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Abstract

The STORM module of BOUT++ [L. Easy et al., Phys. Plasmas 21, 122515 (2014)] is generalized

to simulate plasma turbulence at the periphery of tokamak devices in diverted configuration and

it is used to carry out three-dimensional nonlinear flux-driven simulations in double null configu-

ration with realistic experimental parameters of an L-mode plasma discharge in the Mega Ampere

Spherical Tokamak (MAST). The reliability of STORM in modeling the scrape-off layer (SOL)

plasma dynamics is assessed by comparing the numerical results with experimental measurements

from a reciprocating Gundestrup probe and from flush-mounted Langmuir probes. This is the

first time that a thorough comparison between experimental measurements and three-dimensional

simulations in double null configuration is attempted. It is found that the simulations correctly

capture most of the statistical properties of plasma turbulence at the outer mid-plane, whereas ion

saturation current and floating potential time-averaged profiles at the outer mid-plane are steeper

in the simulations than in the experiment. In particular, it is found that the ion saturation current

and floating potential probability distribution functions, as well as the power spectra and sev-

eral statistical properties of intermittent events in the tokamak SOL, such as the shape, duration

and separation of burst events are correctly described by the STORM model. Good qualitative

agreement is also obtained for the time-averaged ion saturation current density profiles at the di-

vertor plates. On the other hand, the ion saturation current decay length is approximately 4 times

smaller in the numerical results than in the experimental measurements. Additionally, the level

of the fluctuations is smaller in the simulations than in the experiment. Finally, possible areas of

improvement for the STORM model are identified.

∗Electronic address: fabio.riva@ukaea.uk
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I. INTRODUCTION

Understanding the phenomena at play in the tokamak scrape-off layer (SOL) is a crucial

challenge for ITER and future fusion devices [1]. The SOL regulates the exhaust of heat

and particles at the divertor plates and at the first wall, which must be designed to sustain

high thermal loads that are at the edge or above current material limits [2]. It is there-

fore essential to improve our ability to model the transport mechanisms governing the SOL

plasma dynamics. Reaching predictive capabilities for the heat and particle loads on toka-

mak plasma-facing components is extremely challenging, since complex nonlinear turbulent

plasma phenomena on a wide range of spatio-temporal scales are involved in the SOL re-

gion. In addition, the cross-field transport is characterized by large intermittent events, the

so-called filaments. The problem is further complicated by the complex magnetic geometry

involved at the periphery of tokamak devices and by the presence of plasma sheaths at the

divertor targets. As a consequence, state-of-the-art simulation codes based on first-principles

models are required to uncover the SOL plasma physics [3, 4].

In the past years, a number of two- and three-dimensional fluid turbulence codes have been

developed to study the plasma dynamics at the periphery of tokamak devices, such as the

Hermes [5] and the STORM [6, 7] modules of BOUT++ [8, 9], ESEL [10, 11] and its hot ion

conterpart HESEL [12], and GBS [13, 14], GDB [15], GRILLIX [16], and TOKAM3X [17].

All the mentioned codes are based on a set of drift-reduced Braginskii equations [18, 19], but

they differ in their assumptions to simplify the equations and in their numerical algorithms.

During the past years, these codes have provided interesting insight into the dynamics of

SOL plasmas, for example by improving our understanding of the relation between line-

averaged density and broadening of SOL radial profiles [20], of the dependence in limited

configuration of the SOL width on plasma parameters [21, 22], and of the spreading of

plasma turbulence into the private flux region (PFR) [23].

To increase the reliability of the results of such codes, in the past few years the fusion

community dedicated specific projects to develop and apply verification and validation pro-

cedures [24–26]. In particular, a methodology based on the method of manufactured solu-

tions was ported to the fusion community [27], and it is now routinely used for verifying

plasma simulation codes (see, e.g., Refs. [16, 17, 28]). Moreover, simulations of isolated

filaments were validated against experimental measurements from basic plasma physics ex-
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periments [29] and tokamak devices [30], shedding light on the mechanisms that set the

dynamics of these structures. Plasma turbulence simulations were also validated against

measurements obtained from basic plasma physics experiments and tokamak devices, im-

proving our understanding of the phenomena that govern the cross-field transport in these

experiments (see, e.g., Refs [31–34]). Despite this progress, several crucial issues remain

open, in particular for diverted configurations (fusion reactor will be diverted).

In this paper, we report on a comparison between an L-mode MAST plasma discharge and

a number of three-dimensional fluid turbulence simulations carried out with STORM. More

precisely, we perform simulations in disconnected lower double null configuration of the

MAST plasma discharge #21712 and we compare the numerical results with measurements

from a Gundestrup probe installed on a reciprocating manipulator at the outer mid-plane

and from flush-mounted Langmuir probes (LPs) at the outer divertor plates. The impact of

collisional dissipation parameters on the numerical results is also studied.

The goal of the present investigation is threefold. First, we present for the first time three-

dimensional plasma turbulence simulations carried out with STORM in double null tokamak

geometry with realistic plasma conditions. This represents a major step in the development

of STORM, since most of the simulations performed in the past with this code were ob-

tained considering simplified geometries or isolated filaments (see, e.g., Refs. [6, 23, 35–37]).

Second, we extend the work presented in Ref. [33] by relaxing some of the assumptions

used in that study. In particular, we account for three-dimensional effects and for parallel

currents to the divertor plates, shedding light on their impact on the SOL plasma dynamics.

Third, we perform a validation of the STORM model against experimental measurements.

This allows assessing the maturity of the STORM model in describing the mechanisms that

govern the SOL transport and to identify possible areas of improvement for the model.

The present paper is structured as follows. After this introduction, in Secs. II and III

we discuss the experimental setup and the physical model considered for our investigation,

respectively. Then, in Sec. IV we present the STORM simulations of the MAST plasma

discharge #21712. In Secs. V and VI the numerical results are compared with experimental

measurements from a reciprocating probe at the tokamak outer mid-plane and from flush-

mounted LPs at the divertor targets, respectively. Finally, we report our conclusions in

Sec. VII. The boundary conditions considered in our study, the investigation of the impact

of grid resolution on simulation results, and the discussion of obtaining synthetic ion satu-
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ration current and floating potential time traces from STORM simulations are the subjects

of Appendixes A, B, and C, respectively.

II. EXPERIMENTAL SETUP

The MAST experiment was a low aspect ratio spherical tokamak with major and minor

radii R = 0.85 m and a = 0.59 m, respectively. MAST was well equipped with diagnostics

for edge studies, including a fast reciprocating probe system [38] equipped with a Gunde-

strup probe [39] and arrays of high spatial and temporal resolution LPs covering all four

targets [40]. For this reason, MAST was an ideal test bed for validating the STORM model

against experimental measurements.

In the present work we focus on the ohmic L-mode pulse #21712, which was a deuterium

plasma discharge in disconnected lower double null configuration. This discharge was char-

acterized by a plasma current Ip = 400 kA and a toroidal magnetic field on axis BT ≃ 0.4 T,

corresponding to q95 ≈ 6.2. During the flat-top phase the core electron temperature was

T core ≈ 650 eV and the line-averaged density was n̄ ≈ 1.7 · 1019 m−3. Moreover, this pulse

was characterized at the last closed flux surface (LCFS) by the reference edge quantities

shown in table I. We refer to [41] for more details on the experimental investigation of this

plasma discharge.

TABLE I: Reference plasma density n0, electron and ion temperatures Te0 and Ti0 [33], and mag-

netic field amplitude B0 =
√

B2
ϕ0 +B2

p0 (Bϕ and Bp are the toroidal and poloidal magnetic field

components), evaluated at the outer mid-plane of the LCFS for the MAST discharge #21712.

n0 [10−19 m−3] Te0 [eV] Ti0 [eV] B0 [T]

0.5 15 30 0.3

The experimental measurements presented in the following were obtained during the flat-

top phase, between t = 0.2 s and t = 0.4 s, with the mid-plane reciprocating Gundestrup

probe and with the LPs at the outer divertor targets. The Gundestrup probe reciprocates

in the plasma, reaching its deepest position at approximately 4 cm inside the separatrix.

The probe head is equipped with eight pins (1-8), uniformly distributed at the end of a

boron nitride cylinder and biased to −200 V, measuring the ion saturation current, Isat, and
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with 3 additional pins (9-11), located at the front of the probe, used to measure the floating

potential, Vfl. All 11 pins acquired data at 500 kHz. In the following, we refer to pins 1 and

9 for Isat and Vfl measurements, respectively (we note that this choice does not affect the

conclusions presented in the following of the present paper, since similar results would be

obtained with the other pins). A more detailed description of the Gundestrup probe used

for this investigation is given in Ref. [41]. The flush-mounted LPs were used in swept mode

to obtain the I − V characteristics at the target plates and reconstruct the time-averaged

ion saturation current density 〈jsat〉t, where 〈−〉t denotes averaging over time.

Since the plasma parameters remained approximately constant and equal to the nominal

values given above between t = 0.2 s and t = 0.4 s, the outer mid-plane plasma quantities

discussed in the following are obtained by splitting the Isat and Vfl Gundestrup probe sig-

nals in a number of sub-signals of 2 ms and considering each sub-signal as an independent

measurement at constant radial location (note that we use only measurements from the

reciprocating manipulator entering the plasma). This time window is chosen short enough

such that the radial displacement of the probe during each sub-interval is small (≪ 1 cm),

but long enough to contain several typical turbulent time scales. We note that Vfl signals

are processed with a low-pass filter at 125 kHz. We also note that, during MAST discharges,

the strike points were naturally sweeping at the targets due to the fringing field from the

tokamak solenoid that was not compensated. Therefore, the 〈jsat〉t profiles obtained with

the flush-mounted LPs are computed by splitting the raw probe signals in intervals of 1 ms

and reconstructing the I-V characteristic on each resulting sub-interval. Radial profiles are

then obtained by averaging together the results from four subsequent sub-intervals. Finally,

we note that the position of the separatrix is reconstructed with EFIT [42]. Standard uncer-

tainties in the magnetic reconstruction of the equilibrium imply that the radial location of

the measurements with respect to the separatrix is known with a precision of approximately

1 cm. Therefore, the experimental measurements presented in the following are shifted in

the radial direction, within this uncertainty, to approximately match the maximum of the

time-averaged Vfl and jsat numerical profiles at the outer mid-plane and at the divertor

plates, respectively (note that a similar approach is discussed in Ref. [43]).
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III. STORM PHYSICAL MODEL

Due to the high plasma collisionality typical of the tokamak SOL in L-mode, medium-

size devices, the STORM model is based on a set of electrostatic drift-reduced Braginskii

equations [6, 7, 18, 19] (we note that the electron collisionality for the plasma discharge

#21712 is ν∗
e ≡ L‖/λe ≈ 20 [33], being L‖ the mid-plane to target connection length and

λe the electron mean free path). Additionally, the cold-ion and Boussinesq approximations

are employed to simplify the equations (a discussion of using the Boussinesq approximation

in modelling the SOL plasma dynamics is found in Refs. [44–47]). The resulting sytem of

equations corresponds to an extension of the one used in Ref. [7] with the inclusion of metric

terms accounting for the realistic three-dimensional axisymmetric magnetic geometry.

Our physical model is written in Bohm normalized units as:

dn

dt
= − ∇ · (nV b) + C(p) − nC(φ) + µn0∇2

⊥n+ Sn, (1)

dΩ

dt
= − U∂‖Ω +

1

n
∇ · (J‖b) +

C(p)

n
+ µΩ0∇2

⊥Ω, (2)

dU

dt
= − U∂‖U − ∂‖φ− η‖J‖ + 0.71∂‖T + µU0∇2

⊥U − USn

n
, (3)

dV

dt
= − V ∂‖V +

mi

me

(

∂‖φ+ η‖J‖ − ∂‖p

n
− 0.71∂‖T

)

+ µV 0∇2
⊥V − V Sn

n
, (4)

3

2
n
dT

dt
= − 3

2
nV ∂‖T − ∇ · (q‖b) − 0.71J‖∂‖T − p∇ · (V b) + TC(p) +

5

2
pC(T ) − pC(φ)

+
me

mi

V 2

2
C(p) + η‖J

2
‖ + µT 0∇2

⊥T + SE +
me

mi

V 2

2
Sn − 3

2
TSn, (5)

where φ is the plasma potential, U and V the parallel (to the magnetic field B) ion and

electron velocities, Ω = ∇ · (B−2∇⊥φ) the scalar vorticity, J‖ = n(U − V ) the parallel

current, p = nT the electron pressure, q‖ = −κ‖0T
5/2∂‖T − 0.71TJ‖ the parallel electron

heat flux, and mi/me the ion to electron mass ratio. In addition, df/dt = ∂f/∂t + [φ, f ],

[φ, f ] = b × ∇φ · ∇f , ∂‖f = b · ∇f , C(f) = ∇ × (b/B) · ∇f , ∇⊥f = ∇f − b∂‖f ,

∇2
⊥f = ∇ · ∇⊥f , with f a three-dimensional scalar field, B the norm of the magnetic field

and b the unit vector parallel to B. Collisional coefficients are the normalized resistivity

η‖ = 0.51
νei0

T 3/2Ωe0

, (6)

the normalized parallel heat conductivity

κ‖0 = 3.16
Te0

νei0mecs0ρs0

, (7)
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and the normalized classical particle diffusivity, viscosity, and perpendicular electron heat

conductivity

µn0 = (1 + Ti0/Te0)
ρ2

e0νei0

ρ2
s0Ωi0

, µΩ0 =
3

4

ρ2
i0νii0

ρ2
s0Ωi0

, µT 0 = 4.66
ρ2

e0νei0

ρ2
s0Ωi0

, (8)

respectively, where the reference ion, electron and ion sound gyro-radii ρi0, ρe0, and ρs0, ion

and electron gyro-frequencies Ωi0 and Ωe0, ion-ion and ion-electron collision frequencies νii0

and νei0, and ion sound speed cs0 are calculated with the reference ion and electron tem-

peratures Ti0 and Te0, magnetic field B0, and density n0. We note that, while we retain the

dependence on n and T in computing q‖ and η‖, the classical particle diffusivity, viscosity,

and perpendicular electron heat conductivity are assumed homogeneous and constant across

the domain. We also note that finite ion temperature corrections are retained in computing

µn0 and µΩ0. The coefficients µU0 and µV 0 are introduced to guarantee numerical stability.

Moreover, the plasma and energy sources Sn and SE are used to mimic the generation of

plasma particles because of ionization and the heat outflowing from the core. Finally, we

note that the standard Bohm’s normalisation is employed in this section (for its definition

see, e.g., Ref. [7]).

Equations (1)-(5) are completed by a set of boundary conditions describing the plasma dy-

namics at the magnetic pre-sheath entrance, where the drift-approximation breaks down.

More precisely, at the targets we impose Bohm’s sheath boundary conditions for the par-

allel velocities U and V and we compute the parallel electron power flux, Q‖, according to

Ref. [48]. Therefore, at the divertor targets we require

U |target ≥
√
T , V |target =















√
T exp

(

Λ − φ
T

)

if φ > 0

√
T exp(Λ) otherwise

, Q‖|target = γnTV, (9)

if B is directed towards the wall, while we reverse the signs otherwise. Here Λ =

−0.5 ln (2πme/mi) is Bohm’s sheath potential and γ = 2 + Λ. The boundary condition

for the parallel electron heat flux is then obtained as

q‖|target = Q‖ − 5

2
nTV − 0.5

me

mi

nV 3. (10)

A field-aligned coordinate system (x, y, z) is employed to express Eqs. (1)-(5), where x =

ψ − ψ0 is a flux-surface coordinate, y = θ a parallel coordinate, and z = ϕ − ∫ θ
0 ν(ψ, θ′)dθ′

a field-line label, with (ψ, θ, ϕ) an orthogonal toroidal coordinate system, ψ0 the poloidal
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flux on axis, ϕ the toroidal angle, θ a poloidal angle that satisfies ∇θ · ∇ψ = ∇θ · ∇ϕ = 0,

and ν(ψ, θ) = B · ∇ϕ/(B · ∇θ) the local field-line pitch. Note that here B · ∇x = B ·
∇z = 0 and we assume an axisymmetric geometry. A twist-shift boundary condition [49] is

applied in the core to ensure periodicity of field values. Moreover, to guarantee continuity of

radial derivatives, these are expressed in quasi-ballooning coordinates [50]. Finally, assuming

k⊥ ≫ k‖, the differential operators [φ,−], ∇2
⊥(−), and ∇⊥(−) are simplified by neglecting

y (parallel) derivatives. We refer to [8] for more details on the coordinate system used in

BOUT++.

IV. NUMERICAL SETUP

To perform three-dimensional plasma turbulence simulations in MAST realistic geometry,

we implemented in STORM the modifications discussed in Sec. III. All x and y derivatives

in Eqs. (1)-(5) are computed using second order centered finite difference schemes, except for

the Poisson’s brackets, which are discretized with a second order Arakawa scheme [51], and

the advection terms U∂‖(−) and V ∂‖(−), which are discretized with second order upwind

schemes. Additionally, we exploit periodicity in ϕ to perform z derivatives in Fourier space.

The Poisson’s equation Ω = ∇· (B−2∇⊥φ) is therefore inverted in the x−z plane by solving

for each Fourier mode a tridiagonal system of equations with the Thomas algorithm [52]

(y derivatives are neglected for this, as mentioned in Sec. III). Moreover, assuming that

plasma turbulence in the SOL is characterized by large toroidal mode numbers n ≫ 1,

first order z derivatives are neglected with respect to second order z derivatives in solving

the Poisson’s equation (this approach is adopted for numerical stability reasons). Time

integration is performed adopting the Method of Lines approach and using the CVODE

implicit time integration solver from the SUNDIALS suite [53]. Furthermore, we note that,

to avoid grid-scale oscillations, U , V , and q‖ are solved on a grid staggered by half a point

in y and fourth-order interpolation schemes are used to interpolate field quantities from the

collocated grid to the staggered grid and vice versa. We refer to [8, 9] for more details on

the numerical algorithms implemented in BOUT++ (note that BOUT++ v3.1 is used for

the present investigation).

Focusing on the MAST discharge #21712 discussed in Sec. II, the dissipation coefficients,

which are given as input to STORM, are calculated according to Eqs. (6)-(8) with the
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TABLE II: Normalized collisional dissipation coefficients for the MAST discharge #21712 computed

according to Eqs. (6)-(8), and as used in the “Reference”, “High η‖”, “High µΩ0”, and “Low ⊥

dissipation” simulations

Case η‖T
3/2 κ‖0 µn0 µΩ0 µT 0

Eqs. (6)-(8) 2.9 · 10−5 5.5 · 104 1.7 · 10−4 1.3 · 10−3 2.7 · 10−4

“Reference” 2.9 · 10−5 5.5 · 104 1.0 · 10−3 1.3 · 10−3 1.0 · 10−3

“High η‖” 1.4 · 10−4 5.5 · 104 1.0 · 10−3 1.3 · 10−3 1.0 · 10−3

“High µΩ0” 2.9 · 10−5 5.5 · 104 1.0 · 10−3 8.0 · 10−3 1.0 · 10−3

“Low ⊥ dissipation” 2.9 · 10−5 5.5 · 104 2.5 · 10−4 1.3 · 10−3 2.5 · 10−4

reference parameters given in table I. The results are presented in the first row of table II.

However, to increase the numerical stability of STORM simulations, for our reference case in

the following we consider µn0 = µT 0 = µU0 = µV 0 = 0.001 (as also reported on the second row

of table II, referred to as “Reference” simulation). The impact of collisional parameters on

the results of plasma turbulence simulations is investigated in Secs. V and VI by considering

three additional simulations with (i) increased normalized resistivity η‖T
3/2 = 1.4 · 10−4

(this corresponds to approximately an increase by a factor 5), in the following referred to

as “High η‖”; (ii) increased viscosity µΩ0 = 0.008 (this corresponds to approximately an

increase by a factor 6), in the following referred to as “High µΩ0”; and (iii) µn0 = µT 0 =

µU0 = µV 0 = 2.5 · 10−4, in the following referred to as “Low ⊥ dissipation” (as also reported

on the third, fourth, and fifth rows of table II). We note that in the following we enhance

particle diffusion, viscosity, and perpendicular electron heat conductivity by a factor 10 in

the proximity of the inner and outer radial boundaries to provide buffer regions, which are

not included in the analysis of the results.

A first-principles self-consistent model for simulating plasma-neutral interactions in realistic

magnetic geometry is not implemented yet in STORM. Therefore, the ionization of neutral

atoms near the LCFS and the resulting generation of plasma particles is mimicked with a

poloidally and toroidally constant Sn, with a Gaussian profile centered at the LCFS in the

radial direction, as shown in Fig. 1(a). Also the energy source SE, used to mimic the heat

outflowing from the core, is assumed poloidally and toroidally constant, but with a Gaussian

profile centered at ψ̄ ≈ 0.95, as illustrated in Fig. 1(b), with ψ̄ = (ψ − ψ0)/(ψa − ψ0) the
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(a) (b) (c) (d)

FIG. 1: Poloidal cross sections of (a) the particle source Sn; (b) the energy source SE ; (c) the

normalized poloidal flux ψ̄, with black lines denoting the planes of constant y used in the simula-

tions; and (d) the radial grid spacing ∆x, with black and red lines denoting the inner and outer

separatrices, respectively (these are separated by approximately 6 mm at the outer mid-plane).

The blue and pink rectangles on panel (a) denote approximately the position of the reciprocating

probe and of the LPs, respectively, as discussed in Sec. II.

normalized poloidal flux, and ψ0 and ψa the poloidal flux at the magnetic axis and at the

LCFS, respectively. The amplitudes of Sn and SE are then adjusted such that the simulated

plasma densities and temperatures approximately agree with the experimental measurements

at the LCFS.

For the present investigation we consider a radial domain extending in the outer SOL from

ψ̄ = 0.9 to ψ̄ = 1.11. This corresponds to a distance at the outer mid-plane of approximately

8 cm between the inner and the outer boundaries, xi and xo, with 4 cm in the tokamak core

and 4 cm in the SOL. We note that, for the discharge considered, the first limiting structure

in the SOL was one of the poloidal field coils, located at 5 cm mapped to the mid-plane.

Therefore, our domain captures most of the main SOL. On the other hand, in the inner

SOL and in the PFRs we expect density and temperature gradients to be steeper than in

the outer SOL. Therefore, the inner and outer boundaries are located at ψ̄ =≈ 0.97 in the

PFRs and at ψ̄ ≈ 1.04 in the inner SOL, respectively, as presented in Fig 1(c). Ad hoc
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boundary conditions are then applied at the inner and outer boundaries, as discussed in

more detail in Appendix A.

We note that, because three-dimensional simulations require rather large numerical grids to

resolve plasma turbulence, for the present investigation we simulate only one quarter of the

torus to decrease the computational cost (i.e., we assume periodicity between ϕ = 0 and

ϕ = π/2). This corresponds to neglecting the toroidal mode numbers n = 1, 2, 3. We also

note that all quantities related to the magnetic equilibrium and to the computation of the

grids, necessary as input parameters for STORM simulations, are computed from an EFIT

reconstruction of the experimental magnetic field with the grid generator HYPNOTOAD [9].

In the present paper we consider a numerical grid Nx ×Ny ×Nz, with Nx = 276, Ny = 96,

and Nz = 128 the number of grid points in x, y, and z, respectively. The planes of constant

y resulting from such a grid are represented on Fig. 1(c) as black lines, while the radial

grid-spacing and the magnetic separatrices are shown on Fig. 1(d). We observe that the

two separatrices are extremely close, with a gap at the outer mid-plane of only 6 mm.

Finally, we note that, while the grid chosen for our simulations ensures a perpendicular

resolution at the mid-planes up to k⊥ρs0 ≃ 1, with ρs0 ≈ 2 mm, near the X-points the radial

resolution is coarser due to the natural flux expansion (the radial grid spacing near the X-

points increases up to 1 cm). An investigation of the impact of grid-resolution on simulation

results is presented in Appendix B.

The simulations used in the present paper are initialized from ad hoc axisymmetric profiles,

to which we add small amplitude random noise [the initial profiles of n, T , and U are shown

in Fig. 2, while for the other fields we use V = U , φ = ΛT , and Ω = ∇ · (B−2∇⊥φ)]. The

sources then inject plasma particles and heat, steepening the plasma profiles and triggering

plasma-gradient driven instabilities. After an initial transient phase, a statistical steady

state is reached (we note that all the fields are fully saturated, except for n, which shows a

secular trend, although relatively weak), in which the plasma is eventually removed because

of parallel losses at the divertor plates and turbulent radial transport. In the following,

we focus our analysis only on this saturated statistical steady state, assuming that, from a

statistical point of view, the results do not depend on the initial transient.
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FIG. 2: Initial profiles of the plasma density n (left panel), electron temperature T (center panel)

and parallel ion velocity U (right panel).

V. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

AT THE OUTER MID-PLANE

In order to assess the reliability of the STORM model in describing the SOL plasma dynam-

ics, we compare numerical results at the outer mid-plane from the four simulations discussed

in Sec. IV with experimental measurements from the reciprocating Gundestrup probe (note

that part of these experimental measurements were also compared with two-dimensional

simulations in Ref. [33]). For our comparison we consider the following observables: (i) Isat

and Vfl time-averaged profiles; (ii) statistical properties of Isat and Vfl time traces, including

the amplitude of the fluctuations, the skewness and the kurtosis of the probability distribu-

tion functions (PDFs) as function of the radial position, and the PDFs and power spectral

densities (PSDs) at different radial locations; and (iii) statistical properties of intermittent

events, including Isat and Vfl conditional averaged temporal wave forms, auto-correlation

functions of Isat and Vfl fluctuations, average times spent by Isat and Vfl signals above and

below a given threshold, and averaged waiting times between Isat and Vfl maxima.

We note that, while the Isat and Vfl experimental time traces are obtained from the Gun-

destrup probe installed on the reciprocating manipulator as explained in Sec. II, Isat and

Vfl are not a direct output of STORM. A discussion on how to obtain synthetic Isat and

Vfl time traces from STORM simulations is presented in Appendix C. We also note that, to
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FIG. 3: Isat (left panel) and Vfl (right panel) time-averaged profiles for the experimental mea-

surements (thick black lines) and the STORM simulations (thin color lines). The 〈Isat〉t pro-

files are normalized to their values at the LCFS. The dashed lines in the left panel denote a fit

〈Isat〉t(R−RLCFS) ∝ exp[−(R−RLCFS)/λIsat ] between R−RLCFS = 0 cm and R−RLCFS = 1.5 cm.

The error bars represent one standard deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

estimate the statistical uncertainties affecting the simulation results, we proceed as follows.

Taking the time-averaged ion saturation current as an example, we evaluate 〈Isat〉t at ϕ = 0

and ϕ = π/4. We then compute 〈Isat〉t as the average of the two resulting values and we

take std[〈Isat〉t(ϕ = 0), 〈Isat〉t(ϕ = π/4)] as an estimate of the statistical uncertainty affect-

ing 〈Isat〉t, where std denotes the standard deviation. The same procedure is used for all

the other observables. In the following subsections we discuss in more detail the evaluation

of each observable and the agreement between experimental measurements and simulation

results relative to each observable.

A. Time-averaged profiles

First, we consider the Isat and Vfl time-averaged profiles, 〈Isat〉t and 〈Vfl〉t. These are ob-

tained as the time-average of the 2 ms Isat and Vfl sub-signals at each radial position. The

results are presented in Fig. 3. Concerning 〈Isat〉t, the profiles are steeper in the simula-

tions than in the experiment, in particular in the proximity of the LCFS. Furthermore, the

perpendicular collisional dissipation parameters seem to play a minor role in setting the

gradient of 〈Isat〉t, whereas η‖ has a stronger impact. This insensitivity of the 〈Isat〉t profile
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to changes in the perpendicular collisional dissipation parameters suggests that plasma tur-

bulence is actually the main drive of the perpendicular transport, while collisional diffusion

plays a minor role.

To assess more quantitatively the disagreement between the numerical and experimen-

tal time-averaged ion saturation current profiles, we fit the results shown in Fig. 3, left

panel, between R − RLCFS = 0 cm and R − RLCFS = 1.5 cm as 〈Isat〉t(R − RLCFS) ∝
exp[−(R − RLCFS)/λIsat

]. We obtain λIsat
≃ 3.0 cm for the experimental measurements

and λIsat
≃ 0.8 cm for the “reference” simulation. Moreover, we note that an increase of µΩ0

by approximately a factor 6 or a reduction of µn0, µT 0, µU0, and µV 0 by a factor 4 lead to

changes in λIsat
smaller than 10%. On the other hand, an increase of the Spitzer resistivity

by approximately a factor 5 leads to a 47% increase of λIsat
.

Concerning 〈Vfl〉t, we see that the shape of the experimental and numerical profiles are in

qualitative agreement, increasing in the core and decreasing in the SOL. We speculate that

this is due to simulating both the closed and the open field line regions, since a previous

investigation of the RFX-mod SOL plasma dynamics simulating the open field line region

only showed qualitative disagreement in 〈Vfl〉t between simulations and experimental mea-

surements [34]. Figure 3 also shows that the experimental profile in the core is radially

shifted with respect to the numerical results. We note that neglecting the ion temperature

dynamics might play a role in this respect, as Vfl depends in general on φ, Te and Ti. More-

over, since the circulation of plasma currents in the SOL potentially determines the position

of the bending point of Vfl [54], the Boussinesq approximation could also be responsible for

this discrepancy. We also note that the collisional dissipation parameters play a noticeable

role in setting the gradient of 〈Vfl〉t in the core, which increases by decreasing the perpen-

dicular dissipation parameters or by increasing the plasma resistivity. We also observe that

an increase of the Spitzer resistivity leads to a broader 〈Vfl〉t profile in the SOL.

B. Statistical properties of Isat and Vfl time traces

To gain a deeper insight into the discrepancies in 〈Isat〉t and 〈Vfl〉t between experimental

measurements and numerical results, we also compare the statistics of the fluctuations of

the signals. First, in Fig. 4 we present the amplitude of normalized Isat and Vfl fluctuations,

σIsat
/〈Isat〉t and σVfl

, for the experiment and the simulations, where σIsat
and σVfl

are calcu-
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FIG. 4: Amplitude of Isat (left panel) and Vfl (right panel) fluctuations for the experimental mea-

surements (thick black lines) and the STORM simulations (thin color lines). The Isat fluctuations

are normalized to 〈Isat〉t. The error bars represent one standard deviation of the results evaluated

at ϕ = 0 and ϕ = π/4.

lated as the standard deviation of the 2 ms sub-signals. The trends in the experiment are well

captured by the simulations, with relative Isat fluctuations increasing and Vfl fluctuations

decreasing as we move radially outwards. These trends are in agreement with observations

in most magnetic confinement devices, where large Isat fluctuations are observed in the SOL

and are typically assiociated with the presence of coherent structures, often referred to as

plasma filaments (see, e.g., Ref. [55]). On the other hand, we note that the decreasing trend

of Vfl fluctuations was not observed when simulating plasma turbulence in limited configu-

ration in a region with open field lines only [34]. Despite the good qualitative agreement,

Fig. 4 also shows that the simulations underestimate the amplitude of the fluctuations, both

for Isat and Vfl. This is particularly true in the far SOL and was also observed in previous

three-dimensional SOL plasma simulations (see, e.g., Ref. [34]).

The third and fourth moments of a PDF are the skewness, S, and the kurtosis, K. The

first is a measure of the asymmetry of the PDF, with S > 0 indicating a majority of bursts

above the average, while the second provides a measure of how likely extreme events are,

with K > 3 an indicator that the PDF has heavy tails and with a larger number of extreme

deviations. We note that a more convenient quantity for comparing the tails of a PDF is

the so-called flatness, F = K − 3, since S = F = 0 for a Gaussian PDF. In the context of
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FIG. 5: Skewness of the Isat (left panel) and Vfl (right panel) PDFs for the experimental measure-

ments (thick black lines) and the STORM simulations (thin color lines). The error bars represent

one standard deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

FIG. 6: Flatness of the Isat (left panel) and Vfl (right panel) PDFs for the experimental measure-

ments (thick black lines) and the STORM simulations (thin color lines). The error bars represent

one standard deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

plasma physics, S(Isat) > 0 suggests the presence of filaments hotter and denser than the

plasma background, whereas S(Isat) < 0 suggests the predominance of plasma holes, which

have the opposite behavior. Similarly, F (Isat) > 0 suggests that plasma turbulence is not

dominated by small random fluctuations, but rather by extreme coherent events, such as

filaments.

The radial profiles of S(Isat), S(Vfl), F (Isat) and F (Vfl) and the correspondig statistical
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FIG. 7: PDFs of (Isat− < Isat >t)/σIsat (first row) and (Vfl− < Vfl >t)/σVfl
(second row) at the

three radial locations R − RLCFS = −1 cm (first column), R − RLCFS = 0 cm (second column),

and R −RLCFS = 2 cm (third column) for the experimental measurements (thick black lines) and

the STORM simulations (thin color lines). The error bars represent one standard deviation of the

results evaluated at ϕ = 0 and ϕ = π/4.

uncertainties are presented in Figs. 5 and 6. We observe that S(Isat) ≈ 0 at the LCFS,

both in the simulations and in the experiment. Moreover, S(Isat) increases moving radially

outwards, with S(Isat) & 1 in the SOL, in agreement also with previous experimental SOL

investigations [56–58]. On the other hand, S(Isat) in the core is larger in the simulations

than in the experiment. The impact of dissipation coefficients on S(Isat) is typically smaller

than statistical uncertainties. Concerning S(Vfl), the experimental profile is almost flat,

with S(Vfl) ≈ 0, and the simulation results generally agree within uncertainties with ex-

perimental measurements. Concerning F (Isat) and F (Vfl), we observe that simulations and

experimental measurements are in quantitative agreement, with F (Isat) ≈ 0 at the LCFS

and increasing in the SOL, and F (Vfl) ≈ 0 in the entire domain.

Our observations on the statistical properties of the Isat and Vfl time traces are confirmed by

comparing the PDFs of Isat and Vfl fluctuations, normalized to their standard deviation, at

the three radial locations R−RLCFS = −1 cm, R−RLCFS = 0 cm, and R−RLCFS = 2 cm, as

shown in Fig 7. The simulations accurately capture the well documented transition [20, 59–

18



FIG. 8: Isat (first row) and Vfl (second row) PSDs, normalized to the fluctuation levels, at the

three radial locations R − RLCFS = −1 cm (first column), R − RLCFS = 0 cm (second column),

and R −RLCFS = 2 cm (third column) for the experimental measurements (thick black lines) and

the STORM simulations (thin color lines). The error bars represent one standard deviation of the

results evaluated at ϕ = 0 and ϕ = π/4.

63]) from quasi-Gaussian statistics of Isat at the LCFS to positively skewed in the far SOL.

Concerning the collisional dissipation coefficients, we note a remarkable insensitivity of the

results, only broken in PDF(Vfl) in the core when µΩ0 is increased.

To conclude our investigation of ion saturation current and floating potential fluctuations,

in Fig. 8 we present the PSDs, normalized to σIsat
and σVfl

, at the three radial positions

R−RLCFS = −1 cm, R−RLCFS = 0 cm, and R−RLCFS = 2 cm. The simulations are in good

quantitative agreement with experimental measurements in the far SOL, showing a plateau

between f ≈ 4 kHz and f ≈ 60 kHz, and then monotonically decreasing for f > 60 kHz.

This is also in agreement with previous experimental SOL investigations and it is generally

associated to the presence of coherent weakly interacting plasma structures [63, 64]. On

the other hand, larger differences are observed in the PSDs between simulations and ex-

perimental measurements in the core and at the LCFS, with the PSDs almost flat in the

simulations for all f > 4 kHz, while the experimental measurements monotonically decrease

for f > 30 kHz. It is worth reminding that in our simulations the source of plasma particles
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FIG. 9: Conditionally averaged temporal wave forms of Isat (first row) and Vfl (second row)

fluctuations at the three radial locations R − RLCFS = −1 cm (first column), R − RLCFS = 0 cm

(second column), and R−RLCFS = 2 cm (third column) for the experimental measurements (thick

black lines) and the STORM simulations (thin color lines). The error bars represent one standard

deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

is located at the LCFS. This might have an impact on these results. Collisional dissipation

parameters do not seem to play a major role in setting the shape of the PSDs.

C. Statistical properties of intermittent events

In the tokamak SOL, strongly skewed and intermittent Isat time traces are typically associ-

ated with filamentary structures transporting particles and heat towards the main walls of

the device. To gain a deeper insight into these structures, we compare some properties of

the simulated and experimental bursty events in the Isat and Vfl signals, which are typically

generated as a plasma filament passes by the position of the probe.

First, we determine the average time evolution of the bursts by calculating the Isat and

Vfl conditionally averaged temporal wave forms, Cavg[(Isat − 〈Isat〉t/σIsat
] and Cavg[(Vfl −

〈Vfl〉t/σVfl
], with trigger conditions based on the maximum amplitude of the fluctuations

(Isat − 〈Isat〉t)/σIsat
> 2 and (Vfl − 〈Vfl〉t)/σVfl

> 2. While this criterion selects a similar

20



number of experimental and numerical Isat bursts in the SOL (12 in the experiment and

7 to 10 in the simulations), in the core many fewer events are selected in the experiment

than in the simulations (2 in the experiment and 7 to 12 in the simulations). Moreover, we

note that, in general, there are more extreme events in Isat than in Vfl time traces, the only

exception being the experimental measurements in the core.

The resulting Cavg[(Isat −〈Isat〉t/σIsat
] and Cavg[(Vfl −〈Vfl〉t/σVfl

] and the corresponding sta-

tistical uncertainties are presented in Fig. 9 for the three radial positions R−RLCFS = −1 cm,

R − RLCFS = 0 cm, and R − RLCFS = 2 cm. Concerning Cavg[(Isat − 〈Isat〉t/σIsat
], we see

good quantitative agreement in the far SOL, both in amplitude and width. The shape

of Cavg[(Isat − 〈Isat〉t/σIsat
] is quite symmetric, in agreement also with previous analysis of

MAST fluctuations [61]. We also observe that collisional dissipation coefficients barely affect

the shape of Cavg[(Isat − 〈Isat〉t/σIsat
], but they have a bigger impact on its amplitude. On

the other hand, the agreement in Cavg[(Isat − 〈Isat〉t/σIsat
] is worse in the core and at the

LCFS, with the conditionally averaged peaks much wider in the experiment than in the

simulations.

Concerning Cavg[(Vfl − 〈Vfl〉t/σVfl
], we observe that in the far SOL the simulation results

display a negative peak a few microseconds after the conditional time τ = 0. This suggests

the presence of a dipolar structure in Vfl. This behavior is not observed in the experimental

measurements considered here. However, we note that the literature reports dipolar struc-

tures (see, e.g., Ref. [65]). Slightly better agreement between simulations and experimental

measurements is found in the core and at the LCFS for Cavg[(Vfl − 〈Vfl〉t/σVfl
] than for

Cavg[(Isat − 〈Isat〉t/σIsat
].

A more quantitative characterization of the temporal time scales in Isat and Vfl time traces

is provided by computing the auto-correlation function A(τ) (see, e.g., Ref. [33] for its defi-

nition). Figure 10 shows A(τ) for Isat and Vfl at the three radial locations discussed above.

In general, we observe a better agreement between numerical results and experimental mea-

surements in the far SOL than in the core or at the LCFS. However, we note that the

numerical results strongly depend on the collisional dissipation parameters used in the sim-

ulations and are affected by quite large statistical uncertainties.

To provide a more quantitative assessment of the agreement between simulations and ex-

periment in the far SOL, we fit the auto-correlation functions between τ = 0 and τ = 20µs

as A(τ) = exp[−(τ/τc)
β−1], with τc the auto-correlation time and β the cascade index. Con-
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FIG. 10: Auto-correlation functions of Isat (first row) and Vfl (second row) fluctuations at the

three radial locations R − RLCFS = −1 cm (first column), R − RLCFS = 0 cm (second column),

and R −RLCFS = 2 cm (third column) for the experimental measurements (thick black lines) and

the STORM simulations (thin color lines). The dashed lines denote a fit A(τ) = exp[−(τ/τc)
β−1]

between τ = 0 and τ = 20µs. The error bars represent one standard deviation of the results

evaluated at ϕ = 0 and ϕ = π/4.

TABLE III: Auto-correlation times τc in experimental measurements and simulation results in the

far SOL.

Experiment “Reference” simulation “High η‖” simulation “High µΩ0” simulation “Low ⊥ diss” simulation

τc(Isat) 9µs 12µs 5µs 16µs 17µs

τc(Vfl) 12µs 5µs 9µs 8µs 9µs

cerning the auto-correlation times, these are presented in Table III. In the experiment we

find τc ≈ 9, 12µs for Isat and Vfl, respectively. While a similar value is obtained consid-

ering the numerical Isat time trace from the “reference” simulation, a smaller numerical τc

is found considering Vfl. The collisional dissipation coefficients have a quite strong impact

on τc. Concerning the cascade index, it results that β is typically larger in the experiment

(β ≈ 2.1 − 2.2) than in the simulations (β ≈ 1.5 − 1.8) and that the collisional dissipation

coefficients barely affect it.
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FIG. 11: Relative average time spent by Isat (first row) and Vfl (second row) fluctuations above

(solid lines) and below (dashed lines) a given threshold at the three radial locations R−RLCFS =

−1 cm (first column), R−RLCFS = 0 cm (second column), and R−RLCFS = 2 cm (third column) for

the experimental measurements (thick black lines) and the STORM simulations (thin color lines).

The error bars represent one standard deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

Other interesting quantities characterizing intermittent events in Isat and Vfl time traces are

the relative average time spent above and below a given threshold, 〈∆t〉above and 〈∆t〉below,

and the averaged waiting times between intermittent events, 〈τw〉. The relative average

time spent above (below) a given threshold is computed as the ratio of the total time spent

above (below) the threshold to the number of up-crossings (down-crossing) in the 2 ms time

intervals. The averaged waiting time for a given threshold between bursts is computed as

〈τw〉 =
∑N

j=2(tj − tj−1)/N , where N is the number of up-crossings of the given threshold and

tj are the times at which these events occur. These quantities provide useful information on

the duration and separation in time of burst events.

We present 〈∆t〉above and 〈∆t〉below, normalized to 2 ms, and 〈τw〉 as function of the selected

thresholds in Figs. 11 and 12. In the experiment, Isat signals spend more time above a given

threshold in the SOL than in the core or at the LCFS. This is consistent with the presence

of intermittent structures in the SOL. On the other hand, while good agreement between

simulations and experimental measurements is found in the SOL both for Isat and Vfl, the
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FIG. 12: Averaged waiting times between Isat (first row) and Vfl (second row) maxima at the

three radial locations R − RLCFS = −1 cm (first column), R − RLCFS = 0 cm (second column),

and R −RLCFS = 2 cm (third column) for the experimental measurements (thick black lines) and

the STORM simulations (thin color lines). The error bars represent one standard deviation of the

results evaluated at ϕ = 0 and ϕ = π/4.

agreement is worse moving radially inwards.

Similar results are found for 〈τw〉. Concerning the experimental measurements, we observe

that the averaged waiting time for a given threshold decreases moving radially outwards,

both for Isat and Vfl. On the other hand, while rather good agreement is found between

simulations and experimental measurements in the far SOL, larger differences are observed

in the core and at the LCFS. Figures 11 and 12 also show that the impact of collissional

dissipation parameters on 〈∆t〉above, 〈∆t〉below, and 〈τw〉 is rather small.

D. Discussion

From our investigation of the equilibrium profiles and fluctuation properties it emerges that

the major difference between experimental measurements and simulations lies in averaged

profiles and the level of fluctuations. This could imply that the radial transport in the

experiment is larger than in the simulations in the SOL, which in turn would explain why
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time-averaged experimental profiles are flatter than the numerical profiles. However, we

remark that, as discussed above, an increase of the Spitzer resistivity by approximately a

factor 5 leads to flatter profiles (with an increase of approximately 50% in λIsat
), but has

a negligible impact on Isat fluctuations. To investigate if this flattening is related to an

increase of the radial velocity of the filaments, in the simulations we also evaluated the level

of the fluctuations of the poloidal electric field, σEθ
(not presented here). This analysis

shows that an increase of the Spitzer resistivity by approximately a factor 5 has a negligible

impact on σEθ
. While this study is not conclusive, since a more accurate estimate of the

filament velocities would be required (as done, e.g., in Refs. [66, 67]), it might suggest that

the 〈Isat〉t profiles are steeper in the simulations than in the experiment because of higher

parallel losses. Three possible reasons for this discrepancy are (i) the boundary conditions

applied at the target plates; (ii) neglecting plasma-neutral interactions, which would slow

down plasma particles because of plasma-neutral collisions, in particular near the target

plates (see, e.g., Ref. [68, 69]); and (iii) the Boussinesq approximation adopted in this work

(a preliminary investigation carried out using STORM simulations without the Boussinesq

approximation displays noticeably smaller electron parallel velocities near the separatrixes

at the target plates). We also note that a previous investigation of the #21712 plasma

discharge with a two-dimensional model resulted in better quantitative agreement of the

Isat time-averaged profile at the outer mid-plane [33].

The comparison between experimental measurements and simulation results reveals that,

even if there is disagreement in Isat and Vfl averaged profiles and level of fluctuations, the

statistics of plasma turbulence and intermittent events are quite similar in the SOL. We note

that SOL plasma fluctuations exhibit several statistical properties which appear universal

across devices, plasma parameters and confinement modes. In particular, the Isat PDFs are

found to be positively skewed and flattened, and to have an exponential tail towards positive

values in the SOL (see, e.g., Refs. [20, 59–63]). Moreover, the fluctuations show a remarkable

similarity across devices also in the frequency domain [61, 63, 64]. Our simulations are able

to accurately capture this universal behavior. Nevertheless, we note that MAST represents

an exception for what concerns conditionally averaged wave forms of Isat signals. In fact,

while the average shape of the intermittent fluctuations typically appears to be sharply

peaked with a faster rise than decay [20, 61, 70], in MAST it is much more symmetric [33].

We also note that the agreement in the fluctuation properties is worse in the core and at
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the LCFS than in the SOL. However, this might be related to the position of Sn, which is

located at the LCFS, and also to the fact that the STORM model is designed to reproduce

SOL rather than core physics.

To conclude our discussion, we note that in our simulations we assume cold ions. However,

this is a quite strong assumption, since in typical SOL conditions we observe Ti/Te & 1 [71–

74]. An assessment of the impact of hot ions in MAST was carried out in [30], where it

was found that the qualitative behavior of three-dimensional seeded filament simulations

with and without Ti effects was similar. We defer the detailed analysis of the impact of ion

temperature effects on SOL turbulence in MAST to a future study.

VI. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

AT THE OUTER TARGET PLATES

Three-dimensional simulations allow a comparison between experimental measurements and

numerical results not only at the outer mid-plane, but also at the divertor plates. In Fig. 13

we present the 〈jsat〉t radial profiles, normalized to their maximum value, at the lower and

upper outer target plates, both for the experimental measurements and the four simula-

tions discussed above (note that the statistical uncertainties affecting numerical results are

extremely small and are not displayed here). We recall that the experimental profiles are

shifted in ψ̄ to match the location of 〈jsat〉t peaks with the simulation results.

Figure 13 shows that simulations and experimental measurements are in quite good agree-

ment at the upper divertor target. On the other hand, in the lower divertor leg the differences

between the experimental and the numerical profiles are larger. This is particularly true in

the PFR, where the numerical profiles are much steeper than the experimental measure-

ments. Concerning the differences among the simulation results, we see that the parallel

resistivity plays an important role in setting the radial transport in the SOL in the outer

divertor legs. In fact, an increase of the Spizter resistivity by a factor 5 leads to noticeably

flatter profiles at the target plates. On the other hand, the perpendicular collisional param-

eters seem to play a smaller role, suggesting that the transport is governed by turbulence

rather than collisions.

We note that in this section we compare the shape of ion saturation current density time-

averaged profiles rather than their amplitude. As a matter of fact, neglecting the dynamics
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FIG. 13: Time-average profiles of jsat normalized to their maximum value at the lower (left panel)

and upper (right panel) outer targets from MAST experimental measurements (thick black lines)

and STORM simulations (thin color lines). The error bars represent one standard deviation in the

experimental data. The experimental profiles are shifted in ψ̄ to match the location of the peaks

with the simulation results.

of neutral particles in our simulations, in particular the neutral recycling, makes comparing

the amplitudes impractical from a quantitative point of view, although the good qualitative

agreement found between the shapes suggests suggests that the transport physics is correct.

In the experimental measurements at the target plates, 〈jsat〉t is approximately 5 times larger

than in the simulations.

VII. CONCLUSIONS

In the present paper, global flux-driven STORM simulations based on the MAST L-mode

plasma discharge #21712 in double null configuration are discussed. The three-dimensional

plasma profiles are evolved self-consistently, with no separation between equilibrium and

fluctuations. Energy and plasma particles are injected in the system in the core and at the

LCFS, steepening the plasma profiles and triggering plasma-gradient driven instabilities.

After an initial transient phase, the parallel losses at the divertor plates and the turbulent

radial transport eventually balance the energy and particle sources, thus reaching a statis-

tical steady state. This represents a major step in the development of STORM, which is

now able to simulate plasma turbulence at the edge of tokamak devices such as MAST in
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realistic diverted configurations.

The simulations are then compared with experimental measurements from a reciprocating

Gundestrup probe at the outer mid-plane and from flush-mounted LPs at the divertor plates

and the differences observed are investigated. This is the first time that a thorough com-

parison between experimental measurements and three-dimensional simulations in double

null configuration is attempted. The time-averaged profiles are steeper at the outer mid-

plane in the simulations than in the experiment, resulting in an ion saturation current decay

length approximately 4 times smaller in the numerical results than in the experimental

measurements. Additionally, the level of the fluctuations is smaller in the simulations than

in the experiment. On the other hand, the STORM model well captures several statisti-

cal properties of plasma turbulence and intermittent events in the tokamak SOL, such as

the positively skewed ion saturation current PDFs universally observed in magnetic con-

finement fusion devices, the shape and duration of the bursts in the time traces, and the

time-separation between them. The simulation results also qualitatively agree with experi-

mental measurements at the divertor plates. This is a remarkable result, since it means that

STORM simulations are a suitable tool for investigating the turbulent plasma transport

over the whole poloidal extension of the SOL, including the divertor legs and the PFRs.

This was not possible with two-dimensional models. It is also observed that an increase in

the parallel plasma resistivity typically leads to flatter profiles, both at the outer mid-plane

and at the divertor plates, while other collisional dissipation parameters play a minor role

in setting the SOL plasma dynamics.

In general, even if some quantitative discrepancies are observed between numerical results

and experimental measurements, in the SOL our simulations are able to qualitatively repro-

duce all the observables considered in our comparison. We expect that the inclusion of hot

ions and plasma-neutral interactions might improve this agreement, but such an investiga-

tion is left for future work.

Acknowledgments

The authors gratefully acknowledge helpful discussions with P. Ricci and P. Tamain. This

work has been funded by the RCUK Energy Programme [grant number EP/P012450/1].

The simulations presented herein were carried out in part on the CINECA Marconi super-

28



computer within the framework of the SOL_BOUT project and in part using Archer com-

puting resources under Plasma HEC consortium grants EP/L000237/1 and EP/R029148/1.

This work was in part supported by the UK EPSRC funded Collaborative Computational

Project in Plasma Physics [grant number EP/M022463/1]. To obtain further information on

the data and models underlying this paper please contact PublicationsManager@ukaea.uk.

APPENDIX A: BOUNDARY CONDITIONS

Since the drift approximation breaks down at the magnetic pre-sheath entrance, Eqs. (9)-

(10) are used as boundary conditions in y for U , V , and q‖ at the four divertor plates. On

the other hand, to prevent over-constraining the system, a free boundary condition is set in y

on the remaining variables (i.e., φ, Ω, n, and T are extrapolated in y from the inner domain

to the divertor plates with a one-sided third-order finite difference scheme). Additionally, a

twist-shift boundary condition is applied in the core to ensure continuity of the field values

and periodicity is assumed in the z direction between z = 0 and z = π/2, as discussed in

Secs. III and IV.

Since a set of first-principle boundary conditions describing the plasma interaction with the

outer wall is not available in the literature, and STORM is not coupled yet with a kinetic

model for the tokamak core, ad hoc boundary conditions are applied at the inner and outer

boundaries xi and xo. More precisely, at xi and xo we impose 〈∂xf〉z = 0 and ∂zf = 0,

with f = n,Ω, U, V, T and 〈−〉z denoting toroidal averaging. Moreover, we set φ(x = xi) =

〈φ(x = xi + ∆xi/2)〉z,t∈[(j−1)τ,jτ ] and φ(x = xo) = 〈φ(x = xo − ∆xo/2)〉z,t∈[(j−1)τ,jτ ] for all

t ∈ [jτ, (j + 1)τ ], where j = 1, 2, ...,∞, τ is an input parameter (in our simulations we

use τ = 100/Ωi0 at xi and τ = 2/Ωi0 at xo), and 〈−〉z,t∈[(j−1)τ,jτ ] denotes a toroidal- and

time-average over the time interval [(j − 1)τ, jτ ]. To mitigate the impact of these boundary

conditions on the simulation results, the two regions extending from ψ̄ = 0.9 to ψ̄ = 0.95

and from ψ̄ = 1.09 to ψ̄ = 1.11 are considered as buffers and are not included in the analysis

of the results.
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APPENDIX B: SCAN IN GRID RESOLUTION

To investigate the impact of the grid resolution on the results presented in Secs. V and

VI, we performed two additional simulations, one with a resolution Nx = 184, Ny = 72,

and Nz = 64, referred in the following as “coarse”; and one with a resolution Nx = 404,

Ny = 136, and Nz = 256, referred in the following as “refined”. We note that for the “re-

fined” simulation we considered one third of the torus (i.e., we assume periodicity between

ϕ = 0 and ϕ = 2π/3, which corresponds to neglecting the toroidal mode numbers n = 1, 2)

and, because of the increased computational cost of such a simulation, we have only 1.3 ms

of statistics in statistical steady state.

For both simulations we performed the analysis presented in Secs. V and VI and we compared

the results with the “reference” simulation. We note that from this comparison emerges that

the differences between the three simulations in Isat and Vfl fluctuation levels, skewness, and

flatness are negligible. On the other hand, larger differences are observed in the other quan-

tities. The most relevant ones are shown in Fig. 14.

Concerning the Isat averaged profiles at the outer mid-plane (Fig. 14 first row, left panel),

an increase in the resolution leads to flatter profiles, with approximately a 30% increase of

λIsat
between the “coarse” and the “refined” simulation. An increase in the resolution also

leads to flatter PSDs and thinner Isat conditional averaged temporal wave forms (Fig. 14 first

row, central and right panels). We note that similar results (not shown here) are obtained

for the PSDs and the conditional averaged temporal wave forms of Vfl. Concerning the

auto-correlation times, an increase in resolution results in shorter correlation times, from

τc ≈ 20µs for the “coarse” simulation to τc ≈ 12µs and τc ≈ 6µs for the “reference” and

“refined” simulations, respectively (Fig. 14 second row, left panel). On the other hand, the

cascade index is barely affected by changing the resolution, with β ≈ 1.4−1.6 for all simula-

tions. The largest differences in the relative average time spent by Isat time traces above and

below a given threshold are observed between the “coarse” and the “reference” simulation,

while the changes between the “reference” and the “refined” simulation are much smaller

(Fig. 14 second row, central panel). Similar conclusions are obtained for the averaged wait-

ing times between Isat maxima (Fig. 14 second row, right panel).

In general, it results that the observables obtained with the “reference” and the “refined”

simulations are extremely close. The only exceptions are the averaged profiles and the con-
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FIG. 14: Numerical results at the outer mid-plane for the “coarse”, “reference”, and “refined”

simulations. First row: Isat time-averaged profiles (left panel), PSDs (central panel), and con-

ditional averaged temporal wave forms (right panel). Second row: auto-correlation function

of Isat fluctuations (left panel), relative average time spent by Isat signals above (solid lines)

and below (dashed lines) a given threshold (central panel), and averaged waiting times between

Isat maxima (right panel). The dashed lines in the left panel in the first row denote a fit

〈Isat〉t(R−RLCFS) ∝ exp[−(R−RLCFS)/λIsat ] between R−RLCFS = 0 cm and R−RLCFS = 1.5 cm

and the ones in the second row denote a fit A(τ) = exp[−(τ/τc)
β−1] between τ = 0 and τ = 20µs.

The error bars represent one standard deviation of the results evaluated at ϕ = 0 and ϕ = π/4.

ditional averaged temporal wave forms. However, these differences are typically smaller than

the differences between numerical results and experimental measurements, suggesting that

our considerations in Secs. V, VI, and VII do not depend on the grid resolution considered

for our analysis.

To gain a deeper insight into the impact of grid resolution on turbulence properties, in

Fig. 15 we show the electron pressure, p = nT , and electrostatic potential, φ, wavenumber

spectra, normalized to the fluctuation levels, in the far SOL for the “coarse”, “reference”, and

“refined” simulations. We observe that the spectra are similar at low poloidal wavenumbers,

kθ, whereas the bending point between the energy cascade and dissipation regimes is shifted

toward higher kθ at higher resolutions. We also see that the wavenumber spectrum for the
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FIG. 15: Electron pressure p = nT (left panel) and electrostatic potential φ (right panel) wavenum-

ber spectra, normalized to the fluctuation levels, at the radial location R − RLCFS = 2 cm for the

“coarse” (red lines), “reference” (blue lines), and “refined” (yellow lines) simulations.

reference and the refined simulations agree up to kθρs0 ≃ 0.5. Since the drift approximation

breaks down for k⊥ρs0 & 1, the grid resolution considered in Secs. V and VI is appropriate

for our investigation.

APPENDIX C: SYNTHETIC DIAGNOSTICS

The numerical Isat and Vfl time traces used to compute the observables discussed in Secs. V

and VI are obtained by post-processing the simulation results with a synthetic reciprocating

probe at the outer mid-plane and synthetic LPs at the target plates. More precisely, we

assume Isat ∝ n
√
T and Vfl = T/e − 2.83φ, where n, T , and φ are obtained from STORM

simulations with plasma quantities in statistical steady state (except for n, which shows a

secular trend, although relatively weak) on time intervals of approximately 2 ms. The pro-

files discussed in Sec. VI are then obtained by time and toroidally averaging the resulting

time traces at the divertor plates. On the other hand, for the synthetic reciprocating probe

we proceed as follows. First, at each radial position at the outer mid-plane we concatenate

several copies of the numerical Isat and Vfl time traces to obtain signals of approximately

0.05 s. Second, we produce a synthetic time trace R(t), where R is the distance of the syn-

thetic probe from the axis of symmetry of the tokamak, emulating the radial movement of

the reciprocating manipulator entering the plasma, as shown in Fig. 16, left panel. Third,
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FIG. 16: Distance of the synthetic reciprocating probe from the LCFS (left panel) and synthetic

time traces of ion saturation current (center panel) and floating potential (right panel) in arbitrary

units.

we identify all the times tj, with 0 ≤ tj ≤ 0.05 s, at which R(t) is half way in between grid

points. Finally, we concatenate the time traces of Isat and Vfl on the different time intervals

[t0, t1], [t1, t2], ..., where for each sub-interval [tj, tj+1] we evaluate Isat and Vfl on the grid

point closest to R((tj + tj+1)/2). Examples of the resulting synthetic time traces are given

in Fig. 16, center and right panels.

This procedure allows us to obtain the observables shown in Sec. V by processing experimen-

tal measurements and synthetic time traces with exactly the same methodology. We note

that, to investigate if these results depend on the approach used to post-process STORM

simulations, we performed an additional analysis (not shown here), where we considered

Isat and Vfl synthetic time traces at fixed positions at the outer mid-plane on time intervals

of approximately 2 ms. It results that differences in the observables obtained with the two

approaches are typically smaller than the statistical uncertainties and that the discussion in

Sec. V is not affected by the methodology used to post-process the numerical results.
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