚŽƌƐ ĨŽƌ PŝƉĞ FůŽǁ͘ TƌĂŶƐĂĐƚŝŽŶƐ ŽĨ ƚŚĞ AŵĞƌŝĐĂŶ SŽĐŝĞƚǇ ŽĨ ϴϯϮ 
MĞĐŚĂŶŝĐĂů EŶŐŝŶĞĞƌƐ͕ ϲϲ͕ ϲϳϭͲϲϴϭ͘  ϴϯϯ 

MŽƐƚĂŐŚŝŵŝ͕ P͕͘ BŝũĞůũŝĐ͕ B͕͘ Θ BůƵŶƚ͕ M͘ ;ϮϬϭϮͿ͘ SŝŵƵůĂƚŝŽŶ ŽĨ FůŽǁ ĂŶĚ DŝƐƉĞƌƐŝŽŶ ŽŶ PŽƌĞͲSƉĂĐĞ ϴϯϰ 
IŵĂŐĞƐ͘ ĚŽŝ͗ϭϬ͘ϮϭϭϴͬϭϯϱϮϲϭͲPA ϴϯϱ 

MŽƵƐĂǀŝ NĞǌŚĂĚ͕ M͕͘ Θ JĂǀĂĚŝ͕ A͘ A͘ ;ϮϬϭϭͿ͘ SƚŽĐŚĂƐƚŝĐ FŝŶŝƚĞͲEůĞŵĞŶƚ AƉƉƌŽĂĐŚ ƚŽ QƵĂŶƚŝĨǇ ĂŶĚ ϴϯϲ 
RĞĚƵĐĞ UŶĐĞƌƚĂŝŶƚǇ ŝŶ PŽůůƵƚĂŶƚ TƌĂŶƐƉŽƌƚ MŽĚĞůŝŶŐ͘ JŽƵƌŶĂů ŽĨ HĂǌĂƌĚŽƵƐ͕ TŽǆŝĐ͕ ĂŶĚ ϴϯϳ 
RĂĚŝŽĂĐƚŝǀĞ WĂƐƚĞ͕ ϭϱ;ϯͿ͕ ϮϬϴͲϮϭϱ͘ ĚŽŝ͗ĚŽŝ͗ϭϬ͘ϭϬϲϭͬ;ASCEͿH)͘ϭϵϰϰͲϴϯϳϲ͘ϬϬϬϬϬϱϱ ϴϯϴ 

MŽƵƐĂǀŝ NĞǌŚĂĚ͕ M͕͘ JĂǀĂĚŝ͕ A͘ A͕͘ Θ RĞǌĂŶŝĂ͕ M͘ ;ϮϬϭϭͿ͘ MŽĚĞůŝŶŐ ŽĨ ĐŽŶƚĂŵŝŶĂŶƚ ƚƌĂŶƐƉŽƌƚ ŝŶ ƐŽŝůƐ ϴϯϵ 
ĐŽŶƐŝĚĞƌŝŶŐ ƚŚĞ ĞĨĨĞĐƚƐ ŽĨ ŵŝĐƌŽͲ ĂŶĚ ŵĂĐƌŽͲŚĞƚĞƌŽŐĞŶĞŝƚǇ͘ JŽƵƌŶĂů ŽĨ HǇĚƌŽůŽŐǇ͕ ϰϬϰ;ϯͿ͕ ϴϰϬ 
ϯϯϮͲϯϯϴ͘ ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ũŚǇĚƌŽů͘ϮϬϭϭ͘Ϭϱ͘ϬϬϰ ϴϰϭ 

MƵůũĂĚŝ͕ B͘ P͕͘ BůƵŶƚ͕ M͘ J͕͘ RĂĞŝŶŝ͕ A͘ Q͕͘ Θ BŝũĞůũŝĐ͕ B͘ ;ϮϬϭϱͿ͘ TŚĞ ŝŵƉĂĐƚ ŽĨ ƉŽƌŽƵƐ ŵĞĚŝĂ ϴϰϮ 
ŚĞƚĞƌŽŐĞŶĞŝƚǇ ŽŶ ŶŽŶͲDĂƌĐǇ ĨůŽǁ ďĞŚĂǀŝŽƵƌ ĨƌŽŵ ƉŽƌĞͲƐĐĂůĞ ƐŝŵƵůĂƚŝŽŶ͘ AĚǀĂŶĐĞƐ ŝŶ WĂƚĞƌ ϴϰϯ 
RĞƐŽƵƌĐĞƐ͘ ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĂĚǀǁĂƚƌĞƐ͘ϮϬϭϱ͘Ϭϱ͘Ϭϭϵ ϴϰϰ 

OŽƐƚƌŽŵ͕ M͕͘ MĞŚŵĂŶŝ͕ Y͕͘ RŽŵĞƌŽͲGŽŵĞǌ͕ P͕͘ TĂŶŐ͕ Y͕͘ LŝƵ͕ H͕͘ YŽŽŶ͕ H͕͘ KĂŶŐ͕ Q͕͘ JŽĞŬĂƌͲNŝĂƐĂƌ͕ V͕͘ ϴϰϱ 
BĂůŚŽĨĨ͕ M͘ T͕͘ DĞǁĞƌƐ͕ T͕͘ TĂƌƚĂŬŽǀƐŬǇ͕ G͘ D͕͘ LĞŝƐƚ͕ E͘ A͕͘ HĞƐƐ͕ N͘ J͕͘ PĞƌŬŝŶƐ͕ W͘ A͕͘ ϴϰϲ 
RĂŬŽǁƐŬŝ͕ C͘ L͕͘ RŝĐŚŵŽŶĚ͕ M͘ C͕͘ SĞƌŬŽǁƐŬŝ͕ J͘ A͕͘ WĞƌƚŚ͕ C͘ J͕͘ VĂůŽĐĐŚŝ͕ A͘ J͕͘ WŝĞƚƐŵĂ͕ T͘ ϴϰϳ 
W͕͘ Θ )ŚĂŶŐ͕ C͘ ;ϮϬϭϲͿ͘ PŽƌĞͲƐĐĂůĞ ĂŶĚ ĐŽŶƚŝŶƵƵŵ ƐŝŵƵůĂƚŝŽŶƐ ŽĨ ƐŽůƵƚĞ ƚƌĂŶƐƉŽƌƚ ϴϰϴ 
ŵŝĐƌŽŵŽĚĞů ďĞŶĐŚŵĂƌŬ ĞǆƉĞƌŝŵĞŶƚƐ͘ CŽŵƉƵƚĂƚŝŽŶĂů GĞŽƐĐŝĞŶĐĞƐ͕ ϮϬ;ϰͿ͕ ϴϱϳͲϴϳϵ͘ ϴϰϵ 
ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϬϱϵϲͲϬϭϰͲϵϰϮϰͲϬ ϴϱϬ 

OƌĞŶ͕ P͘ E͕͘ BĂŬŬĞ͕ S͕͘ Θ AƌŶƚǌĞŶ͕ O͘ J͘ ;ϭϵϵϴͿ͘ EǆƚĞŶĚŝŶŐ PƌĞĚŝĐƚŝǀĞ CĂƉĂďŝůŝƚŝĞƐ ƚŽ NĞƚǁŽƌŬ MŽĚĞůƐ͘ ϴϱϭ 
ĚŽŝ͗ϭϬ͘ϮϭϭϴͬϱϮϬϱϮͲPA ϴϱϮ 

PĂŵƵŬ͕ M͘ T͕͘ Θ ÖǌĚĞŵŝƌ͕ M͘ ;ϮϬϭϮͿ͘ FƌŝĐƚŝŽŶ ĨĂĐƚŽƌ͕ ƉĞƌŵĞĂďŝůŝƚǇ ĂŶĚ ŝŶĞƌƚŝĂů ĐŽĞĨĨŝĐŝĞŶƚ ŽĨ ϴϱϯ 
ŽƐĐŝůůĂƚŝŶŐ ĨůŽǁ ƚŚƌŽƵŐŚ ƉŽƌŽƵƐ ŵĞĚŝĂ ŽĨ ƉĂĐŬĞĚ ďĂůůƐ͘ EǆƉĞƌŝŵĞŶƚĂů TŚĞƌŵĂů ĂŶĚ FůƵŝĚ ϴϱϰ 
SĐŝĞŶĐĞ͕ ϯϴ͕ ϭϯϰͲϭϯϵ͘ ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ĞǆƉƚŚĞƌŵĨůƵƐĐŝ͘ϮϬϭϭ͘ϭϮ͘ϬϬϮ ϴϱϱ 

PĂƚǌĞŬ͕ T͘ W͕͘ Θ SŝůŝŶ͕ D͘ B͘ ;ϮϬϬϭͿ͘ SŚĂƉĞ FĂĐƚŽƌ ĂŶĚ HǇĚƌĂƵůŝĐ CŽŶĚƵĐƚĂŶĐĞ ŝŶ NŽŶĐŝƌĐƵůĂƌ ϴϱϲ 
CĂƉŝůůĂƌŝĞƐ͘ JŽƵƌŶĂů ŽĨ CŽůůŽŝĚ ĂŶĚ IŶƚĞƌĨĂĐĞ SĐŝĞŶĐĞ͕ Ϯϯϲ;ϮͿ͕ ϮϵϱͲϯϬϰ͘ ϴϱϳ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϬϲͬũĐŝƐ͘ϮϬϬϬ͘ϳϰϭϯ ϴϱϴ 



  ϯϱ 

PŽŝŶƐŽƚ͕ T͕͘ CĂŶĚĞů͕ S͕͘ Θ TƌŽƵǀĠ͕ A͘ ;ϭϵϵϱͿ͘ AƉƉůŝĐĂƚŝŽŶƐ ŽĨ ĚŝƌĞĐƚ ŶƵŵĞƌŝĐĂů ƐŝŵƵůĂƚŝŽŶ ƚŽ ƉƌĞŵŝǆĞĚ ϴϱϵ 
ƚƵƌďƵůĞŶƚ ĐŽŵďƵƐƚŝŽŶ͘ PƌŽŐƌĞƐƐ ŝŶ EŶĞƌŐǇ ĂŶĚ CŽŵďƵƐƚŝŽŶ SĐŝĞŶĐĞ͕ Ϯϭ;ϲͿ͕ ϱϯϭͲϱϳϲ͘ ϴϲϬ 
ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬϬϯϲϬͲϭϮϴϱ;ϵϱͿϬϬϬϭϭͲϵ ϴϲϭ 

PŽŝƐĞƵŝůůĞ͕ J͘ L͘ M͘ ;ϭϴϰϭͿ͘ RĞĐŚĞƌĐŚĞƐ ĞǆƉĠƌŝŵĞŶƚĂůĞƐ ƐƵƌ ůĞ ŵŽƵǀĞŵĞŶƚ ĚĞƐ ůŝƋƵŝĚĞƐ ĚĂŶƐ ůĞƐ ƚƵďĞƐ ϴϲϮ 
ĚĞ ƚƌğƐ ƉĞƚŝƚƐ ĚŝĂŵğƐƚƌĞƐ͘ MĞŵŽŝƌĞƐ PƌĞƐĞŶƚĞƐ ƉĂƌ DŝǀĞƌƐ SĂǀĂŶƚƐ Ă ů AĐĂĚĞŵŝĞ RŽǇĂů ĚĞ ů ϴϲϯ 
IŶƐƚŝƚƵƚ ĚĞ FƌĂŶĐĞ͕ϵ͗ ϰϯϯͲϱϰϰ͘  ϴϲϰ 

PƌŽĚĂŶŽǀŝđ͕ M͕͘ Θ BƌǇĂŶƚ͕ S͘ L͘ ;ϮϬϬϲͿ͘ A ůĞǀĞů ƐĞƚ ŵĞƚŚŽĚ ĨŽƌ ĚĞƚĞƌŵŝŶŝŶŐ ĐƌŝƚŝĐĂů ĐƵƌǀĂƚƵƌĞƐ ĨŽƌ ϴϲϱ 
ĚƌĂŝŶĂŐĞ ĂŶĚ ŝŵďŝďŝƚŝŽŶ͘ JŽƵƌŶĂů ŽĨ CŽůůŽŝĚ ĂŶĚ IŶƚĞƌĨĂĐĞ SĐŝĞŶĐĞ͕ ϯϬϰ;ϮͿ͕ ϰϰϮͲϰϱϴ͘ ϴϲϲ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ũĐŝƐ͘ϮϬϬϲ͘Ϭϴ͘Ϭϰϴ ϴϲϳ 

RĂĞŝŶŝ͕ A͘ Q͕͘ BŝũĞůũŝĐ͕ B͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϭϳͿ͘ GĞŶĞƌĂůŝǌĞĚ ŶĞƚǁŽƌŬ ŵŽĚĞůŝŶŐ͗ NĞƚǁŽƌŬ ĞǆƚƌĂĐƚŝŽŶ ĂƐ ϴϲϴ 
Ă ĐŽĂƌƐĞͲƐĐĂůĞ ĚŝƐĐƌĞƚŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ǀŽŝĚ ƐƉĂĐĞ ŽĨ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ PŚǇƐŝĐĂů RĞǀŝĞǁ E͕ ϵϲ;ϭͿ͕ ϴϲϵ 
ϬϭϯϯϭϮ͘ ĚŽŝ͗ϭϬ͘ϭϭϬϯͬPŚǇƐRĞǀE͘ϵϲ͘ϬϭϯϯϭϮ ϴϳϬ 

RĂĞŝŶŝ͕ A͘ Q͕͘ BŝũĞůũŝĐ͕ B͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϭϴͿ͘ GĞŶĞƌĂůŝǌĞĚ ŶĞƚǁŽƌŬ ŵŽĚĞůŝŶŐ ŽĨ ĐĂƉŝůůĂƌǇͲĚŽŵŝŶĂƚĞĚ ϴϳϭ 
ƚǁŽͲƉŚĂƐĞ ĨůŽǁ͘ PŚǇƐŝĐĂů RĞǀŝĞǁ E͕ ϵϳ;ϮͿ͕ ϬϮϯϯϬϴ͘ ĚŽŝ͗ϭϬ͘ϭϭϬϯͬPŚǇƐRĞǀE͘ϵϳ͘ϬϮϯϯϬϴ ϴϳϮ 

RĂĞŝŶŝ͕ A͘ Q͕͘ BůƵŶƚ͕ M͘ J͕͘ Θ BŝũĞůũŝĐ͕ B͘ ;ϮϬϭϮͿ͘ MŽĚĞůůŝŶŐ ƚǁŽͲƉŚĂƐĞ ĨůŽǁ ŝŶ ƉŽƌŽƵƐ ŵĞĚŝĂ Ăƚ ƚŚĞ ƉŽƌĞ ϴϳϯ 
ƐĐĂůĞ ƵƐŝŶŐ ƚŚĞ ǀŽůƵŵĞͲŽĨͲĨůƵŝĚ ŵĞƚŚŽĚ͘ JŽƵƌŶĂů ŽĨ CŽŵƉƵƚĂƚŝŽŶĂů PŚǇƐŝĐƐ͕ Ϯϯϭ;ϭϳͿ͕ ϱϲϱϯͲϴϳϰ 
ϱϲϲϴ͘ ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ũĐƉ͘ϮϬϭϮ͘Ϭϰ͘Ϭϭϭ ϴϳϱ 

RƵƚŚ͕ D͕͘ Θ MĂ͕ H͘ ;ϭϵϵϮͿ͘ OŶ ƚŚĞ ĚĞƌŝǀĂƚŝŽŶ ŽĨ ƚŚĞ FŽƌĐŚŚĞŝŵĞƌ ĞƋƵĂƚŝŽŶ ďǇ ŵĞĂŶƐ ŽĨ ƚŚĞ ĂǀĞƌĂŐŝŶŐ ϴϳϲ 
ƚŚĞŽƌĞŵ͘ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͕ ϳ;ϯͿ͕ ϮϱϱͲϮϲϰ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬďĨϬϭϬϲϯϵϲϮ ϴϳϳ 

RƵƚŚ͕ D͘ W͕͘ Θ MĂ͕ H͘ ;ϭϵϵϯͿ͘ NƵŵĞƌŝĐĂů ĂŶĂůǇƐŝƐ ŽĨ ǀŝƐĐŽƵƐ͕ ŝŶĐŽŵƉƌĞƐƐŝďůĞ ĨůŽǁ ŝŶ Ă ĚŝǀĞƌŐŝŶŐͲϴϳϴ 
ĐŽŶǀĞƌŐŝŶŐ RUC͘ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͕ ϭϯ;ϮͿ͕ ϭϲϭͲϭϳϳ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬďĨϬϬϲϱϰϰϬϴ ϴϳϵ 

SĂŚŝŵŝ͕ M͘ ;ϮϬϭϭͿ͘ CŽŶƚŝŶƵƵŵ ǀĞƌƐƵƐ DŝƐĐƌĞƚĞ MŽĚĞůƐ͘ IŶ FůŽǁ ĂŶĚ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ ĂŶĚ ϴϴϬ 
FƌĂĐƚƵƌĞĚ RŽĐŬ͘ ϴϴϭ 

TĂƌƚĂŬŽǀƐŬǇ͕ A͘ M͕͘ TƌĂƐŬ͕ N͕͘ PĂŶ͕ K͕͘ JŽŶĞƐ͕ B͕͘ PĂŶ͕ W͕͘ Θ WŝůůŝĂŵƐ͕ J͘ R͘ ;ϮϬϭϱͿ͘ SŵŽŽƚŚĞĚ ƉĂƌƚŝĐůĞ ϴϴϮ 
ŚǇĚƌŽĚǇŶĂŵŝĐƐ ĂŶĚ ŝƚƐ ĂƉƉůŝĐĂƚŝŽŶƐ ĨŽƌ ŵƵůƚŝƉŚĂƐĞ ĨůŽǁ ĂŶĚ ƌĞĂĐƚŝǀĞ ƚƌĂŶƐƉŽƌƚ ŝŶ ƉŽƌŽƵƐ ϴϴϯ 
ŵĞĚŝĂ͘ CŽŵƉƵƚĂƚŝŽŶĂů GĞŽƐĐŝĞŶĐĞƐ͕ ϭͲϮϴ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϬϱϵϲͲϬϭϱͲϵϰϲϴͲϵ ϴϴϰ 

TŚĂƵǀŝŶ͕ F͕͘ Θ MŽŚĂŶƚǇ͕ K͘ K͘ ;ϭϵϵϴͿ͘ NĞƚǁŽƌŬ MŽĚĞůŝŶŐ ŽĨ NŽŶͲDĂƌĐǇ FůŽǁ TŚƌŽƵŐŚ PŽƌŽƵƐ MĞĚŝĂ͘ ϴϴϱ 
TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͕ ϯϭ;ϭͿ͕ ϭϵͲϯϳ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϯͬĂ͗ϭϬϬϲϱϱϴϵϮϲϲϬϲ ϴϴϲ 

VĂĨĂŝ͕ K͕͘ Θ TŝĞŶ͕ C͘ L͘ ;ϭϵϴϭͿ͘ BŽƵŶĚĂƌǇ ĂŶĚ ŝŶĞƌƚŝĂ ĞĨĨĞĐƚƐ ŽŶ ĨůŽǁ ĂŶĚ ŚĞĂƚ ƚƌĂŶƐĨĞƌ ŝŶ ƉŽƌŽƵƐ ϴϴϳ 
ŵĞĚŝĂ͘ IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ŽĨ HĞĂƚ ĂŶĚ MĂƐƐ TƌĂŶƐĨĞƌ͕ Ϯϰ;ϮͿ͕ ϭϵϱͲϮϬϯ͘ ϴϴϴ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬϬϬϭϳͲϵϯϭϬ;ϴϭͿϵϬϬϮϳͲϮ ϴϴϵ 

VĂůǀĂƚŶĞ͕ P͘ H͕͘ Θ BůƵŶƚ͕ M͘ J͘ ;ϮϬϬϰͿ͘ PƌĞĚŝĐƚŝǀĞ ƉŽƌĞͲƐĐĂůĞ ŵŽĚĞůŝŶŐ ŽĨ ƚǁŽͲƉŚĂƐĞ ĨůŽǁ ŝŶ ŵŝǆĞĚ ǁĞƚ ϴϵϬ 
ŵĞĚŝĂ͘ WĂƚĞƌ RĞƐŽƵƌĐĞƐ RĞƐĞĂƌĐŚ͕ ϰϬ;ϳͿ͕ WϬϳϰϬϲ͘ ĚŽŝ͗ϭϬ͘ϭϬϮϵͬϮϬϬϯWRϬϬϮϲϮϳ ϴϵϭ 

WĂŶŐ͕ X͕͘ TŚĂƵǀŝŶ͕ F͕͘ Θ MŽŚĂŶƚǇ͕ K͘ K͘ ;ϭϵϵϵͿ͘ NŽŶͲDĂƌĐǇ ĨůŽǁ ƚŚƌŽƵŐŚ ĂŶŝƐŽƚƌŽƉŝĐ ƉŽƌŽƵƐ ŵĞĚŝĂ͘ ϴϵϮ 
CŚĞŵŝĐĂů EŶŐŝŶĞĞƌŝŶŐ SĐŝĞŶĐĞ͕ ϱϰ;ϭϮͿ͕ ϭϴϱϵͲϭϴϲϵ͘ ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬSϬϬϬϵͲϴϵϯ 
ϮϱϬϵ;ϵϵͿϬϬϬϭϴͲϰ ϴϵϰ 

WŝůŬŝŶƐŽŶ͕ D͘ ;ϭϵϴϰͿ͘ PĞƌĐŽůĂƚŝŽŶ ŵŽĚĞů ŽĨ ŝŵŵŝƐĐŝďůĞ ĚŝƐƉůĂĐĞŵĞŶƚ ŝŶ ƚŚĞ ƉƌĞƐĞŶĐĞ ŽĨ ďƵŽǇĂŶĐǇ ϴϵϱ 
ĨŽƌĐĞƐ͘ PŚǇƐŝĐĂů RĞǀŝĞǁ A͕ ϯϬ;ϭͿ͕ ϱϮϬͲϱϯϭ͘  ϴϵϲ 

WƵ͕ J͕͘ HƵ͕ D͕͘ Lŝ͕ W͕͘ Θ CĂŝ͕ X͘ I͘ N͘ ;ϮϬϭϲͿ͘ A ƌĞǀŝĞǁ ŽŶ ŶŽŶͲDĂƌĐǇ ĨůŽǁͲFŽƌĐŚŚĞŝŵĞƌ ĞƋƵĂƚŝŽŶ͕ ϴϵϳ 
HǇĚƌĂƵůŝĐ ƌĂĚŝƵƐ ŵŽĚĞů͕ ĨƌĂĐƚĂů ŵŽĚĞů ĂŶĚ ĞǆƉĞƌŝŵĞŶƚ͘ FƌĂĐƚĂůƐ͕ Ϯϰ;ϬϮͿ͕ ϭϲϯϬϬϬϭ͘ ϴϵϴ 
ĚŽŝ͗ϭϬ͘ϭϭϰϮͬSϬϮϭϴϯϰϴXϭϲϯϬϬϬϭϰ ϴϵϵ 

XŝŽŶŐ͕ Q͕͘ BĂǇĐŚĞǀ͕ T͘ G͕͘ Θ JŝǀŬŽǀ͕ A͘ P͘ ;ϮϬϭϲͿ͘ RĞǀŝĞǁ ŽĨ ƉŽƌĞ ŶĞƚǁŽƌŬ ŵŽĚĞůůŝŶŐ ŽĨ ƉŽƌŽƵƐ ŵĞĚŝĂ͗ ϵϬϬ 
EǆƉĞƌŝŵĞŶƚĂů ĐŚĂƌĂĐƚĞƌŝƐĂƚŝŽŶƐ͕ ŶĞƚǁŽƌŬ ĐŽŶƐƚƌƵĐƚŝŽŶƐ ĂŶĚ ĂƉƉůŝĐĂƚŝŽŶƐ ƚŽ ƌĞĂĐƚŝǀĞ ϵϬϭ 
ƚƌĂŶƐƉŽƌƚ͘ JŽƵƌŶĂů ŽĨ CŽŶƚĂŵŝŶĂŶƚ HǇĚƌŽůŽŐǇ͕ ϭϵϮ͕ ϭϬϭͲϭϭϳ͘ ϵϬϮ 
ĚŽŝ͗ŚƚƚƉ͗ͬͬĚǆ͘ĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ũĐŽŶŚǇĚ͘ϮϬϭϲ͘Ϭϳ͘ϬϬϮ ϵϬϯ 

)ĞŶŐ͕ )͕͘ Θ GƌŝŐŐ͕ R͘ ;ϮϬϬϲͿ͘ A CƌŝƚĞƌŝŽŶ ĨŽƌ NŽŶͲDĂƌĐǇ FůŽǁ ŝŶ PŽƌŽƵƐ MĞĚŝĂ͘ TƌĂŶƐƉŽƌƚ ŝŶ PŽƌŽƵƐ ϵϬϰ 
MĞĚŝĂ͕ ϲϯ;ϭͿ͕ ϱϳͲϲϵ͘ ĚŽŝ͗ϭϬ͘ϭϬϬϳͬƐϭϭϮϰϮͲϬϬϱͲϮϳϮϬͲϯ ϵϬϱ 

)ŚĂŶŐ͕ J͕͘ Θ XŝŶŐ͕ H͘ ;ϮϬϭϮͿ͘ NƵŵĞƌŝĐĂů ŵŽĚĞůŝŶŐ ŽĨ ŶŽŶͲDĂƌĐǇ ĨůŽǁ ŝŶ ŶĞĂƌͲǁĞůů ƌĞŐŝŽŶ ŽĨ Ă ϵϬϲ 
ŐĞŽƚŚĞƌŵĂů ƌĞƐĞƌǀŽŝƌ͘ GĞŽƚŚĞƌŵŝĐƐ͕ ϰϮ͕ ϳϴͲϴϲ͘ ϵϬϳ 
ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ŐĞŽƚŚĞƌŵŝĐƐ͘ϮϬϭϭ͘ϭϭ͘ϬϬϮ ϵϬϴ 



  ϯϲ 

)ŝŵŵĞƌŵĂŶ͕ R͘ W͕͘ AůͲYĂĂƌƵďŝ͕ A͕͘ PĂŝŶ͕ C͘ C͕͘ Θ GƌĂƚƚŽŶŝ͕ C͘ A͘ ;ϮϬϬϰͿ͘ NŽŶͲůŝŶĞĂƌ ƌĞŐŝŵĞƐ ŽĨ ĨůƵŝĚ ϵϬϵ 
ĨůŽǁ ŝŶ ƌŽĐŬ ĨƌĂĐƚƵƌĞƐ͘ IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ŽĨ RŽĐŬ MĞĐŚĂŶŝĐƐ ĂŶĚ MŝŶŝŶŐ SĐŝĞŶĐĞƐ͕ ϰϭ͕ ϭϲϯͲϵϭϬ 
ϭϲϵ͘ ĚŽŝ͗ŚƚƚƉƐ͗ͬͬĚŽŝ͘ŽƌŐͬϭϬ͘ϭϬϭϲͬũ͘ŝũƌŵŵƐ͘ϮϬϬϰ͘Ϭϯ͘Ϭϯϲ ϵϭϭ 

 ϵϭϮ 
 ϵϭϯ 


