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ABSTRACT 
 

Facilitating the revolution for smarter cities, vehicles are getting smarter and equipped with more resources to go 
beyond transportation functionality. On-Board Units (OBU) are efficient computers inside vehicles that serve 
safety and non-safety based applications. However, much of these resources are underutilised. On the other hand, 
more users are relying now on cloud computing which is becoming costly and energy consuming. In this paper, 
we develop a Mixed Integer linear Programming (MILP) model that optimizes the allocation of processing 
demands in an architecture that encompasses the vehicles, edge and cloud computing with the objective of 
minimizing power consumption. The results show power savings of 70%-90% compared to conventional clouds 
for small demands. For medium and large demand sizes, the results show 20%-30% power saving as the cloud 
was used partially due to capacity limitations on the vehicular and edge nodes. 

Keywords: Distributed Processing, Wireless, Edge Nodes, Vehicular Networks, 

1. INTROUCTION 
End users are growing more dependent on cloud services and data centers [1]. As the demand on cloud services 
grows higher, the data centers, as expected, tend to grow even bigger and more expensive in term of both monetary 
cost and energy consumptions. The energy consumption of clouds and data centers is contributing much to the 
total cost and power consumption in the Information and Communication Technology (ICT) field. That is why a 
lot of effort is being put forward now to explore alternatives that are more energy efficient and still as powerful 
[2-11]. One approach that is being actively evaluated is distributed service providers or the installation of mini 
data centers close to end users’ level.  In [12] data processing is done at different layers of the network and not 
only in the core cloud through optimized placement of Virtual Machines (VM) in IoT devices. Comparison 
between centralized data centers and nano data centers, to show the validity of the small data centers and its 
impacting factors, was carried out in [13]. The work in [14] analysed the energy consumption and latency of 
computation offloading in mobile clouds.  

Modern vehicles are increasingly being viewed as smart machines with plenty of computing resources. Research 
in the area of vehicular networks is very promising and it varies from Internet of Vehicles (IoV) [15] to Vehicular 
Clouds to VaaR (vehicle as a Resource) [16]. Our work presents an end-to-end architecture that uses vehicular 
and edge computing as the first level of processing resources. It compares this architecture with conventional 
clouds from an energy consumption point of view.  For the remainder or the paper, Section 2 presents the proposed 
architecture. Section 3 discusses the optimization model and its results, and in Section 4 the paper is concluded.  

2. VEHICULAR DISTRIBUTED COMPUTING ARCHITECTURE 
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The architecture is divided into three layers, as can be seen in Figure 1. The first layer is made of the vehicles. 
Modern vehicles are now equipped with On Board Units (OBU) of very high computational performance and 
communication capabilities. They form the first choice for processing destination. The second layer is formed of 
edge nodes. It provides second level for processing destination close to end user through dedicated servers. Both 
of these layers are in the local tier of the architecture. The last layer is the conventional cloud servers, which are 
geographically distant but of powerful computing capabilities. The edge and core switches and routers architecture 
is based on [17]. The model assumes the vehicles and the edge nodes communicate using one or more wireless 
interfaces such as Dedicated Short Range Communication (DSRC) and WiFi. It is assumed that the source node 
(the one that has the request) has knowledge of the available resources of the other nodes, and it chooses where 
to send its request to be served. This forms distributed type of dynamic control, which can be implemented using 
Software-Defined Network (SDN) concepts [18, 19].  

3. OPTIMISATION MODEL AND RESULTS 
We developed a Mixed Integer linear Programming (MILP) model to optimise the location in which a demand is 
served with minimum power consumption. The power consumed in transmission, reception, and processing, 
increasing linearly with the demand, are calculated for each of the nodes used, in addition to the idle power for 
each one. The model ensures the conservation of processing capacity of each node, as well as the communication 
interface bandwidth capacity. Also, the full traffic is sent to every processing node regardless of the assigned 
processing in it.  The model is evaluated in a parking lot with 20 cars parked within 150 meters from each other, 
communicating using the DSRC interface. The parking lot is surrounded by 4 edge nodes, and each node is 
connected to 5 vehicles through the WiFi. Each edge node is composed of a server and an access point and they 
can also communicate with each other using WiFi. Demands are generated by the vehicles and are composed of 
two parts, the data to be sent (traffic in kbps), and the processing it requires (MIPS). We use the estimations made 
in [20] for the traffic and the associated processing, where it takes 2000 instructions per bit for the video generation 
application that is selected as an example for the evaluation. Table 1 shows the parameters values for the three 
types of processing nodes. Cloud servers are highly efficient with processing efficiency of 4 instructions per cycle 
[27]. For edge nodes we considered processing efficiency of 3 instructions per cycle. The OBUs in vehicles are 
efficient enough to accommodate real-time and safety applications with 2 instructions per cycle for the vehicles. 
We assumed the power consumption in the cloud server and in the edge nodes server (the Raspberry Pi in Table 
1) to be consumed fully in processing. The communication power in the edge, on the other hand, is solely 
consumed by the access point, while for cloud the communication power is the power consumed in the routers 
and switches leading to it. For the vehicles  the same approach in [21] is followed where a typical type of computer 
is said to dedicate 58% of its power consumption to processing and 21% to communication, and the rest to storage.  

TĂďůĞ ϭ͗ ƉĞƌĨŽƌŵĂŶĐĞ ĞǀĂůƵĂƚŝŽŶ ƉĂƌĂŵĞƚĞƌƐ 

Parameter Values for vehicles Values for edge nodes Values for the cloud 
servers 

Max power  10 W [22] AP = 25 W, Raspberry Pi 
= 12.5 W [23, 24] 

301 W [25] 

Idle power   5 W [22] AP = 5.5 W Raspberry Pi 
= 2 W [23, 24] 

201 W [25] 

Processor  800 MHz [22] 1.2 GHz [24] 2.5 GHz  [25] 
Processing capacity   2 * 800 = 1600 MIPS  3 * 1.2 = 3600 MIPS Unlimited (10000 per 

server and assuming 
multiple servers) 

DSRC communication 
capacity 

27 Mb/s  N/A N/A 

WiFi communication 
Capacity  

150 Mb/s [23] 150 Mb/s [23] N/A 

Processing efficiency
  

1600/(5*0.58)=550 
MIPS/W 

3600/(10.5)=340 
MIPS/W 

10000/(100)=100 
MIPS/W 
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The model is evaluated for a varied number of requests ranging from 1 to 10 requests of equal demands initiated 
by vehicles. The demands are classified into low, medium and high based on the size of the single demand and 
consequently the total demand. Three demand values representing small video (2880 MIPS), medium video (2 
times bigger) and large video (4 times bigger), were used and the traffic was generated according to [20]. The 
model decides where to serve each and how many nodes to use. We use the term “serve locally” to indicate the 
use of vehicles and edge node.   

Figure 2 shows the total power consumption at the three levels of processing resources available (vehicles, edge 
nodes, cloud) under the three demand levels as the number of requests increases. For small demands, it is most 
power efficient to serve them locally at all times. As for medium demand sizes, the demands are served locally if 
the requester processing demand is within local processing capacity. For 9 and 10 requests, the vehicles and edge 
nodes were no longer enough to serve the full processing demand, therefore, the part exceeding the vehicles and 
edge nodes capacities was sent to the cloud, which explains the large increase in the power consumption when 
compared with 8 requests. The same trend is noticed in the high demands’ values but at lower number of requests. 
The processing capacities of the vehicles and edge nodes were exceeded after 4 requests due the large demand 
size which creates competition on the use of local resources.  

Figure 3 shows the power saving percentage comparing local processing with the conventional cloud. The small 
demand values experience power saving between 90% for a single request and 74% for 10 requests. For the 
medium demand values, the power saving is slightly less than the small demands with power saving of 87% for a 
single request and decreasing to 68% for 8 requests. For the high demands, the power saving starts at 81 % for 
single requests and drops to 66% for 4 requests. This reduction in power saving is due to the need for more service 
nodes as the demand increases. The increase in serving nodes means more idle power is used as well as more 
redundancy in the traffic since each serving node needs to receive the full amount of traffic. For the medium and 
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high demand values, the substantial drop in power saving happens at 9 requests and 5 requests respectively. These 
are the instances when the model was forced, by limitation of processing capacity of vehicles and edge nodes, to 
the cloud to be served, causing the power saving to drop to levels of 20%-30%.

4. CONCLUSIONS 
In this paper, we presented a distributed service architecture based on vehicular network and edge computing for 
processing demands originating from stationary vehicles. A MILP model was developed to minimise the power 
consumption by optimising the use of vehicles and edge nodes to perform processing. The performance of the 
model was evaluated for three processing demand volumes and the results were compared with the use of 
conventional cloud servers to serve all the demands. The model shows power savings up to 90% for smaller 
demand values, and a gradual decrease in savings for medium and high demands due to partial use of cloud 
servers. This saving can be improved by reducing the amount of demand forced into the cloud served, and this in 
turn can be achieved by increasing processing and communication capacities of vehicles and edge nodes. 
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΀ϭϯ΁ F͘ JĂůĂůŝ͕ R͘ AǇƌĞ͕ A͘ VŝƐŚǁĂŶĂƚŚ͕ K͘ HŝŶƚŽŶ͕ T͘ AůƉĐĂŶ͕ ĂŶĚ R͘ TƵĐŬĞƌ͕ ΗEŶĞƌŐǇ CŽŶƐƵŵƉƚŝŽŶ ŽĨ 
CŽŶƚĞŶƚ DŝƐƚƌŝďƵƚŝŽŶ ĨƌŽŵ NĂŶŽ DĂƚĂ CĞŶƚĞƌƐ ǀĞƌƐƵƐ CĞŶƚƌĂůŝǌĞĚ DĂƚĂ CĞŶƚĞƌƐ͕Η ACM 
SIGMETRICS PĞƌĨŽƌŵĂŶĐĞ EǀĂůƵĂƚŝŽŶ RĞǀŝĞǁ͕ ǀŽů͘ ϰϮ͕ ŶŽ͘ ϯ͕ ƉƉ͘ ϰϵͲϱϰ͕ ϮϬϭϰ͘ 

΀ϭϰ΁ C͘ RĂŐŽŶĂ͕ F͘ GƌĂŶĞůůŝ͕ C͘ FŝĂŶĚƌŝŶŽ͕ D͘ KůŝĂǌŽǀŝĐŚ͕ ĂŶĚ P͘ BŽƵǀƌǇ͕ ΗEŶĞƌŐǇͲEĨĨŝĐŝĞŶƚ 
CŽŵƉƵƚĂƚŝŽŶ OĨĨůŽĂĚŝŶŐ ĨŽƌ WĞĂƌĂďůĞ DĞǀŝĐĞƐ ĂŶĚ SŵĂƌƚƉŚŽŶĞƐ ŝŶ MŽďŝůĞ CůŽƵĚ 
CŽŵƉƵƚŝŶŐ͕Η ƉƉ͘ ϭͲϲ͗ IEEE͘ 



ICTON ϮϬϭϵ 

΀ϭϱ΁ E͘ͲK͘ LĞĞ͕ M͘ GĞƌůĂ͕ G͘ PĂƵ͕ U͘ LĞĞ͕ ĂŶĚ J͘ͲH͘ Lŝŵ͕ ΗIŶƚĞƌŶĞƚ ŽĨ VĞŚŝĐůĞƐ͗ FƌŽŵ ŝŶƚĞůůŝŐĞŶƚ ŐƌŝĚ 
ƚŽ ĂƵƚŽŶŽŵŽƵƐ ĐĂƌƐ ĂŶĚ ǀĞŚŝĐƵůĂƌ ĨŽŐƐ͕Η IŶƚĞƌŶĂƚŝŽŶĂů JŽƵƌŶĂů ŽĨ DŝƐƚƌŝďƵƚĞĚ SĞŶƐŽƌ 
NĞƚǁŽƌŬƐ͕ ǀŽů͘ ϭϮ͕ ŶŽ͘ ϵ͕ Ɖ͘ ϭϱϱϬϭϰϳϳϭϲϲϲϱϱϬϬ͕ ϮϬϭϲ͘ 

΀ϭϲ΁ S͘ AďĚĞůŚĂŵŝĚ͕ H͘ HĂƐƐĂŶĞŝŶ͕ ĂŶĚ G͘ TĂŬĂŚĂƌĂ͕ ΗVĞŚŝĐůĞ ĂƐ Ă ƌĞƐŽƵƌĐĞ ;VĂĂRͿ͕Η IEEE NĞƚǁŽƌŬ͕ 
ǀŽů͘ Ϯϵ͕ ŶŽ͘ ϭ͕ ƉƉ͘ ϭϮͲϭϳ͕ ϮϬϭϱ͘ 

΀ϭϳ΁ A͘ VŝƐŚǁĂŶĂƚŚ͕ F͘ JĂůĂůŝ͕ K͘ HŝŶƚŽŶ͕ T͘ AůƉĐĂŶ͕ R͘ W͘ A͘ AǇƌĞ͕ ĂŶĚ R͘ S͘ TƵĐŬĞƌ͕ ΗEŶĞƌŐǇ 
CŽŶƐƵŵƉƚŝŽŶ CŽŵƉĂƌŝƐŽŶ ŽĨ IŶƚĞƌĂĐƚŝǀĞ CůŽƵĚͲBĂƐĞĚ ĂŶĚ LŽĐĂů AƉƉůŝĐĂƚŝŽŶƐ͕Η IEEE JŽƵƌŶĂů 
ŽŶ SĞůĞĐƚĞĚ AƌĞĂƐ ŝŶ CŽŵŵƵŶŝĐĂƚŝŽŶƐ͕ ǀŽů͘ ϯϯ͕ ŶŽ͘ ϰ͕ ƉƉ͘ ϲϭϲͲϲϮϲ͕ ϮϬϭϱ͘ 

΀ϭϴ΁ S͘ CŽƌƌĞŝĂ͕ A͘ BŽƵŬĞƌĐŚĞ͕ ĂŶĚ R͘ I͘ MĞŶĞŐƵĞƚƚĞ͕ ΗAŶ AƌĐŚŝƚĞĐƚƵƌĞ ĨŽƌ HŝĞƌĂƌĐŚŝĐĂů SŽĨƚǁĂƌĞͲ
DĞĨŝŶĞĚ VĞŚŝĐƵůĂƌ NĞƚǁŽƌŬƐ͕Η IEEE CŽŵŵƵŶŝĐĂƚŝŽŶƐ MĂŐĂǌŝŶĞ͕ ǀŽů͘ ϱϱ͕ ŶŽ͘ ϳ͕ ƉƉ͘ ϴϬͲϴϲ͕ 
ϮϬϭϳ͘ 

΀ϭϵ΁ M͘ AďŽůŚĂƐĂŶ͕ J͘ LŝƉŵĂŶ͕ W͘ Nŝ͕ ĂŶĚ B͘ HĂŐĞůƐƚĞŝŶ͕ ΗSŽĨƚǁĂƌĞͲĚĞĨŝŶĞĚ ǁŝƌĞůĞƐƐ ŶĞƚǁŽƌŬŝŶŐ͗ 
ĐĞŶƚƌĂůŝǌĞĚ͕ ĚŝƐƚƌŝďƵƚĞĚ͕ Žƌ ŚǇďƌŝĚ͍͕Η IEEE NĞƚǁŽƌŬ͕ ǀŽů͘ Ϯϵ͕ ŶŽ͘ ϰ͕ ƉƉ͘ ϯϮͲϯϴ͕ ϮϬϭϱ͘ 

΀ϮϬ΁ M͘ BĂƌĐĞůŽ͕ A͘ CŽƌƌĞĂ͕ J͘ LůŽƌĐĂ͕ A͘ M͘ TƵůŝŶŽ͕ J͘ L͘ VŝĐĂƌŝŽ͕ ĂŶĚ A͘ MŽƌĞůů͕ ΗIŽTͲCůŽƵĚ SĞƌǀŝĐĞ 
OƉƚŝŵŝǌĂƚŝŽŶ ŝŶ NĞǆƚ GĞŶĞƌĂƚŝŽŶ SŵĂƌƚ EŶǀŝƌŽŶŵĞŶƚƐ͕Η IEEE JOURNAL ON SELECTED AREAS 
IN COMMUNICATIONS͕ ǀŽů͘ ϯϰ͕ ŶŽ͘ ϭϮ͕ ƉƉ͘ ϰϬϳϳͲϰϬϵϬ͕ ϮϬϭϲ͘ 

΀Ϯϭ΁ S͘ IŐĚĞƌ͕ S͘ BŚĂƚƚĂĐŚĂƌǇĂ͕ ĂŶĚ J͘ M͘ EůŵŝƌŐŚĂŶŝ͕ ΗEŶĞƌŐǇ ĞĨĨŝĐŝĞŶƚ ĨŽŐ ƐĞƌǀĞƌƐ ĨŽƌ IŶƚĞƌŶĞƚ ŽĨ 
TŚŝŶŐƐ ŝŶĨŽƌŵĂƚŝŽŶ ƉŝĞĐĞ ĚĞůŝǀĞƌǇ ;IŽTIPDͿ ŝŶ Ă ƐŵĂƌƚ ĐŝƚǇ ǀĞŚŝĐƵůĂƌ ĞŶǀŝƌŽŶŵĞŶƚ͕Η ŝŶ ϮϬϭϲ 
ϭϬƚŚ IŶƚĞƌŶĂƚŝŽŶĂů CŽŶĨĞƌĞŶĐĞ ŽŶ NĞǆƚ GĞŶĞƌĂƚŝŽŶ MŽďŝůĞ AƉƉůŝĐĂƚŝŽŶƐ͕ SĞĐƵƌŝƚǇ ĂŶĚ 
TĞĐŚŶŽůŽŐŝĞƐ ;NGMASTͿ͕ ϮϬϭϲ͕ ƉƉ͘ ϵϵͲϭϬϰ͗ IEEE͘ 

΀ϮϮ΁ SAVARI͘ ΗMŽďŝWAVE OŶ BŽĂƌĚ UŶŝƚΗ͘ ;ϮϬϭϴͿ͘ ΀OŶůŝŶĞ΁ ŚƚƚƉ͗ͬͬƐĂǀĂƌŝ͘ŶĞƚͬǁƉͲ
ĐŽŶƚĞŶƚͬƵƉůŽĂĚƐͬϮϬϭϳͬϬϱͬMWͲϭϬϬϬͺAƉƌŝůϮϬϭϳ͘ƉĚĨ͘ ΀AĐĐĞƐƐĞĚ͗ AƵŐƵƐƚ ϮϬϭϴ΁ 

΀Ϯϯ΁ RƵĐŬƵƐWŽƌŬƐ͘ ΗTϳϭϬ SĞƌŝĞƐ AĐĐĞƐƐ PŽŝŶƚƐΗ͘ ;ϮϬϭϳͿ͘ ΀OŶůŝŶĞ΁ 
ŚƚƚƉ͗ͬͬǁǁǁ͘ƌƵĐŬƵƐǁŽƌŬƐ͘ĐŽ͘ƵŬͬĚĂƚĂƐŚĞĞƚƐͬĚƐͲǌŽŶĞĨůĞǆͲƚϳϭϬͲƐĞƌŝĞƐ͘ƉĚĨ͘ ΀AĐĐĞƐƐĞĚ͗ OĐƚŽďĞƌ 
ϮϬϭϳ΁ 

΀Ϯϰ΁ G͘ BĞŬĂƌŽŽ ĂŶĚ A͘ SĂŶƚŽŬŚĞĞ͕ ΗPŽǁĞƌ ĐŽŶƐƵŵƉƚŝŽŶ ŽĨ ƚŚĞ RĂƐƉďĞƌƌǇ Pŝ͗ A ĐŽŵƉĂƌĂƚŝǀĞ 
ĂŶĂůǇƐŝƐ͕Η ŝŶ EŵĞƌŐŝŶŐ TĞĐŚŶŽůŽŐŝĞƐ ĂŶĚ IŶŶŽǀĂƚŝǀĞ BƵƐŝŶĞƐƐ PƌĂĐƚŝĐĞƐ ĨŽƌ ƚŚĞ TƌĂŶƐĨŽƌŵĂƚŝŽŶ 
ŽĨ SŽĐŝĞƚŝĞƐ ;EŵĞƌŐŝTĞĐŚͿ͕ IEEE IŶƚĞƌŶĂƚŝŽŶĂů CŽŶĨĞƌĞŶĐĞ ŽŶ͕ ϮϬϭϲ͕ ƉƉ͘ ϯϲϭͲϯϲϲ͗ IEEE͘ 

΀Ϯϱ΁ A͘ HĂŵŵĂĚŝ͕ M͘ MƵƐĂ͕ T͘ E͘ H͘ EůͲGŽƌĂƐŚŝ͕ ĂŶĚ J͘ H͘ EůŵŝƌŐŚĂŶŝ͕ ΗRĞƐŽƵƌĐĞ ƉƌŽǀŝƐŝŽŶŝŶŐ ĨŽƌ 
ĐůŽƵĚ PON AWGRͲďĂƐĞĚ ĚĂƚĂ ĐĞŶƚĞƌ ĂƌĐŚŝƚĞĐƚƵƌĞ͕Η ŝŶ ϮϬϭϲ ϮϭƐƚ EƵƌŽƉĞĂŶ CŽŶĨĞƌĞŶĐĞ ŽŶ 
NĞƚǁŽƌŬƐ ĂŶĚ OƉƚŝĐĂů CŽŵŵƵŶŝĐĂƚŝŽŶƐ ;NOCͿ͕ ϮϬϭϲ͕ ƉƉ͘ ϭϳϴͲϭϴϮ͘ 

 


