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Abstract
Wedemonstrate how real progress can bemade in the debate surrounding the enhanced
indispensability argument. Drawing on a counterfactual theory of explanation, well-
motivated independently of the debate, we provide a novel analysis of ‘explanatory
generality’ and how mathematics is involved in its procurement. On our analysis,
mathematics’ sole explanatory contribution to the procurement of explanatory gen-
erality is to make counterfactual information about physical dependencies easier to
grasp and reason with for creatures like us. This gives precise content to key intuitions
traded in the debate, regarding mathematics’ procurement of explanatory generality,
and adjudicates unambiguously in favour of the nominalist, at least as far as explana-
tory generality is concerned.

1 Introduction

The debate surrounding the enhanced indispensability argument for mathematical
platonism (EIA) has reached an impasse, descending into intuition-trading regarding
purported examples of mathematical explanations of physical phenomena. Progress
demands an independently motivated understanding of these explanations that favours
either nominalism or platonism. Indeed, ‘[i]f there is a point of agreement in this
debate, it is that we could do with a better understanding of mathematical explana-
tion’ (Colyvan 2013: 1044). In this paper, we make significant progress towards such
an understanding. Drawing on a counterfactual theory of explanation, well-motivated
independently of the debate, we provide a novel analysis of ‘explanatory generality’,
highlighted by advocates of EIA as a key virtue of certain mathematical explanations,
and how mathematics is involved in its procurement. On our analysis, mathematics’
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sole explanatory contribution to the procurement of explanatory generality is to make
counterfactual information about physical dependencies cognitively salient: easier to
grasp and reason with for creatures like us. This gives precise content to the conflicting
intuitions about explanatory generality traded in the debate, and adjudicates unam-
biguously in favour of the nominalist. Since it is independently motivated, this verdict
is not question-begging, demonstrating our methodological conclusion: working with
an independently well-motivated theory of explanation can push past conflicting intu-
itions in the EIA debate.

To be clear, we do not aim to vindicate nominalism once and for all. Our aims
are more modest than that. First, we aim to provide non-question-begging reasons
for thinking that the explanatory generality of certain mathematical explanations
is compatible with nominalism. Second, in achieving this, we aim demonstrate the
methodological conclusion mentioned above. This only addresses one virtue claimed
for certain mathematical explanations, though one that has thus far been central to the
platonist’s case (see below). Although we regard the counterfactual theory in question
capable of capturing a very broad range of explanations, it is not our aim here to argue
for this account’s universal superiority, nor do we commit to explanatory monism.
Nevertheless, this is real progress. In light of it, if it is claimed that a purported math-
ematical explanation or a virtue thereof escapes our analysis, this claim had better
not be supported by intuition alone. Our opponent must provide reasons, similarly
independent of the EIA debate, to suppose our analysis fails to capture something of
genuine explanatory worth.

Before presenting our analysis, we provide some background on the EIA debate
(below), a presentation of our chosen counterfactual theory of explanation (Sect. 2),
and a toy example of the kind of mathematical explanation our analysis is supposed
to capture (Sect. 3).

The impasse regarding EIA stands as follows. According to EIA, scientific realists
should bemathematical platonists, in light of examples of scientific explanationswhich
seem to turn on mathematical facts. Even if alternative, nominalistic explanations
can be offered, arguably such alternatives are worse explanations. Thus, a realist
who infers to the best explanation cannot but accept commitment to whatever the
mathematical facts involve. So runs the most prominent naturalistic argument for
platonism (e.g.Baker 2005;Colyvan 2002, 2013;Lyon2012). In response, nominalists
can either deny that the mathematically presented explanations are better, or deny
that mathematics’ contribution to them is ontologically committing. There is a near-
consensus that the first horn is untenable. The second horn has been popular, but here
the impasse looms. While platonists take mathematics’ explanatory indispensability
to evidence the existence of explanatory mathematical features of reality, nominalists
take mathematics to merely increase our expressive capacity, allowing us to represent
the physical features of reality that are doing the real explanatory work.

On the one hand, the distinction between ‘really explanatory’ and ‘merely expres-
sive’ can only be drawn fairly on some principled, non-question-begging grounds, and
nominalists’ appeal to this distinction has hitherto not convinced platonists.1 On the

1 For example, Saatsi (2016) draws an interesting distinction between ‘thin’ and ‘thick’ explanatory roles,
arguing that a nominalist can make sense of mathematics’ explanatory indispensability by maintaining
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other hand, the indispensability of mathematics for providing an explanation is not
enough in and of itself to convince the nominalist that its explanatoriness springs from
correctly representing mathematical features of reality. Thus, the debate has reached
a serious impasse (e.g. Baker 2017: 2; Knowles and Liggins 2015: 3403–3407), and
the result is predictable: intuition trading, subtle dialectical manoeuvring, and charges
of question-begging.

The claim that explanatory generality is what makes certain mathematical expla-
nations better than any nominalistic alternative is popular among platonists. Indeed,
it has been widely expressed for more than 10years. For example, Colyvan (2002)
defends EIA against Melia (2000) by noting that mathematics is indispensable for
a ‘unified approach’ to presenting and solving disparate equations, and hence ‘gen-
uinely explanatory’, since ‘unification is linked to explanatory power’ (p. 72). Alan
Baker and Colyvan (2011) defend EIA by noting that any nominalised explanation of
cicada periods is ‘both less general and less robust’ (p. 331). Colyvan (2013) defends
EIA against Yablo (2013) by arguing that Yablo’s approach doesn’t do justice to the
unifying power of mathematics (p. 1042). Plebani (2016) objects to David Liggins’
(2016) response to EIA because Liggins’ approach runs our scientific explanations
‘at the wrong level of generality’ (p. 553). Most recently and explicitly, Baker (2017)
has articulated the idea that explanatory generality supports platonism. All in all, the
notion of ‘explanatory generality’—together with cognate notions of ‘unification’ and
‘robustness’—has thus far been central to the platonist case.

The prominence of explanatory generality reveals two lacunas in the debate. First,
neither side has provided a satisfactory account of explanatory generality, detailing
the extent to which it is explanatory, and how exactly mathematics facilitates it.2

Second, nominalists have hitherto not explicitly responded to the appeal to explanatory
generality. The challenge is to explain how mathematics can make explanations better
by making them more general, if not by representing more general, mathematical
features of reality?

We address both lacunas by appeal to a popular, well-motivated counterfactual
theory of explanation. The gist of the theory is that explanations capture systematic
patterns of counterfactual dependence—causal or non-causal—that tell us how the
explanandum depends on the explanans. Explanations thus provide ‘what-if-things-
had-been-different’ information, indicating how the explanandum would have been
different, had the explanans been different in particular ways (e.g. Woodward 2003).
We will show that, from the perspective of this theory, the only kind of generality
that counts as an explanatory virtue, in a sense that matters to EIA, is a kind of
counterfactual generality (‘scope generality’). Although there is another prominent
kind of generality (‘topic generality’), we will argue that this is not in its own right
explanatory at all; it can only improve an explanation indirectly, by increasing scope
generality. Furthermore, and most importantly, we will argue that increasing scope

Footnote 1 continued
that mathematics only plays a ‘thin’ role of ‘allowing us to grasp, or (re)present, whatever plays a ‘thick’
explanatory role’ (p. 12). Notwithstanding the conceptual room for Saatsi’s distinction, platonists can rightly
query why the explanatory superiority of mathematical explanations is best analysed in these terms.
2 Lyon (2012) has framed the ‘robustness’ of mathematical explanations in terms of the ‘program expla-
nation’ model of Jackson and Pettit (1990); but see Saatsi (2012, 2016) for criticism.
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generality can improve an explanation only up to a point that can be reached by
nominalistic means (Sect. 4). Nevertheless, distinctively mathematical explanations
truly can be better than any nominalistic alternatives, butwewill show (Sect. 5) that this
is entirely due tomathematics’ presentational contribution.While sufficient generality
can be achieved without mathematics, this cannot be done without sacrificing our
ability to use the explanation, and cognitively grasp the pattern of counterfactual
dependence it represents. In this sense, mathematics allows us to achieve explanatory
generality without sacrificing cognitive salience.

2 A Counterfactual Theory of Explanation

In this section, we motivate the appeal to our chosen theory of explanation, outline it,
and survey its implications for analysing comparative explanatory virtues. For conve-
nience, we will refer to it as the counterfactual theory, though we recognise that there
are other counterfactual theories of explanation.

In appealing to the counterfactual theory, we operate in a naturalistic (Quinean)
spirit, appropriate for the EIA debate. Adopting an account that not only captures
well prominent examples of mathematical explanation, but is also well-motivated by
recent advances in the philosophy of explanation, we approach the debate in the light
of all available evidence, including that which independently supports this account
of explanation. Support for the counterfactual account involves its ability to make
sense of various kinds of explanations, and judgements of comparative degrees of
explanatory power, as we will discuss. It also enjoys naturalistic support from, e.g.,
cognitive psychology, which we will not discuss here (see e.g. Buchsbaum et al.
2012). Again, this is not to say that the counterfactual theory we use in this paper is
the only game in town (cf. Sect. 1). This is just to say that the counterfactual theory
enjoys a lot of support independently of the EIA debate. To the extent that the theory
furthermore nicely captures what is good about mathematical explanations central to
the EIA debate, its support is transferred to whichever intuitions expressed in the EIA
debate it agrees with.

The counterfactual account does not prejudge the EIA-debate. It is a broadly ontic
account, taking explanatory power to at least partly derive from representing worldly
things that bear an objective, explanatory relation to the explanandum, so it does not
jettison the issue of explanations’ realist commitments (cf. Saatsi 2016). Further, it does
not entail that successful explanations wear their realist commitments on their sleeves
(Bokulich 2016; Woodward 2003; Potochnik 2018). Finally, the account does not
render mathematical explanations causal. Although initially developed as an account
of causal explanation, the counterfactual account has been extended to various non-
causal explanations, including certain mathematical explanations (Reutlinger 2016,
2018; Saatsi 2018; Baron et al. 2017; Jansson and Saatsi 2017; French and Saatsi
2018). There is nothing in the counterfactual account itself that rules out mathematical
objects or properties bearing objective, explanatory relations to physical explananda.

We can now review the counterfactual account. In short, explaining involves
describing systematic patterns of counterfactual dependence. Explanatory counter-
factuals are appropriately directed and change-relating, capturing objective, mind-
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independent modal connections that show how the value of the explanandum variable
depends on the value of the relevant explanans variable(s). These variables stand
for suitably conceptualised and individuated worldly features. Explanatory counter-
factuals provide ‘what-if-things-had-been-different’ information, indicating how the
explanandumwould have been different, had the explanans been different in particular
ways. Explanation-supporting relations—nomological, causal, or mathematical—
between the variables can provide this kind of modal information.

An account of explanation built on this idea allows us to capture shared intuitions
regarding the comparative virtues of different explanations in terms of the counterfac-
tual information they provide. If explaining is a matter of providing information that
answers what-if questions, it is natural to regard as more powerful those explanations
that provide more such answers (with respect to a given explanandum). This simple
idea has rich and non-trivial consequences regarding the various ways in which expla-
nations can be better or worse. Detailed analyses of explanatory power in this spirit
have been provided (see Hitchcock and Woodward 2003; Ylikoski and Kuorikoski
2010). The latter authors identify five different aspects of explanatory power: non-
sensitivity, precision, factual accuracy, degree of integration, and cognitive salience.
Three are particularly relevant to our argument:

NON-SENSITIVITY The range of values that the explanans variables can take without
breaking the explanatory relationship. For instance, an explanation of tides in terms of
Newton’s gravitational law has a considerable degree of non-sensitivity with respect
to the specific masses and locations of the sun and the moon: the explanation correctly
answers a considerable range of change-relating what-if questions for non-actual
values of these variables.

DEGREE OF INTEGRATION The connectedness of an explanation to other theoretical
frameworks. From the counterfactual perspective, such integration is an explanatory
virtue when it enlarges the range of what-if questions answerable with respect to
particular explananda, or makes such questions easier to answer. One way theoretical
integration can achieve this is by equipping explainers with new inferential resources
(Ylikoski and Kuorikoski 2010). For example, the integration of the gravitational-
dynamic theory of tides to the more general mathematical theory of Fourier analysis
(byWilliam Thomson) allowedmany newwhat-if questions to be asked and answered
about local tidal phenomena, increasing explanatory understanding (Cartwright 2000).

COGNITIVE SALIENCE ‘[T]he ease with which the reasoning behind the explana-
tion can be followed, how easily the implications of the explanation can be seen and
how easy it is to evaluate the scope of the explanation and identify possible defeaters
or caveats’ (Ylikoski and Kuorikoski 2010: 215). Actual explainers are humans with
limited cognitive capacities, and these limitations partly determine which explana-
tions have more or less explanatory power by virtue of differing in their capacity
to enable explainers (with particular training, background knowledge, etc.) to draw
counterfactual inferences for different values of the explanans variables.

As we shall see, these resources furnished by the counterfactual account are highly
apt for analysing mathematics’ contribution to certain mathematical explanations. We
will first illustrate this with a toy example, providing an initial analysis of ‘explana-
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tory generality’ (Sect. 3). This analysis will be deepened in the subsequent sections.
First, by showing that only one kind of generality (‘scope generality’) counts as an
explanatory virtue, and that it does so only up to a point (Sect. 4); and then by showing
that the relevant mathematical explanations’ cognitive salience is what makes them
superior. Thus, although we can provide a nominalistic alternative that achieves the
kind of generality that matters for explanations, they are nevertheless less explanatory
(Sect. 5).

3 A Toy Example

What kinds of mathematical explanations are appropriate for ascertaining mathemat-
ics’ contribution to explanatory generality? In this paper, wewill focus on explanations
that (i) have nominalistic alternatives provided in the literature, and yet (ii) have some-
thing ‘distinctively’ mathematical about them (cf. Lange 2013). These conditions
are met by many familiar examples from the EIA literature, such as the number-
theoretic explanation of cicada periods, and the graph-theoretic explanation of the
non-traversibility of Königsberg’s bridges (Baker 2005; Pincock 2015). In what fol-
lows, we call explanations that meet conditions (i) and (ii) distinctively mathematical.
For the purposes of this paper, our analysis should be understood as targeting distinc-
tively mathematical explanations exclusively.

There two important reasons for limiting our focus in this way. First, focusing on
distinctively mathematical explanations allows for an instructive contrast between
mathematics-laden and mathematics-free formulations that will be invaluable for
communicating our analysis. This is particularly important, since the challenge from
explanatory generality turns on mathematics’ increasing explanatoriness in contrast
to nominalistic alternatives. Second, in focusing on distinctively mathematical expla-
nations, we set aside explanations for which we have no nominalistic alternative. This
is appropriate since the claim that mathematics is doing any explanatory work in
such explanations is a moot point. Given our aims, this is dialectically advantageous.
Since we take their nominalistic alternatives to be comparatively less explanatory, we
concede that mathematics is explanatorily indispensable to distinctively mathematical
explanations. We thus tackle the challenge from explanatory generality head-on, by
arguing that the explanatory virtue that mathematics contributes to these explanations,
cognitive salience, is not ontologically significant.

We recognise that limiting our scope in this way falls short of providing a full rebut-
tal of EIA. Nevertheless, providing non-question-begging grounds for thinking that
mathematics’ contribution to the explanatory generality of distinctively mathematical
explanations is compatible with nominalism marks real progress in the debate, and
thus demonstrates the efficacy of our methodology. Appealing to the indispensability
of mathematics to e.g. phase-space explanations by itself does nothing to diminish
this. Once its efficacy has been demonstrated, our methodology can be applied to
make further progress in relation to more difficult examples. Although we are opti-
mistic about extending our analysis to accommodate a broader range of explanations,
including phase-space explanations (see Saatsi 2017 for a promising start), there is
unfortunately not space to attempt this here.
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The following toy example illustrates the key features of distinctively mathematical
explanations:

A philosopher tries to divide twenty-three distinct ideas evenly among three
sections, but keeps failing. Why? Because:

(A) There is no integer n such that 23/3 = n.

This is a distinctively mathematical explanation: the explanandum is not due to con-
tingent laws of nature (causal or otherwise), but holds with a stronger degree of
(mathematical or logical) necessity (Lange 2013).

Applying the counterfactual account,we should take (A) to explainwhy the philoso-
pher keeps failing because it tells us what the philosopher’s failure counterfactually
depends on: whether the number of ideas is divisible by three. We can now distinguish
two striking kinds of generality exhibited by distinctively mathematical explanations
(cf. Jansson and Saatsi 2017; Baker 2017). First, the explanation clearly has nothing
to do with the nature of the things divided, apart from the stipulation that they are
distinct. In this way, the explanation is extremely topic general. Within the counter-
factual account, this is naturally understood in terms of degree of integration.
Because the explanation is integrated into the topic-neutral framework of arithmetic,
it is easy to generate further explanations with radically different subject matters: (A)
equally explains why mother couldn’t share twenty-three strawberries between her
three children, and why our parents never managed to spend all their pocket money
(twenty-three pence) on three-pence gobstoppers. Despite the variety of subject mat-
ters, when described at the appropriate level of generality, it is clear that these scenarios
are structurally similar: they concern attempts to divide twenty-three distinct individ-
uals into three equinumerous collections. It is also clear that the attempts fail for the
same reason. To achieve the desired level of topic generality, we must formulate the
explanatory generalisation so that it just concerns individuals, instead of strawber-
ries, gobstoppers, or any other kind of objects in particular. Arithmetic achieves this
admirably.

Second, the mathematical explanation is naturally equipped to provide answers to
questions concerning other actual or hypothetical situations in which the philosopher
has a different number of distinct ideas to convey. In this sense, the explanation is
extremely scope general. Within the counterfactual account, this corresponds directly
to non- sensitivity (viz. the range of explanans variable values over which the
explanatory relationship truthfully holds).

Consider an explanation that only captures the dependence of the value of the
explanandum variable (successful-division-into-three / unsuccessful-division-into-
three) on the value of the explanans variable (number of individuals) between
twenty-two and twenty-four individuals. Such an explanation gets right that it is impos-
sible to divide twenty-three things evenly into three, and that the philosopher would
succeed if there were twenty-four things to begin with. But these tidbits notwithstand-
ing, it fails to capture the broader explanatory regularity at stake. If one philosopher
tries to divide twenty-three ideas into three, and another tries to divide three-hundred-
and-four, they both fail for the same reason: neither set is evenly divisible by three. We
do not have one explanation for one case, and another for the other; we have one expla-
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nation, supported by one explanatory regularity, and two different initial conditions.
This conception of scope generality naturally rides on the back of the idea—at the heart
of the counterfactual account—that explanations work by presenting an explanatory
relationship that connects the explanandum to the explanans, showing how the for-
mer depends on the latter by virtue of providing true what-if information (regarding
the state of the explanandum) for at least some non-actual values of the explanans
variable. The larger the range of non-actual explanans variable values that are truth-
fully captured by the explanatory relationship, the less sensitive the application of the
explanation is to the actual values of these variables—that is, the more scope-general
it is.

As noted, platonists have variously appealed to explanatory generality in support
of EIA. For such an appeal to be decisive, we need to know the extent to which the
kind of generality at stake is explanatory, and how exactly mathematics contributes to
it. Such questions are best answered from the perspective of a well-motivated theory
of explanation, which neither platonists nor nominalists have offered. With our theory
in hand, we will now answer these questions in a principled manner.

4 The Explanatory Limits of Generality

On the counterfactual account, explaining is a matter of delineating a pattern of coun-
terfactual dependence by providing information that correctly answers relevantwhat-if
questions. Explaining—providing explanatory information—is a human activity, the
goal of which is the provision of explanatory understanding, which is naturally con-
strued as an agent’s ability to correctly answer what-if questions (e.g. Ylikoski and
Kuorikoski 2010). This introduces epistemic and pragmatic aspects to the analysis
of ‘best explanation’, since explaining in the best possible way involves weighing up
considerations which sometimes pull in different directions. With this in mind, we
will now consider both scope generality and topic generality in detail, to see the extent
to which these different kinds of generality can be said to make explanations better
qua explanations. We will first argue that although increasing scope generality can
improve an explanation, it does so only up to a point. We will then argue that topic
generality in its own right is not explanatory at all; it can only improve an explanation
by increasing scope generality.

Scope Generality Referring to our toy example, (A) allows for a maximally scope-
general explanation: there is no limit to the number of individuals it can take as
the value for the explanans variable. Similarly, the number-theoretic explanation of
cicada periods places no limit on possible alternative durations of these periods, and
the graph-theoretic explanation of non-traversibility of Königsberg’s bridges places no
limit on possible alternative bridge-configurations. While we can form nominalistic
counterparts by just listing what these explanations say about some finite range of
explanans values (§5), one might think that the maximisation of scope generality is in
and of itself a reason to prefer the mathematical version. There are good naturalistic
grounds to resist this thought, however.

On the counterfactual account, explaining is a matter of providing information that
correctly answers what-if questions pertinent to the explanandum at stake. Which
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questions are pertinent? We will now argue that we do not judge one explanation to
be better than another on the basis of its answering what-if questions without limit. As
we illustrate below, some explanations underwrite counterfactual scenarios that com-
pletely transcend our science-based grasp of the possibilities in question. We should
not take seriously such ‘extreme’ counterfactuals. No scientist would or should con-
sider these what-if questions pertinent to the explanandum in question, in judging one
explanation to be better than another. Doing sowould demonstrate an alarming, almost
fetishistic confidence in the explanatory, mathematised theory to reliably tell us about
counterfactual situations far-removed from the theoretical context in which the theory
was developed. Moreover, evaluating such counterfactuals involves super-empirical
issues of modal semantics that should not be decided so easily by a scientific theory
developed for completely different purposes. In short, such extreme counterfactuals
are irrelevant to the explanatory practice of science, and thus make no naturalistically
recognisable contribution to our explanatory understanding. Rather, explanatory con-
tent is exhausted by counterfactuals that scientists would and should take seriously,
given the empirical evidence at stake and the theoretical context in question.

For illustration, consider the much-discussed case of North-American periodical
cicadas, which lie dormant for 13 or 17years (depending on the subspecies). Why
the prime numbers? Because an organism which lies dormant for a prime number of
yearsminimises the frequency of overlaps between their emergence and the emergence
of nearby periodical predators (assuming these nearby predators have life-cycles of
between 2 and 12years).3 Here, the operative mathematical generalisation can be
presented as follows:

(B) If p is any natural number, then p is coprime with every q < p (and hence
maximises its LCM with every q < p) iff p is prime.

In the counterfactual framework, this explanation turns on grasping how the fitness-
maximising cicada life-cycles—construed as a variable that can take different values—
depends on other biologically relevant variables, such as predator species’ life-cycles.
Roughly speaking, the explanatory counterfactuals capture the dependence of long-
run evolutionary outcomes, regarding specific life-cycle periods, on the existence of
predator species with life-cycles of nearby periods, as well as ‘ecological constraints’
that appropriately limit the range of viable possibilities.

(B) maximises the scope generality of the explanation: there is no upper limit to the
number it can take as the value for the explanans variable p, representing the cicadas’
life-cycle period in years. However, most natural numbers—most of the possible p
values—correspond to extreme counterfactuals that we cannot evaluate in anything but
an abstract mathematical sense, at least not without modal presuppositions that are not
part of the naturalistic context in which (B) is judged to provide the best explanation.
For example, consider all p values according to which the cicadas have life-cycle
periods greater than the age of the universe. We maintain that we cannot take the
answers that (B) entails regarding such extreme counterfactuals to correctly answer
what-if questions concerning cicadas, since we cannot evaluate such counterfactuals

3 This follows Baker (2005); seeWakil and Justus (2017) for worries, which are irrelevant for our argument
and analysis.
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without taking a stand on issues regarding modality and modal semantics that go well
beyond the naturalistic commitments of evolutionary biology. The limitless scope
generality offered by (B) does not seem to underwrite or account for the explanatory
superiority of this distinctively mathematical explanation.

In the same spirit, consider our toy example again. We can use (A) to answer
questions such as: ‘What if things were different, such that the philosopher attempted
to divide 3×1082+1 ideas between three sections?’,where 3×1082 is of the order of the
number of atoms in the observable universe. The answer is obvious, as far as arithmetic
is concerned. But it is not at all clear why one should expect this answer to be part of
explainingwhy the philosopher cannot divide her ideas equally between three sections.
Althoughmathematically clear-cut, reflecting on the counterfactual in question reveals
it to be fantastically far-removed from the explanandum and its theoretical context. It is
clearly psychologically and practically absurd that a philosopher could have that many
ideas to express in a paper. Furthermore, for all we know, it may be nomologically
impossible for any organism, in any possible universe, to come to have that many
distinct ideas (assuming any kind of physicalism about the mind). Metaphysical and
cosmological speculation aside, we maintain that there is nothing at stake with such
extreme explanans variable values for the humdrum explanandum in question. One can
employ (A) to its full explanatory effect regarding the explanandum at stake, without
taking a stand on the murky modal issues concerning such extreme counterfactuals.
And in judging (A) to provide the best explanation, we do not, and should not, take
a stand on subtle issues in modal semantics upon which evaluating such extreme
counterfactuals turns.

In general, we should say that an increase in scope generality is explanatorily valu-
able only to the extent that it increases the provision of correct answers to what-if
questions that are pertinent and reasonable from the point of view of empirically well-
supported scientific theories. It is a challenge to pin down exactly what counts as a
reasonable what-if question, but we do not need to meet it here. It suffices for us to
have argued that there is some point after which the implicated counterfactuals are
not reasonable in the relevant sense. We can conclude from this that, in as far as a
distinctively mathematical explanation scopes beyond any nominalistic alternative,
the difference trades only in extreme counterfactuals, so we have good naturalistic
grounds to deny that this explanation’s maximal generality in and of itself renders
the explanation better. Given that we can offer an alternative nominalist account of
distinctively mathematical explanations’ superiority within the counterfactual frame-
work (§5), this will suffice to rebut the challenge from explanatory generality, as far
as scope generality is concerned.

Topic Generality From the counterfactual point of view, topic generality, whether
or not achieved with mathematics, only contributes to a particular explanation if
it enables the answering of more of the relevant what-if questions concerning that
explanation’s explanandum.

To illustrate, suppose we have hitherto been unable to explain why mother cannot
divide twenty-three strawberries between her three children. By learning the explana-
tory core of our toy-example, (A), an explanation for why mother fails presents itself,
putting us in a position to answer a range of relevant what-if questions regarding
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mother’s predicament. We have integrated two disparate structurally similar phenom-
ena to the arithmetical background theory. This is a good thing. But the new what-if
questionswe can now answer (with respect tomother) do not yield any further explana-
tory understanding of why the philosopher cannot divide twenty-three ideas equally
between three sections. We can of course answer further what-if questions regarding
the philosopher by first answering the corresponding questions about mother, and then
translating. But these questions would be answerable via (A) directly, so all the topic
generality has done here is open up a new, indirect means of achieving the same under-
standing of our original explanandum. It has not increased our understanding. From
a more global perspective, our stock of answerable what-if questions has increased;
but this is only because we have formulated a new explanation with its own associated
what-if questions. In cases such as these, topic generality is clearly very useful, but it
does not itself increase the explanatoriness of any of the particular explanations.4

Turning again to the cicada case, consider an example from Baker (2017). Why
is it that in fixed-gear bicycles with 14-tooth rear cogs and front cogs with either 47,
48, or 49 teeth, those with 47 in front minimise the wear on their rear tire? The best
explanation involves the same mathematics as the cicadas case: of (14, 47), (14, 48),
and (14, 49), only the first is a coprime pair, and coprime integers maximise their
LCM with all lower integers. This means that bikes with 47-tooth front cogs will
maximise the number of full pedal-turns required to make the rear cog (and therefore
the rear tire) return to its original position, and so are less likely to stop on the same
patch of tire. Since this explanation is structurally similar to the cicada case, we can
give a topic general explanation that covers both. Baker achieves this by expanding
the explanatory core of the cicada explanation (adding some further premises which
needn’t concern us here). However, there is clearly something odd in thinking that,
for example, biologists in possession of the number-theoretic explanation of cicada
periods could understand cicadas better by reflecting on fixed-gear bicycles. Assuming
it is a good one, the biologists’ explanation is as powerful as it gets, as far as cicadas
are concerned, and no amount of structurally similar applications of number theory
enhances it. Thus, from the viewpoint of the counterfactual account, topic generality
itself is not an explanatory virtue. It contributes to explanatory power only if it brings
with it an explanatory increase in scope generality.

At this point one might object: so much worse for the counterfactual account, if it
is unable to capture the significance of unification as an explanatory virtue. Granted,
rendering an explanation more topic-general doesn’t help us to understand the original
explanandum better; it does, however, result in a new explanation of a broader class of
phenomena that includes both the original and the new explanandum. So, for example,
by expanding the core of the cicada example, Baker (2017) has perhaps formulated a
newexplanation of both cicada life-cycles and the features of certain fixed-gear bicycle
cogs. We now have a choice as to whether to adopt this more general explanation of
this more general phenomenon, or keep the relevant explanations separate. We should,
the objection goes, prefer a more unified theory of the world, ceteris paribus; so, we
ought to adopt the more topic general explanation.

4 From the perspective of the counterfactual account this is far from being an idiosyncratic feature of
mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: pp. 214–215), who offer a general
discussion of the virtues of formal unification in science without an increase in explanatory information.
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This line of reasoning is problematic for two reasons. First, we suspect that, lurking
behind this objection is a Quinean way of thinking that is inappropriate in this context:
that ontological questions should be settled at the level of our simplest, most unified
theory of the world. This way of thinking presupposes the dialectic of the traditional
indispensability argument, on which EIA is supposed to improve by avoiding resting
the case for platonism on the widely-contested principle of confirmational holism.
While unifying two explanations may make for an overall more virtuous (e.g. simpler,
more elegant) theory, we fail to see how it can increase our understanding of the
respective explananda, for all the reasons presented above.5 Nevertheless, we are
open to an objection based on an appeal to unification, but more work would need to
be done to mount one, as we argue below.

This brings us to our second reason. The above objection fails to appreciate what
we achieve by appealing to a theory of explanation that enjoys considerable support
independently of the EIA debate. We have shown in this section that, from the per-
spective of the counterfactual theory, distinctively mathematical explanations exhibit
a high degree of scope generality, and in virtue of this are very good explanations. In
the following section, we use this same theory to explain why the inclusion of math-
ematics in these explanations makes them better than they would be without it. This
arguably does everything an analysis of a kind of mathematical explanation should
do: it accounts for what makes them good explanations, and accounts for the role
of mathematics in generating this explanatory goodness. Given this, the fact that our
analysis does not recognise unification as an explanatory virtue of distinctively math-
ematical explanations provides good, non-question-begging reason for thinking that
unification is not an explanatory virtue of distinctively mathematical explanations. To
respond to this by pointing out that our analysis does not capture unification, and is
for that reason inadequate, is to cling to one’s intuitions in spite of the evidence we
have provided against them.

A more appropriate means of objecting in this vein would be to provide an alterna-
tive analysis of distinctively mathematical explanations that enjoys at least as much
independent support as our own, and show that, according to it, unification is of genuine
explanatory value. The prospects for this appear dim.While there is good evidence that
scientists prefer explanations that are more scope general, there is no corresponding
evidence that evolutionary biologists would prefer, or have any reason to prefer, an
explanation that is topic general enough to apply to both the cicadas and the fixed-
gear bicycles. We suspect that evolutionary biologists would have little interest in the
more general explanation, qua evolutionary biologists. If anything, there is reason to
think that biologists would prefer a less general explanation that is more grounded
in the specific phenomenon they are studying. After all, the more general explana-
tion may fudge important distinctions between the respective domains. In general,
making explanations more abstract in order to increase the degree of integration
between disparate areas of inquiry sometimes results in a loss of important domain-
specific detail, resulting in a loss of other explanatory virtues, such as factual accuracy,
or cognitive salience. The desirability of this trade-off depends on contextual, prag-

5 Although, see Sect. 6 for the related notion that appealing to more general facts can add ‘explanatory
depth’.
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matic factors that determine how the value of different what-if questions is weighed
(cf. Ylikoski and Kuorikoski 2010: 213–214).

We have, of course, only provided good reason for thinking that unification is not
an explanatory virtue of distinctively mathematical explanations. It is open to our
opponents to appeal to other kinds of mathematical explanation and argue that their
topic generality is explanatorily valuable in and of itself, and thus that the our analysis
will not adequately capture them.

5 The Explanatory Contribution of Mathematics

We have now traced the explanatory limits of two kinds of generality to which math-
ematics contributes. We have seen that, from the perspective of the counterfactual
theory of explanation, topic generality improves explanations only to the extent that
it results in an explanatory increase in scope generality, and that explanations can
be improved through scope generality only up to a point. Given this, the fact that
mathematics maximises either kind of generality does not ipso facto amount to an
explanatory contribution. What, then, accounts for the judgement that distinctively
mathematical explanations truly are better than any nominalistic alternative? We will
now argue that mathematics makes a genuine explanatory contribution to distinctively
mathematical explanations, by maximising these explanations’ cognitive salience.

Note first that, for distinctively mathematical explanations, mathematics is not
indispensable for generating a desirable level of scope generality. After all, we can in
principle state without mathematics the explanatory dependence between the values of
explanandum and explanans variables up to the desired point, however scope-general
this point is deemed to be.With reference to our toy example, supposewe do this for all
possible numbers of ideas up to one exceeding the number of atoms in the observable
universe. This is illustrated by the following, which can be written, mathematics-free,
with first-order logic plus identity:

(A′) If there is exactly one idea, then the philosopher will not be able to divide it
evenly among three sections and(2) if there are exactly two ideas, then the
philosopher will not be able to divide them evenly among three sections...
and(3×1084) if there are exactly 3 × 1084 ideas, then the philosopher will be
able to divide them evenly among three sections.

Even though the explanation based on (A′) scopes way beyond any reasonable sce-
nario involving a philosopher writing a paper, and achieves the desired level of scope
generality, we agree with the platonists that the explanation turning on (A) is really
more explanatory. But not because it (A) further increases or maximises scope gen-
erality. Rather, the (A)-explanation is better because it achieves the desired level of
scope generality without compromising cognitive salience.

To see this, note how long and cumbersome the nominalistic explanation would
be. Presenting and using such an explanation to answer what-if questions concerning
particular counterfactual situations would be unduly difficult. By contrast, (A) throws
the same explanatory information into sharp relief, and affords a simple means of
answering the desired range of what-if questions: just plug in the appropriate numeral
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and calculate. The explanation turning on (A) also avoids the feeling that, though
there is no explanatorily relevant information to be gained by using (A) to answer
what-if questions concerning numbers of ideas greater than the number of atoms in
the observable universe, there is something arbitrary about stopping the explanation
there (or anywhere else). Indeed, we may have no idea at what precise point the
answers to the relevant what-if questions cease to be explanatorily relevant. But note
that none of these virtues that make the (A)-explanation more explanatory are due to
(A) containing explanatorily relevant information that cannot be in principle presented
without mathematics. Rather, they are due to its presenting the relevant information
in a better way. Hence, the indispensable contribution that mathematics makes in
relation to scope generality is a matter of improving—indeed maximising—cognitive
salience.6

The same line of reasoning applies to the cicada example. Consider the following
two generalisations, each increasing in their scope:

(B′) Of time periods 12 to 18years long, 13- and 17-year periods minimise intersec-
tion with all periods shorter than 12years.

(B′′) Of time periods 12 to 18years long, 13- and 17-year periods uniquely minimise
intersection with all periods shorter than 12years, and, of time periods 16 to
22years long, 17- and 19-year periods uniquely minimise their intersection with
all periods shorter than 16years.

Explanatory generalisations (B′) and (B′′) are nominalistic. We think (along with the
platonists) that the explanation turning on the earlier mathematical generalisation (B)
is truly more explanatory than any of those turning on such finite nominalistic gen-
eralisations. Why? Note first that mathematics is not necessary for increasing scope
generality here: the explanation turning on (B′′) is more scope-general than the expla-
nation turning on (B′), and we can further increase scope generality with explanatory
generalisations of the same (nominalistic) kind ad infinitum. Thus, at whatever point
the answers to relevant what-if questions cease to be explanatorily relevant, we can
generate the corresponding level of scope generality without mathematics. Clearly,
(B) maximises scope generality: there is no limit to the range of possible explanans
variables it can take, and so no limit to the range of what-if questions it can answer.
But this is not why the explanation turning on (B) is better. We can increase the scope
of the generalisation non-mathematically well beyond its capacity to answer what-if
questions which are relevant and reasonable from the point of view of empirically
well-supported scientific theories. For example, a mathematics-free explanation of
cicadas’ life-cycles that accommodates every duration length up to the age of the
universe overshoots in this way.

The (B)-explanation is notmore explanatory because it maximises scope generality.
It is more explanatory because it achieves the desired level of scope generalitywithout

6 From the perspective of the counterfactual account this is unsurprising, and far from being an idiosyncratic
feature of mathematical explanations. See, e.g. Ylikoski and Kuorikoski (2010: 214–215), who argue quite
generally that an explanation can improve in terms of its cognitive saliencewithout an increase in explanatory
information.
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compromising cognitive salience. A nominalistic explanation that achieves the desired
level of scope generality would be extremely long and unwieldy, so extracting from
it answers to what-if questions would be difficult, time-consuming, and cognitively
opaque to us. In contrast, the number-theoretic rule makes generating answers to
what-if questions very easy and cognitively transparent. It also avoids our having to
answer the extremely difficult and somewhat tangential question of at what precise
point the relevant what-if question cease to be explanatorily relevant. None of these
benefits are due to (B) presenting explanatory information that cannot be presented
nominalistically. They are due to its presenting the relevant information in a better
way.

We conclude that mathematics’ role in the procurement of explanatory for dis-
tinctively mathematical explanations is a matter of improving cognitive salience. This
analysis is not specific to a number-theoretic explanation, and it applies,mutatismutan-
dis, to other well-known examples of distinctively mathematical explanations, such as
Euler’s graph-theoretic explanation of the non-traversibility of Königsberg’s bridges.
(See Jansson and Saatsi (2017) for a starting point for this latter example.)

6 Objection and Reply

Before we wrap-up, we need to consider one more potential objection. Perhaps we
have unduly focused on explanatory generality in terms of an explanation’s scope of
application (whatwemight call ‘explanatory breadth’), and ignored a no less important
form of understanding offered by mathematics: that of picking out a more general
feature of reality whose instantiation is responsible for the dependencies at stake
(what we might call ‘explanatory depth’). Take the cicada example. Any nominalistic
generalisation stating which durations minimise intersections up to some finite limit
presents a series of facts about time, revealing a pattern of dependence between certain
time periods and the obtaining of an intersection-minimisation relation between them.
It does not explicitly tell us why these facts obtain, or why the pattern emerges.

In contrast, the objection goes, (B) arguably tells us why this pattern holds, by
showing that each of these particular matters of fact (that p1 maximises its LCM
with each q < p1, that p2 maximises its LCM with each q < p2, etc.) obtain in
virtue of a single, more general fact: that all and only prime numbers are coprime with
all lower integers. If this is a genuine explanation, it is a mathematical explanation
of a mathematical fact—an intra-mathematical explanation; but, it could be argued,
it furnishes a deeper understanding of the associated facts about time. Again, we
have a pattern of particular matters of fact—that each of a certain set of time periods
minimises intersection with each time period shorter than itself—and the idea is that
(c′) reveals that each of these particular facts obtains in virtue of a single, more general
fact, and thus provides a deeper explanation than any nominalistic alternative. This
kind of platonist story can be found in the literature.7

7 Baker (2017: 199) appears to have this in mind when he says that the number-theoretic explanation is
deeper than mathematics-free alternatives, because it tells us why there are unique intersection-minimising
periods within some ranges of periods and not others. Pincock (2015) argues that certain mathematical
explanations explain by identifying physical facts as particular instances of more general, abstract facts.
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Our response is as follows. One should not be mislead by the way in which the
nominalistic generalisations are presented. While they are in a sense a conjunction
of facts, these facts are not disunified. The aim of explaining on the counterfactual
account is to characterise an actually obtaining relation of dependence between the
explanans and the explanandum, by revealing how changes in the formerwould change
the latter. What is revealed in doing this is not just a bunch of disjoint facts that
cry out for unification in terms of something else; it is how the actual dependence
relation holding between the explanans and the explanandum manifests itself across
various relevant counterfactual scenarios. So, while the platonist may want to say that
the pattern of dependence holds in this way because of that mathematical fact, the
nominalist will just say that the pattern of dependence holds in this way because that
is how the dependence relation represented by the explanation manifests itself. Thus,
from the perspective of the counterfactual account, the charge that any nominalistic
generalisation would make for a comparatively shallow explanation is misplaced.

This is unlikely to convince someone strongly under the sway of the intuition that
the mathematically-presented explanations are somehow ‘deeper’. However, as things
stand, that is all it is: an intuition. As we have stated, our aim is to demonstrate how to
push past the trading of intuitions, and this is where our appeal to a theory of scientific
explanation that is motivated independently of the debate really pays off. Our analysis
explains why distinctively mathematical explanations are to be preferred over their
nominalistic alternatives independently of their generating depth in the above sense,
and it does so by folding it into a general and independently well-supported theory
of scientific explanation. On our story, the place of distinctively mathematical expla-
nations in a broader story about the preferences and standards operative in scientific
practice is clear, and this sets a very high bar. Anyone wishing to argue for platonism
by appeal to mathematics’ procurement of depth (or any other ‘virtue’ our analysis
leaves out) will have to develop an analysis that rivals our own in its naturalistic cre-
dentials.8 Thus, whether our opponents find the above response convincing or not,
they are forced to do further work in the methodological spirit of this paper to mount a
counter-reply. Resting on their intuition about the relative depth will not suffice. This
marks precisely the kind of progress we have aimed to achieve in this paper.

7 Conclusion

There is a critical, but seldom-recognised assumption shared by both sides in the
deadlocked debate about EIA: that the source of an explanation’s explanatory power is
purely amatter of its correctly representing explanatory features of reality. On the basis

Footnoe 7 continued
Others highlight cases where the mathematics used to explain what look like very different physical phe-
nomena can be unified under a more general mathematical method, and argue that this suggests there is a
deeper, mathematical reason lying behind the relevant physical phenomena (e.g. Colyvan 2002 and Baron
et al. 2017).
8 For example, Baron et al. (2017) develop a counterfactual analysis of mathematical explanation with an
eye to unifying intra- and extra-mathematical explanations, so their account may offer a means of spelling
out the above kind of depth counterfactually. They hold back from endorsing the analysis; but if they were
to endorse it, and use it in support of EIA, they would have to show that their account genuinely captures
something of scientific explanatory value that ours misses.
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of this assumption, platonists can challenge nominalists by reference to mathematical
explanations that are judged to be more explanatory than nominalistic alternatives:
the difference in their explanatoriness must be due to the mathematics representing
explanatory features of reality that their nominalistic alternatives do not, and nomi-
nalists are thereby challenged to say what those features are, if not mathematical. This
critical assumption lies behind the challenge from explanatory generality, based on
the popular idea that mathematics makes certain explanations better than nominalistic
alternatives by making them more general.

Our analysis reveals that nominalists can reject this critical assumption: explana-
tions can become more explanatory without accurately representing further explana-
tory features of reality. According to the counterfactual account, explanatory power is a
measure of how much modal explanatory information it provides to an explainer. This
is a function both of the amount of such information the explanation provides about
the relevant worldly features, and of the way in which this information is presented.
We take it as obvious that only increases in information about the explanatorily rel-
evant worldly features—objective explanatory dependences—as opposed to changes
in how such information is presented, stand a chance of securing further ontological
commitments. Our analysis of some of the key exemplars of distinctivelymathematical
explanation, displaying striking scope and topic generality, shows that mathematics
does not yield an increase in this kind of ontologically committing explanatory infor-
mation. Its role is rather that of improving cognitive salience. From the perspective
of the counterfactual account, we thus get a clear verdict in favour of nominalism:
mathematics’ indispensable role in distinctively mathematical explanations provides
no reason to believe in mathematical objects.

There is some scope to resist our analysis of mathematics’ contribution, e.g. by
arguing that there is a further, scientifically kosher dimension of explanatory power that
our analysis doesn’t capture. Any such claim needs to be accompanied by evidence that
avoids the kind of intuition-trading and foot-stomping thatwe have avoided byworking
within a well-founded theory of scientific explanation. As far as we can see, the only
way to do thiswould be tomotivate an alternative account ofmathematics’ contribution
to distinctively mathematical explanations within an equally well-supported theory of
explanation.
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